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Abstract

We study a diffusion model of phase field type, which consists of a system of
two partial differential equations involving as variables the thermal displacement,
that is basically the time integration of temperature, and the order parameter.
Our analysis covers the case of a non-smooth (maximal monotone) graph along
with a smooth anti-monotone function in the phase equation. Thus, the system
turns out a generalization of the well-known Caginalp phase field model for phase
transitions when including a diffusive term for the thermal displacement in the
balance equation. Systems of this kind have been extensively studied by Miranville
and Quintanilla. We prove existence and uniqueness of a weak solution to the
initial-boundary value problem, as well as various regularity results ensuring that
the solution is strong and with bounded components. Then we investigate the
asymptotic behaviour of the solutions as the coefficient of the diffusive term for the
thermal displacement tends to 0 and prove convergence to the Caginalp phase field
system as well as error estimates for the difference of the solutions.

Key words: phase field model, well-posedness, regularity, asymptotic behaviour,
error estimates.
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1 Introduction

This paper is concerned with the initial and boundary value problem:

wtt − α∆wt − β∆w + ut = f in Ω× (0, T ) (1.1)

ut −∆u+ γ(u) + g(u) ∋ wt in Ω× (0, T ) (1.2)

∂nw = ∂nu = 0 on Γ× (0, T ) (1.3)

w(·, 0) = w0 , wt(·, 0) = v0 , u(·, 0) = u0 in Ω (1.4)
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2 Solvability and asymptotic analysis of a phase field system

where Ω ⊂ R
3 is a bounded domain with smooth boundary Γ, T > 0 represents some

finite time, and ∂n denotes the outward normal derivative on Γ. Moreover, α and β are
two positive parameters, γ : R → 2R is a maximal monotone graph (one can see [2, in
particular pp. 43–45] or [1]), g : R → R is a Lipschitz-continuous function, f is a given
source term in equation (1.1) and w0, v0, u0 stand for initial data. The inclusion (in place
of the equality) in (1.2) is due to the presence of the possibly multivalued graph γ.

Equations (1.1)–(1.2) yield a system of phase field type. Such systems have been
introduced (cf. [3]) in order to include phase dissipation effects in the dynamics of moving
interfaces arising in thermally induced phase transitions. In our case, we move from the
following expression for the total free energy

Ψ(θ, u) =

∫

Ω

(
−1

2
θ2 − θu+ φ(u) +G(u) +

1

2
|∇u|2

)
(1.5)

where the variables θ and u denote the (relative) temperature and order parameter, respec-
tively. Let us notice from the beginning that our w represents the thermal displacement
variable, related to θ by

w(·, t) = w0 + (1 ∗ θ)(·, t) = w0 +

∫ t

0

θ(·, s) ds, t ∈ [0, T ]. (1.6)

In (1.5), φ : [0,+∞] → R is the convex and lower semicontinuous function such that
φ(0) = 0 = minφ and its subdifferential ∂φ coincides with γ, while G stands for a
smooth, in general concave, function such that G′ = g. A typical example for φ and G is
the double obstacle case

φ(u) = I[−1,+1](u) =

{
0 if |u| ≤ 1

+∞ if |u| > 1
, G(u) = 1− u2 (1.7)

so that the two wells of the sum φ(u)+G(u) are located in −1 and +1, and one of the two
is preferred as minimum of the potential in (1.5) according to whether the temperature
θ is negative or positive. Indeed, note the presence of the term −θu besides φ(u) +G(u)
in the expression of Ψ.

The example given in (1.7) is inspired by the systematic approach of Michel Frémond
to non-smooth thermomechanics: we refer to the monography [7] which also deals with
the phase change models. In the case of (1.7) the subdifferential of the indicator function
of the interval [−1,+1] reads

ξ ∈ ∂I[−1,+1](u) if and only if ξ





≤ 0 if u = −1

= 0 if |u| < 1

≥ 0 if u = +1

.

Let us point out that, with a different terminology motivated by earlier studies on the
Stefan problem [6], some authors (cf. [7]) prefer to name “freezing index” the variable w
defined by (1.6), having also in mind applications to frost propagation in porous media.

Another meaningful variable of the Stefan problem is the enthalpy e, which in our case
is defined by

e = −dθΨ (− the variational derivative of Ψ with respect to θ),
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whence e = θ+u = wt+u. Then, the governing balance and phase equations are given by

et + divq = f (1.8)

ut + duΨ = 0 (1.9)

where q denotes the thermal flux vector and duΨ stands for the variational derivative
of Ψ with respect to u. Hence, (1.9) reduces exactly to (1.2) along with the Neumann
homogeneous boundary condition for u. If we assume the classical Fourier law q = −∇θ
(for the moment let us take the heat conductivity coefficient just equal to 1), then (1.8) is
nothing but the usual energy balance equation as in the Caginalp model [3]. This is also
as in the weak formulation of the Stefan problem, in which the mere pointwise inclusion

u ∈
(
∂I[−1,+1]

)−1
(θ), or equivalently θ ∈ ∂I[−1,+1](u), replaces (1.2).

Another approach, which is by now well established, consists in adopting the so-called
Cattaneo-Maxwell law (see, e.g., [4, 14] and references therein): such a law reads

q+ εqt = −∇θ, for ε > 0 small, (1.10)

and leads to the following equation

εθtt + θ −∆θ + εutt + ut = f in Ω× (0, T )

which has been investigated in [14]. On the other hand, if we solve (1.10) with respect to
q we find

q = q0 + k ∗ ∇θ, where (k ∗ ∇θ)(x, t) :=

∫ t

0

k(t− s)∇θ(x, s)ds,

q0(x, t) is known and can be incorporated in the source term, k(t) is a given kernel
(depending on ε of course): from (1.8) we obtain the balance equation for the standard
phase field model with memory which has a hyperbolic character and has been extensively
studied in [4, 5].

In [8, 9, 10, 11] Green and Naghdi presented an alternative approach based on a
thermomechanical theory of deformable media. This theory takes advantage of an entropy
balance rather than the usual entropy inequality. If we restrict our attention to the heat
conduction, these authors proposed three different theories, labeled as type I, type II and
type III, respectively. In particular, when type I is linearized, we recover the classical
theory based on the Fourier law

q = −α∇wt, α > 0 (type I). (1.11)

Furthermore, linearized versions of the two other theories yield

q = −β∇w, β > 0 (type II) (1.12)

and
q = −α∇wt − β∇w (type III). (1.13)

Note that here we have used the thermal displacement (1.6) (instead of θ) to write such
laws. We also point out that (1.12)–(1.13) have been recently discussed, applied and
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compared by Miranville and Quintanilla in [15, 16, 17] (there the reader can find a rich
list of references as well). In particular, (1.13) leads via (1.8) to our equation (1.1); further,
a no flux boundary condition for q corresponds to ∂nw = 0 in (1.3).

Thus, the system (1.1)–(1.4) results from (1.8)–(1.9) when (1.5) and (1.13) are postu-
lated. We are interested in the study of existence, uniqueness, regularity of the solution to
the initial-boundary value problem (1.1)–(1.4) when γ is an arbitrary maximal monotone
graph, possibly multivalued, singular and with bounded domain. Of course, the case of
Ψ shaped by a multiwell potential u 7→ −wtu + φ(u) + G(u) is recovered as a sample.
Then we study the asymptotic behaviour of the problem as β ց 0, obtaining convergence
of solutions to the problem with β = 0, which corresponds to (1.11), the (type I) case
of Green and Naghdi. We also prove two error estimates of the difference of solutions in
suitable norms, showing a linear rate of convergence in both estimates. In a subsequent
study we would like to address the investigation of the analogous limit α ց 0 to obtain
the (type II) case in (1.12).

The paper is organized as follows. In Section 2 we state the main results related to
the problem (1.1)–(1.4): existence and uniqueness of a weak solution, regularity results
yielding a strong solution, further regularity results ensuring the boundedness of u, wt

and of the appropriate selection of γ(u). Section 3 contains the related statements. Then
we investigate the asymptotic limit as β ց 0: precisely, the convergence result and the
error estimates under different assumptions on the data. In Section 4 we introduce some
notation and present the uniqueness proof. The approximation of the problem (1.1)–
(1.4) via a Faedo-Galerkin scheme and the derivation of the uniform a priori estimates
are carried out in Section 5. Regularity and boundedness properties for the solutions
are proved in Sections 6–8. Finally, the details of the asymptotic analysis as β ց 0 are
developed in Section 9.

