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Abstract. This paper is devoted to study the so–called phase–field model when
the classical Fourier law is replaced by the Gurtin–Pipkin constitutive assumption. The
resulting system of partial differential equations is investigated in a quite general set-
ting. A hyperbolic equation is coupled with a parabolic variational inequality, the state
variables being temperature and non–conserved order parameter. By including initial
and boundary conditions, the existence and uniqueness of strong solutions is shown
along with regularity results ensuring the global boundedness of both the unknowns.

1. Introduction. In this paper we address the initial and homogeneous Neu-

mann boundary value problem for two coupled integrodifferential equations governing

the dynamics of solid–liquid phase transitions, i.e., the evolution of the temperature

field ϑ and the phase field χ (which may stand for the local proportion of one of the

two phases) in a three–dimensional body.

The corresponding system turns out to provide an extended version of the well–

known phase field model [7, 22], but with the heat flux q expressed by a non–Fourier

law. In fact, according to [26] the heat flux is assumed to depend only on the temporal

history of the temperature gradient ∇ϑ through a constitutive relation of this type

q(x, t) = −
∫ t

−∞
k(t− s)∇ϑ(x, s) ds for (x, t) ∈ Ω× ]0, T[. (1.1)

Here the bounded smooth domain Ω ⊂ IR3 represents the container of the solid–liquid

body, T > 0 denotes some final time, and k : [0,+∞[ → IR is a given function

depending on the material. Thanks to laws like (1.1), memory effects are accounted for
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in the description of heat conduction phenomena. In particular, the choice (1.1) has

received a great deal of attention in the last decades (see, among others, [5, 34–35]),

dating back from the pioneering work of Cattaneo [10] and going to the recent fairly

complete review done by Joseph and Preziosi [27, 28]. Let us just mention one feature

of the Gurtin and Pipkin theory [26] (relying on (1.1)), namely, it predicts finite speed

of propagation for thermal disturbances (see also [11–13]).

As a first and related consequence, the energy balance

(ϑ+ λ(χ))t +∇ · q = g in Q := Ω× ]0, T[ (1.2)

supplied with (1.1), provides an equation which is no longer parabolic with respect to ϑ.

Its hyperbolic character will become clear in the sequel. Let us recall that g : Q → IR

plays as source term in (1.2) and that, according to former approaches (cf., e.g., [7–9]),

λ(χ) is usually supposed to be linear in χ. In our analysis we allow λ ∈ C2(IR) to be

Lipschitz continuous along with its derivative.

In the case where the order parameter χ is not conserved (an interesting classifi-

cation of both kinds of models for non–isothermal phase changes can be found in [2]),

(1.2) is combined with the second order differential inclusion

µχt − ν∆χ+ β(χ) 3 γ(ϑ, χ) + λ′(χ)ϑ in Q (1.3)

the relaxation parameters µ and ν being small but positive in the framework of the

phase field description of the transition dynamics. While the nonlinearity γ is Lipschitz

continuous with respect to both variables, β denotes a maximal monotone graph from

IR to IR, possibly multivalued, and such that 0 ∈ β(0).

Relation (1.3) can be derived following the Ginzburg–Landau theory for the con-

struction of the free energy functional, then applying the second law of thermodynamics

(via the Clausius–Duhem inequality), and finally making a first order approximation

around a critical temperature (the phase change temperature). Details of the procedure

are given, for instance, in [7, 22, 23, 36, 37]. Thus, we point out that our ϑ does not

specify the absolute temperature. Instead, it is relative to the phase change tempera-

ture to agree that ϑ > 0 in the liquid phase, ϑ < 0 in the solid phase. We know of

another phase field model, proposed by Penrose and Fife [36, 37], that remains consis-

tent with thermodynamics because no linearization around equilibrium temperatures is

done. Such alternative model has been recently investigated by several authors for non-

linear (but local) heat flux laws which become singular as the temperature approaches

the absolute zero value. Among the works on this subject, let us mention the papers

[30, 31, 41] and the review done in [38].

However, system (1.2–3) has a quite general form which includes various possibil-

ities. If µ = ν = 0, λ(χ) = χ, β coincides with the subdifferential of the indicator

function of the interval [0, 1], and γ ≡ 0, then (1.2–3) reduces to the weak formu-

lation of the classical Stefan problem (see, e.g., [32, p. 196] and the references in the

related “Commentaires” at p. 306). Moreover, letting µ > 0 and possibly retaining the
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nonlinear term γ(ϑ, χ) lead to Stefan problems with phase relaxation and dissipation

that have been introduced in [42, 23] and further analyzed in [20].

These two classes of Stefan and relaxed problems have been already faced also

keeping constitutive laws like (1.1). Nonetheless, as far as we know (see [17, 19, 27, 28]

for a number of references on hyperbolic Stefan problems), the only available existence

result in this framework [16] addresses to the case µ > 0 and γ ≡ 0. Otherwise, exis-

tence and uniqueness, regularity, continuous dependence properties have been deduced

[39, 17, 14] for initial-boundary value problems applying to a significant variation

of (1.1–3). Indeed, equation (1.2) was modified (cf. [16] and [17]) by substituting

λ(χ) = χ with a convolution product like (1.1), between χ and a memory kernel

(which could simply consists in an approximation of the Dirac mass). Now, it has been

shown [19, 18] that these alternative models are, in some rigorous sense, acceptable

from the physical side since aymptotically closed to their parabolic counterparts without

memories (cf. in particular [19]). However, it is not our intention to proceed along this

direction in the present paper. Indeed, one of the main points for us was discovering

that, provided some diffusion is assumed for the order parameter χ (ν > 0), in regard

of the conclusion of [16] here one can handle nonlinearities and prove existence and

uniqueness of smooth solutions.

Coming back to the possible applications of (1.2–3), we must note that the proper

phase–field model is obtained, neglecting constant factors, for µ > 0, ν > 0, λ(χ) = χ,

β(χ) = χ3, and γ(ϑ, χ) = χ, the last choices corresponding to the double–well potential

in the free energy proposed by Fix [22] and Caginalp [7]. Coupling (1.2) with the

Fourier law, the resulting system has been widely studied and somehow generalized,

going from the results of [21] to the recent investigation [29]. Concerning the relation

(1.1), we are eventually able to quote the paper [1] where questions like existence,

regularity, and asymptotic behaviour as t tends to +∞ are treated with assumptions

and methods different from ours. In fact, while we can conclude that both ϑ and
χ belong to L∞(Q) whenever k is smooth enough and k(0) > 0, in [1] Aizicovici

and Barbu find a weaker solution for kernels k of positive type. In addition, we use

variational techniques and deal with the general conditions of (1.2–3), instead of their

semigroup approach directed to the above particular setting. Anyway, in the case of a

linear function λ, a careful and sharp analysis of weak solutions (reproducing the weak

theory for linear hyperbolic problems) is developed in the twin paper [15].

Assuming that the history of ϑ is known up to the time t = 0 and introducing

the notation

(a ∗ b)(t) :=

∫ t

0

a(s)b(t− s) ds, t ∈ [0, T]

for the convolution product with respect to time (being understood that the functions

a and b may also depend on space variables), from (1.1–2) we can infer the equation

(ϑ+ λ(χ))t −∆(k ∗ ϑ) = g in Q (1.4)
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whose right hand side g collects g and a term involving the values of temperature for

t < 0 (see [18] for a precise derivation accounting for regularity of data). As boundary

conditions to couple with (1.4) and (1.3) we take

∂n(k ∗ ϑ) = ∂nχ = 0 on Σ := Γ× (0, T ) (1.5)

where Γ = ∂Ω and ∂n stands for the outer normal derivative on Γ. Observe that

(1.5) prescribes that the system is isolated from the exterior, the conditions meaning

that there is no flow across the boundary (in particular, we can rewrite the former as

q ·n = 0, with n outward normal vector, owing to (1.1)). Finally, we have to fix initial

values for temperature and order parameter

ϑ( · , 0) = ϑ0, χ( · , 0) = χ0 in Ω

(giving some ϑ0, χ0 : Ω→ IR ) or, equivalently, we can do that for χ and the auxiliary

unknown

η := ϑ+ λ(χ) (1.6)

which corresponds to the enthalpy. It is worth remarking that the latter choice happens

to be more natural in view of (1.4). Therefore, we can ask that

η( · , 0) = η0, χ( · , 0) = χ0 in Ω (1.7)

where η0 is related to ϑ0 and χ0 by the obvious position η0 = ϑ0 + λ(χ0) .

This paper is then concerned with the problem (1.3–7) in the three–dimensional

case, even though a number of our results still holds in any dimension with the same

proofs, if one assumes that λ is linear. We prove the existence of a unique pair (ϑ, χ)

solving (1.3–7). Such solution is strong in the sense that equations are satisfied at least

almost everywhere. The existence proof relies on an approximation – a priori estimates

– passage to the limit argument, based on a Faedo–Galerkin scheme combined with

monotonicity and compactness methods. Reasonable assumptions on g, k, η0, χ0 in

addition to the well–known three–dimensional embedding H2(Ω) ⊂ L∞(Ω) enable us

to deduce that χ is bounded in Q. By further requiring that λ′′′ is continuous and β

is a function, we can even show that ϑ ∈ C0(Q) as well as χ .

