e

 $\|f\|_{L^{\infty}} = \|f\|_{\infty} = \inf \{C; |f(x)| \le C \quad \text{q.o. in } \Omega \}.$

La seguente osservazione implica che | | | è una norma .

OSSERVAZIONE 1. – Se $f \in L^{\infty}$, allora si ha

 $|f(x)| \le ||f||_{\infty}$ q.o. in Ω .

Infatti, esiste una successione C_n tale che $C_n \to \|f\|_{\infty}$ e, per ogni n, $|f(x)| \leq C_n$ q.o. in Ω . Pertanto $|f(x)| \leq C_n$ per ogni $x \in \Omega \setminus E_n$ con

 $|E_n| = 0$. Poniamo $E = \bigcup_{n=1}^{\infty} E_n$, in modo che |E| = 0 e

 $|f(x)| \le C_n \quad \forall n, \quad \forall x \in \Omega \setminus E$;

ne segue che $|f(x)| \le ||f||_{\infty} \quad \forall x \in \Omega \setminus E$.

Notazione. Sia $1 \le p \le \infty$; denotiamo con p' l'esponente coniugato, cioè, $\frac{1}{p} + \frac{1}{p'} = 1$.

Teorema IV.6 (Disuguaglianza di Hölder). Supponiamo che $f\in L^p$ e $g\in L^{p'}$ con $1\leqslant p\leqslant \infty$. Allora $fg\in L^1$ e

$$(1) \qquad \int |fg| \leq \|f\|_p \cdot \|g\|_p,$$

DIMOSTRAZIONE. — La conclusione è ovvia se p=1 o $p=\infty$; perciò supponiamo che $1< p<\infty$. Ricordiamo la disuguaglianza di Young.

(2)
$$ab \leq \frac{1}{p} a^p + \frac{1}{p'} b^{p'} \quad \forall a \geq 0, \quad \forall b \geq 0^{(1)};$$

(1) Talvolta è conveniente utilizzare la forma $ab \le ea^p + C_eb^{p'}$ con $C_e = e^{-1/(p-1)}$

Ω è un insieme misurabile.

In realtà, LP(SZ) è la spazio delle classi di funzioni uguzli tra loro q.o.

IV.2. Definizione e proprietà elementari degli spazi L^P

Definizione. Sia $p \in \mathbb{R}$ con $1 \le p < \infty$; poniamo

 $L^{p}(\Omega) = \{ f : \Omega \to \mathbb{R} ; f \text{ misurabile e } | f | p \in L^{1}(\Omega) \}$

 $\|f\|_{L^p} = \|f\|_p = \left[\int_{\Omega} |f(x)|^p d\mu\right]^{1/p}$

Verificheremo in seguito che $\| \cdot \|_p$ è una norma.

Definizione. Poniamo

 $L^{\infty}(\Omega) = \begin{cases} f: \Omega \to \mathbb{R} & \text{misurabile ed esiste una costante} \\ C & \text{tale che } |f(x)| \leq C \text{ q.o. in } \Omega \end{cases}$

Capitolo quarto

la disuguaglianza (2) è conseguenza della concavità della funzione $\log \operatorname{su}(0, \infty)$:

$$\log \left(\frac{1}{p} a^p + \frac{1}{p'} b^{p'} \right) \ge \frac{1}{p} \log a^p + \frac{1}{p'} \log b^{p'} = \log ab .$$

Si ha:

$$|f(x) g(x)| \le \frac{1}{p} |f(x)|^p + \frac{1}{p'} |g(x)|^{p'}$$
, per q.o. $x \in \Omega$.