2 Well-posedness and regularity for α, β > 0

We point out the assumptions on the data and state clearly the formulation of the problem
and the main results we achieve. Let Ω ⊆ R

3 be a bounded smooth domain with boundary
Γ = ∂Ω and let T > 0. Set Q := Ω× (0, T ). We assume that

α , β ∈ (0,+∞) (2.1)

f ∈ L2(0, T ;H1(Ω)′) + L1(0, T ;L2(Ω)) (2.2)

γ ⊆ R× R is a maximal monotone graph, with γ(0) ∋ 0 (2.3)

φ : R −→ [0,+∞] is convex and lower-semicontinuous (2.4)

φ(0) = 0 and ∂φ = γ (2.5)

g : R −→ R is Lipschitz-continuous (2.6)

w0 ∈ H1(Ω) , v0 ∈ L2(Ω) , u0 ∈ L2(Ω) , φ(u0) ∈ L1(Ω). (2.7)

The effective domain of γ will be denoted by D(γ). We consider
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Problem (Pα,β). Find (w, u, ξ) satisfying

w ∈ W 1,∞(0, T ;L2(Ω)) ∩H1(0, T ;H1(Ω)) (2.8)

wtt ∈ L1(0, T ;H1(Ω)′) (2.9)

u ∈ H1(0, T ;H1(Ω)′) ∩ C0
(
[0, T ]; L2(Ω)

)
∩ L2(0, T ;H1(Ω)) (2.10)

ξ ∈ L2(Q) , u ∈ D(γ) and ξ ∈ γ(u) a.e. in Q (2.11)

〈wtt(t), v〉+ α (∇wt(t), ∇v)L2(Ω) + β (∇w(t), ∇v)L2(Ω) + 〈ut(t), v〉 = 〈f(t), v〉
for all v ∈ H1(Ω) and a.a. t ∈ (0, T )

(2.12)

〈ut(t), v〉+ (∇u(t), ∇v)L2(Ω) + (ξ(t), v)L2(Ω) + (g(u)(t), v)L2(Ω) = (wt(t), v)L2(Ω)

for all v ∈ H1(Ω) and a.a. t ∈ (0, T )
(2.13)

w(0) = w0 in H1(Ω) , wt(0) = v0 in H1(Ω)′ , u(0) = u0 in L2(Ω). (2.14)

We can prove the well-posedness of this problem.

Theorem 2.1 (Existence and uniqueness). Let assumptions (2.1)–(2.7) hold. Then
Problem (Pα,β) has a unique solution.

Next, in addition to (2.1)–(2.7), we suppose

f ∈ L2(0, T ;L2(Ω)) + L1(0, T ;H1(Ω)) (2.15)

w0 ∈ H2(Ω) , ∂nw0 = 0 on Γ , v0 ∈ H1(Ω) , u0 ∈ H1(Ω) ; (2.16)

in this case, we are able to prove a regularity result, which allows us to solve a strong
formulation of Problem (Pα,β).

Theorem 2.2 (Regularity and strong solution). Assume (2.15)–(2.16) in addition

to (2.1)–(2.7). Then the unique solution (w, u, ξ) of Problem (Pα,β) fulfills

w ∈ W 1,∞(0, T ;H1(Ω)) ∩H1(0, T ;H2(Ω)) (2.17)

wtt ∈ L1(0, T ;L2(Ω)) (2.18)

u ∈ H1(0, T ;L2(Ω)) ∩ C0
(
[0, T ]; H1(Ω)

)
∩ L2(0, T ;H2(Ω)) . (2.19)

In particular, (w, u, ξ) solves Problem (Pα,β) in a strong sense, that is, w and u
satisfy

wtt − α∆wt − β∆w + ut = f a.e. in Q

ut −∆u+ ξ + g(u) = wt, ξ ∈ γ(u) a.e. in Q

∂nw = ∂nu = 0 a.e. on Γ× (0, T ) .

The aim of the subsequent results is to provide L∞ estimates. We will need to
strengthen again the hypotheses on the initial data. For s ∈ D(γ) let us denote by
γ0(s) the element of γ(s) having minimal modulus. Then, we require that

u0 ∈ H2(Ω) , ∂nu0 = 0 on Γ (2.20)

u0 ∈ D(γ) a.e. in Ω , γ0(u0) ∈ L2(Ω) . (2.21)
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Theorem 2.3 (Further regularity). If the conditions (2.1)–(2.7), (2.15)–(2.16) and
(2.20)–(2.21) hold, then the solution (w, u, ξ) of Problem (Pα,β) fulfills

u ∈ W 1,∞(0, T ;L2(Ω)) ∩H1(0, T ;H1(Ω)) ∩ L∞(0, T ;H2(Ω)) . (2.22)

The above results still hold if the dimension N of the domain Ω is arbitary. On the
other hand, since (2.22) implies in particular that u is continuous from [0, T ] to the space
Hs(Ω) for all s < 2, then, if we let N ≤ 3 and s sufficiently large, it turns out that
Hs(Ω) ⊂ C0(Ω) and consequently

u ∈ C0(Q) .

Finally, we assume for the data enough regularity to get L∞ estimates for wt and ξ.
The hypothesis N ≤ 3 is essential in the proof of the following result.

Theorem 2.4 (L∞ estimate for wt and ξ). In addition to assumptions (2.1)–(2.7),
(2.15)–(2.16) and (2.20)–(2.21), we ask

f ∈ L∞(0, T ;L2(Ω)) + Lr(0, T ;H1(Ω)) for some r > 4/3 (2.23)

γ0(u0) ∈ L∞(Ω) . (2.24)

Then we have

wt ∈ L∞(Q) , ξ ∈ L∞(Q) .

Remark 2.5. All the statements contained in this paper still hold if Ω ⊆ R
3 is, for instance,

a convex polyhedron, for which standard results on Sobolev embeddings and regularity
for elliptic problems apply.

3 Asymptotic behaviour as β ց 0

Let us fix the parameter α once and for all. We shall concentrate on the asymptotic
behaviour of the solution as β ց 0, so we let β vary in a bounded subset of (0,+∞). We
allow the source term and the initial data in Problem (Pα,β) to vary with β, by replacing
f , w0, v0 and u0 in (2.12) and (2.14) with fβ, w0,β, v0, β and u0,β respectively. We will
denote by (wβ, uβ, ξβ) the solution to Problem (Pα,β).

If we set β = 0 in the statement of Problem (Pα,β), we get a first-order system
of differential equations, with respect to time, in the variable wt, which is of physical
relevance (recall that wt = θ). Anyway, we avoid this change of variable, in order to
preserve the formalism. We introduce the formulation of Problem (Pα), in which β is set
to be zero.

Problem (Pα). Find (w, u, ξ) satisfying (2.8)–(2.11) as well as

〈wtt(t), v〉+ α (∇wt(t), ∇v)L2(Ω) + 〈ut(t), v〉 = 〈f(t), v〉
for all v ∈ H1(Ω) and a.a. t ∈ (0, T )

(3.1)
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〈ut(t), v〉+ (∇u(t), ∇v)L2(Ω) + ((ξ + g(u))(t), v)L2(Ω) = (wt(t), v)L2(Ω)

for all v ∈ H1(Ω) and a.a. t ∈ (0, T )
(3.2)

w(0) = w0 in H1(Ω) , wt(0) = v0 in H1(Ω)′ , u(0) = u0 in L2(Ω). (3.3)

We state at first the well-posedness of Problem (Pα) and a convergence result.

Theorem 3.1 (Well-posedness for (Pα)). If the hypotheses (2.2)–(2.7) hold, then

Problem (Pα) admits exactly one solution.

Theorem 3.2 (Convergence as β ց 0). We assume (2.2)–(2.7) and

fβ ⇀ f in L2(0, T ;H1(Ω)′) + L1(0, T ;L2(Ω)) (3.4)

w0,β ⇀ w0 in H1(Ω) , v0,β ⇀ v0 , u0,β ⇀ u0 in L2(Ω). (3.5)

Then, the convergences

wβ ⇀∗ w in W 1,∞(0, T ;L2(Ω)) , wβ ⇀ w in H1(0, T ;H1(Ω))

uβ ⇀ u in H1(0, T ;H1(Ω)′) ∩ L2(0, T ;H1(Ω))

ξβ ⇀ ξ in L2(Q) .

hold, where (w, u, ξ) denotes the solution to Problem (Pα).

With slightly strengthened hypotheses, we are able to prove the strong convergence
for the solution and even to give an estimate for the convergence rate.

Theorem 3.3 (First error estimate). In addition to (2.3)–(2.6) and (3.4)–(3.5), we
assume

‖fβ − f‖L2(0,T ;H1(Ω)′)+L1(0,T ;L2(Ω)) ≤ c β (3.6)

‖w0,β − w0‖H1(Ω) + ‖v0,β − v0‖H1(Ω)′ + ‖u0,β − u0‖L2(Ω) ≤ c β (3.7)

for some constant c which is independent of β. Then one has the estimate

‖wβ − w‖H1(0,T ;L2(Ω))∩L∞(0,T ;H1(Ω))

+ ‖uβ − u‖L∞(0,T ;L2(Ω))∩L2(0,T ;H1(Ω)) ≤ c β
(3.8)

where c does not depend on β.