The first step of all this machinery consists in transforming the problem by finding

the right variables useful for computations. As the identity k∗ϑ = k(0)(1∗ϑ)+k′ ∗1∗ϑ
holds, one possibility could be to rewrite (1.4) in terms of 1 ∗ ϑ. This is precisely

the way followed in [16, 17] and it already allows to see the hyperbolic character of

equation (1.4). Here it seems to be more convenient to adopt the strategy of taking a

time integral function of the enthalpy instead of the temperature. More precisely, we set

w := 1 ∗ η = 1 ∗ ϑ+ 1 ∗ λ(χ) (1.8)
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and reformulate the problem in terms of w and χ. Denoting by γ the Lipschitz

continuous function such that γ(wt, χ) = γ(wt−λ(χ), χ), it is straightforward to verify

that (1.4) and (1.3) become

wtt − k(0)∆w = g + k′ ∗∆w − k ∗∆λ(χ) (1.9)

µχt − ν∆χ+ β(χ) 3 γ(wt, χ) + λ′(χ)(wt − λ(χ)) (1.10)

in Q. Thanks to (1.5–7) and to an inversion formula for Volterra integral equations

(cf., e.g., [25, Chap. 2]), it follows that (1.9) and (1.10) are complemented by the

boundary and initial conditions

∂nw = ∂nχ = 0 on Σ (1.11)

w( · , 0) = 0, wt( · , 0) = η0, χ( · , 0) = χ0 in Ω. (1.12)

Referring to the sequel for a rigorous justification, let us point out that our procedure

changes (1.4) into another equation where no time derivative of χ appears. Since the

Laplacian of λ(χ) is somehow integrated in time, by this formulation it is easier to

obtain the basic estimates.

Here is the plan of the paper. The next section is devoted to state the main

results. In Section 3 we present the equivalent formulation of our problem relying on

position (1.8) and we give the corresponding versions of the main theorems. Sections 4

is concerned with the proof of uniqueness, while the existence of the solution is shown

in Section 6 passing to the limit in the approximating problems introduced in Section 5.

Finally, our regularity results are discussed in Sections 7–9.

2. Main results. We first introduce the assumptions on the data and then give

a rigorous formulation of the initial and boundary value problem we are dealing with.

After that, the main results are stated.

Let Ω ⊂ IR3 be a bounded, open, and connected set of class C2,1 with boundary

Γ := ∂Ω and let T > 0 . Set

Q := Ω× ]0, T[, Σ := Γ× ]0, T[

and consider

k ∈W 2,1(0, T ), k(0) > 0 (2.1)

λ ∈ C2(IR), λ′, λ′′ ∈ L∞(IR) (2.2)

µ, ν ∈ ]0,∞[ (2.3)

φ : IR→ [0,+∞] convex and lower–semicontinuous, φ(0) = 0 (2.4)

β = ∂φ ⊂ IR× IR and β(0) 3 0 (2.5)

γ ∈ C1(IR2) with bounded partial derivatives (2.6)

g ∈W 1,1(0, T ;L2(Ω)) + L1(0, T ;H1(Ω)) (2.7)

ϑ0 ∈ H1(Ω) (2.8)

χ0 ∈ H1(Ω) and φ(χ0) ∈ L1(Ω). (2.9)
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Denoting by D(β) the effective domain of β , we introduce

Problem (P1). Find ϑ, χ, ξ : Q→ IR satisfying

ϑ ∈ L∞(0, T ;H1(Ω)) (2.10)

1 ∗ ϑ ∈ L∞(0, T ;H2(Ω)) (2.11)

ϑt ∈ L2(0, T ;L2(Ω)) + L1(0, T ;H1(Ω)) (2.12)

χ ∈ H1(0, T ;L2(Ω)) ∩ C0([0, T];H1(Ω)) ∩ L2(0, T ;H2(Ω)) (2.13)

ξ ∈ L2(Q) (2.14)

χ ∈ D(β) and ξ ∈ β(χ) a.e. in Q (2.15)

∂t
(
ϑ+ λ(χ)

)
−∆(k ∗ ϑ) = g a.e. in Q (2.16)

µχt − ν∆χ+ ξ = γ(ϑ, χ) + λ′(χ)ϑ a.e. in Q (2.17)

k ∗ ∂nϑ = ∂nχ = 0 on Σ (2.18)

ϑ(0) = ϑ0 in Ω (2.19)

χ(0) = χ0 in Ω. (2.20)

The first result reads

Theorem 2.1. Let the assumptions (2.1–9) hold. Then Problem (2.10–20) admits a

unique solution (ϑ, χ, ξ) . Moreover, ϑ and χ fulfill

ϑ ∈ C0([0, T];H1(Ω)), 1 ∗ ϑ ∈ C0([0, T];H2(Ω)), (2.21)

φ(χ) ∈ L∞(0, T ;L1(Ω)). (2.22)

Suppose now

χ0 ∈ H2(Ω) and ∂nχ0 = 0 on Γ (2.23)

χ0 ∈ D(β) a.e. in Ω and β0(χ0) ∈ L2(Ω) (2.24)

where, for y ∈ D(β) , β0(y) is the element of β(y) having minimum modulus. In this

case we can prove a regularity result for χ , namely

Theorem 2.2. Assume (2.23–24) in addition to (2.1–9) and let (ϑ, χ, ξ) be the unique

solution to Problem (2.10–20). Then χ satisfies

χ ∈W 1,∞(0, T ;L2(Ω)) ∩H1(0, T ;H1(Ω)) ∩ L∞(0, T ;H2(Ω)). (2.25)

Remark 2.3. Clearly, Problem (P1) can be stated in any spatial dimension N . As

it appears from the subsequent proofs, the above results still hold provided N ≤ 4 .

Moreover, it is worth noting that no restriction on N is needed if one assumes λ to

be linear, as we will emphasize in the sequel.
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Next, working in the three–dimensional case, we point out that the validity of the

regularity results we are going to state extends to Ω ⊂ IRN with N ≤ 3 , of course.

Remark 2.4. Thanks to the injections H1(0, T ;H1(Ω)) ⊂ C0,1/2([0, T];H1(Ω)) and

Hs(Ω) ⊂ C0(Ω) for s > 3/2 , (2.25) and [33, Prop. 1.1.4, p. 13] entail

χ ∈ C0(Q). (2.26)

More precisely, χ ∈ C0,α1([0, T];C0,α2(Ω)) for some 0 < αi < 1 , i = 1, 2 .

By strengthening the assumptions, we obtain further regularity for ϑ and χ which

yields continuity up to the boundary for ϑ as well. Take

λ ∈ C3(IR), λ′, λ′′ ∈ L∞(IR) (2.27)

β ∈ C1(IR) non decreasing (2.28)

g ∈W 2,1(0, T ;L2(Ω)) +W 1,1(0, T ;H1(Ω)), g(0) ∈ H1(Ω) (2.29)

ϑ0 ∈ H2(Ω), ∂nϑ0 = 0 on Γ (2.30)

χ0 ∈ H3(Ω), ∂nχ0 = 0 on Γ. (2.31)

Observing that (2.28) and (2.31) entail (2.24) and (2.23), the stronger hypotheses lead to

Theorem 2.5. Assume (2.27–31) besides (2.1–9) and let (ϑ, χ, ξ) be the unique so-

lution to Problem (2.10–20). Then

ϑ ∈W 2,1(0, T ;L2(Ω)) ∩ C1([0, T];H1(Ω)) ∩ C0([0, T];H2(Ω)) (2.32)

χ ∈ H2(0, T ;L2(Ω)) ∩ C1([0, T];H1(Ω)) ∩H1(0, T ;H2(Ω)). (2.33)

In particular one has

ϑ, χ ∈ C0,α(Q) for some 0 < α ≤ 1. (2.34)

3. An equivalent formulation. As we stressed in the Introduction, a conve-

nient formulation of Problem (P1), that is (2.10–20), is based on the use of the integrated

enthalpy as variable. In order to specify the setting, put

γ(y1, y2) = γ
(
y1 − λ(y2), y2

)
for (y1, y2) ∈ IR2 (3.1)

and let η0 be related to ϑ0 and χ0 by

η0 = ϑ0 + λ(χ0). (3.2)
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Under the assumptions (2.1–9) (see, especially, (2.2), (2.6), and (2.8–9)) it results that

γ ∈ C1(IR2) with partial derivatives γ1, γ2 ∈ L∞(IR2) (3.3)

and that

η0 ∈ H1(Ω). (3.4)

Then, if (ϑ, χ, ξ) is a solution to (P1) and w is defined by (1.8), thanks to the identity

k ∗ ϑ = k(0)(1 ∗ ϑ) + k′ ∗ 1 ∗ ϑ, one easily checks that the triplet (w,χ, ξ) solves

Problem (P2). Find w,χ, ξ : Q→ IR satisfying

w ∈W 1,∞(0, T ;H1(Ω)) ∩ L∞(0, T ;H2(Ω)) (3.5)

wtt ∈ L∞(0, T ;L2(Ω)) + L1(0, T ;H1(Ω)) (3.6)

χ ∈ H1(0, T ;L2(Ω)) ∩ C0([0, T];H1(Ω)) ∩ L2(0, T ;H2(Ω)) (3.7)

ξ ∈ L2(Q) (3.8)

χ ∈ D(β) and ξ ∈ β(χ) a.e. in Q (3.9)

wtt − k(0)∆w = g + k′ ∗∆w − k ∗∆λ(χ) a.e. in Q (3.10)

µχt − ν∆χ+ ξ = γ(wt, χ) + λ′(χ)(wt − λ(χ)) a.e. in Q (3.11)

∂nw = ∂nχ = 0 on Σ (3.12)

w(0) = 0 and wt(0) = η0 in Ω (3.13)

χ(0) = χ0 in Ω. (3.14)

Conversely, if (w,χ, ξ) is a solution to (P2), setting

ϑ := wt − λ(χ) a.e. in Q (3.15)

straightforward arguments show that (ϑ, χ, ξ) solves (P1). To sum up, we have

Proposition 3.1. Let (2.1–9) hold. Then Problem (P1) admits a unique solution

(ϑ, χ, ξ) if and only if Problem (P2) admits a unique solution (w,χ, ξ) .

