On the omega-limit set for a nonlocal evolution problem

Danielle HILHORST (Orsay), Hiroshi MATANO (Tokyo), and <u>Thanh Nam NGUYEN</u> (Orsay)

Laboratoire de Mathématiques Université de Paris - Sud

September 20, 2012

Contents

- 2 Hypothesis and heuristics
 - Hypothesis
 - Heuristics

4 Main result

- Theorem 1
- Theorem 2
- Theorem 3

Introduction

First, we consider a problem involving a partial differential equation

$$(PDE) \begin{cases} v_t = \Delta v + f(v) - \int_{\Omega} f(v) & \text{in } \Omega \times \mathbb{R}^+, \\ \partial_{\nu} v = 0 & \text{on } \partial \Omega \times \mathbb{R}^+, \\ v(x,0) = v_0(x) & x \in \Omega. \end{cases}$$

Here, $\Omega \subset \mathbb{R}^N (N \ge 1)$ is a bounded connected open set with smooth boundary, ∂_{ν} is the outer normal derivative to $\partial \Omega$ and

$$\int_{\Omega} f(v) := \frac{1}{|\Omega|} \int_{\Omega} f(v(x)) \, dx.$$

Introduction

- Problem (*PDE*) was proposed by Rubinstein and Sternberg as a model for phase separation in a binary mixture.
- We assume that the function f is of the form

$$f(s) = \sum_{i=1}^n a_i s^i$$
 where $n \ge 3$ is an odd number, $a_n < 0$.

Introduction

• Mass conservation property

$$\int_{\Omega} v(x,t) \, dx = \int_{\Omega} v_0(x) \, dx.$$

• Lyapunov functional

$$\mathcal{E}(v) = \frac{1}{2} \int_{\Omega} |\nabla v|^2 \, dx - \int_{\Omega} F(v) \, dx,$$

where $F(s) = \int_0^s f(\tau) \, d\tau.$

Introduction

• BOUSSAÏD, HILHORST and NGUYEN gave a version of Lojasiewicz inequality and used it to prove that as $t \to \infty$

v(t) converges to a stationary solution φ in $H^1(\Omega)$.

In other words, the omega-limit set of Problem (PDE) is a singleton.

Introduction

The stabilization and the existence of a global attractor in the case that f is singular will be studied in the doctoral thesis of Samira Boussaid

Introduction

Next, we consider a nonlocal differential equation on I := (-L, L)

$$(ODE) \begin{cases} u_t = f(u) - \int_I f(u) & \text{in } I \times \mathbb{R}^+, \\ u(x,0) = u_0(x) & x \in I, \end{cases}$$

where L > 0, and

$$\int_{I} f(u) := \frac{1}{2L} \int_{I} f(u(x)) \, dx.$$

Our aim is to study the omega-limit set

$$\begin{split} \omega(u_0) &:= \{ \varphi \in L^1(I) : \exists t_n \to \infty \text{ such that} \\ u(t_n) \to \varphi \text{ in } L^1(I) \text{ as } n \to \infty \}. \end{split}$$

Introduction

Problem (ODE) has the following properties:

- Mass conservation
- Lyapunov functional

$$E(u) = -\int_{\Omega} F(u) dx$$
, where $F(s) = \int_{0}^{s} f(\tau) d\tau$.

 Howerver, the technique used to study Problem (PDE) can not be used for Problem (ODE). In the following, we give a different method, which is based on studying the profile of u(t) for each time t.

Hypothesis Heuristics

The function f

We choose s_1 (large enough) and s_2 (small enough) such that

 $f(s_2) < f(s) < f(s_1)$ for all $s \in (s_1, s_2)$.

 s_* and s^* satisfy $f(s_*) = f(M)$, $f(s^*) = f(m)$.

Hypothesis Heuristics

Hypothesis

We assume that the initial function satisfies the hypothesis:

(**H**): u_0 is piecewise monotone, continuous on [-L, L], and $lap(u_0)$ is finite.

Hypothesis Heuristics

Lap-number

Lap-number

Let w be a piecewise monotone continuous function from \overline{I} into \mathbb{R} . Then \overline{I} can be divided into a finite number of non-overlapping sub-intervals $J_1, \ldots, J_m(\bigcup_{i=1}^m J_m = \overline{I})$, where w is monotone. Such a division of \overline{I} is not unique, but there exists a minimum value m for which we can find a division $\{J_i\}$ as above. This value is called the lap-number of w and we shall denote it by lap(w).

Hypothesis Heuristics

Heuristics

• For every t > 0, we have

$$\mathsf{lap}(u(t)) = \mathsf{lap}(u(0)).$$

• A comparison result for the nonlocal problem (ODE):

$$s_1 \leq u(0) \leq s_2 \quad \Longrightarrow \quad s_1 \leq u(t) \leq s_2 \text{ for all } t \geq 0.$$

We prove that $\{u(t), t \ge 0\}$ is bounded in BV(I) so that

 $\{u(t), t \ge 0\}$ is relatively compact in $L^1(I)$.