If γ is a (single-valued) smooth function, and if enough regularity on the data is
assumed, it is possible to obtain much stronger estimates. The assumption N ≤ 3 on the
spatial dimension is essential for the proof of the following result.
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Theorem 3.4 (Second error estimate). Let (2.3)–(2.6), (3.4)–(3.5) hold and

γ : D(γ) −→ R be single-valued and locally Lipschitz-continuous. (3.9)

Moreover, assume that the data {fβ, w0,β, v0,β , u0,β}, as well as {f, w0, v0, u0},
satisfy (2.15)–(2.16), (2.20)–(2.21), (2.23)–(2.24) along with

‖fβ‖L∞(0,T ;L2(Ω))+Lr(0,T ;H1(Ω)) + ‖u0,β‖H2(Ω) + ‖γ(u0,β)‖L∞(Ω) ≤ c (3.10)

‖fβ − f‖L2(0,T ;L2(Ω))+L1(0,T ;H1(Ω)) ≤ c β (3.11)

‖w0,β − w0‖H2(Ω) + ‖v0,β − v0‖H1(Ω) + ‖u0,β − u0‖H1(Ω) ≤ c β (3.12)

where r > 4/3. Then the estimate

‖wβ − w‖W 1,∞(0,T ;H1(Ω))∩H1(0,T ;H2(Ω))

+ ‖uβ − u‖H1(0,T ;L2(Ω))∩L∞(0,T ;H1(Ω))∩L2(0,T ;H2(Ω)) ≤ c β
(3.13)

holds for a suitable constant c, which may depend on α but not on β.

4 Notation and uniqueness proof

Before facing the proof of all the results, for the sake of convenience we fix some notation:

Qt = Ω× (0, t) for 0 ≤ t ≤ T, Q = QT ,

H = L2(Ω) , V = H1(Ω) , W =
{
v ∈ H2(Ω) : ∂nv = 0 a.e. on Γ

}
.

We embed H in V ′, by means of the formula

〈y, v〉 = (y, v)H for all y ∈ H , v ∈ V .

Furthermore, the same symbol ‖·‖H will denote both the norm in L2(Ω) and in L2(Ω)N ; we
behave similarly with ‖·‖V . If a, b are functions of space and time variables, we introduce
the convolution product with respect to time

(a ∗ b)(t) =
∫ t

0

a(s)b(t− s)ds , 0 ≤ t ≤ T .

We also point out that the symbols c, ci – even in the same formula – stand for different
constants, depending on Ω, T and the data, but not on the parameters α, β. However,
as we will be interested in the study of convergence as β ց 0, if a constant c depends on
α, β in such a way that c is bounded whenever α, β lie bounded, then we will accept the
notation c. A constant depending on the data and on α, but not on β, may be denoted
by cα or cα,i or simply c, as it will happen in Section 9.

In our computations, we will often exploit the Hölder and Young inequalities to infer

∫

Qt

ab ≤ 1

2σ

∫ t

0

‖a(s)‖2H ds+
σ

2

∫ t

0

‖b(s)‖2H ds
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where a, b ∈ L2(Q) and σ > 0 is arbitrary. We point out another inequality which will
turn out to be useful: if ϕ ∈ H1(0, T ;H), then the fundamental theorem of calculus and
the Hölder inequality entail

‖ϕ(t)‖2H =

∥∥∥∥ϕ(0) +
∫ t

0

ϕt(s)ds

∥∥∥∥
2

H

≤ 2 ‖ϕ(0)‖2H + 2T

∫ t

0

‖ϕt(s)‖2H ds (4.1)

for all 0 ≤ t ≤ T . Now, let us concentrate on the uniqueness proof.

Let (w1, u1, ξ1) and (w2, u2, ξ2) be solutions to the Problem (Pα,β); we claim that
they coincide. Setting w = w1 − w2, u = u1 − u2 and ξ = ξ1 − ξ2, we easily get

〈wtt(t), v〉+ α (∇wt(t), ∇v)H + β (∇w(t), ∇v)H + 〈ut(t), v〉 = 0 (4.2)

〈ut(t), v〉+ (∇u(t), ∇v)H + (ξ(t), v)H + (g(u1)(t)− g(u2)(t), v)H = (wt(t), v)H (4.3)

for all v ∈ V and a.a. 0 ≤ t ≤ T , along with the initial conditions

w(0) = wt(0) = u(0) = 0 . (4.4)

We choose v = u(t) in equation (4.3) and integrate over (0, t); thus, we obtain

1

2
‖u(t)‖2H +

∫ t

0

‖∇u(s)‖2H ds+

∫

Qt

ξu = −
∫

Qt

(g(u1)− g(u2)) u+

∫

Qt

wtu .

Accounting for the Lipschitz-continuity of g, the Hölder inequality and the monotonicity
of γ, frow the above equality we easily derive

1

2
‖u(t)‖2H +

∫ t

0

‖∇u(s)‖2H ds ≤ c

∫ t

0

‖u(s)‖2H ds+

∫

Qt

wtu . (4.5)

Integrating in time the equation (4.2) (this is possible thanks to (2.8)) and taking the
initial data (4.4) into account, we have

(wt(t), v)H + α (∇w(t), ∇v)H + β (1 ∗ ∇w(t), ∇v)H + (u(t), v)H = 0 ; (4.6)

we choose v = wt(t) in (4.6) and integrate over (0, t). Noticing that the equality

(1 ∗ ∇w(t), ∇wt(t))H =
d

dt
(1 ∗ ∇w(t), ∇w(t))H − ‖∇w(t)‖2H (4.7)

holds, we get

∫ t

0

‖wt(s)‖2H ds+
α

2
‖∇w(t)‖2H = −β (1 ∗ ∇w(t), ∇w(t))H

+β

∫ t

0

‖∇w(s)‖2H ds−
∫

Qt

uwt .

(4.8)

The Hölder inequality and (4.1) allow us to deal with the right-hand side of this formula:

− β (1 ∗ ∇w(t), ∇w(t))H ≤ cβ2

α

∫ t

0

‖∇w(s)‖2H ds+
α

4
‖∇w(t)‖2H . (4.9)
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Collecting now (4.5), (4.8) and (4.9), it follows that

1

2
‖u(t)‖2H +

∫ t

0

‖∇u(s)‖2H ds+

∫ t

0

‖wt(s)‖2H ds+
α

4
‖∇w(t)‖2H

≤ c

∫ t

0

‖u(s)‖2H ds+ c

(
β +

β2

α

)∫ t

0

‖∇w(s)‖2H ds ;

then, by applying the Gronwall lemma and recalling (4.4), we obtain u = w = 0 almost
everywhere in Q. A comparison in (2.13) and the density of H1(Q) as a subspace of L2(Q)
entail ξ = 0 almost everywhere in Q; thus, the proof of uniqueness is complete.

5 Approximation and a priori estimates

We are going to prove the existence of a solution to Problem (Pα,β) via a Faedo-Galerkin
method. First, we approximate the graph γ with its Yosida regularization: for all ε ∈ (0, 1]
say, we let

γε :=
1

ε

{
I − (I + εγ)−1} and φε(s) := min

τ∈R

{
1

2ε
|τ − s|2 + φ(τ)

}
for s ∈ R

where I denotes the identity on R. We recall that φε is a nonnegative, convex and
differentiable function, γε is Lipschitz-continuous, monotone and

γε(0) = 0 , φ′
ε = γε , 0 ≤ φε(s) ≤ φ(s) , |γε(s)| ≤

∣∣γ0(s)
∣∣ ∀ ε > 0, s ∈ R (5.1)

(see, e.g., [2, Prop. 2.6, p. 28 and Prop. 2.11, p.39] or [1, pp. 57–58]).

We look for a solution of the approximating problem in a finite-dimensional subspace
Vn ⊆ V , chosing a sequence {Vn} filling up V ; then we get a priori estimates and use
compactness arguments to take the limit as n −→ +∞. In a second step we let ε ց 0.

A special choice of the approximating subspaces will be useful. Let {vi}i∈N be an
orthonormal basis for V satisfing

−∆vi = λivi in Ω, ∂nvi = 0 on Γ (5.2)

where {λi}i∈N are the eigenvalues of the Laplace operator; also, let Vn be the subspace of
V spanned by v1, . . . , vn, for all n ∈ N. Thus, we have defined an increasing sequence of
subspaces, whose union is dense in V , and hence in H ; furthermore, we notice that the
regularity of Ω implies Vn ⊆ W , for all n ∈ N.

As approximations of the data w0, v0, u0 we choose the projections on Vn: let w0,n

be the projection of w0, with respect to V , and let v0,n, u0,n be the projections of v0, u0,
with respect to H . We notice that

w0,n −→ w0 in V , v0,n −→ v0 in H , u0,n −→ u0 in H . (5.3)

We also need to regularize the source term f : so, we first write

f = f (1) + f (2) , where f (1) ∈ L2(0, T ;V ′) and f (2) ∈ L1(0, T ;H) , (5.4)
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then we assume f
(1)
n , f

(2)
n to be functions in C0 ([0, T ]; V ′), C0 ([0, T ]; H) respectively,

such that
f (1)
n −→ f (1) in L2(0, T ;V ′) , f (2)

n −→ f (2) in L1(0, T ;H) ; (5.5)

we also set fn = f
(1)
n + f

(2)
n .

Now we are ready to state the approximated problem. For the sake of simplicity, we
do not specify explicitly the dependency on ε in the solution.

