versalis

Shape memory effect in thermal retraction of polyethylene

Bonetti E., Castellani L., Pachera M., Scavello F.

21 settembre 2012

eni.com

✓ introduction

thermo-retraction and shape memory

✓ the model

✓ comparison with experimental results

✓ conclusions

Shape memory effect in polymers

polymer structure

polymer morphology

polymer processing technology

Shape memory can be observed for several polymers

which can differ even in their chemical composition and structure! versalis

Shape memory effect in polymers

ONE-WAY SHAPE MEMORY EFFECT!

5

Fibope - Filmes Biorientados, S.A.

A transparência é a nossa assinatura

FILMES BIORIENTADOS

Multi-Purpose Shrink Film

ExIfilm[®] *FPLL*, can be used for most general applications requiring durability. *FPLL* is a non-crosslinked film that is ideal for applications where products with "sharp" edges or corners are shrink-wrapped and/or products need extra protection. It has excellent optics and is extremely strong with seals at the same time. The film has a high burn-through resistance and has high hot-slip characteristics. Ideal products for **ExIfilm**[®] *FPLL* are: Do-It-Yourself products, mirrors, picture frames, wood products and long profiles.

Performance Features Equal Customer Value

POLYETHYLENE

crystalline phase

amorphous phase

thermo-retraction and shape memory

eni

oriented amorphous phase

n1

free thermal shrinkage

en1

shrinkage force

eni

PHASE TRANSITION MODEL

state variables

non-oriented phase

model

$$\Phi(\theta, \chi_t) = H(\theta, \chi_t) \qquad - \begin{cases} H(x, y) = -\eta(x)y & \text{if } y \le 0 \\ H(x, y) = 0 & \text{if } y \ge 0 \end{cases}$$

$$\begin{split} B &= B^{nd} + B^d = \frac{\partial \Psi}{\partial \chi} + \frac{\partial \Phi}{\partial \chi_t} \\ B &= \frac{\partial H(\theta, \chi_t)}{\partial \chi_t} + \partial I_{[0,1]}(\chi) + \frac{1}{2} \frac{\partial k}{\partial \chi} (\boldsymbol{\varepsilon} + \widetilde{q}(\theta, \chi))^2 + k(\theta, \chi) \frac{\partial \widetilde{q}}{\partial \chi} (\boldsymbol{\varepsilon} + \widetilde{q}(\theta, \chi)) \end{split}$$

temperature effect

temperature effect

•

eni

maximum deformation effect

model

$$\sigma = \frac{\partial \Psi}{\partial \varepsilon} = k(\theta, \chi)(\varepsilon + \tilde{q}(\theta, \chi))$$

$$\left[\begin{array}{c} k(\theta, \chi) = e^{\frac{E_a}{\theta}} \frac{1}{\frac{\chi}{k_1} + \frac{1-\chi}{k_2}} \\ \tilde{q}(\theta, \chi) = -Ce^{\frac{E_a}{\theta}}(1-\chi), \quad q(1) = 0 \end{array} \right]$$

$$\sigma = e^{\frac{E_a}{\theta}} \frac{1}{\frac{\chi}{k_1} + \frac{1-\chi}{k_2}} (\varepsilon - Ce^{\frac{E_a}{\theta}}(1-\chi))$$

model

$$\Phi(\theta, \chi_t) = H(\theta, \chi_t) \qquad \quad \begin{cases} H(x, y) = -\eta(x)y & \text{if } y \le 0\\ H(x, y) = 0 & \text{if } y \ge 0 \end{cases}$$

$$B = \frac{\partial H(\theta, \chi_t)}{\partial \chi_t} + \partial I_{[0,1]}(\chi) + \frac{1}{2} \frac{\partial k}{\partial \chi} \frac{1}{k^2(\theta, \chi)} \sigma^2 - Cq'(\chi) \sigma$$

$$- \begin{bmatrix} k(\theta, \chi) = e^{\frac{E_a}{\theta}} \frac{1}{\frac{\chi}{k_1} + \frac{1-\chi}{k_2}} \\ \tilde{q}(\theta, \chi) = -Ce^{\frac{E_a}{\theta}}(1-\chi), \quad q(1) = 0 \end{bmatrix}$$

$$\frac{\partial H(\theta, \chi_t)}{\partial \chi_t} + \partial I_{[0,1]}(\chi)$$

$$= -\frac{1}{2} e^{\frac{E_a}{\theta}} \frac{k_1 k_2 (k_1 - k_2)}{(k_2 \chi + k_1 (1-\chi))^2} (\varepsilon - Ce^{\frac{E_a}{\theta}}(1-\chi))^2 - Ce^{\frac{2E_a}{\theta}} \frac{1}{\frac{\chi}{k_1} + \frac{1-\chi}{k_2}} (\varepsilon - Ce^{\frac{E_a}{\theta}}(1-\chi))$$
WET SAME

$$\begin{split} \chi &= 1\\ \varepsilon &= 0 \\ \hline\\ \hline\\ \frac{\partial H(\theta, \chi_t)}{\partial \chi_t} + \partial I_{[0,1]}(\chi) \\ &= -\frac{1}{2}e^{\frac{E_a}{\theta}}\frac{k_1k_2(k_1 - k_2)}{(k_2\chi + k_1(1 - \chi))^2}(\varepsilon - Ce^{\frac{E_a}{\theta}}(1 - \chi))^2 - Ce^{\frac{2E_a}{\theta}}\frac{1}{\frac{\chi_1}{k_1} + \frac{1 - \chi}{k_2}}(\varepsilon - Ce^{\frac{E_a}{\theta}}(1 - \chi)) \end{split}$$

$$\longrightarrow \chi_t \leq 0$$
 $\chi \in [0,1]$

 $\sigma = e^{\frac{E_a}{\theta}} k_1 \boldsymbol{\varepsilon}_y = q_2(\theta)$

eni

TIT

 σ

 $\boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}_{s},$ unloading phase

$$\begin{aligned} \frac{\partial H(\theta,\chi_t)}{\partial\chi_t} + \partial I_{[0,1]}(\chi) \\ & \ni -\frac{1}{2}e^{\frac{E_a}{\theta}}\frac{k_1k_2(k_1-k_2)}{(k_2\chi+k_1(1-\chi))^2}(\varepsilon - Ce^{\frac{E_a}{\theta}}(1-\chi))^2 - Ce^{\frac{2E_a}{\theta}}\frac{1}{\frac{\chi}{k_1} + \frac{1-\chi}{k_2}}(\varepsilon - Ce^{\frac{E_a}{\theta}}(1-\chi)) \end{aligned}$$

$$\longrightarrow \sigma = e^{\frac{E_a}{\theta}} \frac{1}{\frac{\widehat{\chi}}{k_1} + \frac{1 - \widehat{\chi}}{k_2}} (\varepsilon - C e^{\frac{E_a}{\theta}} (1 - \widehat{\chi}))$$

some comments about the phase evolution behavior

$$\begin{cases} \chi \in [0,1] \\ \sigma = 0 \end{cases}$$

$$\frac{\partial H(\theta, \chi_t)}{\partial \chi_t} + \partial I_{[0,1]}(\chi)$$

$$\ni \mathbf{0}$$

$$\longrightarrow \chi_t \ge 0$$

26

•

eni

- Semi-crystalline polymeric materials show thermal retraction on heating when the molecular structure has been oriented.
- Thermal retraction can be interpreted as a "shape memory behavior".
- A one-dimensional thermo-mechanical model has been developed using the "phase transition" approach.
- A set of parameters capable of describing the mechanical behavior of the material has been identified.
- A good agreement between prediction and experiments has been found.

