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1. Introduction

In this paper we study the evolution inclusion

(1.1)
du

dt
(t) +A[∂Φ(u(t)) +Bu(t)] ∋ g(t) in V ′

for t varying in a time interval (0, T ), where V ′ is the dual of a reflexive Banach

space V and Φ is a proper, convex, and lower semicontinuous functional on a Hilbert

space H (in which V is compactly and densely embedded) with values in R∪{+∞};
hence its subdifferential ∂Φ is maximal monotone on H . The symbol B stands for a
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continuous possibly nonlinear operator fromH to V . Finally, A is a linear continuous

symmetric operator from V to V ′ with a nontrivial null-space, and g : (0, T ) → V ′

is a given function. We will see in Section 3 that the structure of equation (1.1)

guarantees that ∂Φ(u)∩ V is nonempty and so A[∂Φ(u) +B(u)] is well-defined. For

other types of doubly nonlinear evolution equations the reader may refer to [9], [10]

and the references therein.

The abstract problem (1.1) was inspired by a model of Cahn-Hilliard type for

phase separation in a two-phase system involving nonlocal interactions presented by

Gajewski and Zacharias in [14]. The Cahn-Hilliard model itself goes back to [7] and

a fairly complete review on the recent related literature can be found e.g. in [20].

The authors of [14] consider the system

∂u

∂t
− div(µ∇v) = 0, µ = µ(x,∇v, u) =

a(x,∇v)
f ′′(u)

,(1.2)

v = f ′(u) + w, w(x, t) =

∫

Ω

K(|x − y|)(1 − 2u(y, t)) dy(1.3)

in Ω × (0, T ), where Ω ⊂ Rn is a Lipschitzian domain. The equations are coupled

with the boundary condition

µ
∂v

∂ν
= 0 on ∂Ω × (0, T ).

Here the variable u represents the local relative concentration of one of the two

phases, that is, u(x, t) ∈ [0, 1] for all admissible x ∈ Ω and t ∈ (0, T ), v is the

chemical potential, and f ′, f ′′ are the first and the second derivatives, respectively,

of a given convex function f (in fact, only the case f(u) = u logu+(1−u) log(1−u)
is considered). The function a in the formula for the mobility µ and the kernel K
are assumed to satisfy appropriate natural technical hypotheses.

The model is compatible with the general scheme of [6], [8], [15] that consists in

choosing the free energy of the form

(1.4) F (u) =

∫

Ω

{
f(u)(x)+k1(x)u(x)(1−u(x))+

1

2

∫

Ω

K(x, y)|u(x)−u(y)|2 dy

}
dx

with a more general symmetric kernel K of two variables and k1(x) =
∫
Ω
K(x, y) dy.

Under the hypothesis that the mass flux is proportional to the negative gradient of

the external thermodynamic force, we write the mass balance in the form

(1.5)
∂u

∂t
= − div

{
−µ∇

(δF
δu

)
[u]
}

+ g.
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Here δF/δu stands for the variational derivative of F with respect to u, and g rep-

resents an external source. The results of [14] include the existence and uniqueness

of solutions and a proof that stationary solutions exist in the ω-limit sets of global

solutions.

The aim of the present paper is to establish a general Hilbert-space framework for

such situations when the mobility coefficient µ can be assumed to be constant (and,

in particular, independent of f ′′(u)). This choice has however some justification and

was followed in a number of contributions for the standard Cahn-Hilliard equation

(let us refer again to [20]), and in particular, it has been recently considered by the

authors of the paper [4] in which a nonlocal Cahn-Hilliard equation is investigated

for a rather general class of kernels K. Note that (1.1) fits with the above model,
provided we interpret −A as the Laplacian with Neumann boundary data, B as the
nonlocal integral term in (1.3) or, more precisely, the integral operator

u 7→
∫

Ω

−2K(·, y)u(y) dy,

and Φ stands for the convex potential

u 7→ f(u) + k1(x)u.

In our abstract setting, the null-space of A is allowed to have an arbitrary finite

dimension, while in [4], [14] or, e.g., [19], it is one-dimensional. We state sufficient

conditions on A, B and Φ which ensure the existence and/or uniqueness of solutions

to (1.1) for a suitable class of data. We also study the long-time behaviour of solutions

to (1.1) under more restrictive assumptions on B and ∂Φ. Note that our analysis

covers the vectorial case in which u is replaced by ~u : Q→ RN withN > 1, cf. Subsec-

tion 2.2. We only point out that in this case the term
∫
Ω[−

∫
Ω K(x, y)u(y) dy]u(x) dx

in the nonlocal free energy potential (1.4) can be generalized to

∫

Ω

−
(∫

Ω

K(x, y)~u(y) dy

)
· ~u(x) dx,

where K is an N×N symmetric and positive definite matrix and · denotes the scalar
product in RN .

Also other applications of our theory seem to be relevant. A recent investiga-

tion [12] has been devoted to the Czochralski crystal growth process in a simplified

framework, namely with a constant radius of the crystal and a known fluid velocity

in the liquid. The model consists of heat equations in the domains of liquid, solid

and gas phases, a Stefan condition at the liquid-solid interface and transmission con-

ditions at the liquid-gas and solid-gas interfaces. By an enthalpy formulation the
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problem can be reformulated as a degenerate parabolic differential equation, which

in a very simplified version (reminiscent of the problem studied in [21]) reads

ut − ∆β(u) + v · ∇u = f

for the enthalpy u in the fixed domain Ω with a monotone function β(u) and a given

fluid velocity v, supplemented by boundary conditions ∂β(u)/∂ν + n0β(u) = p and

v · ν = 0 on ∂Ω, and initial conditions for u. A weak formulation of the model

is presented in [12]. Of course, this model fits into our framework with obvious

definitions for A (which is now invertible) and Φ, while Bu is defined as the solution

of 〈A(Bu), z〉 =
∫
Ω
uv · ∇z for all z ∈ V (= H1(Ω) in this example).

Let us briefly outline the detailed plan of the paper. Section 2 summarizes the

necessary background related to the operators A and ∂Φ. We mainly focus on the

technique of estimating the component of the solution in the null-space of A using

special properties of Φ. In Section 3 we give the precise formulation of the initial value

problem for equation (1.1) and present two existence results which require either

the strong monotonicity of ∂Φ or the linearity of B. Uniqueness and continuous

dependence on the data are obtained under a general condition which is satisfied if

e.g. B is Lipschitz continuous and ∂Φ is strongly monotone. Section 4 is devoted to

the proofs of the above statements. Finally, in the last Section 5, we present some

results on the long-time behaviour of solutions to this problem provided B is the

Fréchet derivative of a potential Ψ satisfying a suitable growth condition.

2. Preliminaries

In what follows, the symbol H denotes a real Hilbert space endowed with a scalar

product 〈·, ·〉H . Let V be a reflexive Banach space densely and compactly embedded
into H . Assuming that H is identified with its dual, we obtain for the dual space V ′

of V that V ⊂ H ⊂ V ′ with dense and compact injections. By 〈·, ·〉 we denote the
duality pairing between V ′ and V , and ‖·‖E stands for the norm in a generic Banach

space E. In particular, we set ‖u‖H =
√
〈u, u〉H for u ∈ H and fix a constant κ such

that

(2.1) ‖v‖H 6 κ‖v‖V ∀ v ∈ V.

Note that the injection H ⊂ V ′ can be defined in such a way that

(2.2) 〈u, v〉 = 〈u, v〉H ∀u ∈ H, ∀ v ∈ V.
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2.1. A linear operator with nontrivial kernel

We start with basic hypotheses on the operator A.

Hypothesis 2.1. The map A : V → V ′ is linear and has the following properties.

(i) There exists a0 > 0 such that ‖Av‖V ′ 6 a0‖v‖V ∀ v ∈ V ;

(ii) 〈Av,w〉 = 〈Aw, v〉 ∀ v, w ∈ V ;

(iii) V0 := N (A) = {v ∈ V : Av = 0} is closed in H .

For the sake of completeness, we now state and prove a series of easy auxiliary re-

sults.

Lemma 2.2. Under Hypothesis 2.1, we have that dimV0 < +∞.

P r o o f. By continuity of A, V0 is closed in V . Thanks to Hypothesis 2.1 (iii),

both W0 = (V0, ‖ · ‖V ) and W̃0 = (V0, ‖ · ‖H) are Banach spaces, and the identity

mapping I : W0 → W̃0, Iu = u for u ∈ V0 is a bounded linear operator of W0

onto W̃0 with trivial null-space. Whence, by the inverse mapping theorem (cf. [22,

Thm. 4.1, p. 63]), I−1 : W̃0 → W0 is continuous, hence the two norms ‖ · ‖V , ‖ · ‖H

are equivalent on V0. Since V is compactly embedded into H , we conclude that the

unit ball in W̃0 is compact, hence dimV0 < +∞. �

We define in a standard way the orthogonal projection P0 of H onto V0 for u ∈ H

by the formula

w0 = P0u⇐⇒ w0 ∈ V0, ‖u− w0‖H = min{‖u− w‖H ; w ∈ V0}(2.3)

⇐⇒ 〈u− w0, w〉H = 0 ∀w ∈ V0.

