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1. The model and its reduction
We study a model of thin films, where the surface diffusion plays a major
role. Crystal surface is represented by a height function h : Ω× [0, T )→
R, Ω ⊂ Rd, d = 1,2. Actually, we take Ω = Td. The basic equation is

ht =
√

1 + |∇h|2(D∆Sµ− f · n), on (1)

where
D – diffusion constant;
f · n – atomic flux;
µ – variational derivative of chemical potential depending on surface en-
ergy.

The surface energy density is γ(∇h) + 1
2νκ

2, here ν > 0 is a Willmore
regularization, and κ is the mean curvature.
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After reductions the surface energy functional takes the form

L(h) =
∫

Ω
(
1

2
|∆h|2 + Φ(∇h)) dx (2)

here Φ is a quartic potential.
If d = 2, then:

Φ(F1, F2) =
α

12

(
F4

1 + F4
2

)
+
β

2
F2

1F
2
2 −

1

2
(F2

1 + F2
2 ),

where α, β > 0. This function has four wells.

d = 1:

Φ(F ) =
1

2
(1− |F |2)2.

This function has two wells.
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The L2-derivative of L is

(
δL
δh

(h), ϕ) =
∫

Ω
(∆2h− div∇FΦ)ϕdx

=
∫

Ω
(∆2h+ ∆h−Ψ)ϕdx,

where

Ψ = β(h2
yhxx + h2

xhyy + 4hxhyhxy) + α(h2
xhxx + h2

yhyy)

Thus, the model equation is

ht =
D

2
|∇h|2 + ∆

δL
δh

(h) in Td (3)

augmented with initial conditions.
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History:
Savina et all (2003),
Korzec, Evans, Wagner, Münch (2008),
Korzec (2010),
Wise, J.Kim, Lowengrub (2007),
Pawłow–Zajączkowski (2011),
Vougalter, Volpert (2012).
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2. Local in time weak solutions.
Equations
Finally, the system takes the following forms, if d = 1,

ht =
D

2
h2
x + h

(6)
x + [hx − (hx)3](4); (4)

if d = 2,

ht =
D

2
|∇h|2 + ∆2h+ ∆3h−∆[β(h2

yhxx + h2
xhyy + 4hxhyhxy)]

+α∆(h2
xhxx + h2

yhyy). (5)

Both systems are gradient flows perturbed by a destabilizing quadratic
term. There is a difference between d = 1 and d = 2.
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After differentiating (4) wrt x and substituting u = hx we obtain an equation
for the slope u,

ut = Duux + u
(6)
x − (Φ′u(u))(4)

x (6)

for a conserved quantity, u. Moreover,∫
T1
u(t, x) dx =

∫
T1
u0(x) dx = 0.

Weak solutions
Local existence of weak solutions is not difficult, once we properly define
this notion.

Definition. A function h ∈ C([0, T );H3(T2)), (resp. u ∈ L2(0, T ; Ḣ3(T1))),
h(0) = h0, (resp. u(0) = u0), such that ht ∈ L∞(0, T ;H−3(T2)),
(resp. ut ∈ L2(0, T ;H−3(T1))) such that

〈ht, ϕ〉 =
∫
T2

(D|∇h|2ϕ−∇∆h∇∆ϕ+div∇FΦ∆ϕ) ∀ϕ ∈ C([0, T );H3(T2)).
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It is relatively straightforward to establish local-in-time existence.

Theorem 1. (a) For a given h0 ∈ H3 there is T > 0 such that there exists
a weak solution to (5) on [0, T ).
(b) For given T > 0 and u0 ∈ Ḣ2 there exists a weak solution to (6) on
[0, T ).

Part (a) is proved by Banach contraction principle, (b) is shown by Galerkin
approximation.
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3. Regularity of weak solutions
Theorem 2. (a) d = 2; If h0 ∈ H3 and h is a corresponding weak solution
to (5) on [0, T ] (hence, h ∈ C([0, T ];H3)), then h ∈ L2(0, T ;H5) and
ht ∈ L2(0, T ;H−1). Moreover, the bounds for the norms ‖h‖L2(0,T ;H5)
and ‖ht‖L2(0,T ;H−1) depend only on ‖h0‖H3 and ‖h‖C([0,T ];H3).
(b) d = 1; Let us suppose that u is a weak solution to (4) given by Theorem
1 (b), then

u ∈ L2(0, T ; Ḣ4
per) and ux ∈ L∞(0, T ;L∞).

In the case (a) we apply the variation of parameter formula and proceed
by patient boot-strapping argument. Its advantage is it may be applied
endlessly, until something goes wrong.

To prove (b) we proceed by establishing energy estimates.
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4. Global in time solutions
The drawback of Theorem 2. is that ‖u‖L∞(0,T ;H5) depends on unspeci-
fied norm ‖u‖L∞(0,T ;H3) while we would be most happy with an estimate
of the form

‖u‖L∞(0,T ;H5) ≤ C(‖u0‖H3, T ).

