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The problem

pe(t,x) = A(B(x, p(t,x))) 20 in (0, T) x R7,
p(0, x) = po(x) in R”,
B(x,r) = rH(r — pc(x)), Vr e R, x e R",
H is the Heaviside function
po, pc € LH(R") N L=(R"),
0 < pe(x) < po(x), a.e. xeR™
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For n = 2, equation (1) describes the dynamic of the sandpile model of
self-organized criticality which we briefly present below. If p = p(t, x1, x2)
is the energy (or mass density) assigned to the site x = (x1, x2) of a square
lattice at time t, then, if p(t, x1, x2) exceeds the critical value pc(x1, x2),
the site becomes unstable and an avalanche develops according to

1
p(t +1,x1,x2) = p(t, x1,% £ 1) + 7 p(t, x1, x2),
1
p(t +1,x + 13X2) = p(t,Xl + ]-aX2) + Z p(t,Xl,XQ).

If p(t,J) is the energy of the j-th cell at time t,
pt+1.k) = plt, k) — p(t, kY H(p(t, k) — pe(k))

% S (&) H(p(E,]) = peli)-
J#k
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The initial configuration pg of the system is over the critical state

pc = pe(x), which is a natural hypothesis if one takes into account that
the evolution begins in the unstable zone {x; p(t,x) > pc(x)}.

Weak solution to the Cauchy problem (1)

pe L0, T)xR"

gﬁ —An=0 inD'((0,T)xR"), (3)

nell ((0,T)xR" =R,

loc

n(t,x) € B(x, p(t,x)), a.e. (t,x)€(0,T)xR",

lim /]R" |p(t, x) — po(x)|dx = 0.

t—0

Viorel Barbu Descend algorithm in Wasserstein metric




Let A: D(A) C LY(R") — LL(R")
Ay = yH(y = pc), Vy € D(A)
D(A) = {y € [}(R"); y >0, ae. inR", I € Li (R");

n(x) € yO)H(y (x) = pe(x)),
ae. x ER" A(yH(y — pc)) € LY(R™)}.

A is accretive and
D(A) C [ RU + MA). (4)
A>0

Consider the finite difference scheme for (1)

u(t) = yf for t € [ke,(k+1)e), k=0,1,.., N = [L]
Yig1 teAY 1 =Yi, k=0,1,..,

By the Crandall & Liggett exponential formula, {u.} is convergent to a
weak (or mild) solution to (1). Our aim is the convergence to p of the
steepest descent type algorithm generated by a variational problem
associated with the Wasserstein metric.
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Consider the set of probability densities

P = {p :R™ — [0,00), Lebesgue measurable,

/]Rn plx)d =1 /R x[2p(x)x < oo}.

On P, we define the second order Wasserstein distance d

. 1
d2(,01,p2) = nf {/]R R |X - y‘2lu(dxa dy)}7 VPI>P2 € Pv
n>< n

i
peM(pt.p?) L 2

where M(p', p?) is the set of all probability measures on R” x R" coupling
the probability densities p! and p?

/ COu(dx,dy) = ¢(x)p*(x)dx,
R xR?

]Rn

/ COulddy) = | c)Py)dy, ¢ e CO(RT).
RrxRn Rn
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We associate with (1) the steepest descent algorithm

ph(t) = pl for t € [kh,(k + 1)h), k=0,1,... N

1
h o _ L2 h _
px = arg ;nelg{hd (p7pk_1)+E(p)}, k=1,..

Bp) = | glenx)d vpeP.

Here g : R” x R — R = (—o0, +00], is the convex function

g(x,r)= rin (PCEX)) for 2 pe(x),
0 for 0<r < pc(x).

In the following, we shall simply write p” instead of pZ.
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The main result is that, for h — 0, the sequence {p"} c L*((0, T) x R")
is strongly convergent to the weak solution p to the Cauchy problem (1).
For the linear Fokker—Planck equation

pt — Ap +div(Vep) =0in (0, T) x R",

a similar result was established by R. Jordan, D. Kinderlehrer and F. Otto,
while, for the porous media equation, that is for (r) = ar™, m > 2, this
problem was studied by F. Otto.

It should be emphasized that p — —E(p) is the entropy functional
associated with the sandpile process while equation (1) itself can be
viewed as a nonlinear Fokker—Planck equation describing the particle
transport in irregular media (the so called anomalous diffusion). In the
limit case of linear diffusion, the energy [E reduces to the Gibbs—Boltzmann
entropy. The convergence of the steepest descent algorithms reveals that
the dynamic of the self-organized criticality process involves the
maximization of the system entropy at each time step.
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The main result

The functional E : L}(R") — [0, +0o0] is convex and lower semi-continuous
on P. Moreover, since

iim £0¢7)

lrlbo0 1]

= +o00, VxeR",

it is easily seen by the Dunford—Pettis weak compactness criterium, that
every level set {p € P; E(p) < A} is weakly compact in L}(R™). Since, for
each px_1 € P, the functional p — £ d?(px_1,p) +E(p) is lower
semicontinuous and strictly convex, it follows that there is a unique
minimizer px € P in (6). In particular, this means that the steepest
descent algorithm is well defined.
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Theorem 1