In view of Proposition 3.1, Theorem 2.1 turns out to be equivalent to

Theorem 3.2. Let (2.1–9) hold. Then Problem (3.5–14) admits a unique solution

(w,χ, ξ) . Moreover,

w ∈ C1([0, T];H1(Ω)) ∩ C0([0, T];H2(Ω)) (3.16)

and (2.22) is satisfied.
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Also, it is evident that proving Theorem 2.2 is equivalent to proving

Theorem 3.3. Assume (2.23–24) in addition to (2.1–9). Then the unique solution

(w,χ, ξ) to Problem (3.5–14) fulfills (2.25).

Finally, in the regularity setting specified by (2.27–31) and entailing (cf. (3.2))

η0 ∈ H2(Ω), ∂nη0 = 0 on Γ (3.17)

we can establish the equivalent version of Theorem 2.5.

Theorem 3.4. Assume (2.27–31) besides (2.1–9). Then the unique solution (w,χ, ξ)

to Problem (3.5–14) satisfies (2.33) and

w ∈W 3,1(0, T ;L2(Ω)) ∩ C2([0, T];H1(Ω)) ∩ C1([0, T];H2(Ω)). (3.18)

In particular one has

w,wt, χ ∈ C0(Q). (3.19)

For the sake of convenience, let us fix here, once and for all, some notation and

recall standard tools. We set

Qt := Ω× ]0, t[, t ∈ ]0, T[

H := L2(Ω), V := H1(Ω), and W := H2(Ω).

Further, we denote by the same symbol the norm of a space of scalar functions and the

norm of the space of corresponding vector–valued functions. For instance, ‖·‖V means

the norm of both V and V 3 . The same is done for scalar products. Moreover, we use

the formulas (cf., e.g., [25])

a ∗ b = a(0)(1 ∗ b) + at ∗ 1 ∗ b and (a ∗ b)t = a(0)b+ at ∗ b (3.20)

which hold whenever they make sense, the well–known Young theorem

‖a ∗ b‖Lr(0,T ;X) ≤ ‖a‖Lp(0,T ) ‖b‖Lq(0,T ;X) (3.21)

X being a real Banach space, 1 ≤ p, q, r ≤ ∞ , 1/r = (1/p) + (1/q) − 1 , and the

elementary inequality

2ab ≤ σa2 +
1

σ
b2 ∀ a, b ≥ 0 ∀σ > 0. (3.22)

Warning 3.5. In the proofs we give in the sequel the same symbol c is employed

for different constants, even in the same formula, in regard of simplicity. These con-

stants may generally depend on Ω, T, µ, ν, k(0), ‖k′‖W 1,1(0,T ) , |λ(0)|, ‖λ′‖L∞(IR) ,

‖λ′′‖L∞(IR) , |γ(0, 0)|, ‖γ1‖L∞(IR2) , and ‖γ2‖L∞(IR2) . Further dependences are specified

in each section, separately.
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4. Uniqueness. Let (w1, χ1, ξ1) and (w2, χ2, ξ2) be two solutions to Problem

(3.5–14). We prove that they necessarily coincide. To do that, we derive some a priori

estimates for the functions

w := w1 − w2, χ := χ1 − χ2, ξ := ξ1 − ξ2. (4.1)

The constants c can depend on the just mentioned quantities and on the norms of the

two solutions in the spaces listed in (3.5–8), as well.

In view of (3.10–11), one can easily check that (w,χ, ξ) satisfies

wtt − k(0)∆w = k′ ∗∆w − k ∗∆
(
λ(χ1)− λ(χ2)

)
(4.2)

µχt − ν∆χ+ ξ = γ(∂tw1, χ1)− γ(∂tw2, χ2) (4.3)

+ λ′(χ1)
(
wt −

(
λ(χ1)− λ(χ2)

))
+
(
λ′(χ1)− λ′(χ2)

) (
∂tw2 − λ(χ2)

)
a.e. in Q . Moreover, the following boundary and initial conditions hold

∂nw = ∂nχ = 0 on Σ (4.4)

w(0) = wt(0) = χ(0) = 0 in Ω. (4.5)

Multiplying (4.2) by wt , integrating over Qt , where t ∈ (0, T ) is arbitrary, and

using (4.4–5), we obtain

1

2
‖wt(t)‖2H +

k(0)

2
‖∇w(t)‖2H = I1(t) + I2(t) (4.6)

with

I1(t) := −
∫ t

0

(
(k′ ∗ ∇w)(s),∇wt(s)

)
H
ds (4.7)

I2(t) :=

∫ t

0

((
k ∗ ∇(λ(χ1)− λ(χ2))

)
(s),∇wt(s)

)
H
ds. (4.8)

Recalling (2.1) and (3.20), we can integrate by parts in time in (4.7) and (4.8). This

gives

I1(t) =−
∫

Ω

(k′ ∗ ∇w)(t) · ∇w(t) +

∫∫
Qt

(k′(0)∇w + k′′ ∗ ∇w) · ∇w (4.9)

I2(t) =

∫
Ω

(
k ∗ ∇(λ(χ1)− λ(χ2))

)
(t) · ∇w(t) (4.10)

−
∫∫
Qt

(
k(0)∇(λ(χ1)− λ(χ2)) + k′ ∗ ∇(λ(χ1)− λ(χ2))

)
· ∇w.

Using well–known inequalities as (3.21) and (3.22), from (4.9) we are able to infer

(cf. also (2.1))

|I1(t)| ≤ k(0)

8
‖∇w(t)‖2H + c

∫ t

0

‖∇w(s)‖2H ds. (4.11)
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To deal with the first integral in the right hand side of (4.10), note that, owing

to (2.2), one has

|∇(λ(χ1)− λ(χ2))| ≤ c
(
|∇χ|+ |∇χ2| |χ|

)
.

Then, on account of (2.1), the Hölder inequality and (3.21) give∫
Ω

(
k ∗ ∇(λ(χ1)− λ(χ2))

)
(t) · ∇w(t) (4.12)

≤ c ‖∇w(t)‖H
∫ t

0

{
‖∇χ(s)‖H + ‖∇χ2(s)‖L4(Ω) ‖χ(s)‖L4(Ω)

}
ds.

As Ω is a bounded Lipschitz domain in IR3 , there holds

‖v‖L4(Ω) ≤ C ‖v‖V ∀ v ∈ V (4.13)

for some constant C depending only on Ω . Consequently, from (4.12) we deduce that∫
Ω

(
k ∗ ∇(λ(χ1)− λ(χ2))

)
(t) · ∇w(t) (4.14)

≤ c ‖∇w(t)‖H
(

1 + ‖χ2‖L2(0,T ;W )

)(∫ t

0

‖χ(s)‖2V ds

)1/2

≤ k(0)

8
‖∇w(t)‖2H + c

∫ t

0

‖χ(s)‖2V ds.

Arguing similarly, one can treat the second integral in the right hand side of (4.10)

and get the estimate

−
∫∫
Qt

(
k(0)∇(λ(χ1)− λ(χ2)) + k′ ∗ ∇(λ(χ1)− λ(χ2))

)
· ∇w

≤ c
∫ t

0

(
‖∇w(s)‖2H + ‖χ(s)‖2V

)
ds. (4.15)

Combining (4.6), (4.11), and (4.14–15), we obtain

1

2
‖wt(t)‖2H +

k(0)

4
‖∇w(t)‖2H ≤ c

∫ t

0

(
‖∇w(s)‖2H + ‖χ(s)‖2V

)
ds

and the Gronwall lemma yields

‖wt(t)‖2H + ‖∇w(t)‖2H ≤ c
∫ t

0

‖χ(s)‖2V ds ∀ t ∈ [0, T]. (4.16)

At this point, multiply equation (4.3) by χ . Then an integration over Qt leads to

µ

2
‖χ(t)‖2H + ν

∫ t

0

‖∇χ(s)‖2H ds+

∫ t

0

(
ξ(s), χ(s)

)
H
ds =

6∑
j=3

Ij(t) (4.17)
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where

I3(t) :=

∫ t

0

(
γ(∂tw1(s), χ1(s))− γ(∂tw2(s), χ2(s)), χ(s)

)
H
ds (4.18)

I4(t) :=

∫ t

0

(
λ′(χ1(s))

(
wt(s)−

(
λ(χ1(s))− λ(χ2(s))

))
, χ(s)

)
H
ds (4.19)

I5(t) :=

∫ t

0

((
λ′(χ1(s))− λ′(χ2(s))

)
∂tw2(s), χ(s)

)
H
ds (4.20)

I6(t) := −
∫ t

0

((
λ′(χ1(s))− λ′(χ2(s))

)
λ(χ2(s)), χ(s)

)
H
ds. (4.21)

Thanks to (3.3) and (2.2), it is straightforward to conclude that

|I3(t)|+ |I4(t)| ≤ c
∫ t

0

(
‖wt(s)‖2H + ‖χ(s)‖2H

)
ds. (4.22)

As far as I5 is concerned, using also inequality (4.13), we have

|I5(t)| ≤ c
∫ t

0

‖(χ∂tw2)(s)‖H ‖χ(s)‖H ds

≤ c
∫ t

0

‖χ(s)‖L4(Ω) ‖∂tw2(s)‖L4(Ω) ‖χ(s)‖H ds

≤ c
∫ t

0

‖χ(s)‖V ‖∂tw2(s)‖V ‖χ(s)‖H ds.