Ne segue che $fg \in L^1$ e

(3)
$$\int |fg| \leq \frac{1}{p} \|f\|_p^p + \frac{1}{p'} \|g\|_p^{p'} .$$

Sostituendo f con λf ($\lambda > 0$) nella (3), si ottiene

(4)
$$\int |fg| \leq \frac{\lambda^{p-1}}{p} \|f\|_p^p + \frac{1}{\lambda p'} \|g\|_{p'}^{p'}.$$

Scegliendo $\lambda = \|f\|_p^1 \cdot \|g\|_p^{p'/p}$ (in modo da minimizzare il secondo membro della (4)), si ha (1).

OSSERVAZIONE 2. — E' utile ricordare la seguente generalizzazione della disuguaglianza di Hölder:

Siano f_1, f_2, \ldots, f_k funzioni tali che

$$f_i \in L^{p_i}, \ 1 \le i \le k \quad \text{con} \ \frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2} + \dots + \frac{1}{p_k} \le 1.$$

Allora il prodotto $f = f_1 f_2 \dots f_k$ appartiene a L^p e

$$\|f\|_{p} \leq \|f_{1}\|_{p_{1}} \|f_{2}\|_{p_{2}} \dots \|f_{k}\|_{p_{k}}$$

In particolare se $f \in L^p \cap L^q$ con $1 \le p \le q \le \infty$, allora $f \in L^r$

per ogni r tale che $p \le r \le q$ e sussiste la seguente "disuguaglianza di interpolazione":

$$||f||_r \le ||f||_p^{\alpha} ||f||_q^{1-\alpha}$$
, ove $\frac{1}{r} = \frac{\alpha}{p} + \frac{1-\alpha}{q}$, $0 \le \alpha \le 1$.

Teorema IV.7. – L^p è uno spazio vettoriale e $\| \|_p$ è una norma per ogni p tale che $1 \le p \le \infty$.

DIMOSTRAZIONE. – I casi p=1 e $p=\infty$ sono noti. Perciò supponiamo $1 e siano <math>f, g \in L^p$. Si ha

$$|f(x) + g(x)|^p \le (|f(x)| + |g(x)|)^p \le 2^p (|f(x)|^p + |g(x)|^p).$$

Di conseguenza $f + g \in L^p$. D'altra parte si ha

$$\|f+g\,\|_p^p = \int |f+g\,|^{p-1}\,|f+g| \leqslant \int |f+g|^{p-1}\,|f| + \int |f+g\,|^{p-1}|g|\;.$$

Ma $|f+g|^{p-1} \in L^{p'}$ e, per la disuguaglianza di Hölder, risulta

$$\left\|f+g\right\|_{p}^{p}\leqslant\left\|f+g\right\|_{p}^{p-1}\left(\left\|f\right\|_{p}+\left\|g\right\|_{p}\right),$$

cioè
$$\left\|f+g\right\|_{p}\leqslant \left\|f\right\|_{p}+\left\|g\right\|_{p}$$
 .

Teorema IV.8 (Fisher-Riesz). — L^p è uno spazio di Banach per ogni $p, 1 \le p \le \infty$.

DIMOSTRAZIONE. — Distinguiamo i casi $p = \infty$ e $1 \le p < \infty$.

1) Caso $p = \infty$. Sia (f_n) una successione di Cauchy in L^{∞} . Dato un

intero $k \ge 1$, esiste un intero N_k tale che $\|f_m - f_n\|_{\infty} \le \frac{1}{k}$, per $m, n \ge N_k$.

Pertanto esiste un insieme trascurabile E_k tale che

 $(5) \quad |f_m(x)-f_n(x)| \leqslant \frac{1}{k} \, , \quad \forall \, x \in \Omega \backslash E_k \, , \quad \forall \, m, \, n \geqslant N_k \, \, .$

Posto $E = \bigcup_k E_k$ — in modo che E è trascurabile — allora, per ogni $x \in \Omega \setminus E$, la successione $f_n(x)$ è di Cauchy (in R). Così $f_n(x) \to f(x)$ $\forall x \in \Omega \setminus E$. Passando al limite in (5) per $m \to \infty$, si ottiene

$$|f(x) - f_n(x)| \le \frac{1}{k}$$
 $\forall x \in \Omega \backslash E$, $\forall n \ge N_k$.

