Phase-field approximation to Willmore flows with constraints

Philippe Laurençot

CNRS, Institut de Mathématiques de Toulouse

September 2012

Joint works with:
Pierluigi Colli (Pavia)

Motivation I

Cell membrane: living cell/environment. Made of lipids, proteins, ... Model: lipid bilayer in which lipid molecules move freely and proteins are embedded. Thickness usually small \rightarrow surface.
Configuration and deformation of elastic lipid bilayers:
Canham-Helfrich's model (1973). Curvature/bending energy:

$$
\mathcal{E}_{H}:=\int_{\Sigma}\left(\frac{k_{c}}{2}\left(\mathcal{H}-\mathcal{H}_{0}\right)^{2}+\frac{k_{g}}{2} \mathcal{K}\right) d s
$$

where

- k_{c}, k_{g} : bending rigidities,
- \mathcal{H} : mean curvature,
- \mathcal{H}_{0} : spontaneous curvature,
- \mathcal{K} : Gauß curvature.

Motivation II

Equilibrium shape for a closed surface:

$$
\min \int_{\Sigma}\left(\frac{k_{c}}{2}\left(\mathcal{H}-\mathcal{H}_{0}\right)^{2}\right) d s
$$

Constraints: fixed area and volume.

$$
k_{c}\left(\mathcal{H}+\mathcal{H}_{0}\right)\left(\mathcal{H}^{2}-\mathcal{H}_{0} \mathcal{H}-\mathcal{K}\right)+k_{c} \Delta_{\Sigma} \mathcal{H}=\lambda \mathcal{H}-\mu
$$

with Lagrange multipliers λ and μ. Highly nonlinear PDE + sharp interface: drawbacks for numerical simulations.

Results on the FBP

- Existence of minimisers without constraints and $\mathcal{H}_{0}=0$. simon (1993), Rivière (2008)
- Existence of minimisers with constraints: axisymmetric geometry. Choksi \& Veneroni
- Existence of critical points bifurcating from a sphere. Nagasawa \& Takagi (2003)
- Existence of minimisers with isoperimetric constraint and $\mathcal{H}_{0}=0$. Schygulla (2012)
- Local existence for the evolution equation. Nagasawa \& Yi (2012)

Phase-field approximation I

Regularize the interface. Du, Liu \& Wang (2004)
Order parameter: v.

- $\{x: v(x)=0\}$ represents the membrane,
- $\{x: v(x)>0\}$ represents the inside of the membrane,
- $\{x$: $v(x)<0\}$ represents the outside of the membrane.

Simplifying assumption: homogeneous membrane and $\mathcal{H}_{0}=0$.

$$
\mathcal{E}_{H}=\frac{k_{C}}{2} \int_{\Sigma} \mathcal{H}^{2} d s \quad \longrightarrow \quad E=k \int_{\Omega}\left[\Delta v-\frac{1}{\varepsilon^{2}}\left(v^{2}-1\right) v\right]^{2} d x
$$

Phase-field approximation II

$$
\begin{aligned}
& \mathcal{E}_{H}=\frac{k_{C}}{2} \int_{\Sigma} \mathcal{H}^{2} d s \longrightarrow E=k \int_{\Omega}\left[\Delta v-\frac{1}{\varepsilon^{2}}\left(v^{2}-1\right) v\right]^{2} d x \\
& \text { volume } \longrightarrow \int_{\Omega} v d x \\
& \text { area } \longrightarrow F= \int_{\Omega}\left[\frac{\varepsilon}{2}|\nabla v|^{2}+\frac{1}{4 \varepsilon}\left(v^{2}-1\right)^{2}\right] d x
\end{aligned}
$$

Phase-field approximation III $(\varepsilon=1)$

$$
\partial_{t} v=\frac{\delta E}{\delta v}+A+B \frac{\delta F}{\delta v}
$$

with

$$
\frac{\delta F}{\delta v}=\mu:=-\Delta v+W^{\prime}(v)
$$

and

$$
\begin{gathered}
\frac{\delta E}{\delta v}=\Delta \mu-W^{\prime \prime}(v) \mu \\
W(r):=\frac{1}{4}\left(r^{2}-1\right)^{2}, \quad r \in \mathbb{R}
\end{gathered}
$$