Set now H1 := V ⊥
0 = {u ∈ H : 〈u,w0〉H = 0 ∀w0 ∈ V0} = (I − P0)H . Then

V1 = V ∩H1 is closed in V and every element v ∈ V (as an element of H) can be

decomposed in a unique way into the sum v = v0 + v1 with v0 ∈ V0 and v1 ∈ V1. In

view of Hypothesis 2.1 (ii), for all v, w ∈ V with v = v0 + v1, w = w0 + w1 we have

〈Av,w〉 = 〈Av1, w1〉 ,

hence A maps V into the space

(2.4) V ′
∗ := {y ∈ V ′ : 〈y, w0〉 = 0 ∀w0 ∈ V0}.

Moreover, we have the following
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Lemma 2.3. The space V ′
∗ defined by (2.4) is isomorphic to the dual space V

′
1

of V1.

P r o o f. For y ∈ V ′
1 and v ∈ V we define y∗ ∈ V ′

∗ by the formula 〈y∗, v〉 =

y(v1) referring to the decomposition v = v0 + v1 with v0 ∈ V0 and v1 ∈ V1. The

correspondence between y and y∗ is one-to-one and, by the definition of the dual

norm ‖ · ‖V ′

1
, we have the inequality

‖y‖V ′

1
6 ‖y∗‖V ′ .

To prove the reverse inequality, we notice that for all v ∈ V we have ‖v‖2
H =

‖v0‖2
H + ‖v1‖2

H , hence ‖v0‖H 6 ‖v‖H . But, due to Lemma 2.2, all the norms in V0

are equivalent, hence there exists a positive constant ̺ such that

(2.5) ‖v0‖V 6 ̺‖v0‖H ∀ v0 ∈ V0,

and consequently (cf. also (2.1))

‖v1‖V 6 ‖v‖V + ‖v0‖V 6 (1 + κ̺)‖v‖V ∀ v ∈ V.

Then, for y∗ ∈ V ′
∗ and v1 ∈ V1, we define y ∈ V ′

1 by the formula y(v1) = 〈y∗, v1〉,
which yields

‖y∗‖V ′ = sup
‖v‖V 61

|〈y∗, v1〉| 6 sup
‖v1‖V 61+κ̺

|y(v1)| = (1 + κ̺)‖y‖V ′

1
,

hence V ′
∗ and V

′
1 are isomorphic. �

The next lemma explores the structure of V ′.

Lemma 2.4. The space V ′ is isomorphic to the direct sum V ′
∗ ⊕ V0.

P r o o f. For v ∈ V , y∗ ∈ V ′
∗ and w0 ∈ V0 we define y ∈ V ′ by the formula

〈y, v〉 = 〈y∗, v〉 + 〈w0, v〉H ,

which yields

‖y‖V ′ 6 ‖y∗‖V ′ + κ‖w0‖H .

Conversely, for y ∈ V ′ we use the Riesz representation theorem to find w0 ∈ V0 such

that

〈y, v0〉 = 〈w0, v0〉H ∀ v0 ∈ V0.

Then ‖w0‖2
H = 〈y, w0〉 6 ‖y‖V ′‖w0‖V , and (2.5) implies that ‖w0‖H 6 ̺‖y‖V ′ .

Putting, for v ∈ V ,

〈y∗, v〉 = 〈y, v〉 − 〈w0, v〉H ,

we obtain y∗ ∈ V ′
∗ and ‖y∗‖V ′ 6 (1 + κ̺)‖y‖V ′ . Thus, the proof is complete. �
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Let us observe that the restriction of the operator A to V1 is continuous from V1

to V ′
1 and its null-space is trivial. We now make an additional coercivity hypothesis

on the operator A, namely

Hypothesis 2.5. There exists γA > 0 such that 〈Av1, v1〉 > γA‖v1‖2
V for all

v1 ∈ V1.

Under Hypothesis 2.5 we can define the scalar product

(2.6) 〈v, w〉A := 〈Av1, w1〉 + 〈v0, w0〉H
referring to the decomposition v = v0 + v1, w = w0 + w1 with v0, w0 ∈ V0 and

v1, w1 ∈ V1. Note that (2.6) generates in V a norm equivalent to ‖ · ‖V , which will

be used from now on. Moreover, (2.6) transforms V into a Hilbert space with V1 as

the orthogonal complement of V0.

The next lemma immediately follows from the Riesz representation theorem and

the inverse mapping theorem.

Lemma 2.6. For every y1 ∈ V ′
1 there exists a unique v1 ∈ V1 such that y1 = Av1

and the mapping A−1 : V ′
1 → V1 is continuous.

Similarly as in (2.6), the scalar product

(2.7) 〈v′, w′〉A−1 :=
〈
v′1, A

−1w′
1

〉
+ 〈v0, w0〉H

referring to the decomposition v′ = v0 + v′1, w
′ = w0 + w′

1 with v0, w0 ∈ V0 and

v1, w1 ∈ V ′
1 generates in V

′ a norm equivalent to ‖ · ‖V ′ which will be used in the

sequel. With this choice of norms in V and V ′ we have

(2.8)

{
‖Av‖2

V ′ = 〈Av, (I − P0)v〉 = ‖(I − P0)v‖2
V ∀ v ∈ V,

‖A−1w′‖2
V = 〈A−1w′, w′〉 = ‖w′‖2

V ′ ∀w′ ∈ V ′
1 .

2.2. The functional Φ

The symbol ∂Φ in (1.1) represents the subdifferential of a proper convex lower

semicontinuous mapping Φ: H → R ∪ {+∞}. By Dom(Φ), Dom(∂Φ) we denote the

domains of Φ and ∂Φ, respectively. If dimH <∞, then Dom(Φ) = Dom(∂Φ), other-

wise Dom(∂Φ) is in general only a dense subset of Dom(Φ), see [2, Ch. 4, Thm. 3.11,

p. 192] (actually, to check that the two domains do not necessarily coincide, it suffices

to consider H = ℓ2 and Φ(x) =
∞∑

k=1

kx2
k). For every u ∈ Dom(∂Φ), the set ∂Φ(u) is

convex and closed, and we denote by m(∂Φ(u)) its element with minimal norm.

Before stating precise hypotheses on Φ, we briefly recall the notion of the Yosida

approximation, see [2], [3], [5] for proofs.
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Proposition 2.7. For ε > 0 and u ∈ H define

(2.9) Φε(u) = min
z∈H

{ 1

2ε
‖u− z‖2

H + Φ(z)
}
.

Then Φε is convex, Fréchet-differentiable in H , and its subdifferential ∂Φε(u) con-

tains a unique element DΦε(u) for every u ∈ H , where D denotes the Fréchet

derivative. Moreover, the so-called resolvent Jε of ∂Φ, defined as

(2.10) Jε = (I + ε ∂Φ)−1,

where I : H → H is the identity, is non-expansive in H ; the mapping DΦε : H → H

is monotone and Lipschitz continuous, and has for every u ∈ H the properties

DΦε(u) =
1

ε
(u− Jεu) ∈ ∂Φ(Jεu) ∀ ε > 0,(2.11)

u ∈ Dom(∂Φ) ⇒
{ ‖DΦε(u) −m(∂Φ(u))‖H → 0

‖DΦε(u)‖H ր ‖m(∂Φ(u))‖H

as εց 0,(2.12)

Φε(u) =
ε

2
‖DΦεu‖2

H + Φ(Jεu) ∀ ε > 0,(2.13)

Φε(u) ր Φ(u) as εց 0.(2.14)

In the sequel we require the following hypothesis, which in particular implies that

0 ∈ Dom(∂Φ).

Hypothesis 2.8. There exist two constants CΦ > 0, C′
Φ > 0 and two Banach

spaces X , Y such that

(i) the inequality

(2.15) Φ(u) > CΦ‖u‖2
H − C′

Φ holds for all u ∈ H ;

(ii) X ⊃ H ⊃ Y ⊃ V0 with continuous injections; moreover, there are con-

stants a, b, c, r > 0 such that

(2.16) w ∈ Y, ‖w‖Y 6 a⇒





w ∈ Dom(∂Φ),

‖ξ‖Y 6 b ∀ ξ ∈ ∂Φ(w),

‖DΦε(w)‖Y 6 b ∀ ε > 0,

as well as

(2.17) r‖ξ − η‖X 6 〈ξ − η, w − u〉H + c
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for every w ∈ Y such that ‖w‖Y 6 a and every u ∈ Dom(∂Φ), for all selections

ξ ∈ ∂Φ(w) and η ∈ ∂Φ(u).

Hypothesis 2.8 looks rather technical and we illustrate now its meaning by con-

sidering a special case which occurs frequently in PDE’s, namely H = L2(Ω;RN ),

X = L1(Ω;RN ), V0 ⊂ Y = L∞(Ω;RN ), where Ω ⊂ Rn is an open bounded do-

main, and n, N are integers. Let ϕ : RN → R ∪ {+∞} be a proper convex lower
semicontinuous mapping, and for u ∈ H set

(2.18) Φ(u) =

{∫

Ω

ϕ(u(x)) dx if ϕ(u) ∈ L1(Ω),

+∞ otherwise.

We will systematically use the easy relation stated below (see, e.g., [5, Ex. 2.3.3,

p. 25] and [3, Ex. 3, p. 61]). Let us report the proof for the reader’s convenience.