Since w2 fulfills (3.5), it turns out that

|I5(t)| ≤ ν

4

∫ t

0

‖∇χ(s)‖2H ds+ c

∫ t

0

‖χ(s)‖2H ds. (4.23)

Besides, holding (3.7) for χ2 , recalling (2.2), and arguing as above, one easily infers

|I6(t)| ≤ ν

4

∫ t

0

‖∇χ(s)‖2H ds+ c

∫ t

0

‖χ(s)‖2H ds. (4.24)

Collecting (4.22–24) and accounting for the monotonicity of β , from (4.17) it

follows that

µ

2
‖χ(t)‖2H +

ν

2

∫ t

0

‖∇χ(s)‖2H ds ≤ c
∫ t

0

(
‖wt(s)‖2H + ‖χ(s)‖2H

)
ds (4.25)

for any t ∈ [0, T] .

Next, by estimating the right hand side of (4.16) with the help of (4.25), then

summing the obtained inequality to (4.25), and finally applying the Gronwall lemma,
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we achieve that w = 0 and χ = 0 a.e. in Q . A comparison in (4.3) gives ξ = 0

a.e. in Q and the proof is complete.

Remark 4.1. Note that the restriction to the dimension is due to the use of (4.13)

in estimating the integrals I2 , I5 , and I6 . Therefore, it is clear that our proof holds

unchanged up to dimension 4 since (4.13) remains true if Ω ⊂ IR4 .

Remark 4.2. Referring to the above remark, in the case λ linear, i.e. if λ′ is a

constant λ0 , (4.13) is no longer needed in the above estimates and our proof works in

any dimension. Indeed, I5 and I6 vanish and I2 reduces to

I2(t) = λ0

∫
Ω

(k ∗ ∇χ)(t) · ∇w(t) + λ0

∫∫
Qt

(k(0)∇χ+ k′ ∗ ∇χ) · ∇w

so that estimates (4.14–15) can be easily recovered without using (4.13).

5. Approximation. The existence of a solution to Problem (2.10–20) and the

regularity results stated in Section 3 are shown via an approximation–a priori estimate–

passage to the limit argument. In particular, we apply the Faedo–Galerkin method

combined with a regularization procedure. Thus we consider a sequence {Vn} of finite

dimensional subspaces filling up V and approximate the data. At the same time, we

regularize the maximal monotone graph β with Lipschitz continuous functions βε .

Then we define and solve the approximating problems.

In view of a number of a priori estimates, we need a special choice of the subspaces.

Consider the orthonormal basis {vi}i≥1 of V formed by the normalized eigenfunctions

of the Laplace operator with homogeneous Neumann boundary condition, that is,

−∆vi = λivi in Ω (5.1)

∂nvi = 0 on Γ (5.2)

where {λi}i≥1 is the sequence of the corresponding eigenvalues. Note that, owing to

the regularity of Γ ,

vi ∈W ∀ i ≥ 1. (5.3)

Then, for any integer n ≥ 1 , we denote by Vn the n -dimensional subspace of V

spanned by {v1, . . . , vn} .

As approximations of the data η0 and χ0 we take

η0n ∈ Vn and χ0n ∈ Vn. (5.4)

Since we need approximating solutions regular enough in time, we also regularize g by

gn ∈ C2([0, T];V ). (5.5)
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Further requirements on the approximating data and their convergence properties are

specified whenever is needed.

Moreover, for ε > 0 we set
φε(y) := min

z∈IR

{
1

2ε
|z − y|2 + φ(z)

}
for y ∈ IR

βε :=
1

ε

(
I − (I + εβ)

−1
) (5.6)

I being the identity. As is well known (see, e.g., [6, p. 39]), thanks to (2.4–5) φε
is a nonnegative, convex, and continuously differentiable function, βε is the Yosida

approximation of β (thus Lipschitz continuous), and the following equalities hold

βε = φ′ε = ∂φε. (5.7)

We also remind that (cf., e.g., [6, Prop. 2.6, p. 28])

|βε(y)| ≤ |β0(y)| ∀ ε > 0 and lim
ε→0

βε(y) = β0(y) (5.8)

for all y ∈ IR and for y ∈ D(β) , respectively, where D(β) is the effective domain of

β and β0(y) is the element of β(y) having minimum modulus. Finally, we have that

0 ≤ φε(y) ≤ φ(y) ∀ ε > 0 and lim
ε→0

φε(y) = φ(y) (5.9)

for any y ∈ IR , the limit being a consequence of [6, Prop. 2.11, p. 39], while the

inequality is obvious.

However, the regularization of φ and β is not necessary when the graph β itself

is a Lipschitz continuous function. In this particular case, (5.8–9) are plainly fulfilled

by taking φε = φ and βε = β .

We are now ready to introduce the approximating problem. Even though it de-

pends on both n and ε , we do not plug the subscript ε to its solution.

Problem (P2)ε,n. Find tn ∈ ]0, T] and wn, χn : Ω× [0, tn]→ IR such that

wn ∈ C2([0, tn];Vn) (5.10)

χn ∈ C1([0, tn];Vn) (5.11)(
∂2
twn(t), v

)
H

+

∫
Ω

k(0)∇wn(t) · ∇v (5.12)

= −
∫

Ω

∇
(
k′ ∗ wn − k ∗ λ(χn)

)
(t) · ∇v +

(
gn(t), v

)
H

∀ v ∈ Vn ∀ t ∈ [0, tn]

µ
(
∂tχn(t), v

)
H

+ ν

∫
Ω

∇χn(t) · ∇v +
(
βε(χn(t)), v

)
H

(5.13)

=
(
γ(∂twn(t), χn(t)), v

)
H

+
(
λ′(χn(t))

(
∂twn(t)− λ(χn(t))

)
, v
)
H

∀ v ∈ Vn ∀ t ∈ [0, tn]

wn(0) = 0 and ∂twn(0) = η0n (5.14)

χn(0) = χ0n. (5.15)
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Of course, any solution to Problem (P2)ε,n has the form

wn(t) =
n∑
i=1

ain(t)vi and χn(t) =
n∑
i=1

bin(t)vi

for some ain ∈ C2([0, tn]) and bin ∈ C1([0, tn]) and Problem (5.10–15) consists

in a Cauchy problem for a system of nonlinear ordinary integrodifferential equations.

Therefore, taking advantage of (2.1–3), (5.4–6) and (3.3), standard arguments show that

Problem (5.10–15) admits a local solution (wn, χn) defined on some interval [0, tn]
with tn small enough.

6. Existence. Our aim is now proving the existence of the solution to Problem

(3.5–14) stated in Theorem 3.2. Hence, in addition to (5.4), we require that

η0n → η0 and χ0n → χ0 in V (6.1)

as n→∞ . Moreover, after splitting g as

g = g1 + g2 with g1 ∈W 1,1(0, T ;H) and g2 ∈ L1(0, T ;V ) (6.2)

we choose g1
n, g

2
n ∈ C2([0, T];V ) such that

g1
n → g1 in W 1,1(0, T ;H) (6.3)

g2
n → g2 in L1(0, T ;V ) (6.4)

and set

gn = g1
n + g2

n.

Warning 6.1. We are going to deduce a priori estimates and pass to the limit, first

as n → ∞ , then as ε → 0 . For this reason, we are always allowed to assume ε

small enough and n large enough, depending on ε . This restriction on the parameters

will not be pointed out in the sequel. Moreover, remark that the second limit can be

avoided whenever β is a Lipschitz continuous function, since we have decided to take

simply βε = β in this case. Concerning the generic constant c , in addition to the

dependences specified in Warning 3.5, henceforth we let c depend also on (cf. (2.7),

(2.9), and (3.4))
∥∥g1
∥∥
W 1,1(0,T ;H)

,
∥∥g2
∥∥
L1(0,T ;V )

, ‖η0‖V , ‖χ0‖V , and ‖φ(χ0)‖L1(Ω) ,

but not on n and ε .

Since φε has a quadratic growth, (6.1) implies that φε(χ0n) converges to φε(χ0)

strongly in L1(Ω) as n → ∞ . Hence, on account of (5.9), without loss of generality

we can assume ∫
Ω

φε(χ0n) ≤ 1 +

∫
Ω

φε(χ0) ≤ 1 +

∫
Ω

φ(χ0) (6.5)
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for any n and any ε .

First a priori estimate. Take v = ∂twn(t) in equation (5.12) and integrate in time

over [0, t] . Then we have

1

2
‖∂twn(t)‖2H +

k(0)

2
‖∇wn(t)‖2H =

9∑
j=7

Ij(t) +
1

2
‖η0n‖2H (6.6)

where

I7(t) :=−
∫∫
Qt

(k′ ∗ ∇wn) · ∇∂twn (6.7)

I8(t) :=

∫∫
Qt

(k ∗ ∇λ(χn)) · ∇∂twn (6.8)

I9(t) :=

∫∫
Qt

gn∂twn (6.9)

for any t ∈ [0, tn] .

Next, consider equation (5.13), choose v = ∂tχn(t) , and integrate over [0, t] .