Theorem 3. Let us assume than h is a weak solution to (5) with initial
condition, which we constructed. Then,

‖h‖L∞(0,T ;H3) ≤ C3(1 + ‖h0‖H3 + L(h0))eλT . (7)

A similar estimate is valid also in the one-dimensional case.
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Estimate (7) tell us that weak solutions may not blow up in finite time and
in particular Theorem 2 is valid for all t > 0.

Remarks on the proof. We compute dL
dt . One can seem that

dL
dt

=
∫

Ω
Hht = −

∫
Ω
|∇H|2 +

D

2

∫
Ω
H|∇h|2.

Sobolev inequality implies (note
∫
H = 0).∫

Ω
H2 ≤

∫
Ω
|∇H|2.

Moreover,

D

2
H|∇h|2 ≤ H2 +

D2

8
|∇h|4.

10



Hence,
dL
dt
≤ C1 + C2L.

As a result,

‖h‖2
H2 ≤ C(1 + L(h0)).

Subsequently, we lifting the regularity by bootstrapping argument if d = 2.

An additional effort is needed if d = 1, becuase we test equation (6) with
suitable test functions. It is summarized in the following result.
Lemma 1. (Folland)
Consider a domain Ω ⊂ Rn, let s > 0, t > s + n/2 and u ∈ Hs(Ω), φ ∈
Ht(Ω) ∩ L∞(Ω). Then φu ∈ Hs(Ω) and it holds for some constant
C > 0 that

‖φu‖Hs ≤ ‖φ‖∞‖u‖Hs + C‖φ‖Ht‖u‖Hs−1. (8)
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5. Uniqueness
This depends upon uniform H3 bounds established earlier, see (7).

Theorem 4. If h0 ∈ H3 and hi, i = 1,2 are weak solutions to (5) with
initial condition h0, then h1 = h2. The same is true if d = 1.

After straightforward estimates we obtain, for h = h1 − h2,

1

2

d

dt
‖h‖2 + ‖∇∆h‖2 ≤ ‖∆h‖2 +

D

4
‖h‖2 + C2(K)

D

2
‖∇h‖2 (9)

+
C3(K)

ε
‖∇h‖2 + ε(

α

3
+ β)‖∇∆h‖2.

We so choose ε that (α3 + β)ε = 1/2.
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Combining this with the interpolation inequality below

‖∆u‖L2 ≤ Cε‖u‖L2 + ε‖∇∆u‖L2,

yields
1

2

d

dt
‖h‖2 ≤ Kε‖h‖2.

Thus,

h ≡ 0.
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6. Asymptotics
We will study only the slope systems in d = 1,2.

We will show that there is a compact absorbing set in H2 topology. This
will imply existence of a global attractor. The choice of the norm is related
to uniqueness theorems.

We begin with the d = 1 case, which explains the idea of the calculations.
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Proposition 1. (d = 1) There is an absorbing ball in H1. More precisely,
there is CU such that for any set B, bounded in the H2, if u(0) ∈ B, then

‖u(t)‖L2 ≤ CU , ‖u(t)‖L4 ≤ CU , ‖ux(t)‖L2 ≤ CU
for t ≥ t(B).

This is done in two steps.

Lemma 2.
d

dt

[∫
T1

(Φ(u) +
1

2
‖ux‖2) +

1

2
‖(−∆)−1ut‖2

]
≤ C‖u‖4

L4. (10)

Lemma 3.
1

2

d

dt
‖(−∆)−1u‖+

1

2
‖u‖4

L4 + ‖ux‖2 ≤ C2. (11)
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We define

E1 =
∫
T1

Φ(u) dx+
1

2
‖ux‖2L2 + 2C1‖(−∆)−1u‖2

L2 (12)

adding 4C1 times (10) to (11) yields (after some work)

d
dtE1(t) + εE1(t) + (C1 − ε)‖u‖4L4 + (4C1 − ε/2)‖ux‖2

≤ C6 = 4C1C2 + ε
4L+ C5. (13)

By Gronwall inequality, for sufficiently small ε we obtain

E1 ≤ (E1(0)−
C6

ε
)e−εt + C6/ε.

Remarks.
This type of argument is borrowed from Eden-Kalantarov (2007).
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We can continue in the same spirit, to conclude that,

Proposition 2. There is ρ > 0 such that for any bounded B ⊂ H2 we
have

‖u(t)‖H3 ≤ ρ ∀t ≥ t′(B), (14)

if u(0) ∈ B.

The calculations are more complex, than in 1-d case.

We conclude existence of a global attractor.

Theorem 5. There is a global attractor for equation (4) in H2-topology.

We have to show that our absorbing set is compact.
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Case d = 2.
We have to impose the same structure as in in the case of d = 1. For this
purpose we take gradient of (4). This yields

ut = D∇|u|2 + ∆3u+ ∆∇div∇FΦ. (15)

for u = ∇h. Then, we proceed as in the proof of Theorem 5. We first
claim existence of an absorbing set for (15) in the H1 topology. Next, this
fact and the constant variation formula yield existence of a compact (in the
H2 topology) absorbing set. for h.

Theorem 6. (d = 2) There is a global attractor for equation (15) in H2-
topology.

Note, these Theorems are concerned with the ‘slope systems’ for u. At the
moment we do not have tools to control the L2 norm of h.
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