Lemma 2.9. For u ∈ Dom(∂Φ) and ξ ∈ ∂Φ(u) we have ξ(x) ∈ ∂ϕ(x) for

a.e. x ∈ Ω. Conversely, let u ∈ H be such that u(x) ∈ Dom(ϕ) = Dom(∂ϕ) for

a.e. x ∈ Ω, and for each admissible x ∈ Ω put ξ(x) = m(∂ϕ(u(x))). Then ξ is

measurable, and if ξ ∈ H , then u ∈ Dom(∂Φ) and ξ = m(∂Φ(u)).

P r o o f. Every ξ ∈ ∂Φ(u) satisfies the inequality

(2.19) 〈ξ, v − u〉H 6 Φ(v) − Φ(u) ∀ v ∈ H.

Choosing any v0 ∈ Dom(ϕ) and any measurable set Ω′ ⊂ Ω, we may put v(x) = v0

for x ∈ Ω′, v(x) = u(x) for x ∈ Ω \ Ω′. Then it is not difficult to obtain from (2.19)

that

(2.20) ξ(x) · (v0 − u(x)) 6 ϕ(v0) − ϕ(u(x)) for a.e. x ∈ Ω, ∀ v0 ∈ RN ,

where “·” denotes the scalar product in RN , and the first assertion follows. Con-

versely, if u ∈ H , x ∈ Ω and ξ(x) = m(∂ϕ(u(x))), then ξ(x) is the pointwise limit

of the Yosida approximations Dϕε(u(x)) as ε ց 0. By Proposition 2.7, the func-

tions Dϕε are Lipschitz continuous, hence Dϕε(u(·)) ∈ H for all ε > 0, and we

conclude that ξ is measurable. If moreover ξ ∈ H , then (2.20) holds and the fact

that ϕ is bounded from below by an affine function entail that u ∈ Dom(∂Φ). Fi-

nally, every η ∈ ∂Φ(u) satisfies |ξ(x)| 6 |η(x)| for a.e. x ∈ Ω, hence ξ = m(∂Φ(u))

and the proof is complete. �
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Proposition 2.10. Assume that there exist positive constants cϕ, c
′
ϕ, a

′, b′, c′,

d′, r′ such that

ϕ(z) > cϕ|z|2 − c′ϕ ∀ z ∈ RN ;(2.21)

|z| 6 a′ + d′ =⇒ z ∈ Dom(ϕ), |ξ| 6 b′ ∀ ξ ∈ ∂ϕ(z);(2.22)

|y| 6 a′, |y − z| > d′, z ∈ Dom(ϕ)(2.23)

=⇒ r′|ξ − η| 6 (ξ − η) · (y − z) + c′ ∀ ξ ∈ ∂ϕ(y), ∀ η ∈ ∂ϕ(z).

Then the functional Φ defined by (2.18) satisfies Hypothesis 2.8.

P r o o f. Inequality (2.15) follows immediately from (2.21). To prove (2.16), set

a = a′ and consider w ∈ Y such that |w(x)| 6 a for a.e. x ∈ Ω. By Lemma 2.9 we

have ∂Φ(w) 6= ∅, and each ξ ∈ ∂Φ(w) satisfies ξ(x) ∈ ∂ϕ(w(x)), hence |ξ(x)| 6 b′ for

a.e. x ∈ Ω. For ε > 0 set ξε = DΦε(w), wε = Jε(w). Then ξε(x) ∈ ∂ϕ(wε(x)) and

wε(x) + εξε(x) = w(x) for a.e. x ∈ Ω, hence

− εξε(x) · (ξε(x) − ξ(x)) = (ξε(x) − ξ(x)) · (wε(x) − w(x)) > 0

and we easily conclude that |ξε(x)| 6 |ξ(x)| 6 b′ for a.e. x ∈ Ω. We thus

checked (2.16) for b = b′.

It remains to prove (2.17). Keeping a = a′, b = b′, consider w ∈ Y , ‖w‖Y 6 a

and u ∈ Dom(∂Φ), and let ξ ∈ ∂Φ(w), η ∈ ∂Φ(u) be arbitrary. As before, we have

ξ(x) ∈ ∂ϕ(w(x)), η(x) ∈ ∂ϕ(u(x)) for a.e. x ∈ Ω. Set

(2.24) Ω+ = {x ∈ Ω: |u(x) − w(x)| > d′}, Ω− = Ω \ Ω+.

By (2.23) we infer

(2.25) r′|ξ(x) − η(x)| 6 (ξ(x) − η(x)) · (w(x) − u(x)) + c′ for a.e. x ∈ Ω+.

Using the fact that (ξ(x) − η(x)) · (w(x) − u(x)) > 0 for a.e. x ∈ Ω, we obtain that

r′
∫

Ω+

|ξ(x) − η(x)| dx 6 〈ξ − η, w − u〉H + c′|Ω+|.

On the other hand, for x ∈ Ω− we have |w(x)| 6 a′, |u(x)| 6 a′+d′, hence |ξ(x)| 6 b′,

|η(x)| 6 b′ by virtue of (2.22). This yields that

(2.26)

∫

Ω−

|ξ(x) − η(x)| dx 6 2b′|Ω−|.

Combining the above inequalities, we obtain

r′‖ξ − η‖X 6 〈ξ − η, u− w〉H + c′|Ω+| + 2r′b′|Ω−|,

which is precisely (2.17) with r = r′ and c = |Ω|max{c′, 2r′b′}. �
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We now give a hint how to check conditions (2.22)–(2.23) in concrete situations.

If M stands for a symmetric positive definite matrix, then the function ϕM (z) =

Mz · z, z ∈ RN , as well as its small and smooth perturbations, provide the most

canonical example. Furthermore, if ϕ1, ϕ2 fulfil the above conditions, then so does

any combination k1ϕ1 + k2ϕ2 with k1, k2 > 0. The case N = 1 is particularly

easy: then every convex lower semicontinuous function ϕ : R → R ∪ {+∞} with
[−a′−d′, a′ +d′] ⊂ Dom(ϕ) satisfies (2.22)–(2.23). Another example which typically

arises in applications is the subject of the following statement.

Proposition 2.11. Let Z ⊂ RN be a convex closed set containing in its interior

the ball {z ∈ RN : |z| 6 a′ + d′}, and let IZ be the indicator function of Z, that is,
IZ(z) = 0 for z ∈ Z, IZ(z) = +∞ if z /∈ Z. Then ϕ = IZ satisfies conditions (2.22)–

(2.23).

P r o o f. Condition (2.22) is automatically fulfilled with b′ = 0. Consider now

y, z ∈ Z, |y| 6 a′, |y − z| > d′. Then ∂ϕ(y) = {0} and η · (z − v) > 0 for each

η ∈ ∂ϕ(z) and v ∈ Z. There is nothing to prove if η = 0; otherwise we put

v = y +
d′

|η|η ∈ Z

and obtain d′|η| 6 η · (z− y). This corresponds to (2.23) with r′ = d′ and c′ = 0. �

Remark 2.12. Conditions (2.22)–(2.23) formalize and generalize the special case

N = 1 and Z = [−1, 1] considered by Kenmochi, Niezgódka and Pawlow in the

paper [19]. There, the authors devise an argument leading to an a priori estimate for

the V0-component of the solution u(t) to the Cahn-Hilliard equation with constraint

(see [19, Lemma 5.2]). In Theorem 2.14 below we show a counterpart of this technique

adapted to our situation. Before, we prove that conditions (2.15)–(2.17) are stable

with respect to Yosida approximations.

Proposition 2.13. Let Φ satisfy Hypothesis 2.8. Then there exists ε̄ > 0 such

that the Yosida approximations Φε of Φ for ε ∈ (0, ε̄) have the following properties.

(i) There exist two constants ĈΦ > 0 and Ĉ′
Φ > 0 such that

(2.27) Φε(u) > ĈΦ‖u‖2
H − Ĉ′

Φ ∀u ∈ H and ε ∈ (0, ε̄).

(ii) There exists a constant â > 0 such that

(2.28) w ∈ Y, ‖w‖Y 6 â⇒ ‖DΦε(W )‖Y 6 b ∀ ε ∈ (0, ε̄),
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and for every w ∈ Y such that ‖w‖Y 6 â and every u ∈ H we have

(2.29) r‖DΦε(w) −DΦε(u)‖X 6 〈DΦε(w) −DΦε(u), w − u〉H + c.

P r o o f. By (2.13) and (2.15) we have

Φε(z) >
1

2ε
‖z − Jε(z)‖2

H + CΦ‖Jε(z)‖2
H − C′

Φ >
CΦ

1 + 2εCΦ
‖z‖2

H − C′
Φ,

hence (2.27) is verified for ĈΦ = CΦ/(1 + 2ε̄CΦ) and Ĉ′
Φ = C′

Φ. Indeed, (2.28) is a

particular case of (2.16) with any â 6 a. To prove (2.29), set â = a/2, ε̄ = a/(2b),

and consider arbitrary elements u ∈ H and w ∈ Y with ‖w‖Y 6 â. For ε ∈ (0, ε̄)

put wε = Jε(w), uε = Jε(u). Then by (2.11) we have DΦε(w) ∈ ∂Φ(wε), DΦε(u) ∈
∂Φ(uε), wε + εDΦε(w) = w, hence ‖wε‖Y 6 ‖w‖Y + ε‖DΦε(w)‖Y 6 a. Using (2.17)

for wε and uε, we immediately obtain (2.29). �

We are now ready to state and prove the main result of this section.