Theorem

Let po € P N L>®(R") and {p"} be the sequence of step functions defined
by (5). Then, there is

lim p" = p, strongly in L}((0, T) x R"),
h—0

where p € C([0, T]; LX(R™)) N L>((0, T) x R") is the unique weak
solution to the Cauchy problem (1).
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1
J(B)(p) = arg min {h ¢ (p. u) +E<u)}, pEP, h>0,

we may rewrite (5) as
ph(t) = JK(h)po for t € [kh,(k +1)h), k=0,1,...,N =[],
and so, by Theorem 1,
. k(t .1 n
p(t) = lim J (—) po,  strongly in L*((0, T) x R").
k—o00 k

For comparison, the convergence of finite difference scheme is equivalent to

t —k
p(t) = lim (I + P A) po  strongly in L>(0, T; LY(R™)).

k—o00
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Proof of Theorem 1

Let

og(x,r) =1{0 €R; O(r —F) > g(x,r) — g(x,F), VF € RT}.

In () +et) i 1> pel).
0g(x:r) =14 [0, pe(x)] if = pe(x),
0 if 0<r<pcx).

B(x,r) = rog(x,r) —g(r), ¥r e R, x € R".
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’pk’L‘x’ < |P0’L°° + ’Pc|L°°’ Vk=1,2,..
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pk(x) > pe(x), a.e. xeR", Vk=1,2,...
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Lemma 3.3

Lemma

Let {pk} be the sequence defined by (6). Then
1 g n n
5 | oyt dy)= [ me)dive(xon, vE € GR(RR),

nk € LL(R™), ni(x) € B(x, pk(x)), a.e. x € R", and yu is the optimal
probability measure coupling pyx—1 and py.
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Proof. Consider the diffeomorphism ¢(t, x) : [0,00) x R" — R" generated
by the equation

d
o o(t,x) = &(P(t,x)), t>0, x € R
#(0,x) = x
and define p; € P by the Monge-Ampere equation
det(Do(t, x))pe(p(t, x)) = pk(x), t € (0,1), x € R".

We have
% | stcodx= [ Guley) Gdee Do) det Do)

Rn d
+g(y, p(o7H(t ,y))(det D(t,y)) ™) (det Do(t, y)))dy,

C(t,y) € 0g(y, pr(d(t, y) det(Do(t, ¥)) ™ 1).

We obtain that

d .
% | ety = [ mndivedy.
Rn n

where nx(y) € B(y, pk(y)), a.e. y € R".
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Now, if ur € M(pk—1,pt) is the optimal measure coupling px—1 and p,

1
dz(pkflapt) = 2/ ’X—YFMt(andY)
R7xR"
1
= 5 [ 10t~ yPlox )
2 RHXRH
because
[ otceaxdn=[ oot )mddedy), ¥ € GRIE),
RnxRn RnxRn
This yields
1
(dz(pk 1, pk)—d* (pr—1, pi)) < 2t/ (lo(t, x) =y P=|x—=y ) ux(dx, dy),
R xR"

and, letting t — O,

<d2(pk_1, pe) —

t

— limsup
t—0

d2 _1, X —
(Pr—1 Pk)> S/R ) Ty.g(x)uk(dx,dy),
nxRn
Vh > 0.
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We get

[ o d) = [ medive(aas,
RPxR" Rn

and changing £ in —£ one obtains the desired equation.
Consider now {p"} C L1((0, T) x R") defined by

n"(t,x) = ni(x) for t € [kh, (k +1)h), k=0,1,..,N = [L],
where 7, are as in Lemma 3.3. We have

n"(t,x) € B(x, p''(t,x)), a.e. (t,x) € (0, T) x R".
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There is C independent of k such that

/ Ix[2pi(x)dx < C. (7)
RI‘V
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The sequence {pn}n>o is strongly compact in L1((0, T) x R").

Proof. We note that, for all £ € (L?(R™))2, we have

1 1

1 2 2

<h( / \x—yr2uk(dx,dt)) ( / rs|2dx>
RAxRN Rn

1

S IR

This yields
/ V()P < 2 d(pko, pi), k= 1,2, N,

/ / IV (t,x)|?dx dt < 2E(pg), Vh
O n
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.
/0 ”UW%—/l(Rn)dt + thHLC’O((O,T)x]R") + ”77hHL1(0,T)an) <C.

-
lim / / 1p"(t, x + %) — p"(t,x)|dx dt =0, VR > 0,
Br

Ix|=0.Jo
-
Iim/ / |p"(t, x)[2dx dt = 0.
R—o0 0 .E’

Our aim is to derive the compactness of {p,} in L}((0, T) x R") by
Kolmogorov's compactness theorem in LP. To this end, we are going to
prove that, for each R > 0,

/ / (t+ s,x + ) — p"(t,x)|dxdt =0
1%, |><|—>0 Br

uniformly in h.

uniformly in h.
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For all m,n € N,

1

Plopisn) = 5 [ prsmlix = VP,

[ ostde = [ pren(x)(Vi (e, ¢ € CHR).
Rn RI‘I

We take ¢ = @(nk+m — 1), where ¢ € C5°(R") and ¢ > 0 on R".