We obtain

µ

∫ t

0

‖∂tχn(s)‖2H ds+
ν

2
‖∇χn(t)‖2H +

∫ t

0

(
βε(χn(s)), ∂tχn(s)

)
H
ds (6.10)

= I10(t) + I11(t) +
ν

2
‖∇χ0n‖2H

where

I10(t) :=

∫∫
Qt

γ(∂twn, χn)∂tχn (6.11)

I11(t) :=

∫∫
Qt

λ′(χn)
(
∂twn − λ(χn)

)
∂tχn. (6.12)

In view of (2.1), an integration by parts in time in (6.7) and (6.8) gives

I7(t) =−
∫

Ω

(k′ ∗ ∇wn)(t) · ∇wn(t) +

∫∫
Qt

(k′(0)∇wn + k′′ ∗ ∇wn) · ∇wn (6.13)

I8(t) =

∫
Ω

(k ∗ ∇λ(χn))(t) · ∇wn(t) (6.14)

−
∫∫
Qt

(
k(0)∇λ(χn) + k′ ∗ ∇λ(χn)

)
· ∇wn

Using (3.20), (3.21), and (2.2), from (6.13–14) we infer

|I7(t)| ≤ k(0)

8
‖∇wn(t)‖2H + c

∫ t

0

‖∇wn(s)‖2H ds (6.15)

|I8(t)| ≤ k(0)

8
‖∇wn(t)‖2H + c

∫ t

0

{
‖∇wn(s)‖2H + ‖∇χn(s)‖2H

}
ds (6.16)
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Regarding (6.9), one easily derives

|I9(t)| ≤
∫ t

0

‖gn(s)‖H ‖∂twn(s)‖H ds. (6.17)

On the other hand, recalling (5.7) and (5.15) we have∫ t

0

(
βε(χn(s)), ∂tχn(s)

)
H
ds =

∫
Ω

φε(χn(t))−
∫

Ω

φε(χ0n). (6.18)

By (3.3) we see that

|γ(∂twn, χn)| ≤ c
(
|∂twn|+ |χn|+ 1

)
(6.19)

whence, taking advantage of (2.2), the integrals in (6.11–12) can be bounded as follows

|I10(t)|+ |I11(t)| (6.20)

≤ µ

2

∫ t

0

‖∂tχn(s)‖2H ds+ c

{
1 +

∫ t

0

(
‖∂twn(s)‖2H + ‖χn(s)‖2H

)
ds

}
.

Therefore, adding (6.6) to (6.10), the estimates (6.15–18) and (6.20) entail

1

2
‖∂twn(t)‖2H +

k(0)

4
‖∇wn(t)‖2H (6.21)

+
µ

2

∫ t

0

‖∂tχn(s)‖2H ds+
ν

2
‖∇χn(t)‖2H +

∫
Ω

φε(χn(t))

≤ c
∫ t

0

(
‖∇wn(s)‖2H + ‖∂twn(s)‖2H + ‖gn(s)‖H ‖∂twn(s)‖H

)
ds

+ c

∫ t

0

(
‖∇χn(s)‖2H + ‖χn(s)‖2H

)
ds

+ c

{∫
Ω

φε(χ0n) +
1

2
‖η0n‖2H +

ν

2
‖∇χ0n‖2H + 1

}
.

Observe now that (6.1) and (6.5) imply∫
Ω

φε(χ0n) + ‖η0n‖2H + ‖χ0n‖2V ≤ c. (6.22)

Moreover, since χn(t) = χ0n + (1 ∗ ∂tχn)(t) , for any n and any t ∈ [0, tn] we have∫ t

0

‖χn(s)‖2H ds ≤ c
{

1 +

∫ t

0

(∫ s

0

‖∂tχn(r)‖2H dr

)
ds

}
. (6.23)

Hence, taking (6.22–23) into account and using a generalized version of the Gronwall

lemma (cf., e.g., [3] or [6, pp. 156–157]), from (6.21) we derive an upper bound for

‖∂twn(t)‖2H + ‖∇wn(t)‖2H + ‖∂tχn‖2L2(0,t:H) + ‖∇χn(t)‖2H +

∫
Ω

φε(χn(t)).
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In particular, the local solution can be extended to a solution defined on the whole

interval [0, T] , i.e., we can assume tn = T for any n . Thus, owing also to (5.14–15)

and (6.22), we conclude that

‖wn‖L∞(0,T ;V )∩W 1,∞(0,T ;H) ≤ c (6.24)

‖χn‖L∞(0,T ;V )∩H1(0,T ;H) ≤ c (6.25)

‖φε(χn)‖L∞(0,T ;L1(Ω)) ≤ c. (6.26)

Second a priori estimate. Since ∆v ∈ Vn whenever v ∈ Vn , one can take v =

−∆χn in equality (5.13). Integrating by parts in space and time, one obtains

µ

2
‖∇χn(t)‖2H + ν

∫ t

0

‖∆χn(s)‖2H ds+

∫∫
Qt

β′ε(χn)|∇χn|2 (6.27)

= I12(t) + I13(t) +
µ

2
‖∇χ0n‖2H

where

I12(t) :=−
∫ t

0

(
γ(∂twn(s), χn(s)),∆χn(s)

)
H
ds

I13(t) :=−
∫ t

0

(
λ′(χn(s))

(
∂twn(s)− λ(χn(s))

)
,∆χn(s)

)
H
ds

for any t ∈ [0, T] . Using standard inequalities, we get

|I12(t)|+ |I13(t)| ≤ ν

2

∫ t

0

‖∆χn(s)‖2H ds (6.28)

+ c

∫ t

0

(
‖γ(∂twn(s), χn(s))‖2H +

∥∥λ′(χn(s))
(
∂twn(s)− λ(χn(s))

)∥∥2

H

)
ds.

Then, recalling (2.2), (6.19), and (6.24–26), one finds

|I12(t)|+ |I13(t)| ≤ c+
ν

2

∫ t

0

‖∆χn(s)‖2H ds. (6.29)

Combining (6.27) with (6.29), the property β′ε ≥ 0 and (6.22) enable us to achieve

µ

2
‖∇χn(t)‖2H +

ν

2
‖∆χn‖2L2(0,t;H) ≤ c (6.30)

for any t ∈ [0, T] and any n . Hence, on account of (6.25), (6.30), and the associated

boundary condition, well–known regularity results for elliptic problems yield

‖χn‖L2(0,T ;W ) ≤ c. (6.31)
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Third a priori estimate. Since ∂t∆wn ∈ C1([0, T];Vn) thanks to the special

structure of Vn , we can take v = −∂t∆wn(t) in (5.12). Integrating over (0, t) and

applying the Green formula, we get

1

2
‖∂t∇wn(t)‖2H +

k(0)

2
‖∆wn(t)‖2H =

17∑
j=14

Ij(t) +
1

2
‖∇η0n‖2H (6.32)

where

I14(t) :=−
∫ t

0

(
(k′ ∗∆wn)(s), ∂t∆wn(s)

)
H
ds (6.33)

I15(t) :=

∫ t

0

(
(k ∗∆λ(χn)(s), ∂t∆wn(s)

)
H
ds (6.34)

I16(t) :=−
∫ t

0

(
g1
n(s), ∂t∆wn(s)

)
H
ds (6.35)

I17(t) :=−
∫ t

0

(
g2
n(s), ∂t∆wn(s)

)
H
ds. (6.36)

Consider (6.33). An integration by parts in time gives

I14(t) = −
(
(k′ ∗∆wn)(t),∆wn(t)

)
H

+

∫ t

0

(
k′(0)∆wn(s) + (k′′ ∗∆wn)(s),∆wn(s)

)
H
ds.

Therefore, using (2.1) and (3.21–22) we deduce that

|I14(t)| ≤ k(0)

8
‖∆wn(t)‖2H + c

∫ t

0

‖∆wn(s)‖2H ds. (6.37)

In view of (2.1–2), I15(t) can be rewritten as

I15(t) =
(
(k ∗∆λ(χn))(t),∆wn(t)

)
H

(6.38)

−
∫ t

0

(
k(0)∆λ(χn(s)),∆wn(s)

)
H
ds−

∫ t

0

(
(k′ ∗∆λ(χn))(s),∆wn(s)

)
H
ds

and the computation of ∆λ(χn) provides

∆λ(χn) = λ′′(χn)|∇χn|2 + λ′(χn)∆χn.

The sum (6.38) splits into six terms, three of which, e.g.

I15,1(t) :=
((
k ∗
(
λ′′(χn)|∇χn|2

))
(t),∆wn(t)

)
H

(6.39)
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are not trivial, unless λ′′ identically vanishes. By (3.21) I15,1(t) can be treated this way,

|I15,1(t)| ≤ c
(∫ t

0

|∇χn(s)|2 ds, |∆wn(t)|
)
H

≤ c
∫ t

0

(
|∇χn(s)|2, |∆wn(t)|

)
H
ds ≤ c

∫ t

0

‖∆wn(t)‖H
∥∥|∇χn(s)|2

∥∥
H
ds

≤ c ‖∆wn(t)‖H
∫ t

0

‖∇χn(s)‖2L4(Ω) ds.

With the help of (4.13), bound (6.31) entails

|I15,1(t)| ≤ c ‖∆wn(t)‖H ‖χn‖
2
L2(0,T ;W ) ≤

k(0)

16
‖∆wn(t)‖2H + c.