Theorem 2.14. Let Φ satisfy Hypothesis (2.8) and let ε̄ be as in Proposi-

tion 2.13. Then there exist positive constants a∗, b∗, r∗, m∗ such that for every

u ∈ H such that ‖P0u‖H 6 a∗ we have

r∗‖P0ξ‖H 6 (‖(I − P0)ξ‖H + b∗)(‖(I − P0)u‖H +m∗) + c,(2.30)

r∗‖P0DΦε(u)‖H 6 (‖(I − P0)DΦε(u)‖H + b∗)(‖(I − P0)u‖H +m∗) + c(2.31)

for all ξ ∈ ∂Φ(u) and ε ∈ (0, ε̄).

P r o o f. We fix positive constants γi, i = 1, . . . , 4, such that

γ1‖v‖X 6 ‖v‖H ∀ v ∈ H, ‖v‖H 6 γ2‖v‖Y ∀ v ∈ Y,

γ3‖w‖X > ‖w‖H > γ4‖w‖Y ∀w ∈ V0.

Consider â as in Proposition 2.13 and set a∗ = γ4â. Let u ∈ H satisfy ‖P0u‖H 6 a∗.

We have P0u ∈ V0, hence ‖P0u‖Y 6 â 6 a. Since the proof is essentially the

same for both inequalities (2.30) and (2.31), we restrict ourselves to show the latter.

From (2.29) it results that

(2.32) r‖DΦε(u) −DΦε(P0u)‖ 6 〈DΦε(u) −DΦε(P0u), (I − P0)u〉H + c,
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where (cf. (2.28))

|〈DΦε(u) −DΦε(P0u), (I − P0)u〉H |
= |〈(I − P0)(DΦε(u) −DΦε(P0u)), (I − P0)u〉H |
6 (‖(I − P0)DΦε(u)‖H + ‖DΦε(P0u)‖H) ‖(I − P0)u‖H

6 (‖(I − P0)DΦε(u)‖H + γ2b) ‖(I − P0)u‖H ∀ ε ∈ (0, ε̄).

In addition, observe that

1

γ3
‖P0DΦε(u)‖H 6 ‖P0DΦε(u)‖X(2.33)

6 ‖(I − P0)DΦε(u)‖X + ‖DΦε(u) −DΦε(P0u)‖X + ‖DΦε(P0u)‖X

6 ‖DΦε(u) −DΦε(P0u)‖X +
1

γ1
(‖(I − P0)DΦε(u)‖H + γ2b)

for all ε ∈ (0, ε̄). Combining (2.33) with (2.32), we thus obtain (2.31) for r∗ = r/γ3,

b∗ = γ2b and m
∗ = r/γ1. �

3. Main results

In this section the main results of the paper are stated under the following hy-

potheses on the data.

Hypothesis 3.1. Let Hypotheses 2.1, 2.5, 2.8 hold and assume that

(i) the operator B maps continuously H into V and there exists a constant b0 > 0

such that

(3.1) ‖Bz‖V 6 b0(1 + ‖z‖H) ∀ z ∈ H ;

(ii) elements g ∈ L2(0, T ;V ′
∗) and u0 ∈ Dom(Φ) are given such that ‖P0u0‖H 6 a∗,

where a∗ is as in Theorem 2.14.

We now state our initial value problem.

Problem (P). For every fixed T > 0, find u ∈ H1(0, T ;V ′) ∩ L∞(0, T ;H) such

that Φ(u) ∈W 1,1(0, T ) and there exist v, ξ ∈ L2(0, T ;V ) satisfying

u′(t) +Av(t) = g(t) in V ′ for a.e. t ∈ (0, T ),(3.2)

v(t) = ξ(t) +Bu(t) in V for a.e. t ∈ (0, T ),(3.3)

u(t) ∈ Dom(∂Φ), ξ(t) ∈ ∂Φ(u(t)) for a.e. t ∈ (0, T ),(3.4)

u(0) = u0 in H.(3.5)

In (3.2) we use the symbol (·)′ to denote the time derivative d(·)/dt.

1079



Remark 3.2. As u ∈ H1(0, T ;V ′) ∩ L∞(0, T ;H), it turns out that u is weakly

continuous from [0, T ] to H , hence the initial condition (3.5) makes sense. Further-

more, the argument below (see Proposition 4.2) shows that our notion of solution

automatically yields the additional smoothness property Φ(u) ∈ W 1,1(0, T ).

The existence results read as follows.

Theorem 3.3. Under Hypothesis 3.1, let moreover ∂Φ be strongly monotone,

i.e., there is a positive constant C′′
Φ such that

(3.6) 〈w1−w2, z1−z2〉H > C′′
Φ‖z1−z2‖2

H ∀ zi ∈ Dom(∂Φ), wi ∈ ∂Φ(zi), i = 1, 2.

Then there exists at least one solution u of Problem (P).

Theorem 3.4. Let Hypothesis 3.1 hold and assume that the operator B defined

by (3.1) satisfies the further condition

(3.7) B is linear.

Then there exists at least one solution u of Problem (P).

Remark 3.5. Note that u′(t) ∈ V ′
1
∼= V ′

∗ for a.e. t ∈ (0, T ) (cf. Lemma 2.3). In

fact, as a consequence of Hypotheses 2.1 and 3.1 (ii), if we take w0 ∈ V0, we have

〈u′(t), w0〉 = −〈Av(t), w0〉 + 〈g(t), w0〉 = −〈Aw0, v(t)〉 = 0

for a.e. t ∈ (0, T ). In particular, it follows that every solution of (3.2)–(3.5) satisfies

P0u(t) = P0u0 for all t ∈ [0, T ].

With an additional assumption on the sum of B and ∂Φ we prove a continuous

dependence result in the following form.

Theorem 3.6. Let Hypothesis 3.1 hold and assume that there is a positive

constant γ such that

(3.8) 〈z1 − z2, w1 − w2〉H + 〈z1 − z2, Bz1 −Bz2〉 > −γ‖z1 − z2‖2
V ′

for all zi ∈ Dom(∂Φ) and wi ∈ ∂Φ(zi), i = 1, 2. Take two sets of data {u0i, gi},
i = 1, 2, satisfying Hypothesis 3.1 (ii) and suppose that u1 and u2 are two respective

solutions to Problem (P). Then there exists a positive constant Ccd, depending in

particular on γ, T , ‖gi‖L2(0,T ;V ′), Φ(u0i) and ‖u0i‖V ′ for i = 1, 2, such that

‖u1 − u2‖C0([0,T ],V ′) 6 Ccd(‖u01 − u02‖V ′ + ‖g1 − g2‖L1(0,T ;V ′)(3.9)

+ ‖P0(u01 − u02)‖1/2
H ).

In particular, Problem (P) has at most one solution for each admissible set of data.
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Remark 3.7. Note that in the case when (3.6) holds and the operator B : H → V

is Lipschitz continuous for some positive constant L, that is,

(3.10) ‖Bu1 −Bu2‖ 6 L‖u1 − u2‖H ∀u1, u2 ∈ H,

then the solution of Problem (P) ensured by Theorem 3.3 is unique. Indeed, (3.10)

implies

−〈z1 − z2, Bz1 −Bz2〉 6
C′′

Φ

2
‖z1 − z2‖2

H +
L2

2C′′
Φ

‖z1 − z2‖2
V ′ ∀ z1, z2 ∈ H,

so that (3.8) follows from (3.6). Besides, let us point out that (3.8) holds true also

when the mapping ∂Φ is only monotone (and not strongly monotone as in (3.6))

and B is the restriction to H of a Lipschitz continuous operator from V ′ to V

(think, for instance, of some linear mapping B which regularizes its argument).

Hence (cf. (3.7)), the last framework could be partly combined with Theorem 3.4 to

investigate existence and uniqueness of the solution in some situations.

Remark 3.8. Note that in view of Hypothesis 3.1 (i), (3.7) entails (3.10). Any-

how, we point out that linear integral operators mentioned in Introduction are nat-

ural prototypes of operators B satisfying the various conditions.

The proofs of the above results are contained in Section 4. We conclude this

section by showing a simple example of nonexistence for Problem (P) in the case

when Hypothesis 3.1 (ii) is violated.

Example 3.9 (Nonexistence of solutions). We show here that the existence result

for Problem (P) does not hold if Hypothesis 3.1 (ii) on the initial size of P0u0 is

deleted. Consider the problem in R2

(
u̇1(t)

u̇2(t)

)
+A

(
v1(t)

v2(t)

)
=

(
ḟ(t)

0

)
,(3.11)

(
v1(t)

v2(t)

)
∈ ∂Φ

(
u1(t)

u2(t)

)
,(3.12)

where Φ is the indicator function of the bounded closed convex set K ⊂ R2 defined

below, f ∈W 1,2(0, T ) is a given function, and the data are
(
u1(0)

u2(0)

)
=

(
u0

1

u0
2

)
∈ K,(3.13)

A =

(
1 0

0 0

)
, K = conv

(
B1

(−1

0

)
∪B1

(
1

0

))
,(3.14)

where Br(x) denotes the ball centered at x ∈ R2 with radius r > 0 and conv(S)

denotes the convex hull of the set S, see Fig. 1.
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u0
1

K

Figure 1. An illustration to Example 3.9.