Outline

(1) Volume constraint

Outline

(9) Volume constraint
(2) Volume and area constraints

Outline

(1) Volume constraint

(2) Volume and area constraints

Phase-field approximation

Let Ω be an open bounded subset of $\mathbb{R}^{N}, 1 \leq N \leq 3$.

$$
\begin{aligned}
\partial_{t} v & -\Delta \mu+W^{\prime \prime}(v) \mu-\overline{W^{\prime \prime}(v) \mu}=0, \quad(t, x) \in(0, \infty) \times \Omega \\
\mu & =-\Delta v+W^{\prime}(v), \quad(t, x) \in(0, \infty) \times \Omega \\
\nabla v \cdot \nu & =\nabla \mu \cdot \nu=0, \quad(t, x) \in(0, \infty) \times \Gamma \\
v(0) & =v_{0}, \quad x \in \Omega,
\end{aligned}
$$

with

$$
W(r):=\frac{1}{4}\left(r^{2}-1\right)^{2}, \quad r \in \mathbb{R}
$$

and

$$
\bar{f}:=\frac{1}{|\Omega|} \int_{\Omega} f(x) d x, \quad f \in L^{1}(\Omega) .
$$

Notation

- $V:=\left\{w \in H^{2}(\Omega): \nabla w \cdot \nu=0\right.$ on $\left.\Gamma\right\}$,
- $V_{\alpha}:=\{w \in V: \bar{w}=\alpha\}$, where $\alpha \in \mathbb{R}$.
- Energy functional:

$$
E(v):=\frac{1}{2} \int_{\Omega}\left[-\Delta v+W^{\prime}(v)\right]^{2} d x
$$

Well-posedness

Given $\alpha \in \mathbb{R}$ and $v_{0} \in V_{\alpha}$, there is a unique solution v satisfying for all $T>0$

- $v \in \mathcal{C}\left([0, T] ; L^{2}(\Omega)\right) \cap L^{\infty}\left(0, T ; V_{\alpha}\right)$,
- $\mu:=-\Delta v+W^{\prime}(v) \in L^{2}(0, T ; V)$,
- $t \longmapsto E(v(t))=\|\mu(t)\|_{2}^{2} / 2$ is a non-increasing function,

$$
\int_{0}^{\infty}\left\|-\Delta \mu(t)+W^{\prime \prime}(v(t)) \mu(t)-\overline{W^{\prime \prime}(v) \mu}(t)\right\|_{2}^{2} d t \leq 2 E\left(v_{0}\right)
$$

Colli \& L. (2011)

Proof

- Variational approach: time step $\tau \in(0,1)$. Define $\left(v_{n}^{\tau}\right)_{n \geq 0}$ by:
- $v_{0}^{\tau}:=v_{0}$,
- for $n \geq 1$,

$$
v_{n}^{\tau} \in \operatorname{argmin}\left\{\frac{1}{2}\left\|w-v_{n-1}^{\tau}\right\|_{2}^{2}+\tau E(w): w \in V_{\alpha}\right\} .
$$

- Euler-Lagrange equation.
- Piecewise constant interpolation: $\boldsymbol{v}^{\tau}(t):=v_{n}^{\tau}$ for $t \in[n \tau,(n+1) \tau)$ and $n \geq 0$.
- Estimates for \boldsymbol{v}^{τ} in $L^{\infty}\left(0, T ; H^{2}(\Omega)\right)$ and for $\mu^{\tau}:=-\Delta v^{\tau}+W^{\prime}\left(v^{\tau}\right)$ in $L^{2}\left(0, T ; H^{2}(\Omega)\right)+$ time equicontinuity.