Problem (Pα,β)n, ε. Find Tn ∈ (0, T ] and (wn, un) satisfying

wn ∈ C2([0, Tn]; Vn) , un ∈ C1([0, Tn]; Vn)
(
∂2
twn(t), v

)
H
+ α (∇∂twn(t), ∇v)H + β (∇wn(t), ∇v)H + (∂tun(t), v)H

= 〈fn(t), v〉 for all v ∈ Vn and all t ∈ [0, Tn]
(5.6)

(∂tun(t), v)H + (∇un(t), ∇v)H + (γε(un)(t), v)H + (g(un)(t), v)H
= (∂twn(t), v)H for all v ∈ Vn and all t ∈ [0, Tn]

(5.7)

wn(0) = w0,n , ∂twn(0) = v0,n , un(0) = u0,n . (5.8)

Writing wn and un as linear combinations of v1, . . . , vn with time-dependent coefficients,
and testing equations (5.6) and (5.7) by v = v1, . . . , vn, we obtain a system of ordinary
differential equations, for whose local existence and uniqueness standard results apply.
Thus, Problem (Pα,β)n, ε admits a solution, defined on some interval [0, Tn]. The following
estimates imply that these solutions can be extended over the whole interval [0, T ].

First a priori estimate. We choose v = un(t) in equation (5.7) and integrate
over (0, t):

1

2
‖un(t)‖2H +

∫ t

0

‖∇un(s)‖2H ds+

∫

Qt

γε(un)un

= −
∫

Qt

g(un)un +

∫

Qt

un∂twn +
1

2
‖u0,n‖2H .

The last term in the left-hand side is non negative, because γε is increasing and γε(0) = 0;
it will be ignored in the following estimates. Meanwhile, the right-hand side can be easily
estimated using the Lipschitz-continuity of g and (5.3); so we get

1

2
‖un(t)‖2H +

∫ t

0

‖∇un(s)‖2H ds ≤ c

∫ t

0

‖un(s)‖2H ds+

∫

Qt

un∂twn + c . (5.9)

Following the same computation as in the uniqueness proof, we integrate equation (5.6)
with respect to time:

(∂twn(t), v)H + α (∇wn(t), ∇v)H + β (1 ∗ ∇wn(t), ∇v)H + (un(t), v)H

=
〈
1 ∗ f (1)

n (t), v
〉
+
(
1 ∗ f (2)

n (t), v
)
H
+ (v0,n + u0,n, v)H + α (∇w0,n, ∇v)H

(5.10)

for all v ∈ Vn and 0 ≤ t ≤ Tn. We take v = ∂twn(t) in the previous equation and integrate
over (0, t). Recalling the identity (4.7), we have

∫ t

0

‖∂twn(s)‖2H ds+
α

2
‖∇wn(t)‖2H =

7∑

i=1

Ti(t) +
α

2
‖∇w0,n‖2H (5.11)
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where we have set

T1(t) = β

∫ t

0

‖∇wn(s)‖2H ds , T2(t) = −β (1 ∗ ∇wn(t), ∇wn(t))H

T3(t) = −
∫

Qt

un∂twn , T4(t) =

∫ t

0

〈
1 ∗ f (1)

n (s), ∂twn(s)
〉
ds , T5(t) =

∫

Qt

(
1 ∗ f (2)

n

)
∂twn

T6(t) =

∫ t

0

(v0,n + u0,n, ∂twn(s))H ds , T7(t) = α

∫ t

0

(∇w0,n, ∇∂twn(s))H ds .

We do not need any estimate on terms T1 and T3. With simple applications of the Hölder
inequality, we estimate T2, T5 and T6:

T2(t) ≤
α

8
‖∇wn(t)‖2H +

cβ2

α

∫ t

0

‖∇wn(s)‖2H ds

T5(t) ≤
1

4

∫ t

0

‖∂twn(s)‖2H ds+

∫ t

0

∥∥1 ∗ f (2)
n (s)

∥∥2

H
ds

T6(t) ≤
1

4

∫ t

0

‖∂twn(s)‖2H ds+ c ‖v0,n‖2H + c ‖u0,n‖2H .

We deal with T7 by direct integration and the use of the Hölder inequality:

T7(t) = α (∇wn(t), ∇w0,n)H − α ‖∇w0,n‖2H ≤ α

8
‖∇wn(t)‖2H + α ‖∇w0,n‖2H .

Now we pay attention to T4 and integrate by parts in time:

T4(t) =
〈
1 ∗ f (1)

n (t), wn(t)
〉
−
∫ t

0

〈
f (1)
n (s), wn(s)

〉
ds ≤ 1

2σ

∥∥1 ∗ f (1)
n (t)

∥∥2

V ′

+
σ

2
‖wn(t)‖2V +

1

2

∫ t

0

∥∥f (1)
n (s)

∥∥2

V ′
ds+

1

2

∫ t

0

‖wn(s)‖2V ds ,

where σ > 0 is arbitrary, to be set later. According to the definition of the norm in V
and the inequality (4.1), we have

T4(t) ≤
1

2σ

∥∥1 ∗ f (1)
n (t)

∥∥2

V ′
+ σT

∫ t

0

‖∂twn(s)‖2H ds+
σ

2
‖∇wn(t)‖2H

+
1

2

∫ t

0

∥∥f (1)
n (s)

∥∥2

V ′
ds+ T

∫ t

0

(∫ s

0

‖∂twn(τ)‖2H dτ

)
ds

+
1

2

∫ t

0

‖∇wn(s)‖2H ds+ T (σ + 1) ‖w0,n‖2H .

We collect all the terms containing ‖∂twn‖L2(0,t;H) and ‖∇wn(t)‖H in the left-hand side
of (5.11); their coefficients turn out to be, respectively,

k1 =
1

2
− Tσ , k2 =

1

2

(α
2
− σ

)
.

We choose σ ≤ min {α/4, 1/4T}, so that k1 ≥ 1/4, k2 ≥ α/8. We also remark that the

assumptions (5.5) and (5.3) enable us to get a bound for terms involving f
(1)
n , f

(2)
n and
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the initial data. Finally, adding (5.9) and (5.11) and taking into account all the previous
inequalities, we obtain

1

2
‖un(t)‖2H +

∫ t

0

‖∇un(s)‖2H ds+
1

4

∫ t

0

‖∂twn(s)‖2H ds+
α

8
‖∇wn(t)‖2H

≤ c

∫ t

0

‖un(s)‖2H ds+ T

∫ t

0

(∫ s

0

‖∂twn(τ)‖2H dτ

)
ds+ cα

∫ t

0

‖∇wn(s)‖2H ds+ cα .

The Gronwall lemma entails

‖un‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖wn‖H1(0,T ;H) +
√
α ‖wn‖L∞(0,T ;V ) ≤ cα . (5.12)

Second a priori estimate. Since φε is at most of quadratic growth, by definition,
and γε is Lipschitz-continuous, from the estimate (5.12) we directly derive

‖φε(un)‖L∞(0,T ;L1(Ω)) ≤ c′α,1 (5.13)

‖γε(un)‖L2(Q) ≤ c′α,2 ; (5.14)

where the symbols c′α,i denote positive constants, possibly depending on ε and α, but not
on n and β.

By (5.2), we can easily check that

(y, z)H = (Pny, z)H for all y ∈ V , z ∈ Vn

where Pny is the projection of y in Vn, with respect to V . Then, as we have a uniform
estimate for un in L2(0, T ;V ), it is not difficult to extract from (5.7) the property

‖∂tun‖L2(0,T ;V ′) ≤ c′α,3 . (5.15)

Third a priori estimate. We take v = ∂twn(t) as a test function in equation (5.6)
and integrate over (0, t); thanks to the Hölder inequality, we get

1

2
‖∂twn(t)‖2H + α

∫ t

0

‖∇∂twn(s)‖2H ds+
β

2
‖∇wn(t)‖2H

≤
∫ t

0

〈
f (1)
n − ∂tun(s), ∂twn(s)

〉
ds+

∫ t

0

∥∥f (2)
n (s)

∥∥
H
‖∂twn(s)‖H ds

+
1

2
‖v0, n‖2H +

β

2
‖∇w0,n‖2H .

(5.16)

We consider the term involving f
(1)
n − ∂tun:

∫ t

0

〈
f (1)
n − ∂tun(s), ∂twn(s)

〉
ds ≤ c

α

∫ t

0

∥∥f (1)
n (s)

∥∥2

V ′
ds+

c

α

∫ t

0

‖∂tun(s)‖2V ′ ds

+
α

2

∫ t

0

‖∂twn(s)‖2H ds+
α

2

∫ t

0

‖∇∂twn(s)‖2H ds .