Since the other five terms deriving from (6.38) can be handled similarly, we infer the

estimate

|I15(t)| ≤ k(0)

8
‖∆wn(t)‖2H + c

(
1 +

∫ t

0

‖∆wn(s)‖2H ds

)
. (6.40)

Integrating by parts in (6.35), we have (see also (5.14))

I16(t) = −
(
g1
n(t),∆wn(t)

)
H

+

∫ t

0

(
∂tg

1
n(s),∆wn(s)

)
H
ds

which allows us to derive

|I16(t)| ≤ k(0)

8
‖∆wn(t)‖2H + c+

∫ t

0

∥∥∂tg1
n(s)

∥∥
H
‖∆wn(s)‖H ds. (6.41)

To deal with I17(t) (cf. (6.36)) we can use the Green formulas. It results that

|I17(t)| ≤
∫ t

0

∥∥∇g2
n(s)

∥∥
H
‖∂t∇wn(s)‖H ds. (6.42)

Collecting inequalities (6.37) and (6.40–42), from (6.32) we conclude

1

2
‖∂t∇wn(t)‖2H +

k(0)

8
‖∆wn(t)‖2H

≤ 1

2
‖∇η0n‖2H + c

(
1 +

∫ t

0

‖∆wn(s)‖2H ds

)
+

∫ t

0

(∥∥∂tg1
n(s)

∥∥
H
‖∆wn(s)‖H +

∥∥g2
n(s)

∥∥
V
‖∂t∇wn(s)‖H

)
ds

for any time t ∈ [0, T] . Now, it suffices to recall (6.1–4) and to apply the generalized

Gronwall lemma in the form of [3]. Thus we get

‖∂t∇wn(t)‖2H + ‖∆wn(t)‖2H ≤ c
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for any t ∈ [0, T] and any n , whence, on account of (6.24), it comes out that

‖wn‖W 1,∞(0,T ;V )∩L∞(0,T ;W ) ≤ c. (6.43)

Fourth a priori estimate. From (5.12), thanks to (6.24–25), (6.31), (6.43), (6.3–4)

and arguing as in the proof of (6.40), we deduce∣∣(∂2
twn(t), v

)
H

∣∣ ≤ c ‖∆wn(t)‖H ‖v‖H + c ‖∆wn‖L2(0,T ;H) ‖v‖H (6.44)

+ c ‖∆λ(χn)‖L2(0,T ;H) ‖v‖H + c ‖gn(t)‖H ‖v‖H
≤ c

(
1 +

∥∥g2
n(t)

∥∥
H

)
‖v‖H

for any v ∈ Vn and any t ∈ [0, T] . Therefore, choosing v = ∂2
twn(t) , we achieve that∥∥∂2

twn(t)
∥∥
H
≤ c
(
1 +

∥∥g2
n(t)

∥∥
H

)
and consequently∥∥∂2

twn
∥∥
L1(0,T ;H)

≤ c. (6.45)

First limit. Here we let n → ∞ and show that the solution of the approximating

problem tends to a solution of Problem (3.5–14), where β is replaced with βε .

Estimates (6.43) and (6.24) for {wn} , estimates (6.25) and (6.31) for {χn} , and

well–known weak or weak* compactness results ensure the existence of a pair (wε, χε)

such that, at least for a subsequence of n→∞ ,

wn
∗
⇀ wε in L∞(0, T ;W ) (6.46)

∂twn
∗
⇀ ∂tw

ε in L∞(0, T ;V ) (6.47)

χn
∗
⇀ χε in L∞(0, T ;V ) (6.48)

χn ⇀ χε in H1(0, T ;H) ∩ L2(0, T ;W ). (6.49)

In view of the next subsection, note that, as the constants in (6.43), (6.25),

and (6.31) have the dependences specified in Warning 6.1 (in particular, they do not

depend on ε ), for any ε > 0 it happens that

‖wε‖W 1,∞(0,T ;V )∩L∞(0,T ;W ) ≤ c (6.50)

‖χε‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ c. (6.51)

Now, it is a standard matter to see that (6.46–49) and the generalized Ascoli

theorem (cf., e.g., [40, Cor. 4, Sec. 8]) entail

wn → wε in C0([0, T];V ) (6.52)

χn → χε in C0([0, T];H) ∩ L2(0, T ;V ). (6.53)

Moreover, (6.46–47) and the boundedness property (6.45) enable us to obtain the further

strong convergence (see [40] again)

∂twn → ∂tw
ε in Lp(0, T ;H) ∀ p ∈ [1,∞[. (6.54)
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Therefore, as the functions λ, λ′, βε and γ are Lipschitz continuous, one can easily

conclude that

λ(χn)→ λ(χε) in C0([0, T];H) (6.55)

λ′(χn)→ λ′(χε) in C0([0, T];H) (6.56)

βε(χn)→ βε(χ
ε) in C0([0, T];H) (6.57)

γ(∂twn, χn)→ γ(∂tw
ε, χε) in L2(0, T ;H). (6.58)

So, if we remind (6.3–4) and set ξε = βε(χ
ε) , reasoning as in [32, pp. 13–14], one

checks that the triplet (wε, χε, ξε) fulfills

wεtt − k(0)∆wε = g1 + g2 + k′ ∗∆wε − k ∗∆λ(χε) a.e. in Q (6.59)

µχεt − ν∆χε + ξε = γ(wεt , χ
ε) + λ′(χε)(wεt − λ(χε)) a.e. in Q (6.60)

as well as the boundary and initial conditions (3.12–14). All this makes (wε, χε, ξε) a

solution to Problem (3.5–14) with β replaced by βε .

Remark 6.2. Observe that (wε, χε, ξε) is the limit of the whole sequence of approx-

imating solutions, because of uniqueness, which of course holds for (wε, χε, ξε) too.

Remark 6.3. If β is a Lipschitz continuous function, then the existence proof is

complete since we have just taken βε = β in this case.

Let us point out one consequence of our procedure. Since ε is fixed, the function

φε has a quadratic growth and (6.53), (6.26) yield

φε(χn)→ φε(χ
ε) in C0([0, T];L1(Ω)) (6.61)

‖φε(χε)‖L∞(0,T ;L1(Ω)) ≤ c. (6.62)

Conclusion of the proof. Finally, we let ε → 0 and show that (wε, χε, ξε) tends

to a solution of Problem (3.5–14).

Recalling estimates (6.50–51) and assumptions (2.1–2), (6.2), by comparison in

equation (6.59) one realizes that∥∥wεtt − g2
∥∥
L∞(0,T ;H)

≤ c.

Then we can find a pair (w,χ) satisfying (3.5–7) such that, possibly taking a subse-

quence, (wε, χε) converges to (w,χ) weakly or weakly* or strongly in the appropriate

spaces, as in the previous subsection, with the additional weak* convergence

wεtt − g2 ∗⇀ wtt − g2 in L∞(0, T ;H)
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and, consequently, the strong convergence

wεt → wt in C0([0, T];H)

which improves (6.54). Moreover, the passage to the limit is even simpler than before

provided we change the procedure regarding the deduction of (3.8–9).

Here is the new argument. By (2.2) and (3.3), a comparison in (6.60) gives

‖ξε‖L2(Q) = ‖βε(χε)‖L2(Q) ≤ c. (6.63)

Thus we may suppose

ξε ⇀ ξ in L2(Q) (6.64)

for some ξ ∈ L2(Q) , so that, on account of (6.64) and (6.53), we get

lim
ε→0

∫∫
Q

ξεχε =

∫∫
Q

ξχ.

In view of [4, Prop. 1.1, p. 42], this ensures (3.9) and completes the proof that (w,χ, ξ)

solves Problem (3.5–14).

In order to achieve Theorem 3.2, it remains to check (3.16) and (2.22). We now

show (2.22), postponing (3.16) in the last section.

Note that (6.62) reads∫
Ω

φε(χ
ε(t)) ≤ c ∀ t ∈ [0, T] ∀ ε > 0.

Since χε converges strongly to χ in C0([0, T];V ) , for any fixed t ∈ [0, T] we can

choose a sequence {εk} tending to 0 such that the corresponding sequence {χεk(t)}
converges to χ(t) a.e. in Ω . Hence, by virtue of (5.9) and (6.62) we have that

φεk(χεk(t))→ φ(χ(t)) a.e. in Ω and

∫
Ω

φεk(χεk(t)) ≤ c.

Then, since φε ≥ 0, we can use the Fatou lemma and claim that the last estimate holds

also for φ(χ(t)) , whence (2.22) follows.

Remark 6.4. Note that the whole family {(wε, χε, ξε)} converges to the solution of

Problem (3.5–14), thanks to the uniqueness result proved in Section 4.

Remark 6.5. The restriction to the dimension is due to the use of (4.13) in esti-

mating the integral (6.34). Therefore, it is clear that our proof holds unchanged up to

dimension 4 since (4.13) remains true if Ω ⊂ IR4 . Moreover, if λ′′ vanishes, then the

inequality (4.13) is no longer needed in the derivation of (6.40). This implies that the

proof works in any dimension if λ is linear.
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7. Proof of Theorem 3.3. At this point, we know that the solution to the

approximating problem (5.10–15) tends, first as n → ∞ and then as ε → 0 , to the

solution to Problem (3.5–14). Thus, in order to prove Theorem 3.3, it is enough to

establish the corresponding a priori estimates on the solution to the approximating

problem, i.e.

‖χn‖W 1,∞(0,T ;H)∩H1(0,T ;V )∩L∞(0,T ;W ) ≤ c. (7.1)

Owing to the further assumptions (2.23–24), we can require that

‖χ0n‖W ≤ C (7.2)

in addition to (6.1), (6.3–4). Note that (7.2) makes sense because χ0n ∈ Vn and

Vn ⊂ {v ∈W : ∂nv = 0 on Γ} ∀n ∈ IN.

Moreover, the constants c are allowed to depend on ‖χ0‖W and
∥∥β0(χ0)

∥∥
H

besides

all the other quantities specified in Warnings 3.5 and 6.1.