Outline

(1) Volume constraint

(2) Volume and area constraints

Notation

- $V:=\left\{w \in H^{2}(\Omega): \nabla w \cdot \nu=0\right.$ on $\left.\Gamma\right\}$,
- Free energy functional:

$$
F(v):=\int_{\Omega}\left[\frac{1}{2}|\nabla v|^{2}+W(v)\right] d x, \quad I(v):=\bar{v}, \quad v \in H^{1}(\Omega)
$$

- $\beta_{\alpha}:=\inf \left\{F(w): w \in H^{1}(\Omega), I(w)=\alpha\right\}, \alpha \in \mathbb{R}$.
- $\mathcal{M}_{\alpha, \beta}^{1}:=\left\{w \in H^{1}(\Omega): I(w)=\alpha, F(w)=\beta\right\}, \alpha, \beta \in \mathbb{R}$.
- Clearly, $\mathcal{M}_{\alpha, \beta}^{1}=\emptyset$ if $\beta<\beta_{\alpha}$.
- Energy functional:

$$
E(v):=\frac{1}{2} \int_{\Omega}\left[-\Delta v+W^{\prime}(v)\right]^{2} d x
$$

$\mathcal{M}_{\alpha, \beta}^{1}$

$\mathcal{M}_{\alpha, \beta}^{1}:=\left\{w \in H^{1}(\Omega): \bar{w}=\alpha, F(w)=\beta\right\}, \alpha, \beta \in \mathbb{R}$.

- $\mathcal{M}_{\alpha, \beta}^{1}=\emptyset$ if $\beta<\beta_{\alpha}$.
- $\mathcal{M}_{\alpha, \beta_{\alpha}}^{1} \neq \emptyset$.
- If $\beta>\beta_{\alpha}, w \in \mathcal{M}_{\alpha, \beta_{\alpha}}^{1}$, and $\varphi \in H^{1}(\Omega)$ with $\bar{\varphi}=0$, there is $\lambda_{\varphi}>0$ such that $w+\lambda_{\varphi} \varphi \in \mathcal{M}_{\alpha, \beta}^{1}$.

$$
\mathcal{M}_{\alpha, \beta}^{2}:=\left\{w \in H_{N}^{2}(\Omega): \bar{w}=\alpha, F(w)=\beta\right\}, \alpha, \beta \in \mathbb{R} .
$$

Phase-field approximation

Let Ω be an open bounded subset of $\mathbb{R}^{N}, 1 \leq N \leq 3$, and $v_{0} \in \mathcal{M}_{\alpha, \beta}^{2}$.

$$
\begin{aligned}
\partial_{t} v & -\Delta \mu+W^{\prime \prime}(v) \mu=A+B \mu, \quad(t, x) \in(0, \infty) \times \Omega \\
\mu & =-\Delta v+W^{\prime}(v), \quad(t, x) \in(0, \infty) \times \Omega \\
\nabla v \cdot \nu & =\nabla \mu \cdot \nu=0, \quad(t, x) \in(0, \infty) \times \Gamma \\
v(0) & =v_{0}, \quad x \in \Omega,
\end{aligned}
$$

with

$$
W(r):=\frac{1}{4}\left(r^{2}-1\right)^{2}, \quad r \in \mathbb{R}
$$

and A and B are time-depending functions and the Lagrange multipliers corresponding to the volume and area constraints

$$
\overline{v(t)}=\alpha=\overline{v_{0}} \quad \text { and } \quad F(v(t))=\beta=F\left(v_{0}\right), \quad t \geq 0 .
$$

Computing the Lagrange multipliers

$$
\mu=-\Delta v+W^{\prime}(v)
$$

$$
\begin{aligned}
A+B \bar{\mu}= & \overline{W^{\prime \prime}(v) \mu} \\
B\|\mu-\bar{\mu}\|_{2}^{2}= & \|\nabla \mu\|_{2}^{2}+\int_{\Omega} W^{\prime \prime}(v) \mu^{2} d x \\
& -\overline{W^{\prime \prime}(v) \mu} \int_{\Omega} \mu d x \\
& \mu=\text { const.? }
\end{aligned}
$$

Variational scheme

- $\alpha \in \mathbb{R}, \beta>\beta_{\alpha}$.
- Variational approach: time step $\tau \in(0,1)$. Define $\left(v_{n}^{\tau}\right)_{n \geq 0}$ by:
- $v_{0}^{\tau}:=v_{0}$,
- for $n \geq 1$,

$$
v_{n}^{\tau} \in \operatorname{argmin}\left\{\frac{1}{2}\left\|w-v_{n-1}^{\tau}\right\|_{2}^{2}+\tau E(w): w \in \mathcal{M}_{\alpha, \beta}^{1}\right\} .
$$

- v_{n}^{τ} is well-defined.
- Euler-Lagrange equation.