Because of the estimate (5.15) and the properties (5.5) and (5.3), from (5.16) we deduce

1

2
‖∂twn(t)‖2H +

α

2

∫ t

0

‖∇∂twn(s)‖2H ds+
β

2
‖∇wn(t)‖2H

≤ c′ +
α

2

∫ t

0

‖∂twn(s)‖2H ds+

∫ t

0

∥∥f (2)
n (s)

∥∥
H
‖∂twn(s)‖H ds ,
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where c′ depends on ε, α. Hence, by a generalized version of the Gronwall lemma (see,
e.g., [2, pp. 156–157]), we infer that

‖wn‖W 1,∞(0,T ;H) +
√
α ‖wn‖H1(0,T ;V ) ≤ c′α,4 . (5.17)

Passage to the limit as n −→ +∞. From the estimates (5.12), (5.13)–(5.15), (5.17),
with standard arguments of weak or weak* compactness we can find functions (wε, uε)
such that, possibly taking a subsequence as n −→ +∞,

wn ⇀∗ wε in W 1,∞(0, T ;H) ∩ L∞(0, T ;V ) (5.18)

wn ⇀ wε in H1(0, T ;V ) (5.19)

un ⇀ uε in H1(0, T ;V ′) ∩ L2(0, T ;V ) (5.20)

un ⇀∗ uε in L∞(0, T ;H) . (5.21)

Note that (5.19) implies the strong convergence

wn −→ wε in C0 ([0, T ]; H) ; (5.22)

on the other hand, the generalised Ascoli theorem and the Aubin-Lions lemma (see, e.g.,
[13, pp. 57–58] and [18, Sect. 8, Cor. 4]) entail

un −→ uε strongly in C0 ([0, T ]; V ′) and in L2(Q); (5.23)

thus, since g and γε are Lipschitz-continuous, we easily check that

g(un) −→ g(uε) and γε(un) −→ ξε strongly in L2(Q),

where ξε = γε(uε). We then take the limit as n −→ +∞ in (5.6)–(5.8) and see that
(wε, uε, ξε) fulfills equations (2.11)–(2.14), where γ is replaced by γε. Indeed, by (5.22)–
(5.23) and (5.3), it is obvious that wε(0) = w0, uε(0) = u0. To deal with the last initial
condition properly, we fix a test function v ∈ Vm, where m ≥ 1 is arbitrary, and we
integrate in time equation (5.6); we get equation (5.10), for 0 ≤ t ≤ T and n ≥ m.
Arguing as in [13, pp. 12–13], we can take the limit in (5.10), (5.7) and check that
(wε, uε, ξε) fulfills

〈∂twε(t), v〉 = −α (∇wε(t), ∇v)H − β (1 ∗ ∇wε(t), ∇v)H
−〈uε(t), v〉+ 〈1 ∗ f(t), v〉+ α (∇w0, ∇v)H + (v0 + u0, v)H

(5.24)

〈∂tuε(t), v〉+ (∇uε(t), ∇v)H + (ξε(t), v)H + (g(uε)(t), v)H = (∂twε(t), v)H (5.25)

for a.a. t ∈ (0, T ), m ≥ 1 and v ∈ Vm; by a density argument, the same equalities hold
when v ∈ V . Since the right-hand side in (5.24) is a continuous function in [0, T ], taking
t = 0 we find that

〈∂twε(0), v〉 = (v0, v)H for all v ∈ V

whence the second of (2.14) follows.

Fifth a priori estimate. As a consequence of the weak lower semi-continuity of the
norm in a Banach space, (wε, uε, ξε) satisfy the estimate (5.12); we now need to improve
estimates (5.13)–(5.15), (5.17).
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We first notice that, because of the Lipschitz-continuity of γε, ξε(t) ∈ V for all t; thus,
we can choose v = ξε(t) in equation (5.25) and integrate over (0, t), to get

∫

Qt

∂tuε ξε +

∫

Qt

γ′
ε(uε) |∇uε|2 +

∫ t

0

‖ξε(s)‖2H ds =

∫

Qt

g(uε) ξε +

∫

Qt

∂twε ξε . (5.26)

In view of (5.1), we have

∫

Qt

∂tuε ξε =

∫

Qt

∂

∂t
(φε(uε)) = ‖φε(uε(t))‖L1(Ω) − ‖φε(u0)‖L1(Ω) ;

on the other hand, because of the Lipschitz continuity of g,

∫

Qt

g(uε)ξε ≤ c

∫

Qt

(|uε|+ 1) ξε ≤ c

∫ t

0

(
‖uε(s)‖2H + 1

)
ds+

1

2

∫ t

0

‖ξε(s)‖2H ds .

From these estimates and (5.26), we derive

∫

Ω

φε(uε)(t) +

∫

Qt

γ′
ε(uε) |∇uε|2 +

1

2

∫ t

0

‖ξε(s)‖2H ds

≤ c

∫ t

0

‖uε(s)‖2H ds+ c

∫ t

0

‖∂twε(s)‖2H ds+

∫

Ω

φε(u0) + c .

We notice that the second term in the lef-hand side is nonnegative, because of the mono-
tonicity of γε. Secondly, accounting for (5.12), (5.1) and (2.7), we infer that

‖φε(uε)‖L∞(0,T ;L1(Ω)1) + ‖γε(uε)‖L2(Q) ≤ cα . (5.27)

Now, by comparison in the equation (5.25), we have

‖∂tuε‖L2(0,T ;V ′) ≤ cα ; (5.28)

and consequently we can also establish the estimate (5.17), now for a constant which is
independent of ε.

Passage to the limit as ε ց 0. We are able to repeat the compactness argument
as above and find (w, u, ξ), a candidate for the solution to Problem (Pα,β), as a limit of
a subsequence of (wε, uε, ξε). The proof will be easily completed by the passage to the
limit as ε ց 0, provided that we deduce (2.11).

By construction, we can assume that

ξε ⇀ ξ in L2(Q) , uε −→ u in L2(Q) ,

from which the equality

lim
εց0

∫

Q

ξεuε =

∫

Q

ξu

follows; at this point, we apply [1, Prop. 1.1, p. 42] and deduce (2.11). Thus, the proof of
the existence of a solution to Problem (Pα,β) is complete.
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6 Regularity and strong solutions

This section is devoted to the derivation of further a priori estimates on the approximating
solutions (wn, un, ξn), which are independent of n and ε, under stronger assumptions.
The same compactness – passage to the limit arguments then apply, and this will prove
Theorem 2.2. We first notice that the hypothesis (2.16) and Vn ⊆ W make it possible to
assume

w0,n −→ w0 in W , v0,n −→ v0 and u0,n −→ u0 in V ; (6.1)

on the other hand, owing to (2.15), we can require f
(1)
n ∈ L2(Q), f

(2)
n ∈ L1(0, T ;V ) for all

n ∈ N and
f (1)
n −→ f (1) in L2(Q) , f (2)

n −→ f (2) in L1(0, T ;V ). (6.2)

Sixth a priori estimate. We choose v = ∂twn(t) in the equation (5.6) and integrate
over (0, t); an application of the Hölder inequality yields

1

2
‖∂twn(t)‖2H + α

∫ t

0

‖∇∂twn(s)‖2H ds+
β

2
‖∇wn(t)‖2H ≤ −

∫

Qt

∂tun∂twn

+

∫ t

0

‖fn(s)‖H ‖∂twn(s)‖H ds+
1

2
‖v0,n‖2H +

β

2
‖∇w0,n‖2H .

(6.3)

Now, we take v = ∂tun(t) in (5.7) and integrate over (0, t); recalling that γε = φ′
ε, using

the Hölder inequality and the Lipschitz-continuity of g, we get

1

2

∫ t

0

‖∂tun(s)‖2H ds+
1

2
‖∇un(t)‖2H + ‖φε(un(t))‖L1(Ω)

≤
∫

Qt

∂tun ∂twn + c

∫ t

0

(
‖un(s)‖2H + 1

)
ds+ ‖φε(u0,n)‖L1(Ω) .

(6.4)

Adding (6.3) and (6.4), thanks to the assumptions (2.7), (5.3), the inequality (4.1) and
φε ≤ φ, we finally have

1

2
‖∂twn(t)‖2H + α

∫ t

0

‖∇∂twn(s)‖2H ds+
β

2
‖∇wn(t)‖2H

+
1

2

∫ t

0

‖∂tun(s)‖2H ds+
1

2
‖∇un(t)‖2H + ‖φε(un(t))‖L1(Ω)

≤ c

∫ t

0

(∫ s

0

‖∂tun(τ)‖2H dτ

)
ds+

∫ t

0

‖fn(s)‖H ‖∂twn(s)‖H ds+ c .

The generalised Gronwall lemma (see, e.g., [2, pp. 156–157]) enables us to achieve

‖wn‖W 1,∞(0,T ;H) +
√
α ‖wn‖H1(0,T ;V ) +

√
β ‖wn‖L∞(0,T ;V ) ≤ c1 (6.5)

‖un‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ c2. (6.6)

Remark 6.1. Only the hypotheses (2.1)–(2.7) and f ∈ L1(0, T ;H) have been effectively
exploited in the proof of this estimate.
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Remark 6.2. By means of (6.5)–(6.6), the estimates (5.27)–(5.28) can be rewritten in
terms of some constant which is independent of α.