System (3.11)–(3.12) can be written in the form

u̇1(t) + v1(t) = ḟ(t),(3.15)

u2(t) = u0
2,(3.16)

(
u1(t)

u0
2

)
∈ K,(3.17)

〈(
v1(t)

v2(t)

)
,

(
u1(t)

u0
2

)
−
(
x1

x2

)〉
> 0 ∀

(
x1

x2

)
∈ K.(3.18)

Set

K1 =

{
z ∈ R :

(
z

u0
2

)
∈ K

}
.

We may choose x2 = u0
2 in (3.18) and obtain

u1(t) ∈ K1,(3.19)

(ḟ(t) − u̇1(t))(u1(t) − x1) > 0 ∀x1 ∈ K1.(3.20)

Relations (3.19)–(3.20) are nothing but the definition of the stop operator with in-

put f , output u1, and characteristic K1. Let us consider now the special case

(3.21) u0
2 = 1, ḟ(t) = 1 for t ∈ [0, T ], T > 2.
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Then it results that K1 = [−1, 1] and u1(t) = min{u0
1 + t, 1} for t ∈ [0, T ]. In

particular, for t > 1 − u0
1 we have u1(t) = 1, u̇1(t) = 0 and consequently v1(t) = 1.

According to (3.18), we have to find v2(t) in such a way that

(
1

v2(t)

)
belongs to the

outward normal coneNK

(
1

1

)
toK at the point

(
1

1

)
. However, this is not possible,

since NK

(
1

1

)
contains only nonnegative multiples of the vector

(
0

1

)
. Hence, we

see that Problem (3.11)–(3.12) with data (3.21) does not even have a local solution

if u0
1 = 1. On the other hand, such a function v2(t) can always be found if |u0

2| < 1

in agreement with Theorem 3.4, see Fig. 1.

4. Proofs

This section is devoted to the proofs of the existence and uniqueness results stated

in Section 3. We use the standard technique based on approximations, a priori

estimates, and passage to the limit.

In the sequel, we will denote by C any positive constant which depends on the

data of the problem and may vary from line to line; the dependence on T will be

accounted for by writing C(T ).

4.1. Approximation

Keeping the notation from Proposition 2.13 and Theorem 2.14, we state for ε ∈
(0, ε̄) the following problem.

Problem (P)ε. For fixed T > 0 and ε ∈ (0, ε̄), find a function uε ∈ H1(−ε̄, T ;H)

such that for t ∈ (0, T ) we have

u′ε(t) +A(εu′ε(t) + vε(t)) = g(t),(4.1)

vε(t) = ξε(t) + Buε(t− ε),(4.2)

ξε(t) = DΦε(uε(t)),(4.3)

and for t ∈ [−ε̄, 0] the function uε satisfies the (initial) condition

(4.4) uε(t) = u0.

Lemma 4.1. Under Hypothesis 3.1, for each ε ∈ (0, ε̄) Problem (P)ε has a

unique solution uε with the prescribed regularity and such that

(4.5) P0uε(t) = P0u0 ∀ t ∈ [−ε̄, T ].
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P r o o f. Arguing as in Remark 3.5, we see that every solution uε of Problem (P)ε

satisfies 〈u′ε(t), w0〉 = 0 for all w0 ∈ V0, hence P0u
′
ε(t) = 0 for a.e. t ∈ (0, T ), and

consequently (4.5) holds. Equation (4.1) is therefore equivalent to

(4.6) u′ε(t) = (A−1 + εI)−1(A−1g(t) − (I − P0)vε(t)) for a.e. t ∈ (0, T ).

Note that the mapping Gε = −(A−1 + εI)−1(I − P0)DΦε : H → H is Lipschitz

continuous. Indeed, DΦε is Lipschitz continuous by Proposition 2.7; moreover, by

virtue of (2.2) and (2.8) we have

(4.7) ‖u‖2
V ′ + ε‖u‖2

H = 〈(A−1 + εI)u, u〉H ∀u ∈ H1.

As the left-hand side of (4.7) is the square of an equivalent norm in H1, it turns

out that (A−1 + εI)−1 is a linear continuous operator on H1. Let us consider

equation (4.6) coupled with (4.2)–(4.4) consecutively on intervals [(k − 1)ε, kε] for

k = 1, 2, . . . until kε > T . For each fixed k, it can be written as a fixed point problem

of the form

(4.8) uε(t) = uε((k − 1)ε) +

∫ t

(k−1)ε

(Gε(uε(s)) + hk
ε(s)) ds for t ∈ [(k − 1)ε, kε]

with a given hk
ε ∈ L2((k − 1)ε, kε;H), namely

hk
ε(t) := (A−1 + εI)−1(A−1g(t) − (I − P0)Buε(t− ε)), t ∈ [0, T ].

Then the integral equation (4.8) admits a unique solution in C0([(k− 1)ε, kε];H) by

virtue of, e.g., the Contraction Mapping Principle. After a finite number of steps we

construct a unique solution on [−ε̄, T ]. �

4.2. A priori estimates

We test (4.1) by A−1(u′ε(·)) and integrate over (0, t) for some t ∈ (0, T ). Using (3.1)

and (2.8) we obtain

∫ t

0

‖u′ε(s)‖2
V ′ ds+ ε

∫ t

0

‖u′ε(s)‖2
H ds+ Φε(uε(t)) − Φε(u0)(4.9)

= −
∫ t

0

〈u′ε(s), Buε(s− ε)〉ds+

∫ t

0

〈g(s), A−1u′ε(s)〉ds

6 b20

∫ t−ε

−ε

(1 + ‖uε(s)‖H)2 ds+
1

2

∫ t

0

‖u′ε(s)‖2
V ′ ds

+

∫ t

0

‖g(s)‖2
V ′ ds.
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Inequality (2.14) yields

(4.10) Φε(u0) 6 Φ(u0),

and from (4.9) combined with (2.27) it follows that

1

2

∫ t

0

‖u′ε(s)‖2
V ′ ds+ ε

∫ t

0

‖u′ε(s)‖2
H ds+ ĈΦ‖uε(t)‖2

H(4.11)

6 C(T )

(
1 +

∫ t

0

‖uε(s)‖2
H ds

)
.

Applying the Gronwall lemma to (4.11) leads to the estimate

(4.12) ‖u′ε‖L2(0,T ;V ′) + ‖uε‖L∞(0,T ;H) +
√
ε ‖u′ε‖L2(0,T ;H) 6 C(T ).

Hence, from (4.9) and (2.27) we further deduce that

(4.13) |Φε(uε(t))| 6 C(T ) ∀ t ∈ [0, T ].

Finally, thanks to (2.8), by a comparison with (4.1) we infer that

(4.14) ‖(I − P0)(εu
′
ε + vε)‖2

L2(0,T ;V ) 6 2(‖u′ε‖2
L2(0,T ;V ′) + ‖g‖2

L2(0,T ;V ′

∗
)) 6 C(T ).

We now use Theorem 2.14 to estimate the quantity ‖P0(εu
′
ε + vε)‖L2(0,T ;V ). Set

pε(t) := εu′ε(t)+Buε(t−ε) and observe that (3.1) and (4.12) enable us to check that

(4.15) ‖pε‖L2(0,T ;H) 6 ε‖u′ε‖L2(0,T ;H) + T 1/2C(1 + ‖uε‖L∞(0,T ;H) 6 C(T ).

From (4.2) and (4.14)–(4.15) it follows in particular that

(4.16) ‖(I − P0)ξε‖L2(0,T ;H) 6 C(T ).

Hypothesis 3.1 (ii) and equation (4.5) entail ‖P0uε(t)‖H 6 a∗ for all t ∈ [0, T ], hence

we may use (2.31) and (4.12) to derive the bounds

r∗‖P0ξε(t)‖H 6 (‖(I − P0)ξε(t)‖H + b∗)(‖(I − P0)uε(t)‖H +m∗) + c(4.17)

6 C(T )(1 + ‖(I − P0)ξε(t)‖H)

for all t ∈ [0, T ]. In addition, we have

(4.18) ‖P0(εu
′
ε + vε)‖L2(0,T ;V ) 6 ̺‖P0(ξε + pε)‖L2(0,T ;H) 6 C(T )
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as a direct consequence of (2.5) and (4.15)–(4.17). Thus, in view of (4.14)–(4.18),

we obtain the estimate

(4.19) ‖εu′ε + vε‖L2(0,T ;V ) + ‖ξε‖L2(0,T ;H) 6 C(T ).

We finally exploit (4.13) which, in combination with (2.13) and (2.15), yields

(4.20) ‖Jεuε‖L∞(0,T ;H) +
√
ε ‖ξε‖L∞(0,T ;H) 6 C(T ).

4.3. Passage to the limit

Our aim now is to obtain a solution to Problem (P) by passing to the limit in

Problem (P)ε as ε ց 0. We start with convergences which are independent of the

special assumptions (3.6) and (3.7), and then distinguish the two cases corresponding

to Theorems 3.3 and 3.4.

