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Abstract. We consider an initial and boundary value problem for a nonlinear Volterra
integrodifferential equation. This equation governs the evolution of a pair of state
variables, u and ϑ, which are mutually related by a maximal monotone graph γ in R×R.
The model can be viewed, for instance, as a generalized Stefan problem within the theory
of heat conduction in materials with memory. Besides, it can be used for describing
some diffusion processes in fractured media. The relation defined by γ is properly
interpreted and generalized in terms of a subdifferential operator associated with γ and
acting from H1(Ω) to its dual space. Then, the generalized problem is formulated as an
abstract Cauchy problem for a perturbation of a nonlinear semigroup, and existence and
uniqueness of a solution (u, ϑ) can be proved via a fixed point argument whatever the
maximal monotone graph γ is. Moreover, the meaning of γ as a pointwise relationship
is recovered almost everywhere, in the case when γ is bounded on bounded subsets of
R. Finally, under some other restrictions on γ, the longtime behavior of the solution is
investigated, in a more specific context related to the generalized Stefan problem.
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1. Introduction

The present analysis regards a nonlinear Volterra integrodifferential equation which

can describe the dynamic behavior of different phenomena like, e.g., phase transitions

in materials with memory or diffusion in fractured media (let us refer to the papers

[10, 3] at once, since they are of related interest). This equation rules the evolution of

two unknown fields, u and ϑ , which must also satisfy a relation induced by a maximal

monotone graph γ : R → 2R . More precisely, letting Ω be a bounded and connected

domain in RN , N ≥ 1 , with a smooth boundary Γ , the equation we are going to

study can be written in the form

(u+ ϕ ∗ u)t −∆(k0ϑ+ k ∗ ϑ) = g in Ω× (0,+∞) (1.1)

u ∈ γ(ϑ) in Ω× (0,+∞) (1.2)

where ∗ denotes the usual time convolution product on (0, t) , namely (a ∗ b)(t) :=∫ t
0
a(t−s)b(s)ds, t > 0 , ∆ stands for the Laplacian with respect to the space variables,

ϕ and k are given time–dependent memory kernels, k0 is a positive constant, and g

is a known source term.

Referring to the heat conduction theory for materials with memory (see, e.g., [6,

8, 11] and references therein), we can interpret u and ϑ as the enthalpy and the

(relative) temperature, respectively. Then we introduce the constitutive assumptions

e(x, t) = u(x, t) +

∫ t

−∞
ϕ(t− s)u(x, s)ds

q(x, t) = −k0∇ϑ(x, t)−
∫ t

−∞
k(t− s)∇ϑ(x, s)ds

for any (x, t) ∈ Ω×R . Here e is the internal energy, while q is the heat flux. Assume

now that the past histories of u and ϑ are known up to t = 0 and consider the balance

equation

et +∇ · q = g̃ in Ω× (0,+∞)

where ∇· is the spatial divergence operator and g̃ is the heat supply. By plugging

constitutive laws in this equality, we deduce equation (1.1) in which g depends both

on g̃ and on the past histories of u and ϑ . Relationship (1.2) characterizes the phase

transition occuring in the material. In particular, if γ(r) = r + H(r), r ∈ R and H

denotes the Heaviside graph (H(r) = 0 if r < 0 , H(0) = [0, 1] , H(r) = 1 if r > 0) ,

then the system (1.1–2) defines the Stefan problem for materials with memory that has

been examined, for instance, in [6, 8, 11].

As far as diffusion in fractured media is concerned, we take k ≡ 0 and rewrite

equation (1.1) in the form

ut + ϕ ∗ ut − k0∆ϑ = ĝ in Ω× (0,+∞)
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where ĝ := g−ϕu0 . In the case γ(r) = |r|η−1r, r ∈ R , for some η > 0 , equations (1.1–

2) turn out to yield a generalization of the macro–model obtained via homogenization

by Hornung and Showalter (cf. [17, eqs. (2.2a–b) and eq. (3.1)]). This model describes

the evolution of fluid density u in the fracture system and, consequently, the dynamics

of the fluid density z in the block system by means of the relation zt = ϕ′ ∗ ut .

Initial and boundary value problems for (1.1–2) have been already formulated and

analyzed in [10] and [3] (see also [15, 19] and their references for analogous prob-

lems). Nevertheless, the case of third–type boundary condition has not been solved yet

in full generality, namely for an arbitrary maximal monotone graph γ . This kind of

boundary conditions is perhaps the most resonable one from the physical viewpoint,

when we are dealing with phase transition problems. On the other hand, in the present

case the third–type boundary condition looks more difficult to handle in the variational

setting due to the presence of memory kernels, and it leads to a more general formu-

lation (see Section 3). Here we want to prove that initial and third–type boundary

value problems associated with (1.1–2) admit a unique solution for a significant class of

graphs γ . Thus, we consider the following conditions

∂n(k0ϑ+ k ∗ ϑ) + α(ϑ− h) = 0 on Γ× (0,+∞) (1.3)

u(0) = u0 in Ω (1.4)

where ∂n denotes the outward normal partial derivative on Γ , α is a positive constant

and h , u0 are given functions. Note that (1.3) derives from some law stating that the

normal component of the heat flux q on the boundary is proportional to the difference

of internal and external temperatures.

The first part of this paper is devoted to investigate existence and uniqueness of

the solution to a suitable variational formulation of (1.1–4) on a finite time interval

(0, T ) , trying to keep the maximum of generality for γ . The main difficulty lies in the

following fact. If γ is an arbitrary maximal monotone graph, then we are not able to

find a solution (u, ϑ) of (1.1–4) such that u is, at least, a measurable function defined

almost everywhere in Q := Ω × (0, T ) . Consequently, we cannot show that relation

(1.2) holds almost everywhere in Q . Thus our strategy is based on the interpretation

of (1.2) as a relation given by a maximal monotone operator in the dual space of H1(Ω)

associated with γ in a quite natural way (see Section 2). This argument allows us

to formulate a generalized version of (1.1–2) which just requires u(t) to be a suitable

functional for any t ∈ [0, T] . Then we can discuss an extended version of our original

variational formulation of (1.1–4), for which we can prove existence and uniqueness.

The validity of (1.2) almost everywhere in Q can be recovered for the solution in the

situation when the domain of γ is the whole real line (see Sections 3 and 4).

The second part of the work (see Section 5) is concerned with the asymptotic

behavior of the solution to (1.1–4) as t goes to +∞ . In this case, our results are

obtained under some restrictions on γ and for ϕ ≡ 0 . However, the hypotheses on γ

and k are general enough to cover the case of Stefan problems with heat conduction
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laws of memory type. In particular, k is assumed to be smooth enough and to fulfill

the inequality∫ t

0

(k0v + k ∗ v)(s) v(s) ds ≥ ω
∫ t

0

|v(s)|2 ds ∀ v ∈ L2(0, t), ∀ t ∈ (0,+∞) (1.5)

for some positive constant ω . It is worth recalling that condition (1.5) is consistent

with the Second Principle of Thermodynamics (as it is claimed, for instance, in [14]).

Let us point out that the longtime behavior has been already investigated for related

equations with memory terms in, e.g., [2, 4, 18, 19]. In our framework, we show that,

as t → +∞ , ϑ(t) suitably converges to the (unique) solution ϑ∞ of the stationary

problem

−k∞∆ϑ∞ = g∞ in Ω (1.6)

k∞
∂ϑ∞
∂n

+ α(ϑ∞ − h∞) = 0 on Γ (1.7)

where g∞ = lim g(t) and h∞ = limh(t) as t→ +∞ , and (cf. (1.5))

k∞ := k0 +

∫ ∞
0

k(s) ds ≥ ω.

Moreover, we deduce that ut(t) tends to 0 in a specified weak sense. Finally, slightly

stronger assumptions on γ allow us to describe the ω − limit set of the trajectories

of u(t) . In addition, we give sufficient conditions in order that u(t) has a limit as

t→ +∞ .