Si deduce perciò che $f\in L^\infty$ e $\|f-f_n\|_\infty \leqslant \frac{1}{k} \ \forall \ n\geqslant N_k$; per cui $f_n\to f$ in L^∞ .

2) Caso $1 \le p < \infty$. Sia (f_n) una successione di Cauchy in L^p . Per concludere è sufficiente determinare una sottosuccessione convergente in L^p .

Sia (f_{n_k}) una sottosuccessione tale che

$$\|f_{n_{k+1}} - f_{n_k}\|_p \leqslant \frac{1}{2^k} \quad \forall k \geqslant 1$$

[Si procede come segue: si sceglie n_1 tale che $\|f_m - f_n\|_p \le \frac{1}{2}$ $\forall m, n \ge n_1$; poi si sceglie $n_2 > n_1$ tale che $\|f_m - f_n\|_p \le \frac{1}{2^2}$ $\forall m, n \ge n_2$, e così via...].

Verifichiamo che f_{n_k} converge in L^p . Per semplificare le notazioni, scriviamo f_k in luogo $\dim f_{n_k}$, in modo che

(6)
$$\|f_{k+1} - f_k\|_p \leqslant \frac{1}{2^k} \quad \forall k \ge 1.$$

Sia

$$g_n(x) = \sum_{k=1}^n |f_{k+1}(x) - f_k(x)|$$

in modo che

$$\|g_n\|_p \leq 1.$$

Per il teorema della convergenza monotona, $g_n(x)$ tende a un limite finito g(x), q.o. in Ω , con $g \in L^p$. D'altra parte, per $m \ge n \ge 2$ si ha

$$|f_m(x) - f_n(x)| \le |f_m(x) - f_{m-1}(x)| + \dots + |f_{n+1}(x) - f_n(x)| \le$$

 $\le g(x) - g_{n-1}(x)$.

Ne segue che, q.o. in Ω , $f_n(x)$ è di Cauchy e converge ad un limite finito, diciamo f(x). Si ha q.o. in Ω

(7)
$$|f(x) - f_n(x)| \le g(x) \quad \text{per } n \ge 2,$$

e in particolare $f \in L^p$.

Infine concludiamo, grazie al teorema di Lebesgue, che $\|f_n - f\|_p \to 0$, dato che $|f_n(x) - f(x)|^p \to 0$ q.o. e inoltre $|f_n - f|^p \le \le g^p \in L^1$.

Teorema IV.9. — Sia (f_n) una successione in L^p e sia $f \in L^p$ tale che $\|f_n - f\|_p \to 0$. Allora esistono una sottosuccessione (f_{n_k}) e una funzione $h \in L^p$ tali che

a)
$$f_{n_k}(x) \rightarrow f(x)$$
 q.o. in Ω

b)
$$|f_{n_k}(x)| \le h(x) \quad \forall k, \quad q.o. \quad in \Omega$$
.

DIMOSTRAZIONE. — La conclusione è ovvia se $p=\infty$. Così supponiamo $1 \le p < \infty$. Poiché (f_n) è una successione di Cauchy, possiamo procedere come nella dimostrazione del teorema IV.8 e considerare una sottosuccessione (f_{n_k}) — indicata con f_k — soddisfacente (6), tale che $f_k(x)$ tende q.o. ad un limite $f^*(x)^{(1)}$ con $f^* \in L^p$. Inoltre per la (7) si ha $|f^*(x) - f_k(x)| \le g(x) \ \forall k$, q.o. in Ω con $g \in L^p$. Convergenza dominata $\Rightarrow f_k \to f^*$ in LP Dunque $f = f^*$ q.o. Inoltre visulta $|f_k(x)| \le |f^*(x)| + |g(x)|$ da cui la tesi.