From (4.12) and (4.19)–(4.20) it follows that, up to the extraction of a subsequence

of ε as ε ց 0, there exist four functions u, v, ξ, w : (0, T ) → H such that, putting

u(t) = u0 for t ∈ [−ε̄, 0), we have

uε → u weakly star in H1(−ε̄, T ;V ′) ∩ L∞(−ε̄, T ;H)(4.21)

and strongly in C0([−ε̄, T ];V ′),

εuε → 0 strongly in H1(0, T ;H),(4.22)

εξε → 0 strongly in C0([0, T ];H),(4.23)

ξε → ξ weakly in L2(0, T ;H),(4.24)

Jεuε → u weakly star in L∞(0, T ;H)(4.25)

and strongly in C0([0, T ];V ′),

εu′ε + vε → v weakly in L2(0, T ;V ),(4.26)

Buε(· − ε) → w weakly star in L∞(0, T ;V ),(4.27)

uε(· − ε) → u strongly in C0([0, T ];V ′)(4.28)

and weakly star in L∞(0, T ;H)

as εց 0. Note that the strong convergence in (4.21) is a consequence of the general-

ized Ascoli theorem (see, e.g., [23, Cor. 8, p. 90]). We also point out that (4.23) fol-

lows from (4.20) and the fact that ξε ∈ C0([0, T ];H), while (4.25) results from (4.21),

(4.23) and the formula (cf. (2.11)) uε = Jεuε + εξε for ε ∈ (0, ε̄). We obtain (4.27)

directly from (3.1) and (4.12). Since u(·−ε) → u strongly in C0([0, T ];V ′), (4.28) fol-

lows from (4.21).

Passing to the weak limit in L2(0, T ;V ′) in (4.1) and in L2(0, T ;H) in (4.2), we

obtain from the above convergences that (3.2) holds and v = ξ+w. As a consequence
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of (4.26)–(4.27) we deduce ξ ∈ L2(0, T ;V ). Furthermore, thanks to (4.3) and (2.11),

for every measurable subset E ⊂ (0, T ), every z ∈ Dom(∂Φ) and every η ∈ ∂Φ(z) we

have that

(4.29)

∫ T

0

〈ξε(t) − η, Jεuε(t) − z〉HχE(t) dt > 0,

where χE is the characteristic function of E. Using (2.2), the identity

〈ξε(t), Jεuε(t))〉H = 〈Jεuε(t), εu
′
ε(t) + vε(t)〉 − 〈Jεuε(t), εu

′
ε(t)〉H(4.30)

− 〈Jεuε(t), Buε(t− ε)〉

and the convergences (4.22), (4.25)–(4.27), we can pass to the limit in (4.29) and

conclude that there exists a set M ⊂ (0, T ) of zero measure such that

(4.31) 〈ξ(t) − η, u(t) − z〉H > 0 ∀ t ∈ (0, T ) \M, ∀ z ∈ Dom(∂Φ), ∀ η ∈ ∂Φ(z).

As the multivalued mapping z 7→ ∂Φ(z) is maximal monotone (cf. [2, Ch. 6, Sec. 7]),

it turns out that (3.4) holds.

The absolute continuity of Φ(u) is a consequence of the following chain rule for-

mula.

Proposition 4.2. Let Φ: H → R∪{+∞} be a proper convex lower semicontinu-
ous mapping, and let u ∈ L2(0, T ;H) be such that u′ ∈ L2(0, T ;V ′), ξ ∈ L2(0, T ;V ),

and ξ(t) ∈ ∂Φ(u(t)) for a.e. t ∈ (0, T ). Then the function ψ = Φ(u(·)) is absolutely
continuous in [0, T ] and ψ′(t) = 〈u′(t), ξ(t)〉 for a.e. t ∈ (0, T ).

P r o o f. For each v ∈ H we have

〈v − u(t), ξ(t)〉 6 Φ(v) − Φ(u(t)) for a.e. t ∈ (0, T ).

Since Φ is bounded from below by an affine function, we conclude that ψ ∈ L1(0, T ).

Let now w ∈W 1,∞(0, T ) be a nonnegative function with compact support in (0, T ).

We choose h > 0 such that supp(w) ⊂ [h, T − h]. For a.e. t ∈ [h, T ] we have

〈u(t) − u(t− h), ξ(t− h)〉 6 ψ(t) − ψ(t− h) 6 〈u(t) − u(t− h), ξ(t)〉.
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Observe that we can extend w outside of (0, T ) with the zero value. Hence, multi-

plying by w(t), integrating with respect to t and letting hց 0 we obtain

1

h

∫ T

h

〈u(t) − u(t− h), ξ(t− h)〉w(t) dt =
1

h

∫ T−h

0

〈u(t+ h) − u(t), ξ(t)〉w(t + h) dt

→
∫ T

0

〈u′(t), ξ(t)〉w(t) dt,

1

h

∫ T

h

(ψ(t) − ψ(t− h))w(t) dt =
1

h

∫ T

0

ψ(t)(w(t) − w(t + h)) dt

→ −
∫ T

0

ψ(t)w′(t) dt,

1

h

∫ T

h

〈u(t) − u(t− h), ξ(t)〉w(t) dt→
∫ T

0

〈u′(t), ξ(t)〉w(t) dt.

Therefore, we conclude that

−
∫ T

0

ψ(t)w′(t) dt =

∫ T

0

〈ξ(t), u′(t)〉w(t) dt

for all nonnegative Lipschitz continuous test functions w with compact support.

Since both the positive and the negative part of a Lipschitz continuous function are

Lipschitz continuous, we obtain the assertion. �

In order to establish the existence of solutions to Problem (P), it remains to prove

that w = Bu. The argument is different in each of the two cases corresponding to

Theorems 3.3 and 3.4.

P r o o f of Theorem 3.3. Let (3.6) hold. We test the difference of equations (4.1)

written for two different indices ε, ε′ by A−1(uε − uε′)(t) ∈ V1 and integrate over

(0, T ). With help of (2.2) and (2.8) we find

1

2
‖(uε − uε′)(T )‖2

V ′ +

∫ T

0

〈ξε(s) − ξε′(s), uε(s) − uε′(s)〉H ds(4.32)

6 −
∫ T

0

〈εu′ε(s) − ε′u′ε′(s), uε(s) − uε′(s)〉H ds

−
∫ T

0

〈(uε − uε′)(s), Buε(s− ε) −Buε′(s− ε′)〉ds.

Note that the right-hand side of (4.32) tends to 0 as ε, ε′ → 0 because of the weak

star (or strong) vs. strong convergence in (4.21)–(4.22) and (4.27). The term which
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has to be estimated from below is (we omit the arguments (s) for simplicity)

∫ T

0

〈ξε − ξε′ , uε − uε′〉H ds

=

∫ T

0

〈ξε − ξε′ , Jεuε − Jε′uε′〉H ds+

∫ T

0

〈ξε − ξε′ , εξε − ε′ξε′ 〉H ds

> C′′
Φ‖Jεuε − Jε′uε′‖2

L2(0,T ;H) +

∫ T

0

〈ξε − ξε′ , εξε − ε′ξε′〉H ds.

Here we have used (4.3), (2.11) and hypothesis (3.6). Note that the last integral

tends to 0 again due to weak vs. strong convergences in (4.23)–(4.24). Then, in view

of (4.25), we conclude that

(4.33) Jεuε → u strongly in L2(0, T ;H),

from which we also deduce

(4.34) uε → u strongly in L2(0, T ;H).

It is known that (see, e.g., [11, Thm. III.3.6]) the convergence (4.34) is equivalent to

the convergence in measure of uε to u plus the 2-uniform integrability of uε. Then

it is not difficult to check that continuity of B and (3.1) imply the same properties

for the sequence Buε, referring now to the space L
2(0, T ;V ). Hence, we have that

(4.35) Buε → Bu strongly in L2(0, T ;V ),

from which, by the continuity of the translation operator in L2(0, T ;V ), it follows

(4.36) Buε(· − ε) → Bu = w strongly in L2(0, T ;V ).

This concludes the proof of Theorem 3.3. �

P r o o f of Theorem 3.4. Suppose now the validity of (3.7). As B : H → V

is linear and bounded, it is clear that B generates a linear bounded operator

from L∞(0, T ;H) to L∞(0, T ;V ), so that

(4.37) Buε(· − ε) → Bu weakly star in L∞(0, T ;V ),

and the proof is complete. �

4.4. Continuous dependence

This subsection is devoted to the proof of Theorem 3.6. We start with an auxiliary

boundedness result for the solutions of Problem (P).
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Lemma 4.3. There exists a function S : R3 → (0,+∞), non-decreasing with

respect to each of the variables, such that every solution to Problem (P) satisfies the

estimate

∫ t

0

(‖u′(s)‖2
V ′ + ‖ξ(s)‖2

V ) ds+ Φ(u(t))(4.38)

6 S(T, ‖g‖L2(0,T ;V ′),Φ(u0)) ∀ t ∈ [0, T ].

P r o o f. We argue as in Subsection 4.2. The estimates for ‖u′‖V ′ and Φ(u)

are obtained directly by testing equation (3.2) by A−1u′ and using Proposition 4.2.