2. Preliminary results

This section is devoted to discuss some preliminary issues on the convex functionals

which are related to maximal monotone graphs in R× R . We set for convenience

V = H1(Ω) and H = L2(Ω)

and identify H with its dual space H ′ , so that

V ⊂ H ⊂ V ′ (2.1)

with dense and compact injections. Let ( · , · ) and | · | be the inner product and

the corresponding norm in H , and denote by 〈 · , · 〉 the duality pairing between V ′

and V . We fix a linear continuous symmetric coercive operator A : V → V ′ and define

((u, v)) = 〈Au, v〉 ∀u, v ∈ V.
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Then (( · , · )) is an inner product in V which is equivalent to the standard one. In the

following ‖ · ‖ , ‖ · ‖∗ , and (( · , · ))∗ stand for the associated norm in V and for the

induced norm and inner product in V ′ , respectively.

Our aim is to interpret and to generalize the relationship u ∈ γ(ϑ) stated in (1.2).

Let us introduce our ingredients, namely

j : R→ ]−∞,+∞] convex, proper, and lower semicontinuous (2.2)

j∗ : R→ ]−∞,+∞] the conjugate function of j (2.3)

γ = ∂j and β = γ−1 = ∂j∗. (2.4)

We associate the functionals JH and JV on H and on V as follows

JH(v) =

∫
Ω

j(v) if v ∈ H and j(v) ∈ L1(Ω) (2.5)

JH(v) = +∞ if v ∈ H and j(v) 6∈ L1(Ω) (2.6)

JV (v) = JH(v) if v ∈ V . (2.7)

As is well known, JH and JV are convex and lower semicontinuous on H and V ,

respectively. Note that they are also proper since V contains all the constant functions.

We now consider the corresponding subdifferentials ∂V,V ′JV : V → 2V
′

and ∂HJH :

H → 2H of JV and JH , respectively. We remind that

u ∈ ∂V,V ′JV (ϑ) if and only if

u ∈ V ′, ϑ ∈ D(JV ), and JV (ϑ) ≤ 〈u, ϑ− v〉+ JV (v) ∀ v ∈ V (2.8)

u ∈ ∂HJH(ϑ) if and only if

u ∈ H, ϑ ∈ D(JH), and JH(ϑ) ≤ (u, ϑ− v) + JH(v) ∀ v ∈ H (2.9)

where D( · ) denotes in general the effective domain for functionals and multivalued

operators. We recall that ∂V,V ′JV : V → 2V
′

and ∂HJH : H → 2H are maximal

monotone operators. Moreover, observe that for ϑ, u ∈ H we have (see, e.g., [7,

Ex. 2.1.3, p. 21])

u ∈ ∂HJH(ϑ) if and only if u ∈ ∂j(ϑ) a.e. in Ω . (2.10)

On the other hand, one can easily check that the inclusion

∂HJH(ϑ) ⊆ H ∩ ∂V,V ′JV (ϑ) ∀ϑ ∈ V (2.11)

holds, just as a consequence of (2.7) (compare (2.8) with (2.9)). Therefore, for ϑ ∈ V
and u ∈ H , the condition

u ∈ γ(ϑ) a.e. in Ω (2.12)

implies

u ∈ ∂V,V ′JV (ϑ). (2.13)
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On the contrary, the equality

∂HJH(ϑ) = H ∩ ∂V,V ′JV (ϑ) ∀ϑ ∈ V (2.14)

cannot be inferred simply by (2.7), i.e., it is false for more general functionals. Indeed,

taking, e.g., v0 ∈ H \ V , setting

JH(v) =

{
0 if v = cv0 for some constant c ∈ R
+∞ elsewhere on H

and defining JV by (2.7), then (2.14) is false for ϑ = 0 . Here, we want both to prove

(2.14) in our case and to generalize the above relationship between (2.12) and (2.13).

To this aim, it is convenient to identify some functions in L1(Ω) with elements of V ′

according to the following definition.

Definition 2.1. We say that a function u ∈ L1(Ω) belongs to V ′ ∩ L1(Ω) if the

functional

v 7→
∫

Ω

uv, v ∈ V ∩ L∞(Ω) (2.15)

is continuous with respect to the topology of V .

If u ∈ V ′ ∩L1(Ω) , by density the functional (2.15) has a unique linear continuous

extension to V , which we still term u . Hence, we have

〈u, v〉 =

∫
Ω

uv ∀ v ∈ V ∩ L∞(Ω)

and we regard V ′ ∩ L1(Ω) mainly as a subspace of V ′ . Note that H ⊂ V ′ ∩ L1(Ω) .

In particular, V ′ ∩ L1(Ω) is dense both in V ′ and in L1(Ω) .

Lemma 2.2. Let u ∈ V ′ ∩ L1(Ω) , ψ ∈ L1(Ω) , ϕ : Ω → R measurable, and v ∈ V
satisfy

ψ ≤ ϕ ≤ uv a.e. in Ω .

Then

ϕ ∈ L1(Ω) and

∫
Ω

ϕ ≤ 〈u, v〉.

Proof. Replace H1
0 (Ω) with V in [5, Lemma 2.1, p. 68]. The same argument works

indeed, provided that V ′ ∩ L1(Ω) is defined exactly as above.

Proposition 2.3. Assume ϑ ∈ V , u ∈ V ′ ∩ L1(Ω) , and (2.12). Then j(ϑ) ∈ L1(Ω)

and (2.13) holds.

Proof. By (2.12), we have

j(ϑ) ≤ u(ϑ− z) + j(z) ∀ z ∈ R, a.e. in Ω



A nonlinear Volterra integrodifferential equation 7

and we deduce

j(ϑ) ≤ u(ϑ− v) + j(v) ∀ v ∈ D(JV ), a.e. in Ω .

Since any proper convex lower semicontinuous function is bounded from below by an

affine function (cf., e.g., [5, Prop. 2.1, p. 51]), we can choose a, b ∈ R such that

j(z) ≥ az + b for any z ∈ R . Hence, defining ψv := aϑ + b − j(v) for v ∈ D(JV ) , it

turns out that

ψv ≤ j(ϑ)− j(v) ≤ u(ϑ− v) a.e. in Ω .

As ψv ∈ L1(Ω) , we can apply the previous lemma and conclude that

j(ϑ)− j(v) ∈ L1(Ω) and JV (ϑ)− JV (v) ≤ 〈u, ϑ− v〉 ∀ v ∈ D(JV ).

This implies j(ϑ) ∈ L1(Ω) and (2.13).

The next proposition shows that (2.14) holds for the particular functionals under

consideration (cf. (2.5–7)). Its proof is based on the following lemma, which slightly

improves [12, Lemma 2.3].

Lemma 2.4. Let v ∈ D(JH) . Then there exists a sequence {vn} in D(JV ) such that

vn → v in H and JV (vn)→ JH(v) as n→∞
JV (vn) ≤ JH(v) ∀n.

Proof. Let vn ∈ V be the solution to the variational equation

(vn, w) +
1

n

∫
Ω

∇vn · ∇w = (v, w) ∀w ∈ V. (2.16)

Then, taking w = vn yields

1

2
|vn|2 +

1

n

∫
Ω

|∇vn|2 ≤
1

2
|v|2 ∀n

whence the weak convergence of vn to v is derived. Since we also infer |vn| → |v| , it

follows that

vn → v in H . (2.17)

Now, we prove that

JV (vn) = JH(vn) ≤ JH(v) ∀n. (2.18)

Let us assume first that γ = ∂j is a Lipschitz continuous function. We have that

j(vn)− j(v) ≤ γ(vn)(vn − v) a.e. in Ω .
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Therefore, accounting for (2.16) with w = γ(vn) , we obtain

JH(vn)− JH(v) ≤
∫

Ω

γ(vn)(vn − v) = 〈vn − v, γ(vn)〉

= − 1

n

∫
Ω

∇vn · ∇γ(vn) = − 1

n

∫
Ω

γ′(vn)|∇vn|2 ≤ 0.