Seventh a priori estimate. We take v = −∆un(t) in equation (5.7); this is possible,
because of the special choice of the approximating space Vn. We integrate over (0, t) and
use the Hölder inequality and the Lipschitz continuity of g:

1

2
‖∇un(t)‖2H +

∫ t

0

‖∆un(s)‖2H ds+

∫

Qt

γ′
ε(un) |∇un|2

= −
∫

Qt

g′(un) |∇un|2 −
∫

Qt

∂twn∆un +
1

2
‖∇u0,n‖2H

≤ c ‖∇un‖2L2(0,T ;H) +
1

2
‖∂twn‖2L2(0,T ;H) +

1

2

∫ t

0

‖∆un(s)‖2H ds+
1

2
‖∇u0,n‖2H .

The monotonicity of γε yields that the last term in the lef-hand side is non negative.
Owing to conditions (6.1) on the data and estimates (6.5), (6.6), we have

1

2

∫ t

0

‖∆un(s)‖2H ds ≤ c for all 0 ≤ t ≤ T ;

hence, on account of this inequality, the estimate (6.6) and the boundary conditions for
un, known regularity results for elliptic problems entail

‖un‖L2(0,T ;W ) ≤ c3 , (6.7)

where c3 does not depend on α, β.

Eigth a priori estimate. Since wn ∈ C2([0, T ]; Vn), the special choice of Vn enables
us to take v = −∆∂twn(t) as a test function in the equation (5.6). We integrate over (0, t)
and use the Hölder inequality:

1

2
‖∇∂twn(t)‖2H + α

∫ t

0

‖∆∂twn(s)‖2H ds+
β

2
‖∆wn(t)‖2H

≤ α

2

∫ t

0

‖∆∂twn(s)‖2H ds+
1

α

∫ t

0

‖∂tun(s)‖2H ds+
1

α

∫ t

0

∥∥f (1)
n (s)

∥∥2

H
ds

−
∫

Qt

f (2)
n ∆∂twn +

1

2
‖∇v0,n‖2H +

β

2
‖∆w0,n‖2H .

(6.8)

For the term involving f
(2)
n , we integrate by parts in space, recalling that ∂nv = 0 for all

v ∈ Vn:
∣∣∣∣
∫

Qt

f (2)
n ∆∂twn

∣∣∣∣ =
∣∣∣∣
∫

Qt

∇f (2)
n · ∇∂twn

∣∣∣∣ ≤
∫ t

0

∥∥∇f (2)
n (s)

∥∥
H
‖∇∂twn(s)‖H ds . (6.9)

Then, in view of (6.1), (6.2), (6.6) and owing to the generalized Gronwall lemma (see [2,
pp. 156–157]), from (6.8)–(6.9) we obtain

‖wn‖W 1,∞(0,T ;V ) +
√
α ‖wn‖H1(0,T ;W ) +

√
β ‖wn‖L∞(0,T ;W ) ≤ cα,4 . (6.10)
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Finally, if we choose v = ∂2
twn(t) in the equation (5.6), we get

∥∥∂2
twn(t)

∥∥2

H
≤ {α ‖∂twn(t)‖W + β ‖wn(t)‖W + ‖∂tun(t)‖H + ‖fn(t)‖H}

∥∥∂2
twn(t)

∥∥
H

;

thanks to the estimates above, it is easy to derive

∥∥∂2
twn

∥∥
L1(0,T ;H)

≤ cα,5 . (6.11)

Having established all the a priori estimates corresponding to (2.17)–(2.19) on the solu-
tions of the approximating problem, we have completed the proof of Theorem 2.2.

7 Further regularity

Throughout this section we assume (2.20) and (2.21) in addition to all the hypotheses
we had in Section 6. As we are interested in proving Theorem 2.3, we should get further
estimates on the solution of the approximated problem. By the stronger assumptions on
the initial data, we can require

u0,n −→ u0 in W . (7.1)

Consider the equation (5.7) and derive it, with respect to time, obtaining

(
∂2
t un(t), v

)
H
+ (∇∂tun(t), ∇v)H + (γ′

ε(un(t))∂tun(t), v)H

+ (g′(un(t))∂tun(t), v)H =
(
∂2
twn(t), v

)
H

for all v ∈ Vn and a.a. t ∈ (0, T ). We choose v = ∂tun(t) as an admissible test function,
integrate over (0, t) and use the Lipschitz continuity of g to get

1

2
‖∂tun(t)‖2H +

∫ t

0

‖∇∂tun(s)‖2H ds+

∫

Qt

γ′
ε(un) |∂tun|2 ≤ c

∫ t

0

‖∂tun(s)‖2H ds

+

∫ t

0

∥∥∂2
twn(s)

∥∥
H
‖∂tun(s)‖H ds+

1

2
‖∂tun(0)‖2H .

(7.2)

Since the last term in the left-hand side is non negative because of the monotonicity
of γε, if we had a bound for the last term in the right-hand side, we could use the
generalized Gronwall lemma to conclude. In order to provide such an estimate, we set
t = 0, v = ∂tun(0) in the equation (5.7); we obtain

‖∂tun(0)‖2H ≤
{
‖∆u0,n‖H + ‖γε(u0,n)‖H + ‖g(u0,n)‖H + ‖v0,n‖H

}
‖∂tun(0)‖H

and thus, taking into account the Lipschitz continuity of g, we infer

‖∂tun(0)‖ ≤ ‖∆u0,n‖H + ‖γ′
ε‖L∞(R) ‖u0,n − u0‖H + ‖γε(u0)‖H

+c
(
‖u0,n‖H + 1

)
+ ‖v0,n‖H .

Now, assumptions (7.1) and (5.3), as well as (2.21) and |γε| ≤ |γ0|, enable us to achieve

‖∂tun(0)‖ ≤ c (7.3)
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for all ε > 0 and n large enough, depending on ε; these requests on parameters are not
restrictive, as we first take the limit for n −→ +∞, then for ε ց 0. From (7.2) and (7.3)
we deduce that

‖un‖W 1,∞(0,T ;H)∩H1(0,T ;V ) ≤ cα,6 . (7.4)

Finally, we consider equation (5.7) and we rewrite it in the form

(∇un(t), ∇v)H + (γε(un(t)), v)H = (Fn(t), v) ,

for all v ∈ Vn and a.a. t ∈ (0, T ), where Fn = ∂twn − ∂tun − g(un). Testing with
v = −∆un(t) the previous equation and integrating by parts in space, we obtain

‖∆un(t)‖2H +

∫

Ω

γ′
ε(un(t)) |∇un(t)|2 ≤ ‖Fn(t)‖H ‖∆un(t)‖H for all 0 ≤ t ≤ T .

Since the estimates (6.5) and (7.4) entail

‖Fn‖L∞(0,T ;H) ≤ c

and we can apply the regularity results for elliptic problems, we deduce

‖un‖L∞(0,T ;W ) ≤ cα,7 , (7.5)

thus concluding the proof of Theorem 2.3.

8 L∞ estimates

The aim of this section is to obtain L∞ estimates on wt and on ξ, under the hypotheses
(2.23) and (2.24).

We first deal with wt. Setting ϕ = αwt + βw, Theorem 2.2 entail that the equalities

1

α
ϕt −∆ϕ =

β

α
wt − ut + f in Q , ∂nϕ = 0 on Γ× (0, T )

hold almost everywhere. Furthermore, the assumption (2.23), the estimates (6.5) and
(7.4) and the continuous embedding V →֒ L6(Ω) (valid if Ω ⊆ R

3 is a bounded Lipschitz
domain), yield

β

α
wt − ut + f ∈ L∞(0, T ;H) + Lr(0, T ;L6(Ω)) , with r > 4/3 .

In these conditions, Theorem 7.1 in [12, p. 181] applies and ensures that ϕ ∈ L∞(Q).
Since we already know that w ∈ L∞(Q) (as it is implied, for example, by (6.10)), we have
wt ∈ L∞(Q) and

‖wt‖L∞(Q) ≤
1

α
‖ϕ‖L∞(Q) +

cβ

α
‖w‖L∞(0,T ;W ) ≤ cα,8 . (8.1)

We notice that, being α fixed and letting β vary in a bounded set, we can find an upper
bound for the constant cα,8.
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In order to prove a L∞ estimate for ξ, we consider the solution (wε, uε) to the approx-
imating problem, in which the Yosida regularization appears; we then fix p ∈ (1, +∞)
and get a bound for ‖γε(uε)‖Lp(Q), which is independent of p, ε. From this, we will obtain
a uniform bound for

‖ξε‖L∞(Q) = lim
p→+∞

‖γε(uε)‖Lp(Q) ,

and, via a weak* compactness argument, ξ ∈ L∞(Q). For the sake of simplicity, we do
not plug in the subscript ε in the solution any more.