/R (P =) (s m =116 06
- /Rnpk+m<x)(<(x>—<(vw*(x)))dx

1

<[ 1 ([ rembFe(@ = 25 = AT000)00) )

([ psmtolx = 907 (o)

< — (d(pkg-m—15 Pr+m) + d(pr—1, Pk))) (ks Pkt-m)-

<
h




We obtain

hZ/ @lpksm — pr|Pdx < 2NZ d?(pk—1, pk) < CNh,
keN VR keN

/OTS /n o(x)(p"(t + 5,x) — p"(t,x))?dx dt < Cs,

for all p € C§°(R"™) and h > 0. Hence

T—s
[ [ 16t sin) = phexlaxde < Calsl,
0 Bgr

for all R > 0 and s € (0,1).
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Proof of Theorem 1 (continued).

Since the sequence {p"}}, is compact in L1((0, T) x R"), and bounded in
L>=((0, T) x R") N L2(0, T; HY(R™)), on a subsequence {h,} — 0, we have

ph — p strongly in L1((0, T) x R")
and weak-star in L*°((0, T) x R"),
nt — n weak-star in L%((0, T) x R"),
and weakly in L2(0, T; HL(R")).

By Lemma 3.4,
/ Ixp(t, x)dt < 0o, ae. te(0,T),
RI‘I

while p > p¢, p(t) € P, ae. t € (0, T).
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Consider the function j : R" x Rt — R

2 for r> pc(x),

1
§r
J(x,r) =

1 2

5 Pelx) for < pe(x),

which is just the potential of 3, that is, B(x, r) = 0,j(x,r), Vr € R.

We have

0™ (t,x)(p" (t, x) = r(t,x)) = j(x, p™(t,x)) = j(x, r(t, x)),
ae. (t,x) € (0, T) xR, Vre L}((0, T) x R").
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Integrating on (0, T) x R" and letting h, — 0,

// (t,x)(p(t,x) — r(t,x))dx dt
// (x, p(t,x)) — j(x, r(t,x))dx dt.

n(t,x)(p(t,x) —r) > j(p(t,x)) —j(x,r), Vr € R",
a.e. (t,x) €(0,T) xR".

0t x) € B(x, p(t, X)), ae. (t,x) € (0, T) x R". (9)
On the other hand, for all { € C§°(R"),

Lo = [ peaticmdy = [ (=) Vel )

— /R C(x) = Cly) — (x = y) - VC(y)px(dx, dy)’

<c / Ix — yPpuk(dx, dt) < Cd(pu, pr_1), Yk =1,...
R xR"

where i is the optimal measure coupling px_1 and p.
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For ¢ = V¢, ¢ € C§°(R™),

[ et = [ peatn)c)dy = [ m0actods

S Cd2(pka pk—l)v

and, for any ¢ € C3°((0, T) x R"), we have

h T
p(tt XZ) AGLY) dt dx+/ / n(t, x)Ap(t, x)dt dx
h n

< €Y d*(p pr-1 < Ch, h.
k=1
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Letting h = h, — 0, we get

'
A [ (ole X)) + (e x)Ael ) e =,
Ve € C3°((0, T) x R).

We also note that

fim [ (o(e.5) = po()C(x) = 0, V¢ € L2(R?).
It follows that n € L2(0, T; HY(R"))
%p(t) — An(t)=0, ae. in(0,T),

where % p is the strong derivative of p : [0, T] — H~}(R").
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Consider the functional f : H=1(R") — [0, oc] defined by

/ J(x, u(x))dx if ue LYR™) N HL(R"),
f(u) = n
+o00 otherwise,

If endow H~1(R") with the norm

2
ull p-1(mny = </R" u(l —A)tu dx) :
then the subdifferential 9f : H~1(R") — H~}(R")
of (u) = {(| — A)w; w e HY(R"), w(x) € B(x, u(x)), a.e. x € R"},
and so

d
Ip—k(l—A)n:n, ae te(0,7),

n(t) € 9f(p(t)), a.e. t € (0, T),

if(p(t))+/IRn ]n(t,x)|2dx = /R" n(t,x)(I—A)*ln(t,x)dx, ae te (0, 7).
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Taking into account that n(/ — A)~1n € L}(0, T; L2(R")), it follows that
t — f(p(t)) is absolutely continuous on [0, T] and, recalling that

p(t,x) > pc(x), a.e. (t,x) € (0,T) xR",

we infer that the function t — [p, p?(t,x)dx is continuous on [0, T].
Since Im}) p(t) = po weakly in L2(R"), it follows that
t—

lim p(t) = po strongly in L?(R?),

t—0
and so in L}(R™), too. Hence, p € L}(0, T; L}(R")) is L}(R")-continuous
and so it is a weak solution to the Cauchy problem (1). The Cauchy
problem (1) has at most one weak solution p € L>((0, T) x R"). This
implies that

p=lim pl" in L1((0, T) x R").

h—0
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