In the general case, by arguing first on the Yosida approximation of γ and using [7,

Prop. 2.11, p. 39], one still gets (2.18). Then, we can conclude by combining (2.18)

with the lower semicontinuity of JH . We have indeed

JH(v) ≤ lim inf
n→∞

JH(vn) ≤ lim sup
n→∞

JH(vn) ≤ JH(v).

Proposition 2.5. Assume ϑ ∈ V , u ∈ H , and (2.13). Then (2.12) holds. In

particular, (2.14) is fulfilled.

Proof. We recall (2.8) and, since u ∈ H , we rewrite (2.13) in the form

JH(ϑ) ≤ (u, ϑ− v) + JH(v) ∀ v ∈ V. (2.19)

Now, we apply Lemma 2.4 and deduce that (2.19) holds for any v ∈ H . Therefore, it

follows that u ∈ ∂HJH(ϑ) . But this implies u ∈ ∂j(ϑ) a.e. in Ω because of (2.10),

i.e., (2.12) is satisfied. Then, on account of (2.11), we achieve the validity of (2.14) as

well.

Next, let us consider the conjugate functionals and their subdifferentials. We first

introduce J∗V : V ′ → ]−∞,+∞] , which is specified by

J∗V (w) = sup
v∈V

(
〈w, v〉 − JV (v)

)
, w ∈ V ′. (2.20)

The subdifferential ∂V ′,V J
∗
V maps V ′ into 2V according to the definition

ϑ ∈ ∂V ′,V J∗V (u) if and only if

ϑ ∈ V, u ∈ D(J∗V ), and J∗V (u) ≤ 〈u− w, ϑ〉+ J∗V (w) ∀w ∈ V ′ (2.21)

and we remind that (2.8) and (2.21) are equivalent. Instead, the conjugate J∗H of JH
is defined on H by the formula

J∗H(w) = sup
v∈H

(
(w, v)− JH(v)

)
, w ∈ H (2.22)

and it is well known that

J∗H(w) =

{∫
Ω
j∗(w) if j∗(w) ∈ L1(Ω)

+∞ otherwise.
(2.23)
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Finally, we introduce one more functional on V ′ . For w ∈ V ′ we set

J∗,V ′(w) =

{∫
Ω
j∗(w) if w ∈ V ′ ∩ L1(Ω) and j∗(w) ∈ L1(Ω)

+∞ otherwise.
(2.24)

Although the functional J∗,V ′ is convex and proper in the general case, it need not be

lower semicontinuous on V ′ . Hence, no interesting relationship appears between the

functionals J∗,V ′ and J∗V . However, we can prove

Proposition 2.6. The conjugate (J∗,V ′)
∗ of J∗,V ′ coincides with JV .

Proof. Let z ∈ V . Then, by definition, we derive

(J∗,V ′)
∗(z) = sup

v∈D(J∗,V ′ )

(
〈v, z〉 −

∫
Ω

j∗(v)
)
.

On the other hand, as JV is the restriction of JH to V and the functional JH is

convex, lower semicontinuous, and proper on H , accounting for (2.23) we have

JV (z) = JH(z) = (J∗H)∗(z) = sup
v∈D(J∗

H
)

(
〈v, z〉 −

∫
Ω

j∗(v)
)
.

Hence, it follows immediately that JV (z) ≤ (J∗,V ′)
∗(z) and we have to prove the reverse

inequality. We do it showing that, for every v ∈ D(J∗,V ′) , there exists a sequence {vn}
in D(J∗H) such that

〈v, z〉 −
∫

Ω

j∗(v) ≤ lim inf
n→∞

(
〈vn, z〉 −

∫
Ω

j∗(vn)
)
. (2.25)

The assumption v ∈ D(J∗,V ′) means v ∈ V ′ ∩ L1(Ω) and j∗(v) ∈ L1(Ω) . Then, we

can construct vn as in (2.16), i.e., we take vn ∈ V such that

(vn, w) +
1

n

∫
Ω

∇vn · ∇w = 〈v, w〉 ∀w ∈ V. (2.26)

First of all, we prove the inequality∫
Ω

j∗(vn) ≤
∫

Ω

j∗(v) (2.27)

by recalling (2.4) and using the Yosida regularization βε of β and the corresponding

regularized functionals j∗ε defined by

j∗ε (y) = min
y′∈R

{
1

2ε
(y′ − y)2 + j∗(y′)

}
, y ∈ R.
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Then βε = ∂j∗ε and j∗ε ≤ j∗ . Thus, we have that

j∗ε (vn)− j∗ε (v) ≤ (vn − v)βε(vn) a.e. in Ω .

Thanks to Lemma 2.2 with ψ = ϕ = j∗ε (vn)− j∗ε (v) , u = vn − v , and w = βε(vn) , we

can integrate the above inequality over Ω . This yields∫
Ω

j∗ε (vn)−
∫

Ω

j∗ε (v) ≤ 〈vn − v, βε(vn)〉.

On the other hand, (2.26) gives

〈vn − v, βε(vn)〉 = − 1

n

∫
Ω

∇vn · ∇βε(vn) ≤ 0.

Hence, we conclude that ∫
Ω

j∗ε (vn) ≤
∫

Ω

j∗ε (v)

and (2.27) follows by the monotone convergence theorem, since j∗ε converges to j∗

pointwise. Inequality (2.27) implies immediately (2.25), i.e., the conclusion of the proof.

Indeed, denoting by ( · , · )1 the standard inner product in H1(Ω) and by R the

associated Riesz operator from V into V ′ , one can write (2.26) as(
1− 1

n

)
〈vn, w〉+

1

n
(vn, w)1 = 〈v, w〉 ∀w ∈ V.

The choices w = R−1vn and w = vn easily lead to the estimates(
1− 1

n

)
‖vn‖∗ ≤ ‖v‖∗ and

1

n
‖vn‖ ≤ ‖v‖∗ ∀n

and the (actually strong) convergence vn ⇀ v in V ′ follows.

We now look for the lower semicontinuity of J∗,V ′ . Indeed, combining this with

the previous result, we could prove that J∗,V ′ coincides with the conjugate J∗V of JV
and deduce the equivalence between

u ∈ ∂V,V ′JV (ϑ) (or ϑ ∈ ∂V ′,V J∗V (u))

and

u ∈ D(J∗V ) and u ∈ γ(ϑ) a.e. in Ω

under the only condition that ϑ ∈ V and u ∈ V ′ . We need the assumption

D(j) = R (2.28)



A nonlinear Volterra integrodifferential equation 11

i.e., j(r) < +∞ for any r ∈ R . It is easy to check (one may also see [7, Rem. 2.3,

p. 43]) that (2.28) is equivalent to either D(γ) = R or β is surjective or

lim
|r|→+∞

j∗(r)

|r|
= +∞. (2.29)

We point out that the form (2.29) of (2.28) is mainly used in the sequel.

Proposition 2.7. Assume (2.28). Then J∗,V ′ is lower semicontinuous on V ′ .

Proof. One can replace H−1(Ω) ∩ L1(Ω) with V ′ ∩ L1(Ω) in the first part of the

proof of [5, Prop. 2.10, pp. 67–68] and conclude.

Proposition 2.8. Assume (2.28). Then

J∗,V ′ = J∗V . (2.30)

Proof. Indeed, Propositions 2.7 and 2.6 yield, respectively

J∗,V ′ = (J∗,V ′)
∗∗ and (J∗,V ′)

∗∗ = J∗V

owing to well–known properties of conjugate functions.

Proposition 2.9. Assume that (2.28) holds and let ϑ ∈ V and u ∈ D(J∗V ) . Then

(2.12) and (2.13) are equivalent.