The estimate for ‖(I − P0)ξ‖V follows from (3.3), and inequality (2.30) yields the

assertion. �

P r o o f of Theorem 3.6. Let u1, u2 be two solutions to Problem (P) correspond-

ing to the sets of data {u0i, gi} with ξi ∈ ∂Φ(ui), i = 1, 2. Set ū = u1−u2, ξ̄ = ξ1−ξ2,
g = g1 − g2, ū0 = u01 − u02. We then have

(4.39) ū′(t) +A(ξ̄(t) +Bu1(t) −Bu2(t)) = g(t).

We test equation (4.39) by A−1(ū(t)−P0(ū0)). After integration over (0, t) we obtain

the estimate

1

2
‖ū(t) − P0(ū0)‖2

V ′ 6 −
∫ t

0

(〈ū, ξ̄〉H + 〈ū, Bu1 −Bu2〉) ds

+ ‖P0(ū0)‖H

∫ t

0

(‖ξ1‖H + ‖ξ2‖H + ‖Bu1‖H + ‖Bu2‖H) ds

+
1

2
‖(I − P0)ū0‖2

V ′ +

∫ t

0

‖g‖V ′‖ū‖V ′ ds.

As ‖ū(t)‖2
V ′ − 2‖P0(ū0)‖2

V ′ 6 2‖ū(t) − P0(ū0)‖2
V ′ , it turns out that inequality (3.9)

follows from (3.8), (3.1), (2.15) and Lemma 4.3, if one applies a generalized Gronwall

lemma (combine, for instance, the two versions reported in [5, pp. 156–157]). �
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5. Long-time behaviour

If g ∈ L2(0, T ;V ′
∗) for all T > 0, then the above existence theorems allow us

to construct a solution u : [0,+∞) → H , i.e., to build up trajectories of solutions

on the halfline [0,+∞). Indeed, having a solution on [0, T ] for some T > 0, we

can use Proposition 4.2 and Remark 3.5 to conclude that u(T ) ∈ Dom(Φ) and

‖P0u(T )‖H = ‖P0u0‖H 6 a∗. This enables us to start again with the new initial

data u(T ) to solve the problem in the interval [T, 2T ], and so on. It thus makes sense

to investigate the long-time behaviour of the solutions u to Problem (P) given by

Theorems 3.3–3.4.

In this framework we have to make an additional assumption about the operator B

in (3.1): we require B to be the Fréchet derivative of a potential Ψ with growth

controlled by Φ.

Hypothesis 5.1. Let Hypothesis 3.1 hold and assume that there exists a func-

tional Ψ: H → R and two constants ϑ ∈ [0, 1) and CΨ > 0 such that

Bz = DΨ(z),(5.1)

Ψ(z) > −ϑΦ(z) − CΨ(5.2)

for all z ∈ H , where DΨ denotes again the Fréchet derivative of Ψ.

First, we derive uniform bounds with respect to time for solutions to Problem (P).

Theorem 5.2. Assume that Hypothesis 5.1 and either (3.6) or (3.7) hold. More-

over, let the data g in Hypothesis 3.1 (ii) be defined on (0,+∞) and fulfil

(5.3) g ∈ L∞(0,+∞;V ′
∗), g′ ∈ L1(0,+∞;V ′

∗).

Then there exist a solution u : (0,+∞) → H to Problem (P) and a positive con-

stant Cs such that

(5.4) E(t) :=

∫ t

0

‖u′(s)‖2
V ′ ds+ ‖u(t)‖2

H + Φ(u(t)) + C′
Φ 6 Cs ∀ t > 0,

with Cs depending only on CΦ, C
′
Φ, ϑ, CΨ, ‖u0‖H , Φ(u0), Ψ(u0), ‖A−1g‖L∞(0,+∞;H)

and ‖A−1g′‖L1(0,+∞;H). Moreover, for every T > 0 we have

(5.5) ‖v‖L2(t,t+T ;V ) 6 C(T ) for all t > 0,

for some constant C(T ) which depends in particular on Cs, ‖g‖L∞(0,+∞;V ′

∗
) and T .
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Remark 5.3. The constant C′
Φ has been included into the left-hand side of (5.4)

in order that E be nonnegative by virtue of (2.15). Equivalently, in view of (5.1)–(5.2)
we could have considered the natural nonnegative Lyapunov functional

E0(t) :=

∫ t

0

‖u′(s)‖2
V ′ ds+ Φ(u(t)) + Ψ(u(t)) + (1 − ϑ)C′

Φ + CΨ

associated with the autonomous case (g ≡ 0) of Problem (P).

P r o o f of Theorem 5.2. As noticed at the beginning of this section, Theo-

rems 3.3–3.4 ensure that a global solution exists on the halfline [0,+∞). We test (3.2)

by A−1u′(t), exploit (3.3)–(3.4) and Proposition 4.2, integrate with respect to t, and

find out that
∫ t

0

‖u′(s)‖2
V ′ ds+ Φ(u(t)) − Φ(u0) +

∫ t

0

〈u′(s), Bu(s)〉ds(5.6)

=

∫ t

0

〈g(s), A−1u′(s)〉ds.

Now, let us make use of the chain rule formula

(5.7)

∫ t

0

〈u′(s), Bu(s)〉ds = Ψ(u(t)) − Ψ(u0)

which is obvious if u′ ∈ L2(0, T ;H) and t < T (see, e.g., [1, pp. 9–12] for definitions

and basic properties of Fréchet derivatives). Since in the general case we just know

that u′ ∈ L2(0, T ;V ′) for all T > 0, we can proceed as follows. Let JA : V → V ′ be

the Riesz operator defined by the scalar product in (2.6), i.e., 〈JAv, w〉 := 〈v, w〉A
for all v, w ∈ V , and for ε ∈ (0, 1) consider singular perturbations uε of u defined as

the solutions to the equation

uε(t) + εJAuε(t) = u(t), t ∈ (0, T ).

Formula (5.7) is valid for uε instead of u. Moreover, one can check that ‖uε(t)‖H 6

‖u(t)‖H for all ε ∈ (0, 1) and uε(t) → u(t) in H as ε ց 0, for every t ∈ [0, T ]

(cf. Remark 3.2). On the other hand, we also have ‖u′ε(t)‖V ′ 6 ‖u′(t)‖V ′ for a.e. t ∈
(0, T ) and u′ε → u′ strongly in L2(0, T ;V ′). Hence, passing to the limit and using

the continuity of B : H → V and Ψ: H → R, we obtain (5.7).
In the subsequent calculation we use the assumptions (2.15) on Φ and (5.1)–(5.2)

on Ψ to obtain

Φ(u(t)) − Φ(u0) + Ψ(u(t)) − Ψ(u0)(5.8)

> (1 − ϑ)Φ(u(t)) − CΨ − Φ(u0) − Ψ(u0)

>
1 − ϑ

2
CΦ‖u(t)‖2

H +
1 − ϑ

2
Φ(u(t)) − C′

Φ − CΨ − Φ(u0) − Ψ(u0).
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Next, we estimate the integral on the right-hand side of (5.6). By C1, C2, . . . we

denote suitable positive constants depending only on CΦ, C
′
Φ, ϑ, CΨ, Φ(u0), Ψ(u0),

‖u0‖H and ‖A−1g‖L∞(0,+∞;H), at most. Using the symmetry properties of A
−1 and

integrating by parts in time, we deduce

∫ t

0

〈g(s), A−1u′(s)〉ds(5.9)

= −
∫ t

0

〈u(s), A−1g′(s)〉H ds+ 〈u(t), A−1g(t)〉H − 〈u0, A
−1g(0)〉H

6

∫ t

0

‖u(s)‖H‖A−1g′(s)‖H ds+ ‖u(t)‖H‖A−1g(t)‖H

+ ‖u0‖H‖A−1g(0)‖H

6

∫ t

0

‖u(s)‖H‖A−1g′(s)‖H ds+
1 − ϑ

4
CΦ‖u(t)‖2

H + C1.

Then, combining (5.6) and (5.8)–(5.9), we get the inequality

∫ t

0

‖u′(s)‖2
V ′ ds+

1 − ϑ

4
CΦ‖u(t)‖2

H +
1 − ϑ

2
Φ(u(t))(5.10)

6 C2 +

∫ t

0

‖(A−1g)′(s)‖H‖u(s)‖H ds.

Now, recalling the definition of E in (5.4), we can rewrite (5.10) as

E(t) 6 C3 + C4

∫ t

0

‖(A−1g)′(s)‖H

√
E(s) ds.

Finally, by applying a variation of the Gronwall lemma (cf., e.g., [5, Lemme A5,

p. 157]), we obtain

(5.11)
√
E(t) 6

√
C3 +

C4

2

∫ t

0

‖(A−1g)′(s)‖H ds 6 C5,

whence the estimate in (5.4) follows immediately. At this point it remains to

prove (5.5). From (2.8), (3.2), (5.3), Remark 3.5, and (5.11) it follows that

∫ t+T

t

‖(I − P0)v(s)‖2
V ds =

∫ t+T

t

‖Av(s)‖2
V ′ ds(5.12)

6 2

∫ t+T

0

‖u′(s)‖2
V ′ ds+

∫ t+T

t

2‖g(s)‖2
V ′ ds

6 2(Cs + T ‖g‖2
L∞(0,∞;V ′

∗
)).
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Similarly as in Subsection 4.2, we use (2.30) and (5.3)–(5.4) to obtain

(5.13) ‖P0ξ(s)‖H 6 C(1 + ‖(I − P0)ξ(s)‖H) for s ∈ [t, t+ T ].