We know that the equalities

ut −∆u+ γε(u) + g(u) = wt in Q , (8.2)

∂nu = 0 on Γ× (0, T ) , u(0) = u0 in Ω

hold a.e.; we choose |γε(u)|p−1 γε(u) as a test function, by which we multiply both sides
of the equation (8.2) – this is admissible since u ∈ L∞(Q). Integrating over Q, we get

∫

Q

∂

∂t
φε, p(u) +

∫

Q

∇u · ∇
(
|γε(u)|p−1 γε(u)

)
+

∫

Q

|γε(u)|p+1

=

∫

Q

(wt − g(u)) |γε(u)|p−1 γε(u) ,

(8.3)

where we have set

φε, p(t) =

∫ t

0

|γε(s)|p−1 γε(s) ds for all t ∈ R ;

γε is increasing and γε(0) = 0, so we have φε, p ≥ 0 for all ε, p. Since wt, u ∈ L∞(Q) and
g is continuous, for the right-hand side we have

∣∣∣∣
∫

Q

(wt − g(u)) |γε(u)|p−1 γε(u)

∣∣∣∣ ≤ cα ‖γε(u)‖pLp(Ω) ;

on the other hand, a direct calculation and the monotonicity of γε show that

∇u · ∇
(
|γε(u)|p−1 γε(u)

)
= pγ′

ε(u) |γε(u)|p−1 |∇u|2 ≥ 0 a.e. in Q .

Collecting all the information we have obtained so far, from (8.3) we derive
∫

Ω

φε, p(u(T )) + ‖γε(u)‖p+1
Lp+1(Q) ≤ cα ‖γε(u)‖pLp(Q) +

∫

Ω

φε, p(u0) (8.4)

and, since the first term can be ignored, we need only to find an estimate for the last
term. We recall that, for the Yosida approximation of a maximal monotone graph, the
inequality

|γε(s)| ≤
∣∣γ0(s)

∣∣ for all s ∈ D(γ) , ε > 0

holds (see, e.g., [2, Prop. 2.6, p. 28]); according to that, we have
∫

Ω

φε, p(u0) ≤
∫

Ω

∣∣γ0(u0)
∣∣p |u0| ≤

p

p+ 1

∫

Ω

∣∣γ0(u0)
∣∣p+1

+
1

p+ 1

∫

Ω

|u0|p+1

≤ p

p+ 1

∫

Ω

∣∣γ0(u0)
∣∣p+1

+
1

p+ 1
‖u0‖p+1

Lp+1(Ω) ,
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where the Hölder and Young inequalities have been used. We recall that u0 ∈ L∞(Ω) by
the assumption (2.22) and also notice that the same inequalities imply

cα ‖γε(u)‖pLp(Q) ≤
p

p+ 1
‖γε(u)‖p+1

Lp+1(Q) +
cα

p+ 1
.

Now, we come back to the equation (8.4); according to the previous estimates, we infer
that

1

p+ 1
‖γε(u)‖p+1

Lp+1(Q) ≤
p

p+ 1

∥∥γ0(u0)
∥∥p+1

Lp+1(Ω)
+

1

p+ 1
‖u0‖p+1

Lp+1(Ω) +
cα

p+ 1

and, hence,

‖γε(u)‖Lp+1(Q) ≤
{
p
∥∥γ0(u0)

∥∥p+1

Lp+1(Ω)
+ ‖u0‖p+1

Lp+1(Ω) + cα

}1/(p+1)

≤ cα

{∥∥γ0(u0)
∥∥
L∞(Ω)

+ ‖u0‖L∞(Ω) + 1
}
,

which provides the desired estimate and concludes the proof.

9 Well-posedness of (Pα) and convergence as β ց 0

Now we set the notation as in Section 3, since we are interested in the proof of Theo-
rems 3.1–3.4. We assume that the hypotheses (2.1)–(2.7) are satisfied, and we start by
studying the convergence as β ց 0, by a compactness argument.

Convergence as β ց 0. We recall the a priori estimates (5.17), (5.12), (5.27), (5.28)
which are independent of β and thus holding also for (wβ, uβ, ξβ). Moreover, adopting

the notation as in (5.4)–(5.5), by a comparison in (2.12) we find out that {∂2
twβ − f

(2)
β }

is uniformly bounded in L2(0, T ;V ′). Therefore, we can find a subsequence βk ց 0 and
functions w, u, ξ such that

wβk
⇀∗ w in W 1,∞(0, T ;H) , wβk

⇀ w in H1(0, T ;V )

∂2
twβ − f

(2)
β ⇀ wtt − f (2) in L2(0, T ;V ′)

uβk
tends to u weakly in H1(0, T ;V ′) ∩ L2(0, T ;V ), whence strongly in L2(Q),

ξβk
⇀ ξ in L2(Q)

as k −→ +∞, and here part of (3.4) has been used. Then, in view of (2.6), (3.4) and
(3.5), we can pass to the limit in (2.12) and (2.13), as well as in the initial conditions
(2.14) which can be recovered weakly in V ′ at least. On the other hand, u ∈ D(γ) and
ξ ∈ γ(u) a.e. in Q follow as a consequence of the above convergences and [1, Lemma 1.3,
p. 42].

Uniqueness for (Pα). By applying the previous result with fβ = f , w0,β = w0,
v0,β = v0 and u0,β = u0 given, we obtain the existence of a solution to Problem (Pα); we
still have to prove the uniqueness. Let (w1, u1, ξ1) and (w2, u2, ξ2) be solutions of (Pα);
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we write down the equations for the differences w = w1 − w2, u = u1 − u2, ξ = ξ1 − ξ2
and integrate with respect to time the first one:

(wt(t), v)H + α (∇w(t), ∇v)H + (u(t), v)H = 0 ,

〈ut(t), v〉+ (∇u(t), ∇v)H + (ξ(t), v)H + (g(u1)(t)− g(u2)(t), v)H = (wt(t), v)H ,

to be complemented with null initial conditions as in (4.4). We set v = wt(t) in the first
equation and v = u(t) in the second one, integrate over (0, t) and add the two equations;
it is straightforward to obtain

∫ t

0

‖wt(s)‖2H ds+
α

2
‖∇wt(t)‖2H +

1

2
‖u(t)‖2H +

∫ t

0

‖∇u(s)‖2H ds ≤ c

∫ t

0

‖u(s)‖2H ds .

According to the Gronwall lemma and owing to w(0) = 0, it turns out that w = u = 0
a.e. in Q and, by comparison in the second equation, ξ = 0 a.e. in Q.

Error equations. Because of the uniqueness, the whole family {(wβ, uβ, ξβ)}β>0

converges, as β ց 0, to the solution (w, u, ξ) of Problem (Pα). So, it makes sense to
study the speed of this convergence. In order to perform that, we set ŵβ = wβ − w,

ûβ = uβ − u, ξ̂β = ξβ − ξ and consider the problem obtained for these variables, by
subtracting side by side the equations of Problems (Pα,β) and (Pα). For all v ∈ V and
a.a. t ∈ (0, T ), the equalities

〈
∂2
t ŵβ(t), v

〉
+ α (∇∂tŵβ(t), ∇v)H + β (∇wβ(t), ∇v)H + 〈∂tûβ(t), v〉

=
〈
f̂β(t), v

〉 (9.1)

〈∂tûβ(t), v〉+ (∇ûβ(t), ∇v)H +
(
ξ̂β(t), v

)
H
+ (g(uβ)(t)− g(u)(t), v)H

= (∂tŵβ(t), v)H

(9.2)

are satisfied, as well as the initial conditions

ŵβ(0) = ŵ0,β , ∂tŵβ(0) = v̂0,β , ûβ(0) = û0,β ,

where f̂β = fβ − f = f̂
(1)
β + f̂

(2)
β ,

f̂
(1)
β = f

(1)
β − f (1) −→ 0 in L2(0, T ;V ′)

f̂
(2)
β = f

(2)
β − f (2) −→ 0 in L1(0, T ;H)

(cf. (3.6)), ŵ0,β := w0,β − w0, v̂0,β := v0,β − v0, and û0,β := u0,β − u0.

First estimate for the convergence error. Now, we want to show Theorem 3.3,
so we assume all the needed hypotheses. Choose v = ûβ(t) in the equation (9.2) and
integrate over (0, t); by the monotonicity of γ and the Lipschitz-continuity of g, we easily
derive

1

2
‖ûβ(t)‖2H +

∫ t

0

‖∇ûβ(s)‖2H ds ≤ 1

2
‖û0,β‖2H + c

∫ t

0

‖ûβ(s)‖2H ds+

∫

Qt

ûβ ∂tŵβ . (9.3)
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We integrate with respect to time the equation (9.1):

(∂tŵβ(t), v)H + α (∇ŵβ(t), ∇v)H + β (1 ∗ ∇wβ(t), ∇v)H + (ûβ(t), v)H

= 〈1 ∗ f̂β(t), v〉+ (v̂0,β + û0,β, v)H + α (∇ŵ0,β, ∇v)H .

We set v = ∂tŵβ and integrate over (0, t); keeping only the first two terms in the left-hand
side, we obtain

∫ t

0

‖∂tŵβ(s)‖2H ds+
α

2
‖∇ŵβ(t)‖2H ≤ α

2
‖∇ŵ0,β‖2H

−β (1 ∗ ∇wβ(t), ∇ŵβ(t))H + β

∫ t

0

(∇wβ(s), ∇ŵβ(s))H ds−
∫

Qt

ûβ ∂tŵβ

+

∫ t

0

〈
1 ∗ f̂ (1)

β (s) + v̂0,β , ∂tŵβ(s)
〉
ds+

∫

Qt

(
1 ∗ f̂ (2)

β + û0,β

)
∂tŵβ + α

∫

Qt

∇ŵ0,β∇∂tŵβ .