Proof. Instead of giving a direct proof, we adapt the Brézis argument reported in

[5, pp. 69–71], although with a different notation. We recall that A denotes the Riesz

isomorphism from V onto V ′ and introduce two operators, ∂V ′J
∗
V and F , which map

V ′ into 2V
′
. The first one is the subdifferential of J∗V in V ′ , i.e.,

ζ ∈ ∂V ′J∗V (u) if and only if

ζ ∈ V ′, u ∈ D(J∗V ), and J∗V (u) ≤ ((u− w, ζ))∗ + J∗V (w) ∀w ∈ V ′. (2.31)

Comparing (2.31) and (2.21), we see that

∂V ′J
∗
V (u) = A(∂V ′,V J

∗
V (u)) ∀u ∈ V ′. (2.32)

The second operator is defined in this way

ζ ∈ F (u) if and only if

u ∈ V ′ ∩ L1(Ω), ζ ∈ V ′, and u ∈ γ(A−1ζ) a.e. in Ω. (2.33)

Since we are assuming (2.28), we can apply Proposition 2.8 and our assumptions on ϑ

and u become ϑ ∈ V and u ∈ D(J∗,V ′) . In particular, u ∈ V ′∩L1(Ω) , so that (2.12)

is equivalent to Aϑ ∈ F (u) . On the other hand, (2.13) is equivalent to ϑ ∈ ∂V ′,V J∗V (u) ,
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i.e., to Aϑ ∈ ∂V ′J
∗
V (u) by (2.32). Hence, the equivalence between (2.12) and (2.13)

follows if we show that

∂V ′J
∗
V (u) = F (u) ∀u ∈ V ′

which means that the graphs ∂V ′J
∗
V and F are identical. To prove this assertion, we

observe that Proposition 2.3 can be reformulated as

F (u) ⊆ ∂V ′J∗V (u) ∀u ∈ V ′ (2.34)

since F (u) = ∂V ′J
∗
V (u) = ∅ if u 6∈ D(J∗,V ′) . Therefore, it suffices to show that F is

maximal monotone in V ′ × V ′ . Let ζi ∈ F (ui) for i = 1, 2 . Setting

u = u1 − u2, v = A−1ζ1 −A−1ζ2, and ϕ = uv

we have u ∈ V ′ ∩ L1(Ω) and ϕ ≥ 0 a.e. in Ω , because γ is monotone. Applying

Lemma 2.2 with ψ = 0 , we deduce that ϕ ∈ L1(Ω) and

((u1 − u2, ζ1 − ζ2)) = 〈u, v〉 ≥
∫

Ω

ϕ ≥ 0.

This proves monotonicity for F , and maximal monotonicity follows provided we show

that the inclusion

F (u) + u 3 f0 (2.35)

is solvable in V ′ for any f0 ∈ V ′ . In view of (2.33) and (2.34), problem (2.35) is

equivalent to

(ϑ, u) ∈ V ×(V ′∩L1(Ω)), j∗(u) ∈ L1(Ω), u+Aϑ = f0, and u ∈ γ(ϑ) a.e. in Ω .

Actually, we can derive the existence of a solution by arguing as in [5, pp. 69–71] with

just one modification, due to the fact that V ′ is not a space of distributions on Ω .

The equation fλ + Jvλ = f0 of [5] reads

uλ +Aϑλ = f0 (2.36)

in our notation. For the reader’s convenience, we recall that λ > 0 is subject to tend

to 0 and that ϑλ = γλ(uλ) , where γλ stands for the Yosida approximation of γ .

Now, from (2.36) we should deduce that

u ∈ V ′ ∩ L1(Ω) and u+Aϑ = f0

for the weak limits u and ϑ . This can be done as follows. As uλ ∈ H , we can write

down the equality

(uλ, z) + 〈Aϑλ, z〉 = 〈f0, z〉 ∀ z ∈ V.
Since uλ ⇀ u in L1(Ω) and ϑλ ⇀ ϑ in V , we infer∫

Ω

uz = 〈f0 −Aϑ, z〉 ∀ z ∈ V ∩ L∞(Ω).

Noting that the above right hand side is continuous on V , it turns out that the left hand

side is continuous on V ∩L∞(Ω) with respect to the topology of V , i.e., u ∈ V ′∩L1(Ω)

according to Definition 2.1. Moreover, we have

〈u, z〉 = 〈f0 −Aϑ, z〉 ∀ z ∈ V ∩ L∞(Ω)

and we conclude by density.
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3. Generalized formulation and main result

We consider here Problem (1.1–4) of the Introduction and state it in a generalized form.

The notation introduced in the previous section on spaces, graphs, and functionals is

still in force. However, for the reader’s convenience, let us recall that

j : R→ ]−∞,+∞] is convex, proper, and l.s.c., and γ = ∂j. (3.1)

Concerning the structure of the equations in Problem (1.1–4), we take k0 = 1 without

any loss of generality, and assume

α ∈ (0,+∞) (3.2)

ϕ, k ∈W 1,1(0, T ). (3.3)

Moreover, we choose the following inner product in V

((u, v)) =

∫
Ω

∇u · ∇v + α

∫
Γ

uv, u, v ∈ V (3.4)

while we keep the standard one in H . Let us introduce the linear and continuous

operators A,B : V → V ′ ,

〈Au, v〉 =

∫
Ω

∇u · ∇v + α

∫
Γ

uv ∀u, v ∈ V (3.5)

〈Bu, v〉 =

∫
Ω

∇u · ∇v ∀u, v ∈ V. (3.6)

According to the framework of the previous section, A is the Riesz map associated with

the inner product (3.4). Instead, B is not coercive. Setting now

〈f(t), v〉 =

∫
Ω

g(t)v + α

∫
Γ

h(t)v ∀ v ∈ V (3.7)

multiplying equation (1.1) by v ∈ V , integrating the resulting equation over Ω , and

using (1.3), we formally get

(u+ ϕ ∗ u)′ +Aϑ+ k ∗Bϑ = f in V ′ , a.e. in (0, T ) . (3.8)

Moreover, on account of the previous section, we can interpret (1.2) as

u(t) ∈ ∂V,V ′JV (ϑ(t)) a.e. in (0, T ) . (3.9)

This formal argument suggests a quite natural generalized formulation of the prob-

lem we are dealing with, and our main result reads as follows.
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Theorem 3.1. Assume (3.1–6) and

f ∈ L2(0, T ;V ′) (3.10)

u0 ∈ D(J∗V ). (3.11)

Then, there exists a unique pair (u, ϑ) satisfying

u ∈ H1(0, T ;V ′) and ϑ ∈ L2(0, T ;V ) (3.12)

which solves (3.8–9) and fulfills the Cauchy condition

u(0) = u0. (3.13)

Morover, we also have

u(t) ∈ D(J∗V ) ∀ t ∈ [0, T] and J∗V (u) ∈W 1,1(0, T ). (3.14)

The proof is given in the next section. Here, we just prove that (u, ϑ) solves

(3.8–9) in a stronger sense, provided (2.28) is fulfilled. We have indeed

Corollary 3.2. In the framework of Theorem 3.1, assume (2.28) in addition. Then

the solution (u, ϑ) satisfies

u(t) ∈ V ′ ∩ L1(Ω) and j∗(u(t)) ∈ L1(Ω) ∀ t ∈ [0, T] (3.15)

j∗(u) ∈ L∞(0, T ;L1(Ω)) (3.16)

u : [0, T]→ L1(Ω) is weakly continuous (3.17)

u(t) ∈ γ(ϑ(t)) a.e. in Ω, for a.a. t ∈ (0, T ). (3.18)

Proof. Conditions (3.15–16) and property (3.18) come out directly from Proposi-

tions 2.8 and 2.9, (2.24), and (3.14), since (2.28) is equivalent to (2.29). In this particular

case, the continuity of J∗V (u) given by (3.14) ensures that∫
Ω

j∗(u(t)) ≤ C ∀ t ∈ [0, T]

for some constant C . From this bound, we deduce property (3.17) as well. Assume

indeed tn → t . Arguing as in [5, pp. 67–68] and applying [13, Cor. 11, p. 294], we

infer that the sequence {u(tn)} is weakly (relatively) compact in L1(Ω) . Therefore,

at least for a subsequence, we have that u(tn) ⇀ u∗ in L1(Ω) for some u∗ ∈ L1(Ω) .