First result

Theorem 1

Let $\varphi \in \omega(u_0)$, then φ is a step function. More precisely,

$$\varphi = \mathbf{a}_{-} \mathbf{X}_{\mathbf{A}_{-}} + \mathbf{a}_{0} \mathbf{X}_{\mathbf{A}_{0}} + \mathbf{a}_{+} \mathbf{X}_{\mathbf{A}_{+}},$$

where A_-, A_0, A_+ (which depend on φ , and may not exist) are pairwise disjoint subsets of I such that

$$A_{-}\cup A_{0}\cup A_{+}=I.$$

 a_-, a_0, a_+ satisfy

$$f(a_{-}) = f(a_{0}) = f(a^{+}) = \eta_{\varphi}$$
(some constant)

First result

First Idea

We have the following constraints

The constraints

The functional Lyapunov is constant on omega-limit set,

•
$$\int_{I} \varphi = \int_{I} u_0$$
,

•
$$f(a_{-}) = f(a_{0}) = f(a_{+}) = \eta_{\varphi}.$$

and we have six unknowns: $a_-, a_0, a_+, A_-, A_0, A_+$. Therefore, we need more conditions to find these unknows.

• The first idea is to prove that $|A_0| = 0$, since a_0 is an unstable point.

Counterexample

Let u_0 be an odd function on \overline{I} .

Assume that $f(s) = s - s^3$. Then $\omega(u_0)$ possesses a unique element φ which is given by

$$\varphi(x) = \begin{cases} -1 & \text{if } u_0(x) < 0\\ 0 & \text{if } u_0(x) = 0\\ 1 & \text{if } u_0(x) > 0. \end{cases}$$

Consequently, if $|u_0^{-1}(\{0\})| \neq 0$, then $|A_0| \neq 0$.

Thanh Nam NGUYEN

Theorem 1

Theorem 1

We shall use the notations for each t > 0,

$$\begin{split} I_{-}(t) &:= \{ x \in \overline{I}, u(x,t) \leq m \}, \\ I_{0}(t) &:= \{ x \in \overline{I}, m < u(x,t) < M \}, \\ I_{+}(t) &:= \{ x \in \overline{I}, u(x,t) \geq M \}. \end{split}$$

Key lemma

Assume that $s_* \leq u_0 \leq s^*$, then for each $t \geq 0$ and for every t' > t.

$$I_-(t)\subset I_-(t'),\ I_+(t)\subset I_+(t') ext{ and } I_0(t)\supset I_0(t').$$

On the other words, $I_{-}(t)$, $I_{+}(t)$ are monotonically expanding in t and $I_0(t)$ is monotonically shrinking in t.

Theorem 1 Theorem 2 Theorem 3

Arguments for the key lemma

Arguments

For all $t' > t \ge 0$ and $x \in \overline{I}$, we have

- if $u(x,t) \leq m$ then $u(x,t') \leq m$,
- if $u(x,t) \ge M$ then $u(x,t') \ge M$.

Theorem 1 Theorem 2 Theorem 3

Theorem 1

Theorem

Assume that $s_* \leq u_0 \leq s^*$. There exists α such that for all $\varphi \in \omega(\mathbf{u_0})$ with $\eta_{\varphi} \in (f(m), f(M))$.

$$A_{-} = u_{0}^{-1}((-\infty, \alpha)), A_{0} = u_{0}^{-1}(\{\alpha\}), A_{+} = u_{0}^{-1}(\alpha, +\infty).$$

Corollary

Assume that u_0 is strictly monotone on every connected components of $u_0^{-1}((m, M))$, then $|A_0| = 0$. Moreover, $\omega(u_0)$ possesses a unique element.

Theorem 1 Theorem 2 Theorem 3

Theorem 2

We note that if $u_0(x) \in [s_*, s^*]$ for all $x \in \overline{I}$, then $f_I u_0 \in [s_*, s^*]$. Now, we consider the case that

$$\int_{I} u_0 \not\in [s_*, s^*].$$

Theorem

Assume that

$$\oint_{I} u_0 \not\in [s_*, s^*];$$

then $\omega(u_0)$ possesses a unique element φ . Moreover,

$$\varphi(x) \equiv \int_{I} u_0(y) \, dy.$$

 Introduction
 Theorem 1

 Hypothesis and heuristics
 Theorem 2

 First result and idea of proof
 Theorem 3

Theorem 3

Theorem

Assume that for all $x \in \overline{I}$,

either
$$u_0(x) \leq m$$
 or $u_0(x) \geq M$.

Then $\omega(u_0)$ possesses a unique element φ . Moreover,

$$\varphi(x)\equiv \int_I u_0(y)\,dy.$$

Introduction Hypothesis and heuristics First result and idea of proof Main result	Theorem 1 Theorem 2 Theorem 3	

Future work

Hilhorst, Matano, and Nguyen are planning to study a generation of interface property for the equation

$$u_t = u_{xx} + \frac{1}{\varepsilon^2} \left(f(u) - \int_I f(u) \right).$$

Theorem 1 Theorem 2 Theorem 3

Thank you for your attention!