Set t = 0 in (5.13). Taking (5.14–15) into account, we obtain

µ
(
∂tχn(0), v

)
H

+

∫
Ω

∇χ0n · ∇v +
(
βε(χ0n), v

)
H

(7.3)

=
(
γ(η0n, χ0n) + λ′(χ0n)

(
η0n − λ(χ0n)

)
, v
)
H

for any v ∈ Vn . Then, recalling (3.3), (2.2), and (7.2), one easily infers

‖∂tχn(0)‖H ≤ c (‖∆χ0n‖H + ‖βε(χ0n)‖H + ‖η0n‖H + ‖χ0n‖H + 1)

Remarking that (2.24) and (5.8) entail

‖βε(χ0n)‖H ≤ ‖β
′
ε‖L∞(IR) ‖χ0n − χ0‖H + ‖βε(χ0)‖H ≤ 1 +

∥∥β0(χ0)
∥∥
H

(cf. Warning 6.1), we have that

‖∂tχn(0)‖H ≤ c. (7.4)

Next, differentiating (5.13) we get

µ
(
∂2
t
χn(t), v

)
H

+ ν

∫
Ω

∂t∇χn(t) · ∇v +
(
β′ε(χn(t))∂tχn(t), v

)
H

=
(
γ1

(
∂twn(t), χn(t)

)
∂2
twn(t), v

)
H

+
(
γ2

(
∂twn(t), χn(t)

)
∂tχn(t), v

)
H

+
(
λ′′(χn(t))

(
∂twn(t)− λ(χn(t))

)
∂tχn(t), v

)
H

+
(
λ′(χn(t))

(
∂2
twn(t)− λ′(χn(t))∂tχn(t)

)
, v
)
H
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for any v ∈ Vn . Choosing v = ∂tχn(t) and integrating lead to

µ

2
‖∂tχn(t)‖2H + ν

∫ t

0

‖∂t∇χn(s)‖2H ds+

∫∫
Qt

β′ε(χn)|∂tχn|2 (7.5)

=
µ

2
‖∂tχn(0)‖2H + I18(t) + I19(t) + I20(t)

where

I18(t) :=

∫ t

0

((
γ1(∂twn(s), χn(s)) + λ′(χn(s))

)
∂2
twn(s), ∂tχn(s)

)
H
ds (7.6)

I19(t) :=

∫∫
Qt

(
γ2(∂twn, χn)− |λ′(χn)|2

)
|∂tχn|2 (7.7)

I20(t) :=

∫∫
Qt

λ′′(χn) (∂twn − λ(χn)) |∂tχn|2 (7.8)

for any t ∈ [0, T] . Owing to (3.3), (2.2), and (6.44), from (7.6) we infer

|I18(t)| ≤ c
∫ t

0

(
1 +

∥∥g2
n(s)

∥∥
H

)
‖∂tχn(s)‖H ds. (7.9)

Similarly, for (7.7) we see that

|I19(t)| ≤ c
∫ t

0

‖∂tχn(s)‖2H ds. (7.10)

Regarding (7.8), we easily obtain

|I20(t)| ≤ c
∫∫
Qt

(1 + |χn|+ |∂twn|) |∂tχn|2. (7.11)

Letting s ∈ [0, t] , observe that, for instance, the Hölder inequality gives∥∥∂twn(s)|∂tχn(s)|2
∥∥
L1(Ω)

≤ ‖∂twn(s)‖L4(Ω) ‖∂tχn(s)‖L4(Ω) ‖∂tχn(s)‖H .

Thus, by (4.13), it is straightforward to deduce∥∥∂twn(s)|∂tχn(s)|2
∥∥
L1(Ω)

≤ c ‖∂twn(s)‖V ‖∂tχn(s)‖V ‖∂tχn(s)‖H .

Then, to control the right hand side of (7.11), we exploit (6.25) and (6.43) in deriving∫
Ω

(|χn(s)|+ |∂twn(s)|) |∂tχn(s)|2 ≤ c ‖∂tχn(s)‖V ‖∂tχn(s)‖H

for any s ∈ [0, t] , whence we can conclude that

|I20(t)| ≤ ν

2

∫ t

0

‖∂t∇χn(s)‖2H ds+ c

∫ t

0

‖∂tχn(s)‖2H ds. (7.12)
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As β′ε ≥ 0 , a combination of (7.4), (7.9–10), and (7.12) with (7.5) yields

µ

2
‖∂tχn(t)‖2H +

ν

2

∫ t

0

‖∂t∇χn(s)‖2H ds

≤ c
(

1 +

∫ t

0

(
1 +

∥∥g2
n(s)

∥∥
H

)
‖∂tχn(s)‖H ds+

∫ t

0

‖∂tχn(s)‖2H ds

)
and the generalized Gronwall lemma of [3] entails

‖∂tχn(t)‖2H + ‖∂tχn‖2L2(0,t;V ) ≤ c ∀ t ∈ [0, T]. (7.13)

Now, write down equation (5.13) in the form

ν

∫
Ω

∇χn(t) · ∇v +
(
βε(χn(t)), v

)
H

=
(
Fn(t), v

)
H

(7.14)

with

Fn(t) = −µ∂tχn(t) + γ(∂twn(t), χn(t)) + λ′(χn(t))
(
∂twn(t)− λ(χn(t))

)
(7.15)

and note that

‖Fn‖L∞(0,T ;H) ≤ c (7.16)

thanks to (7.13), (3.3), (2.2), (6.43), and (6.25). Therefore, choosing v = −∆χn(t)

in (7.14) and integrating by parts only in space, it is not difficult (cf. (6.27)) to get

‖∆χn‖L∞(0,T ;H) ≤ c. (7.17)

Then (6.25), (7.13), and (7.17) imply (7.1) and the proof is thus complete.

Remark 7.1. Since (4.13) has been invoked just to estimate the integral I20 involv-

ing λ′′ , the claims of Remark 6.5 still hold.

8. Further regularity. In view of the statement of Theorem 3.4, here we start

proving that

w ∈W 2,∞(0, T ;V ) ∩W 1,∞(0, T ;W ) (8.1)

χ ∈W 1,∞(0, T ;V ) ∩H1(0, T ;W ) (8.2)

and refer to the last section for the verification of (3.18) and (2.33).

Arguing as before, in order to prove (8.1–2) it suffices to establish the correspond-

ing a priori estimates on the solution to the approximating problem, i.e.

‖wn‖W 2,∞(0,T ;V )∩W 1,∞(0,T ;W ) ≤ c (8.3)

‖χn‖W 1,∞(0,T ;V )∩H1(0,T ;W ) ≤ c. (8.4)
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In this case we assume (2.27–31) on the data of Problem (3.5–14). Moreover, thanks

to (2.26) and (2.28) we can require that β is globally Lipschitz continuous and take

βε = β . Finally, in addition to (6.1) and (6.3–4) we ask that

χ0n ∈ H3(Ω) ∩ Vn ∀n ∈ IN (8.5)

‖η0n‖W + ‖χ0n‖H3(Ω) ≤ C (8.6)∥∥g1
n

∥∥
W 2,1(0,T ;H)

+
∥∥g2
n

∥∥
W 1,1(0,T ;V )

+ ‖gn(0)‖V ≤ C. (8.7)

Concerning the dependences of the generic constant c , besides what stated in Warn-

ing 6.1, in this section we let c depend also on the norms of the data of (P2) related

to (2.27–29), (3.17), and (2.31).

Setting for convenience

un := ∂twn, zn := ∂tχn (8.8)

and taking the regularity of λ, gn, β, and γ into account, it is clear that

un ∈ C2([0, T];Vn), zn ∈ C1([0, T];Vn) (8.9)

and that (un, zn) fulfills (cf. (3.20))(
∂2
t un(t), v

)
H

+

∫
Ω

k(0)∇un(t) · ∇v (8.10)

= −
∫

Ω

∇
(
k′ ∗ un − k(0)λ(χn)− k′ ∗ λ(χn)

)
(t) · ∇v +

(
∂tgn(t), v

)
H

µ
(
∂tzn(t), v

)
H

+ ν

∫
Ω

∇zn(t) · ∇v +
(
β′(χn(t))zn(t), v

)
H

(8.11)

=
(
γ1(un(t), χn(t))∂tun(t), v

)
H

+
(
γ2(un(t), χn(t))zn(t), v

)
H

+
(
λ′′(χn(t))

(
un(t)− λ(χn(t))

)
zn(t), v

)
H

+
(
λ′(χn(t))

(
∂un(t)− λ′(χn(t))zn(t)

)
, v
)
H
.

The initial conditions for un and zn can be easily computed. They are

un(0) = η0n, ∂tun(0) = gn(0), and zn(0) = z0n (8.12)

where

z0n := µ−1
(
ν∆χ0n − β(χ0n) + γ(η0n, χ0n) + λ′(χ0n) (η0n − λ(χ0n))

)
. (8.13)

Let us choose v = −∂t∆un(t) in (8.10) and v = −∆zn(t) in (8.11) and integrate

as usual. Adding term by term, we obtain

1

2
‖∂t∇un(t)‖2H +

k(0)

2
‖∆un(t)‖2H +

µ

2
‖∇zn(t)‖2H + ν

∫ t

0

‖∆zn(s)‖2H ds (8.14)

=
1

2
‖∇gn(0)‖2H +

k(0)

2
‖∆η0n‖2H +

µ

2
‖∇z0n‖2H +

30∑
j=21

Ij(t)
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where

I21(t) := −
∫ t

0

(
(k′ ∗∆un)(s), ∂t∆un(s)

)
H
ds (8.15)

I22(t) :=

∫ t

0

(
k(0)∆λ(χn(s)), ∂t∆un(s)

)
H
ds (8.16)

I23(t) :=

∫ t

0

((
k′ ∗∆λ(χn)

)
(s), ∂t∆un(s)

)
H
ds (8.17)

I24(t) := −
∫ t

0

(
∂tg

1
n(s), ∂t∆un(s)

)
H
ds (8.18)

I25(t) := −
∫ t

0

(
∂tg

2
n(s), ∂t∆un(s)

)
H
ds (8.19)

I26(t) :=

∫ t

0

(
β′(χn(s))zn(s),∆zn(s)

)
H
ds (8.20)

I27(t) := −
∫ t

0

(
γ1(un(s), χn(s))∂tun(s),∆zn(s)

)
H
ds (8.21)

I28(t) := −
∫ t

0

(
γ2(un(s), χn(s))zn(s),∆zn(s)

)
H
ds (8.22)

I29(t) := −
∫ t

0

(
λ′′(χn(s))

(
un(s)− λ(χn(s))

)
zn(s),∆zn(s)

)
H
ds (8.23)

I30(t) := −
∫ t

0

(
λ′(χn(s))

(
∂tun(s)− λ′(χn(s))zn(s)

)
,∆zn(s)

)
H
ds (8.24)

for any t ∈ [0, T] . Before proceeding to estimate these integrals, it is worth recalling

that, owing to (6.43–44), (8.7), and (7.1), we have

‖un‖L∞(0,T ;V ) ≤ c, ‖∂tun‖L∞(0,T ;H) ≤ c (8.25)

‖χn‖L∞(Q) ≤ c, ‖zn‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c (8.26)

the third bound deriving from (7.1) and the continuous embedding W ⊂ C0(Ω) .