On the other hand, u(tn)→ u(t) in V ′ because of (3.12), whence

〈u(t), v〉 = lim
n→∞

〈u(tn), v〉 = lim
n→∞

∫
Ω

u(tn)v =

∫
Ω

u∗v
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for any v ∈ V ∩ L∞(Ω) . According to Definition 2.1, we deduce u∗ = u(t) and

u(tn) ⇀ u(t) in L1(Ω) .

Remark 3.3. Note that, under the validity of (2.29), condition (3.11) reduces to

u0 ∈ V ′ ∩ L1(Ω) and j∗(u0) ∈ L1(Ω).

Remark 3.4. We emphasize that (cf. (3.9) and Proposition 2.5) inclusion (3.18) still

holds even though (2.28) does not, provided that u satisfies the further regularity con-

dition u(t) ∈ H for a.a. t ∈ (0, T ) . This is precisely the case examined by Damlamian

and Kenmochi in [12] for the problem without memory kernels. There, the authors are

able to achieve that u ∈ L∞(0, T ;H) (see [12, Thm. 1.13]). However, even when mem-

ory terms are present, there are cases for which we can still conclude u ∈ L∞(0, T ;H) .

This happens, for instance, for the problem addressed in [3]. In fact, the paper [3]

deals with other boundary conditions (slightly different from (1.3)) and the respective

equation (3.8) has a simpler form, namely A and B are the same linear, continuous,

and coercive operator from V to V ′ . Finally, let us notice that, if (2.28) holds, then

the regularity property u ∈ L∞(0, T ;H) is simply ensured by (3.16) whenever γ is

linearly bounded (see [10]).

4. Existence and uniqueness

Our aim is showing Theorem 3.1. In fact, we prove a more general result obtained by

allowing the kernels ϕ and k in (3.8) to take values in V ′ instead of in R , that is,

we replace (3.3) by

ϕ, k ∈W 1,1(0, T ;L(V ′)) (4.1)

where L(V ′) denotes the space of continuous linear operators from V ′ into itself. Note

that (4.1) allows, in particular, to consider real kernels depending smoothly on the space

variables. Our proof takes advantage of the following lemma, whose proof is reported,

for the reader’s convenience, at the end of this section. However, one can also refer to

[16, Sect. I.2.3, pp. 42–45] for the scalar case or [20, Sect. 0.3, pp. 12–15] for a quite

general setting.

Lemma 4.1. Let X be a real Banach space and M ∈ L1(0, T ;L(X)) . Then, there

exists a unique M ∈ L1(0, T ;L(X)) , named conjugate kernel of M , such that

M +M ∗M = M a.e. in (0, T ) . (4.2)

Consequently, for any z ∈ L1(0, T ;X) , there exists a unique w ∈ L1(0, T ;X) such that

w +M ∗ w = z a.e. in (0, T ) (4.3)
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and the following representation holds

w = z −M ∗ z a.e. in (0, T ) . (4.4)

In order to prove the generalized version we have mentioned, we observe that

equation (3.8) can be written in the form

Aϑ+M ∗Aϑ = f − u′ − (ϕ ∗ u)′ in V ′ , a.e. in (0, T ) (4.5)

where M is defined by

M(t) := k(t)BA−1 ∀ t ∈ [0, T]. (4.6)

Hence, (4.4) yields

Aϑ =
(
f − u′ − (ϕ ∗ u)′

)
−M ∗

(
f − u′ − (ϕ ∗ u)′

)
in V ′ , a.e. in (0, T ) . (4.7)

Next, from (3.5–6), (4.1), and (4.2), we deduce that

M,M ∈W 1,1(0, T ;L(V ′)). (4.8)

Then, taking (4.1) into account and using the formulas

(ϕ ∗ u)′ = ϕ(0)u+ ϕ′ ∗ u and M ∗ u′ = M ′ ∗ u+M(0)u−Mu0

we transform (4.7) into

u′ +Aϑ = f − ϕ(0)u− ϕ′ ∗ u
−M ∗ f +M ′ ∗ u+M(0)u−Mu0 +M ∗ (ϕ(0)u) +M ∗ ϕ′ ∗ u

or, equivalently,

u′ +Aϑ = F +M0u+ Φ ∗ u in V ′ , a.e. in (0, T ) (4.9)

where we have set

F := f −M ∗ f −Mu0 (4.10)

M0 := −ϕ(0) +M(0) (4.11)

Φ := −ϕ′ +M ′ +Mϕ(0) +M ∗ ϕ′. (4.12)

On account of (3.10–11), (4.1), and (4.8), we have

F ∈ L2(0, T ;V ′), M0 ∈ L(V ′), and Φ ∈ L1(0, T ;L(V ′)). (4.13)
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We now state a perfecly equivalent formulation of our problem in V ′ . To this aim, we

consider the subdifferential of J∗V in V ′ , i.e., the map ∂V ′J
∗
V already defined in (2.31)

and related to ∂V,V ′JV by

∂V ′J
∗
V (u) = A(∂V ′,V J

∗
V (u)) ∀u ∈ V ′ (4.14)

(as already observed in the proof of Proposition 2.9). Making use of this operator,

(3.8–9) become

u′ + ξ = F +M0u+ Φ ∗ u and ξ ∈ ∂V ′J∗V (u) a.e. in (0, T ) (4.15)

Aϑ = ξ a.e. in (0, T ) (4.16)

and our problem turns out to be equivalent to finding u ∈ H1(0, T ;V ′) which satisfies

the following inclusion and Cauchy condition

u′ + ∂V ′J
∗
V (u) 3 F +M0u+ Φ ∗ u in V ′, a.e. in (0, T ) (4.17)

u(0) = u0. (4.18)

Indeed, the function ϑ ∈ L2(0, T ;V ) is obtained solving (4.16), where ξ ∈ L2(0, T ;V ′)

is uniquely selected in the subdifferential in order to fulfill the first equation in (4.15).

At this point, we prove that (4.17–18) has a unique solution u ∈ H1(0, T ;V ′) ,

which satisfies (3.14) as well. We apply the generalized contraction mapping principle in

the Banach space C0([0, T];V ′) and, for any given w ∈ C0([0, T];V ′) , we consider

the Cauchy problem

u′ + ∂V ′J
∗
V (u) 3 F +M0w + Φ ∗ w in V ′, a.e. in (0, T ) (4.19)

u(0) = u0. (4.20)

Since J∗V is bounded form below by an affine function on V ′ , we can assume that

min J∗V = 0 without loss of generality. Indeed, it suffices to modify J∗V along with F

and M0 in an obvious way. Therefore, we are allowed to use [7, Thm. 3.6, pp. 72–73]

and deduce that there is a unique solution u to (4.19–20). Moreover, u satisfies (3.14)

in addition to further regularity properties. Hence, we can define the operator

S : C0([0, T];V ′)→ C0([0, T];V ′)

by the formula S(w) := u and check that Sm is a (strict) contraction for a suitable m .

Take wi ∈ C0([0, T];V ′) , i = 1, 2 , and set ui = S(wi) . Writing (4.19–20) for the

pairs (ui, wi) in the form (4.15), i.e.,

u′i + ξi = F +M0wi + Φ ∗ wi with ξi ∈ ∂V ′J∗V (ui)
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taking the difference, and applying a well–known inequality (see, e.g., [21, Cor. 8.2,

pp. 221]), we obtain the estimate

‖u1(t)− u2(t)‖∗ ≤
∫ t

0

∥∥M0(w1 − w2)(s) +
(
Φ ∗ (w1 − w2)

)
(s)
∥∥
∗ ds

for any t ∈ [0, T] . Next, using the Young inequality for convolutions, we infer

‖S(w1)− S(w1)‖C0([0,t];V ′) ≤ C
∫ t

0

‖w1 − w2‖C0([0,s];V ′) ds

for any t ∈ [0, T] , where

C = ‖M0‖L(V ′) + ‖Φ‖L1(0,T ;L(V ′)) .