Hence, owing to (2.5), (3.3) and (5.4), for s ∈ [t, t+ T ] we deduce that

‖P0v(s)‖V 6 C(‖P0ξ(s)‖H + ‖Bu(s)‖H)(5.14)

6 C(1 + ‖(I − P0)ξ(s)‖H + ‖Bu(s)‖V )

6 C(1 + ‖(I − P0)v(s)‖H + ‖Bu(s)‖V )

6 C(1 + ‖(I − P0)v(s)‖V ),

and consequently (5.5) follows from (5.12). This concludes the proof of Theorem 5.2.

�

With the intention of investigating the long-time behaviour of solutions to Prob-

lem (P), we define the ω-limit set ω(u) of the single trajectory u in V ′ by

(5.15) ω(u) =

{
u∞ ∈ V ′ : there exists a sequence of times tn ր +∞
such that u(tn) converges to u∞ strongly in V ′

}
.

Remark 5.4. Note that in the case when Problem (P) has a unique solution

(cf. Theorem 3.6 and Remark 3.7), the trajectory u : (0,+∞) → H is uniquely

determined by the initial data u0 so that, in this case, ω(u) can be replaced by ω(u0).

The main result of this section can be stated as follows.

Theorem 5.5. Under the same assumptions as in Theorem 5.2, let u :

(0,+∞) → H be a solution to Problem (P). Then the ω-limit set ω(u) is a nonempty,

compact and connected subset of V ′. Moreover, if u∞ ∈ ω(u), then

(5.16) u∞ ∈ H, P0u∞ = P0u0,

and there exists a selection ξ∞ ∈ ∂Φ(u∞) ∩ V such that

(5.17) A(ξ∞ +Bu∞) = g∞ in V ′,

where g∞ denotes the limit, as tր +∞, of g(t) in V ′
∗ , existing by virtue of (5.3).

P r o o f. We first note that thanks to the estimate (5.4) (cf. also Remark 3.2)

the set {u(t), t > 0} is bounded in H and relatively compact in V ′. Therefore, the

set ω(u) is a nonempty compact subset of V ′. Actually, ω(u) is also connected, due
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to the continuity of u from [0,+∞) to V ′ and to a standard argument from the

theory of dynamical systems (see, e.g., [17, p. 12]). Then, let u∞ ∈ ω(u) and take a

strictly increasing sequence {tn}n∈N of positive real numbers such that tn ր +∞ as
nր +∞ and

(5.18) u(tn) → u∞ weakly in H and strongly in V ′.

In addition, for every integer n > 1 we define functions un(t) := u(tn + t), vn(t) :=

v(tn + t), ξn(t) := ξ(tn + t), and gn(t) := g(tn + t), t > 0. We are interested in

studying the limiting behaviour of the above sequences as n ր +∞ in some finite
time interval [0, T ]. Hence, for a fixed T > 0 let us rewrite here Problem (P) at the

time (t+ tn) in terms of the new unknowns un, vn, ξn and data gn, i.e.,

u′n(t) +Avn(t) = gn(t) in V ′ for a.e. t ∈ (0, T ),(5.19)

vn(t) = ξn(t) +Bun(t) in V for a.e. t ∈ (0, T ),(5.20)

un(t) ∈ Dom(∂Φ), ξn(t) ∈ ∂Φ(un(t)) for a.e. t ∈ (0, T ),(5.21)

un(0) = u(tn) in H.(5.22)

In view of (5.3), let us point out that

(5.23) gn → g∞ = g(0) +

∫ +∞

0

g(t) dt strongly in L1(0, T ;V ′) as nր +∞

because of

(5.24) ‖gn − g∞‖L1(0,T ;V ′) 6

∫ T

0

∫ +∞

tn+t

‖g′(s)‖V ′ ds dt 6 T ‖g′‖L1(tn,+∞;V ′) ց 0.

As a consequence of Theorem 5.2, we derive some estimates for un, vn and ξn,

uniform with respect to n > 1. Since u′ ∈ L2(0,+∞;V ′) by (5.4), we infer that

(5.25) ‖u′n‖L2(0,T ;V ′) 6 ‖u′‖L2(tn,+∞;V ′) ց 0 as nր +∞.

Moreover, by virtue of (5.4) and (3.1) we have

(5.26) ‖un‖L∞(0,T ;H) + ‖Bun‖L∞(0,T ;V ) 6 C

and consequently, thanks to (5.5) and by comparison with (5.20), we get

(5.27) ‖vn‖L2(0,T ;V ) + ‖ξn‖L2(0,T ;V ) 6 C(T )
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for every n ∈ N. Hence, by standard compactness argument we deduce the existence
of functions ū, w, v, ξ̄ : (0, T ) → H such that, possibly taking a subsequence of n as

nր +∞, the convergences

un → ū strongly in H1(0, T ;V ′) and(5.28)

weakly star in L∞(0, T ;H),

Bun → w weakly star in L∞(0, T ;V ),(5.29)

vn → v and ξn → ξ̄ weakly in L2(0, T ;V )(5.30)

hold as nր +∞. Concerning (5.28), we point out that the boundedness properties
in (5.25) and (5.26) allow us to see (as for (4.21)) that un → ū weakly star in

H1(0, T ;V ′) ∩ L∞(0, T ;H) and strongly in C0([0, T ];V ′), but the fact that u′n → 0

strongly in L2(0, T ;V ′) (cf. again (5.25)) yields (5.28) and, in addition, ū′ = 0. Then

the function ū does not depend on t; besides, (5.22) and (5.18) imply that ū = u∞.

Moreover, as P0u(t) = P0u0 for all t > 0 (cf. Remark 3.5), (5.16) follows easily.

As the next step, we check that

(5.31) ξ̄(t) ∈ ∂Φ(u∞) for a.e. t ∈ (0, T ).

Indeed, as un → u∞ strongly in L
2(0, T ;V ′) and ξn → ξ̄ weakly in L2(0, T ;V )

(cf. (5.28) and (5.30)), we may repeat the argument from Subsection 4.3 and infer,

as a counterpart to (4.31), that

(5.32) 〈ξ̄(t) − η, u∞ − z〉H > 0 a.e. in (0, T ) ∀ z ∈ Dom(∂Φ), ∀ η ∈ ∂Φ(z).

Since ∂Φ is maximal monotone, we obtain the assertion.

It remains to check that w = Bu∞. To this aim, we have to distinguish between

the two cases in which either (3.6) or (3.7) holds.

Case of ∂Φ strongly monotone. Take two different integers n and n′ and test the

difference of equations (5.19) written for n, n′ by A−1(un − un′). Note that this

is possible since (un − un′)(t) = u(tn + t) − u(tn′ + t) ∈ V ′
∗ for all t > 0. Then,

integrating the resulting equation over (0, T ), with help of (5.20), (3.6) and (5.22)

we obtain

1

2
‖(un − un′)(T )‖2

V ′ + C′′
Φ‖un − un′‖2

L2(0,T ;H)(5.33)

6
1

2
‖(u(tn) − u(tn′)‖2

V ′

+

∫ T

0

〈un − un′ ,−(Bun −Bun′) +A−1(gn − gn′)〉dt.
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Owing to (5.18), (5.28)–(5.29) and (5.23), the right-hand side of (5.33) tends to 0 as

nր +∞; in particular, note the strong convergence of {un−un′} to 0 in L∞(0, T ;V ′)

against the boundedness of {−(Bun−Bun′)+A−1(gn−gn′)} in L1(0, T ;V ). Hence,

we infer that

(5.34) un → u∞ strongly in L2(0, T ;H)

as nր +∞. Moreover, arguing as in (4.34)–(4.35), we also derive

(5.35) Bun → Bu∞ strongly in L2(0, T ;V ),

whence (cf. (5.29)) Bu∞ = w.

Case of B linear. If (3.7) holds, then the equality Bu∞ = w is a straightforward

consequence of the weak star convergence un → u∞ in L
∞(0, T ;H) in (5.28) and the

linearity of B.

Therefore, thanks to the established convergences, passing to the limit as nր ∞
in (5.19)–(5.20) we find out that

(5.36) Av(t) = g∞ and v(t) = ξ̄(t) +Bu∞ for a.e. t ∈ (0, T ).

It suffices now to select any t ∈ (0, T ) such that ξ̄(t) ∈ ∂Φ(u∞) in H by virtue

of (5.31), and set ξ∞ := ξ̄(t). Then (5.17) results from (5.36) and Theorem 5.5 is

completely proved. �

Remark 5.6. Let us note that for the proof of Theorem 5.5 we did not use the

bound for |Φ(u(t))| contained in (5.4), but it is always interesting to have it, because
for some potential Φ such bound may give further information on the long-time

behaviour of the solution u. For instance, if the domain of Φ is as in Proposition 2.11

and the set Z used there is bounded in RN , then weak star convergence in L∞ can

be inferred for {u(tn)} and {un} in the respective space and space-time domains.
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