The integral I21 can be treated with the same arguments we have used to deal

with the integral I14 given by (6.33). Thus we get

|I21(t)| ≤ k(0)

12
‖∆un(t)‖2H + c

∫ t

0

‖∆un(s)‖2H ds. (8.27)

After integration by parts in time, I22 can be rewritten as I22,1 + I22,2 where

I22,1(t) = k(0)
(
λ′′(χn(t))|∇χn(t)|2 + λ′(χn(t))∆χn(t),∆un(t)

)
H

− k(0)
(
λ′′(χ0n)|∇χ0n|2 + λ′(χ0n)∆χ0n,∆η0n

)
H

− k(0)

∫ t

0

(
λ′′′(χn(s))|∇χn(s)|2zn(s),∆un(s)

)
H
ds

and
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I22,2(t) = −2k(0)

∫ t

0

(
λ′′(χn(s))∇χn(s) · ∇zn(s),∆un(s)

)
H
ds

− k(0)

∫ t

0

(
λ′′(χn(s))∆χn(s) zn(s),∆un(s)

)
H
ds

− k(0)

∫ t

0

(
λ′(χn(s))∆zn(s),∆un(s)

)
H
ds.

We now deal with the nasty terms of the above expansion, using the assumptions on λ ,

the continuous embedding W ⊂ C0(Ω) , and (4.13). With the help of (8.25–26) and (7.1)

we infer that∣∣(λ′′′(χn(s))|∇χn(s)|2zn(s),∆un(s)
)
H

∣∣
≤ c ‖∇χn(s)‖2L4(Ω) ‖zn(s)‖W ‖∆un(s)‖H ≤ c ‖zn(s)‖W ‖∆un(s)‖H

and that ∣∣(λ′′(χn(s))∇χn(s) · ∇zn(s),∆un(s)
)
H

∣∣ ≤ c ‖zn(s)‖W ‖∆un(s)‖H

as well as ∣∣(λ′′(χn(s))∆χn(s) zn(s),∆un(s)
)
H

∣∣ ≤ c ‖zn(s)‖W ‖∆un(s)‖H

for any s ∈ [0, t] . Therefore, taking advantage of (8.6), it follows

|I22,1(t)|+ |I22,2(t)| ≤ k(0)

12
‖∆un(t)‖2H (8.28)

+
ν

8

∫ t

0

‖∆zn(s)‖2H ds+ c

(
1 +

∫ t

0

‖∆un(s)‖2H ds

)
.

Arguing as for I15, I16 , and I17 (see (6.34–36)) and recalling (6.40–42), we obtain

25∑
j=23

|Ij(t)| ≤
k(0)

12
‖∆un(t)‖H + c

(
1 +

∫ t

0

‖∆un(s)‖2H ds

)
(8.29)

+ c

∫ t

0

(∥∥∂2
t g

1
n(s)

∥∥
H
‖∆un(s)‖H +

∥∥∂t∇g2
n(s)

∥∥
H
‖∂t∇un(s)‖H

)
ds

while (2.28), (3.3), and (8.25–26) imply that

28∑
j=26

|Ij(t)| ≤
ν

8

∫ t

0

‖∆zn(s)‖2H ds+ c. (8.30)

In order to estimate I29 , by (4.13) and (8.25) we deduce∫
Ω

|un(s)zn(t)∆zn(s)| ≤ c ‖zn(s)‖V ‖∆zn(s)‖H ∀ s ∈ [0, t]
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and consequently, thanks to (8.26),

|I29(t)| ≤ ν

8

∫ t

0

‖∆zn(s)‖2H ds+ c. (8.31)

The last term is easier to control, namely

|I30(t)| ≤ ν

8

∫ t

0

‖∆zn(s)‖2H ds+ c. (8.32)

As all previous integrals have been examined, combining (8.14) with (8.27–32) and

owing to (8.13), (8.6), and (8.7), we achieve

1

2
‖∂t∇un(t)‖2H +

k(0)

4
‖∆un(t)‖2H +

µ

2
‖∇zn(t)‖2H +

ν

2

∫ t

0

‖∆zn(s)‖2H ds

≤ c
(

1 +

∫ t

0

‖∆un(s)‖2H ds

)
+c

∫ t

0

(∥∥∂2
t g

1
n(s)

∥∥
H
‖∆un(s)‖H +

∥∥∂t∇g2
n(s)

∥∥
H
‖∂t∇un(s)‖H

)
ds

for any n and any t ∈ [0, T] . Hence the generalized Gronwall lemma gives

‖∂t∇un‖L∞(0,T ;H) + ‖∆un‖L∞(0,T ;H) + ‖∇zn‖L∞(0,T ;H) + ‖∆zn‖L2(0,T ;H) ≤ c. (8.33)

Then, in view of (8.8), the collection of (6.43), (7.1), and (8.33) leads to (8.3–4) and the

proof of (8.1–2) is complete.

9. Final remarks on regularity. This section is devoted to check the time

continuity (3.16) of Theorem 3.2 and to show the validity of (2.33) and (3.18) in Theo-

rem 3.4, that is,

w ∈ C1([0, T];V ) ∩ C0([0, T];W ) (9.1)

w ∈W 3,1(0, T ;H) ∩ C2([0, T];V ) ∩ C1([0, T];W ) (9.2)

χ ∈ H2(0, T ;H) ∩ C1([0, T];V ). (9.3)

Doing this, we definitely conclude the proofs of our results.

Setting

f = g + k′ ∗∆w − k ∗∆λ(χ) (9.4)

note that w solves a linear problem of this type (cf. (3.10), (3.12–13))

utt − k(0)∆u = F a.e. in Q (9.5)

∂nu = 0 on Σ (9.6)

u(0) = u0 and ut(0) = u1 in Ω (9.7)
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where F = f , u0 = 0 , and u1 = η0 . The variable u here has nothing to do with the

un employed in the previous section. With the help of (2.7), (2.1), (2.2), (3.5), (3.7),

(3.4), and also of (4.13), if λ is nonlinear, it is not difficult to check that

F ∈W 1,1(0, T ;H) + L1(0, T ;V ) (9.8)

u0 ∈W and ∂nu0 = 0 on Σ (9.9)

u1 ∈ V. (9.10)

Thus, on account of [17, Lemma 5.1] (see [3] for an abstract approach), (9.1) follows.

In order to prove (9.2), let us verify that

f ∈W 2,1(0, T ;H) +W 1,1(0, T ;V ). (9.11)

Recalling (2.29), it is sufficient to realize that

∂t
(
k′ ∗∆w − k ∗∆λ(χ)

)
∈W 1,1(0, T ;H).

But this is ensured by (2.1), (8.1), (2.27), and (8.2) (cf. (2.26) as well). Then, by

applying the results of [24], one derives that

w ∈ C2([0, T];V ) ∩ C1([0, T];W ).

Alternatively, one can remark that, by (3.10), (3.13), and (2.29), wtt(0) = g(0) ∈ V

and, by (3.17), wt(0) ∈ W with ∂nwt(0) = 0 on Σ . Hence, wt solves (9.5–7) where

the data F = ft , u0 = η0 , and u1 = g(0) satisfy (9.8–10). Moreover, by comparison

in (9.5), one gets

wttt (= utt) ∈ C0([0, T];H) + L1(0, T ;V )

and consequently w fulfills (9.2).

It remains to show (9.3). In view of (3.11–14), (3.9), (2.27–28), (3.3), (8.1–2),

and (2.31), χt solves the following linear parabolic problem

µut − ν∆u = F a.e. in Q (9.12)

∂nu = 0 on Σ (9.13)

u(0) = u0 in Ω (9.14)

with

F = − β′(χ)χt + γ1(wt, χ)wtt + γ2(wt, χ)χt

+ λ′′(χ)χt (wt − λ(χ)) + λ′(χ) (wtt − λ′(χ)χt)

u0 = ν∆χ0 − β(χ0) + γ(η0, χ0) + λ′(χ0) (η0 − λ(χ0)) .

Thanks to (9.2), (8.2), (3.17), and (2.31) it is straightforward to find that

F ∈ L∞(0, T ;H) (9.15)

u0 ∈ V. (9.16)

This implies (cf., e.g., [3])

χt (= u) ∈ H1(0, T ;H) ∩ C0([0, T];V ) ∩ L2(0, T ;W )

whence χ satisfies (9.3).
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[29] N. Kenmochi and M. Niezgódka, Evolution systems of nonlinear variational inequalities

arising from phase change problems, Nonlinear Anal., 22 (1994), 1163–1180.
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[31] Ph. Laurençot, Solutions to a Penrose–Fife model of phase–field type, J. Math. Anal. Appl.,

185 (1994), 262–274.
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