Euler-Lagrange equation

- Euler-Lagrange equation for v_{n}^{τ} :

$$
\frac{v_{n}^{\tau}-v_{n-1}^{\tau}}{\tau}+\frac{\delta E}{\delta v}\left(v_{n}^{\tau}\right)=A \frac{\delta I}{\delta v}\left(v_{n}^{\tau}\right)+B \frac{\delta F}{\delta v}\left(v_{n}^{\tau}\right)
$$

- Problem to identify the Euler-Lagrange equation if

$$
\mu_{n}^{\tau}:=\frac{\delta F}{\delta v}\left(v_{n}^{\tau}\right)=-\Delta v_{n}^{\tau}+W^{\prime}\left(v_{n}^{\tau}\right)=\text { const. }=|\Omega| \text { const. } \frac{\delta l}{\delta v}\left(v_{n}^{\tau}\right)
$$

Lagrange multipliers

$$
\mu_{n}^{\tau}=-\Delta v_{n}^{\tau}+W^{\prime}\left(v_{n}^{\tau}\right) .
$$

$$
\begin{aligned}
A+B \overline{\mu_{n}^{\tau}}= & \overline{W^{\prime \prime}\left(v_{n}^{\tau}\right) \mu_{n}^{\tau}} \\
B\left\|\mu_{n}^{\tau}-\overline{\mu_{n}^{\tau}}\right\|_{2}^{2}= & \left\|\nabla \mu_{n}^{\tau}\right\|_{2}^{2}+\int_{\Omega} W^{\prime \prime}\left(v_{n}^{\tau}\right)\left(\mu_{n}^{\tau}\right)^{2} d x \\
& -\overline{W^{\prime \prime}\left(v_{n}^{\tau}\right) \mu_{n}^{\tau}} \int_{\Omega} \mu_{n}^{\tau} d x .
\end{aligned}
$$

Restriction on (α, β)

Steady states:

$$
\mathcal{Z}_{\alpha, \beta}:=\left\{w \in \mathcal{M}_{\alpha, \beta}^{2}:-\Delta w+W^{\prime}(w)-\overline{W^{\prime}(w)}=0 \text { in } \Omega\right\} .
$$

Assumption:

$$
\mathcal{Z}_{\alpha, \beta}=\emptyset
$$

- Given $\alpha \in \mathbb{R}$, the set $\left\{\beta \in\left(\beta_{\alpha}, \infty\right): \mathcal{Z}_{\alpha, \beta}=\emptyset\right\}$ is open and contains a neighbourhood of infinity.
- Functional inequality.

Convergence

- Piecewise constant interpolation: $v^{\tau}(t):=v_{n}^{\tau}$ for $t \in[n \tau,(n+1) \tau)$ and $n \geq 0$. Similar definitions for μ^{τ}, A^{τ}, and B^{τ}.
- Estimates for v^{τ} in $L^{\infty}\left(0, T ; H^{2}(\Omega)\right)$ and for μ^{τ} in $L^{2}\left(0, T ; H^{2}(\Omega)\right)+$ time equicontinuity.
- Estimates for A^{τ} and B^{τ} in $L^{2}(0, T)$, the latter being the most delicate point (functional inequality).
- Convergence \longrightarrow existence.
- Uniqueness.

Colli \& L.

Further questions

- Behaviour as $\varepsilon \rightarrow 0$: formal approach for E with volume and area constraints.

Du, Liu, Ryham, \& Wang (2005), Wang (2008).

- Behaviour as $\varepsilon \rightarrow 0$: rigorous approach without or with constraints. Bellettini \& Mugnai (2010)
- Phase-field approximations for non-homogeneous membranes.

Wang \& Du (2008), Lowengrub, Rätz, \& Voigt (2009), Elliott \& Stinner (2010), Givli, Giang, \& Bhattacharya (2012)

- Coupling with Navier-Stokes equations but no constraints.

Wu \& Xu