(9.4)

Due to the Young and Hölder inequalities and the boundedness of {wβ} in L2(0, T ;V ),
we have that

−β (1 ∗ ∇wβ(t), ∇ŵβ(t))H ≤ c

α
β2

∫ t

0

‖∇wβ(s)‖2H ds+
α

12
‖∇ŵβ(t)‖2H

≤ cβ2 +
α

12
‖∇ŵβ(t)‖2H

(9.5)

and

β

∫ t

0

(∇wβ(s), ∇ŵβ(s))H ds ≤ cβ2 + α

∫ t

0

‖∇ŵβ(s)‖2H ds , (9.6)

α

∫

Qt

∇ŵ0,β∇∂tŵβ ≤ α

12
‖∇ŵβ(t)‖2H + cα ‖∇ŵ0,β‖2H . (9.7)

On the other hand, arguing as in the estimate of the term T4(t) of (5.11) we deduce that

∫ t

0

〈
1 ∗ f̂ (1)

β (s) + v̂0,β, ∂tŵβ(s)
〉
ds

=
〈
1 ∗ f̂ (1)

β (t) + v̂0,β, ŵβ(t)
〉
−

∫ t

0

〈
f̂
(1)
β (s), ŵβ(s)

〉
ds

≤ c

(∫ t

0

∥∥∥f̂ (1)
β (s)

∥∥∥
2

V ′

ds+ ‖v̂0,β‖2V ′ + ‖ŵ0,β‖2H
)
+

1

4

∫ t

0

‖∂tŵβ(s)‖2H ds

+
α

12
‖∇ŵβ(t)‖2H + c

∫ t

0

(∫ s

0

‖∂tŵβ(τ)‖2H dτ

)
ds+ c α

∫ t

0

‖∇ŵβ(s)‖2H ds

(9.8)

Finally, we observe that

∫

Qt

(
1 ∗ f̂ (2)

β + û0,β

)
∂tŵβ ≤ c

(∥∥∥f̂ (2)
β

∥∥∥
2

L1(0,T ;H)
+ ‖û0,β‖2H

)
+

1

4

∫ t

0

‖∂tŵβ(s)‖2H ds (9.9)
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Now we add (9.3) and (9.4); collecting also all the estimates in (9.5)–(9.9), we find out
that

1

2
‖ûβ(t)‖2H +

∫ t

0

‖∇ûβ(s)‖2H ds+
1

2

∫ t

0

‖∂tŵβ(s)‖2H ds+
α

4
‖∇ŵβ(t)‖2H

≤ cβ2 + c

(∥∥∥f̂ (1)
β

∥∥∥
2

L2(0,T ;V ′)
+
∥∥∥f̂ (2)

β

∥∥∥
2

L1(0,T ;H)
+ ‖û0,β‖2H + ‖v̂0,β‖2V ′ + ‖ŵ0,β‖2V

)

+c

∫ t

0

‖ûβ(s)‖2H ds+ c

∫ t

0

(∫ s

0

‖∂tŵβ(τ)‖2H dτ

)
ds+ c α

∫ t

0

‖∇ŵβ(s)‖2H ds.

At this point, it suffices to recall (3.6)–(3.7) and apply the Gronwall lemma to obtain the
thesis of Theorem 3.3.

Second estimate for the convergence error. Our aim is to prove Theorem 3.4,
whose hypotheses are assumed to be satisfied. Thus, we can apply Theorems 2.3 and 2.4
to get a bound

‖uβ‖L∞(Q) + ‖u‖L∞(Q) + ‖ξβ‖L∞(Q) + ‖ξ‖L∞(Q) ≤ cα (9.10)

with cα which is independent of β. Now, if γ is a maximal monotone graph which reduces
to a single-valued function in its domain, then D(γ) is an open interval (a, b) and, if
b < +∞, then γ(r) ր +∞ as r ր b; similarly, if a > −∞ then γ(r) ց −∞ as r ց a. In
any case, the condition (9.10) implies the existence of some compact interval K ⊆ D(γ)
such that uβ(Q) ⊆ K for all β > 0, u(Q) ⊆ K. Since γ is assumed to be locally Lipschitz-
continuous (cf. (3.9)), thanks to (3.8) we immediately deduce that

‖ξβ − ξ‖L∞(0,T ;H) ≤ c ‖uβ − u‖L∞(0,T ;H) ≤ cβ .

Moreover, by suitably modifying g we can set ξ̂β ≡ 0 in equation (9.2), without loss of
generality.

We start by taking v = ∂tŵβ in (9.1), v = ∂tûβ in (9.2), integrating both equations
over (0, t) and adding side by side. Thanks to the Lipschitz-continuity of g and the Young
and Hölder inequalities, it is straightforward to obtain

1

2
‖∂tŵβ(t)‖2H + α

∫ t

0

‖∇∂tŵβ(s)‖2H ds+

∫ t

0

‖∂tûβ(s)‖2H ds+
1

2
‖∇ûβ(t)‖2H

≤ β2

α
‖wβ‖2L2(0,T ;V ) +

α

4

∫ t

0

‖∇∂tŵβ(s)‖2H ds+ c

∫ t

0

‖ûβ(s)‖2H ds+
1

2

∫ t

0

‖∂tûβ(s)‖2H ds

+
1

α

∥∥∥f̂ (1)
β

∥∥∥
2

L2(0,T ;V ′)
+

α

4
‖∂tŵβ‖2L2(0,T ;H) +

α

4

∫ t

0

‖∇∂tŵβ(s)‖2H ds

+

∫ t

0

∥∥∥f̂ (2)
β (s)

∥∥∥
H
‖∂tŵβ(s)‖H ds+

1

2
‖v̂0,β‖2H +

1

2
‖∇û0,β‖2H .

Taking into account conditions (3.6), (3.12) and the previous estimate (3.8), we easily
have

1

2
‖∂tŵβ(t)‖2H +

α

2

∫ t

0

‖∇∂tŵβ(s)‖2H ds+
1

2

∫ t

0

‖∂tûβ(s)‖2H ds+
1

2
‖∇ûβ(t)‖2H

≤ c β2 +

∫ t

0

∥∥∥f̂ (2)
β (s)

∥∥∥
H
‖∂tŵβ(s)‖H ds
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whence, by (3.6) and a generalised Gronwall lemma (cf., e.g., [2, Lemme A5, p. 157]), we
infer that

‖ŵβ‖W 1,∞(0,T ;H)∩H1(0,T ;V ) + ‖ûβ‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ c β (9.11)

where the constant c obviously depends on α.

Next, observe that the assumptions on the data are strong enough to guarantee that
(9.1) and (9.2) can be reformulated as

∂2
t ŵβ − α∆∂tŵβ = β∆wβ − ∂tûβ + f̂β a.e. in Q (9.12)

∂tûβ −∆ûβ + g(uβ)− g(u) = ∂tŵβ a.e. in Q (9.13)

along with the homogeneous Neumann boundary conditions for both ŵβ and ûβ.

In view of (9.11), by a comparison of terms in (9.13) it is standard to deduce that
‖∆ûβ‖L2(0,T ;H) ≤ c β and consequently, owing to elliptic regularity estimates, we obtain

‖ûβ‖L2(0,T ;W ) ≤ cαβ . (9.14)

At this point, let us emphasize that for the proof of (9.11) and (9.14) we have just used

the control (3.6) on the difference f̂β.

We now pay attention to the equation (9.12) and multiply both sides by −∆∂tŵβ,
which belongs to L2(Q) (cf. (2.17)), and integrate, also by parts, over Qt. By means of
the Hölder and Young inequalities, we infer that

1

2
‖∇∂tŵβ(t)‖2H + α

∫ t

0

‖∆∂tŵβ(s)‖2H ds ≤ 1

2
‖∇v̂0,β‖2H +

β2

α

∫ t

0

‖∆wβ(s)‖2H ds

+
2

α

∫ t

0

‖∂tûβ(s)‖2H ds+
2

α

∥∥∥f̂ (1)
β

∥∥∥
2

L2(0,T ;H)
+

α

2

∫ t

0

‖∆∂tŵβ(s)‖2H ds

+

∫ t

0

∥∥∥∇f̂
(2)
β (s)

∥∥∥
H
‖∇∂tŵβ(s)‖H ds.

Hence, recalling the uniform boundedness of {wβ} in L2(0, T ;W ), we use (3.12), (9.11),
(3.11) and apply the generalised Gronwall lemma as before to obtain

‖∇∂tŵβ(t)‖2H +

∫ t

0

‖∆∂tŵβ(s)‖2H ds ≤ c β2.

Now, by virtue of (4.1) and (3.12) we also infer

‖∆ŵβ(t)‖H ≤ c β for all t ∈ [0, T ].

Then, standard elliptic regularity properties and the previous estimates (9.11) and (9.14)
lead us to (3.13), thus completing the proof of Theorem 3.4.
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