By iteration, we conclude that

‖Sm(w1)− Sm(w1)‖C0([0,t];V ′) ≤
(Ct)m

m!
‖w1 − w2‖C0([0,t];V ′)

for any t ∈ [0, T] and any m ≥ 0 . Such an estimate implies that Sm is a contraction

mapping for m large enough. This ensures that the transformed problem has a unique

solution u which fulfills (3.14). Therefore, our generalized version of Theorem 3.1 is

proved.

Remark 4.2. It is worth noting that, once the equivalent problem (4.17–18) has been

set, the existence and uniqueness result can be also obtained by applying [15, Thm. 3].

Indeed, it suffices to check that the right hand side of (4.17) obeys [15, (2.13)]. Besides,

one can realize that similar arguments allow to infer a continuous dependence estimate

on F and u0 (see, e.g., [3, Thm. 2.4]).

Remark 4.3. In Remark 3.4 we incidentally observed that one can associate some

boundary conditions with (1.1) for which the related operators A and B (cf. (3.5–6)

and (3.8)) coincide with a linear, continuous, and coercive operator from V to V ′ . For

instance, homogeneous Dirichlet boundary conditions yield an example characterized

by the choice V = H1
0 (Ω) . However, in this situation the operator M(t) defined by

(4.6) always reduces to k(t)I , where I stands for the identity operator in L(V ′) , and

then M(t) can be viewed as an element of L(H) as well. Recalling then (3.9) and

Proposition 2.5, it should not be difficult for the reader to see how an estimate for u

in L∞(0, T ;H) can be obtained and the related problem can be set in H . On the

contrary, in our case, marked by (1.3), BA−1 does not map H into itself, but it is just

an element of L(V ′) .

Proof of Lemma 4.1. Put M = L1(0, T ;L(X)) and note that an element M ∈M
solves (4.2) if and only if it is a fixed point for the operator TM :M→M defined by

TMK := M −M ∗K.
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Thus, we can conclude immediately by the Banach contraction theorem, once we prove

that TM is a contraction mapping in M . To this aim, we choose a particular norm

in M . For λ ∈ R , we set

‖K‖λ =

∫ T

0

e−λt ‖K(t)‖ dt, K ∈M (4.21)

where ‖ · ‖ here denotes the norm in L(X) . Clearly, for any λ , (4.21) is a norm

in M which is equivalent to the usual one. Therefore, for any K1,K2 ∈ M , letting

K = K1 −K2 and using the Young inequality for convolution products, we have

‖TMK1 − TMK2‖λ = ‖M ∗K‖λ ≤
∫ T

0

e−λt
∫ t

0

‖M(t− s)‖ ‖K(s)‖ ds dt

=

∫ T

0

∫ t

0

∥∥e−λ(t−s)M(t− s)
∥∥ ∥∥e−λsK(s)

∥∥ ds dt ≤ ‖M‖λ ‖K‖λ .
Hence, it suffices to observe that the assumption M ∈ M implies that ‖M‖λ → 0 as

λ→ +∞ and to choose λ such that ‖M‖λ < 1 .

The second part of the lemma is straightforward. Indeed, from (4.2) it is clear

that (4.4) provides a solution w to (4.3) which belongs to L1(0, T ;X) , and we only

have to show uniqueness. This can be easily seen by taking M = L1(0, T ;X) , TMw :=

z −M ∗ w , and arguing as above.

5. Asymptotic behavior

In this section, we study the longtime behavior of the solution (u, ϑ) given by Corol-

lary 3.2, whose assumptions are required to hold for any T > 0 . However, we must ask

for further requirements which are listed below. We recal definitions (3.4–6) and still

take k0 = 1 for the sake of simplicity.

About memory kernels, we assume

ϕ = 0, k ∈W 1,1(0,+∞) (5.1)∫ t

0

(v + k ∗ v)(s) v(s) ds ≥ ω
∫ t

0

|v(s)|2 ds (5.2)

for some constant ω > 0 , any v ∈ L2(0, t) , and any t ∈ (0,+∞) . We assume ω ≤ 1

without any loss of generality. Moreover, for later convenience we define the function

ι : [0,+∞)→ R by the formula

ι(t) :=

∫ ∞
t

k(s) ds (5.3)

and suppose that

ι ∈ L2(0,+∞). (5.4)
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As far as γ is concerned, we recall and reinforce the assumptions of the previous

sections, namely

j : R→ R convex (5.5)

γ = ∂j and β = γ−1 = ∂j∗ (5.6)

β is a Lipschitz continuous function with Lipschitz constant Cβ . (5.7)

Note that (5.5) includes both (2.2) and (2.28). Moreover, it implies that j is a contin-

uous function on R and that

lim
|r|→+∞

j∗(r)

|r|
= +∞. (5.8)

Furthermore, owing to (5.7), we see that also j∗ is a continuous function on R and

that both j(r) and j∗(r) tend to +∞ as |r| → +∞ .

We now state a precise formulation of problem (1.6–7). On account of nota-

tion (5.3), we have that k∞ = 1 + ι(0) and the stationary problem can be written in

the form

Aϑ∞ + ι(0)Bϑ∞ = f∞ (5.9)

where f∞ ∈ V ′ is related to g∞ and h∞ by

〈f∞, v〉 =

∫
Ω

g∞v + α

∫
Γ

h∞v ∀ v ∈ V. (5.10)

However, we do not require this particular structure for f∞ . Indeed, the data must

satisfy the conditions listed below, where the new function ϑ0 is defined as well.

f∞ ∈ V ′, f − f∞ ∈ L2(0,∞;H) +H1(0,+∞;V ′), (5.11)

u0 ∈ D(J∗V ), ϑ0 := β(u0) ∈ V. (5.12)

We point out that the definition of ϑ0 makes sense for u0 ∈ L1(Ω) . Moreover, we note

that taking v = 1 in (5.2), dividing by t , and letting t→ +∞ , we get 1 + ι(0) ≥ ω .

As ω ≤ 1 , this easily yields

〈Av, v〉+ ι(0)〈Bv, v〉 ≥ ω ‖v‖2 ∀ v ∈ V. (5.13)

Therefore, (5.9) has a unique solution ϑ∞ ∈ V and we assume that

j((1 + δ)ϑ∞) ∈ L1(Ω) for some δ > 0 . (5.14)

Remark 5.1. In the concrete cases f and f∞ are defined by (3.7) and (5.10), re-

spectively. Therefore, sufficient conditions for the validity of (5.11) are

g∞ ∈ L2(Ω), g − g∞ ∈ L2(Ω× (0,+∞))

h∞ ∈ L2(Γ), h− h∞ ∈ L2(Γ× (0,+∞)), ∂th ∈ L2(Γ× (0,+∞)).
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Remark 5.2. Assuming that (5.1) holds and extending k to (−∞, 0) by 0 , it is not

difficult to check that (5.2) is satisfied whenever

1 + Re k̂ ≥ ω on R

where k̂ denotes the Fourier transform of k . Moreover, (5.4) is fulfilled if, e.g., |k(t)| is

bounded by c/t2 for some c > 0 and any t large enough. In particular, any decreasing

exponential is an admissible kernel.

Remark 5.3. We note that (5.14) is equivalent to

j(ϑ∞) ∈ L1(Ω) (5.15)

if j(r) grows like the power |r|p at infinity for some p . Moreover, in this case, (5.15)

holds automatically if V ⊂ Lp(Ω) . On the contrary, restriction (5.14) is strictly stronger

than (5.15) if j(r) grows, e.g., exponentially. However, if Ω ⊂ R2 , (5.14) is satisfied for

any δ > 0 if j(r) ≤ c exp(|r|σ) for any r ∈ R and some σ ∈ (0, 2) and c > 0 . Indeed,

in this case, for any δ, ε > 0 , the inequality j((1 + δ)r) ≤ cε,δ exp
(
εr2
)

holds for any

r ∈ R and some cε,δ > 0 , and a result due to Trudinger (see, e.g., [1, Thm. 8.25,

pp. 242–245]) says that exp
(
cv2/ ‖v‖2

)
∈ L1(Ω) for some c depending only on Ω and

any v ∈ V \ {0} . Finally, in any dimension, (5.14) is satisfied if ϑ∞ is bounded, and

this is true provided that f∞ is smooth enough.

Henceforth, we show that the above assumptions are sufficient to describe the

longtime behavior of ϑ and to verify that ϑ(t) ⇀ ϑ∞ in V . As a consequence, it

turns out that f(t) − u′(t) tends to f∞ weakly in V ′ as t → +∞ . In particular,

u′(t) tends to 0 whenever f(t)− f∞ does. On the contrary, in order to handle the

limit of u(t) as t goes to infinity, we need a further restriction on j∗ . More precisely,

we require a compactness condition on the sets

Ec :=
{
w ∈ V ′ ∩ L1(Ω) :

∫
Ω
j∗(w) ≤ c

}
, c ∈ R. (5.16)

Theorem 5.4. Assume (5.1–7), (5.11–12), (5.14), where ϑ∞ ∈ V is the unique solu-

tion to (5.9), and let (u, ϑ) be the solution to problem (3.8–9) given by Theorem 3.1.

Then we have the following stability results

ϑ ∈ L∞(0,∞;V ), ϑ− ϑ∞ ∈ L2(0,∞;V ), ϑ′ ∈ L2(0,∞;H) (5.17)

u ∈ L∞(0,∞;L1(Ω)), j∗(u) ∈ L∞(0,∞;L1(Ω)), u′ ∈ L2(0,∞;V ′). (5.18)

Moreover, ϑ is a weakly continuous V − valued function and

ϑ(t)→ ϑ∞ weakly in V and strongly in H , as t→ +∞ . (5.19)

Corollary 5.5. The difference f−u′ is a weakly continuous V ′− valued function and

f(t)− u′(t)→ f∞ weakly in V ′ , as t→ +∞ . (5.20)
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Theorem 5.6. In the framework of Theorem 5.4, assume in addition that the set Ec
in (5.16) is strongly relatively compact in V ′ for any c ∈ R . Moreover, let {tn} be a

sequence of times such that tn → +∞ as n→∞ . Then we have

u(tn)→ u∞ weakly in L1(Ω) and strongly in V ′ (5.21)

at least for a subsequence, for some u∞ satisfying

u∞ ∈ V ′ ∩ L1(Ω) and j∗(u∞) ∈ L1(Ω). (5.22)

Moreover, any cluster point u∞ in the above conditions fulfills

u∞ ∈ γ(ϑ∞) a.e. in Ω . (5.23)

In particular, if γ is single valued, the entire function u(t) converges to γ(ϑ∞) weakly

in L1(Ω) and strongly in V ′ as t→ +∞ .

Remark 5.7. If N = 1 then V ′ ∩ L1(Ω) clearly coincides with L1(Ω) and is com-

pactly embedded in V ′ . Therefore, the assumption of Theorem 5.6 is automatically

satisfied. If N ≥ 2 , all the sets (5.16) are strongly relatively compact in V ′ if j∗

satisfies a growth condition from below. More precisely, if N ≥ 3 , p := 2N/(N − 2) ,

and q < p , then V is compactly and densely embedded in Lq(Ω) . By transposi-

tion, Lq
′
(Ω) is compactly embedded in V ′ , where q′ is the conjugate exponent of q .

Thererore, relative compactness in V ′ for all sets (5.16) is ensured if

j∗(r) ≥ c1|r|q
′
− c2 ∀ r ∈ R (5.24)

for some constants c1, c2 > 0 and q′ > p′ . Note that this condition is compatible with

the Lipschitz continuity of β = ∂j∗ since we can assume q′ ≤ 2 . Moreover, this type

of assumption agrees with Remark 5.3 since (5.24) is equivalent to

j(r) ≤ c3 (|r|q + 1) ∀ r ∈ R (5.25)

for some c3 > 0 and q < p . If N = 2 , we have to do usual modifications and assume

q < ∞ , or q′ > 1 , in (5.25) and (5.24), respectively. Finally, note that everything

works well if γ behaves linearly at infinity, as in the standard Stefan problem.

Proof of Theorem 5.4. Let us write (5.9) in the form

Aϑ∞ +B(k ∗ ϑ∞) = f∞ − ιBϑ∞ (5.26)

and take the difference between (3.8) and (5.26). We obtain

u′ +Aϑ̂+B(k ∗ ϑ̂) = f̂ − ιBϑ∞ (5.27)
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where

ϑ̂ = ϑ− ϑ∞ and f̂ = f − f∞. (5.28)

We split the proof into several steps.

First a priori estimate. Testing equation (5.27) by ϑ̂ , and integrating over (0, t) ,

where t > 0 is arbitrary, we get∫ t

0

〈u′(s), ϑ̂(s)〉 ds+

∫ t

0

(
〈Aϑ̂(s), ϑ̂(s)〉+ 〈B(k ∗ ϑ̂)(s), ϑ̂(s)〉

)
ds

=

∫ t

0

〈f̂(s), ϑ̂(s)〉 ds−
∫ t

0

ι(s)〈Bϑ∞, ϑ̂(s)〉 ds (5.29)

and we estimate each term, separately. The first one is equal to∫ t

0

〈u′(s), ϑ(s)〉 ds− 〈u(t)− u0, ϑ∞〉 = J∗V (u(t))− J∗V (u0)− 〈u(t)− u0, ϑ∞〉 (5.30)

thanks to (3.12) and [7, Lemme 3.3 p. 73]. On the other hand, we have that u(t) ∈
V ′ ∩ L1(Ω) for any t > 0 (cf. (3.15)). Then, owing to the definition of conjugate

function and to (5.14), we get

u(t)ϑ∞ ≤
1

1 + δ

(
j∗(u(t)) + j((1 + δ)ϑ∞)

)
a.e. in Ω .

Since the right hand side of this inequality belongs to L1(Ω) , we are in a position to

apply Lemma 2.2 and deduce

〈u(t), ϑ∞〉 ≤
1

1 + δ
J∗V (u(t)) + JV ((1 + δ)ϑ∞).

Therefore, (5.30) can be bounded from below as follows

J∗V (u(t))− J∗V (u0)− 〈u(t)− u0, ϑ∞〉

≥ δ

1 + δ
J∗V (u(t))− JV ((1 + δ)ϑ∞)− J∗V (u0) + 〈u0, ϑ∞〉.

The second integral in (5.29) is estimated with the help of (5.2) and (3.4–5). Namely,

we have that ∫ t

0

∫
Ω

(
|∇ϑ̂|2 + (k ∗ ∇ϑ̂) · ∇ϑ̂

)
+ α

∫ t

0

∫
Γ

|ϑ̂|2

≥ ω
∫ t

0

∫
Ω

|∇ϑ̂|2 + α

∫ t

0

∫
Γ

|ϑ̂|2 ≥ ω
∫ t

0

‖ϑ̂(s)‖2 ds

because ω ≤ 1 . Concerning the right hand side of (5.29), it turns out that∫ t

0

〈f̂(s), ϑ̂(s)〉 ds ≤ ω

2

∫ t

0

‖ϑ̂(s)‖2 ds+
1

2ω

∫ t

0

‖f̂(s)‖2∗ ds
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as well as

−
∫ t

0

ι(s)〈Bϑ∞, ϑ̂(s)〉 ds ≤ ω

4

∫ t

0

‖ϑ̂(s)‖2 ds+
1

ω
‖ϑ∞‖2

∫ t

0

ι2(s) ds.

Collecting all these inequalities, we obtain from (5.29)

δ

1 + δ
J∗V (u(t)) +

ω

4

∫ t

0

‖ϑ̂(s)‖2 ds

≤ JV ((1 + δ)ϑ∞) + J∗V (u0)− 〈u0, ϑ∞〉

+
1

2ω

∫ t

0

‖f̂(s)‖2∗ ds+
1

ω
‖ϑ∞‖2

∫ t

0

ι2(s) ds (5.31)

for any t > 0 . Thus, accounting also for (5.4) and (5.8), we have proved the first two

properties listed in (5.18) and the second one in (5.17).

Consequent estimates. Clearly, (5.1) and (5.31) imply B(k ∗ ϑ̂) ∈ L2(0,∞;V ′) .

Moreover, writing

B(k ∗ ϑ̂)′ = k(0)Bϑ̂+ k′ ∗ (Bϑ̂)

we conclude that

B(k ∗ ϑ̂) ∈ H1(0,+∞;V ′). (5.32)

Next, recalling (5.1) again and owing to (5.4), we deduce that

ιBϑ∞ ∈ H1(0,+∞;V ′). (5.33)

Finally, a comparison in (5.27) yields the last of (5.18). In addition, the norms of all

the above functions are bounded by a computable constant.

Second a priori estimate. We are going to prove

ϑ− ϑ∞ ∈ L∞(0,∞;V ) and ϑ′ ∈ L2(0,∞;H). (5.34)

This allows us to conclude the proof of the stability part of the statement. To this aim,

after splitting f̂ as

f̂ = f1 + f2 with f1 ∈ L2(0,∞;H) and f2 ∈ H1(0,+∞;V ′)

we write (5.27) in the form

u′ +Aϑ̂ = f1 + F2 (5.35)

where

F2 = f2 −B(k ∗ ϑ̂)− ιBϑ∞.
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By (5.32–33) it has already been achieved that F2 ∈ H1(0,+∞;V ′) . We now test

(5.35) by ϑ′ = ϑ̂ ′ and integrate over (0, t) . Although the procedure is formal, we

perform the calculation, suggesting then how to make the argument rigorous. We have∫ t

0

〈u′(s), ϑ′(s)〉 ds+

∫ t

0

((ϑ̂(s), ϑ̂ ′(s) )) ds

=

∫ t

0

(f1(s), ϑ̂ ′(s)) ds+

∫ t

0

〈F2(s), ϑ̂ ′(s)〉 ds. (5.36)

The first integral is estimated from below as follows∫ t

0

〈u′(s), ϑ′(s)〉 ds ≥ 1

Cβ

∫ t

0

|ϑ′(s)|2 ds

thanks to (5.7) and to the fact that u ∈ β−1(ϑ) . The second term is nothing but

1

2
‖ϑ̂(t)‖2 − 1

2
‖ϑ0 − ϑ∞‖2 .

The first term on the right hand side is trivially controlled by

1

2Cβ

∫ t

0

|ϑ′(s)|2 ds+
Cβ
2

∫ t

0

|f1(s)|2 ds.

Finally, we handle the last term this way∫ t

0

〈F2(s), ϑ̂ ′(s)〉 ds = 〈F2(t), ϑ̂(t)〉 − 〈F2(0), ϑ0 − ϑ∞〉 −
∫ t

0

〈F ′2(s), ϑ̂(s)〉 ds

≤ 1

4
‖ϑ̂(t)‖2 + ‖F2‖2L∞(0,∞;V ′) +

1

2
‖ϑ0 − ϑ∞‖2

+
1

2
‖F2‖2L∞(0,∞;V ′) + ‖F ′2‖L2(0,∞;V ′) ‖ϑ̂‖L2(0,∞;V )

and note that ‖ϑ̂‖L2(0,∞;V ) is estimated by (5.31) and that ‖F2‖L∞(0,∞;V ′) can be

bounded by means of ‖F2‖H1(0,+∞;V ′) . Therefore, combining everything, we finally

derive (5.34).

This argument can be made rigorous in the following way. The purpose is that of

controlling an appropriate norm of the difference quotient δh(t) := h−1(ϑ̂(t)− ϑ̂(t−h))

by a constant independent of h and then take h → 0+ in the obtained inequality.

More precisely, for any h > 0 , we consider the mean value of (5.35) on (t− h, t) with

respect to time, then we test the obtained equation with δh and integrate over (0, t) .

However, this procedure is correct provided that the equation holds also in (−h, 0) .

Therefore, we extend u , ϑ̂ , F2 by their values at 0 in order to preserve continuity,

and the constant value we must use to extend f1 is necessarily

f0
1 := A(ϑ0 − ϑ∞)− F2(0).
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Then everything goes like in the above formal argument, but for a contribution near

t = 0 , namely
1

h
〈f0

1 ,

∫ h

0

(h− s)δh(s) ds〉. (5.37)

Thus, we assume for a moment that f0
1 ∈ H and that its norm

∣∣f0
1

∣∣ is bounded by a

known constant C . Then (5.37) is estimated as follows

≤ 1

h

∣∣f0
1

∣∣ ∫ h

0

(h− s) |δh(s)| ds

≤ 1

4Cβ

∫ t

0

|δh(s)|2 ds+
Cβh

3

∣∣f0
1

∣∣2 ≤ 1

4Cβ

∫ t

0

|δh(s)|2 ds+
CβC

2

3
h

and the last addendum actually figures in the right hand side of the estimate and tends

to 0 as h→ 0+ . On the contrary, if f0
1 6∈ H , the above argument cannot be performed.

In this case, we approximate F2 by F2,ε in order that the corresponding value f0
1,ε

belongs to H . This leads to an approximate solution (uε, ϑ̂ε) of (5.35), which converges

(in some suitable sense) to (u, ϑ̂) as ε→ 0+ (in particular, note that uε → u strongly

in V ′ for all t due to the continuous dependence property stated in [3, Thm. 2.4]).

Then, we can argue as before. The constant C is replaced by some Cε , but we can

take first h→ 0+ and then ε→ 0+ .

Conclusion. The weak continuity of ϑ and (5.19) easily follow from (5.17). We have

indeed ϑ̂ ∈ H1(0,+∞;H) and deduce that ϑ̂ is an H − valued continuous function

which goes to 0 at infinity, whence the strong convergence of ϑ(t) to ϑ∞ in H is

derived. On the other hand, ϑ̂ is also an essentially bounded V − valued function.

Therefore, using a standard argument based on the density of H in V ′ , we deduce that

ϑ̂ is a weakly continuous V − valued function and that ‖ϑ̂(t)‖ is bounded everywhere

in R . This yields immediately the weak convergence in V .

Proof of Corollary 5.5. It suffices to recall equation (5.27) and apply Theorem 5.4

and (5.32–33).

Proof of Theorem 5.6. Suppose that tn → +∞ . From (5.31) we have

J∗V (u(tn)) ≤ C ∀n

for some fixed constant C , i.e., u(tn) ∈ EC for all n . As any Ec is strongly relatively

compact in V ′ , we can choose a subsequence, still termed {tn} for simplicity, such

that {u(tn)} is strongly convergent in V ′ to some u∞ ∈ V ′ . Moreover, arguing as in

the last part of the proof of Corollary 3.2, we derive that (5.22) holds and that some

subsequence from {u(tn)} weakly converges to u∞ in L1(Ω) . This also yields (5.21).

Assume now (5.21–22) for some sequence tn → +∞ . Using (3.9) and the continuity of

u given by (3.12), we can choose t′n such that

|t′n − tn| ≤ 1/n, ‖u(t′n)− u(tn)‖∗ ≤ 1/n, and u(t′n) ∈ ∂V,V ′JV (ϑ(t′n)) ∀n.
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Thus, also u(t′n) converges to u∞ strongly in V ′ . On the other hand, we have that

ϑ(t′n) ⇀ ϑ∞ in V by (5.19). Hence, we can apply [5, Lemma 1.3, p. 42] and infer

u∞ ∈ ∂V,V ′JV (ϑ∞). (5.38)

Therefore, (5.23) follows from (5.22) and (5.38), thanks to Proposition 2.9. Finally, the

last sentence in the statement can be proved using standard arguments.
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