Prova scritta del 26 gennaio 2005

Esercizio 1. Posto $B = \{x \in \mathbb{R}^2 : |x|^2 \le 2\}$, sia $\{f_n\}$ una successione di funzioni (misurabili e) integrabili in B tali che $f_n \to f$ q.o. in B e, per ogni $n \in \mathbb{N}$,

$$f_n(x) \ge -2|x|^3$$
 per q.o. $x \in B$, $\int_B f_n(x)dx \le 7$.

Dire perché la funzione limite f è misurabile e mostrare che essa è anche sommabile in B.

Esercizio 2. Si consideri il seguente sottoinsieme dello spazio $H=L^2(-\pi,\pi)$

$$X = \{u \in H : u(x) = a \cos x + b \sin x, x \in (-\pi, \pi), \text{ per una coppia } (a, b) \in \mathbb{R}^2\}$$

e la funzione

$$f(x) = \begin{cases} -1 & \text{if } -\pi \le x < 0 \\ 0 & \text{if } x = 0 \\ 1 & \text{if } 0 < \chi \le \pi \end{cases}.$$

- a) Dire perché $f \in H$ e perché X è un sottospazio di H.
- b) $X \in \text{chiuso in } H$?
- c) Trovare la proiezione di f su X.

Esercizio 3. Posto, per $x \in \mathbb{R}$, $u(x) = \max\{-1, \min\{x, 1\}\}$ e

$$f_n(x) = \int_0^x (u(t))^n dt, \quad n \in \mathbb{N},$$

- a) studiare la convergenza puntuale ed uniforme della successione f_n in \mathbb{R} ;
- b) per n fissato in \mathbb{N} , trovare $k \in \{0, 1, 2, ...\}$ tale che $f_n \in C^k(\mathbb{R})$ e $f_n \notin C^{k+1}(\mathbb{R})$.
- c) Che cosa si può dire della convergenza della successione delle derivate f_n' ?

Prova scritta del 18 febbraio 2005

Esercizio 1. Posto, per $k \in \mathbb{N}$,

$$A_k = \{x = (x_1, x_2) \in \mathbb{R}^2 : |x_1 - k| \le 1, |x_2| \le e^{-x_1} \},$$

si consideri la seguente serie di funzioni in \mathbb{R}^2

$$\sum_{k=1}^{\infty} u_k(x), \quad \text{dove} \quad u_k(x) := x_1 |x_2| \chi_{A_k}(x)$$

e, con notazione standard, χ_A denota la funzione caratteristica di un insieme $A \subseteq \mathbb{R}^2$.

- a) Si dica perché la serie di funzioni converge q.o. ad una funzione misurabile $f: \mathbb{R}^2 \to \mathbb{R}$.
- b) Si controlli se f è sommabile e si calcoli la somma (finita o infinita) della serie numerica

$$\sum_{k=1}^{\infty} \int_{\mathbb{R}^2} u_k(x) \, dx.$$

c) Si determini per quali $\alpha \in \mathbb{R}$ la serie di funzioni $\sum_{k=1}^{\infty} |x_1|^{\alpha} u_k(x)$ converge uniformemente in \mathbb{R}^2 .

Esercizio 2. Si consideri lo spazio vettoriale $E=\{u\in C^0([0,\pi]): u(0)=0\}$ munito della norma

$$||u|| = \max\{|u(t)|: t \in [0, \pi]\}, \quad u \in E.$$

- a) Dire perché lo spazio E è completo, cioè è uno spazio di Banach.
- b) Verificare che

$$||u||_a := \max_{0 \le t \le \pi} \frac{|u(t)|}{1 + \sin t}, \quad ||u||_b := \max_{0 \le t \le \pi} t|u(t)|, \quad u \in E,$$

definiscono altre due norme in E.

- c) Provare che $\|\cdot\|_a$ è equivalente a $\|\cdot\|$ e che invece $\|\cdot\|_b$ non è equivalente a $\|\cdot\|$.
- d) Controllare infine che lo spazio E munito della norma $\|\cdot\|_b$ non è completo.

Prova scritta del 5 luglio 2005

Esercizio 1. Posto, per $n \in \mathbb{N}$ (con \mathbb{N} che qui parte da 1) e $x \in \mathbb{R} \setminus \{0\}$,

$$f_n(x) := \max\{0, |nx|^{-1/2} - 1\}, \qquad f_n(0) := 0,$$

si consideri la seguente serie di funzioni in \mathbb{R}

$$\sum_{n=1}^{\infty} f_n(x).$$

- a) Si studi la convergenza q.o. della serie di funzioni in \mathbb{R} , indicando con s la funzione misurabile somma della serie.
- b) Determinare eventuali sottoinsiemi misurabili $A \subseteq \mathbb{R}$ sui quali $\sum_{n=1}^{\infty} f_n$ converge uniformente a s.
- c) Controllare la sommabilità di f_n in \mathbb{R} qualunque sia $n \in \mathbb{N}$.
- d) Studiare il carattere della serie numerica

$$\sum_{n=1}^{\infty} \int_{\mathbb{R}} f_n(x) \, dx.$$

e) Valutare l'integrabilità e l'eventuale sommabilità di s in \mathbb{R} .

Esercizio 2. Si consideri la forma

$$a(x,y) := \sum_{n=1}^{\infty} 2^n x_n y_n,$$

che associa ad ogni coppia di successioni reali $x=(x_1,x_2,\ldots)$ e $y=(y_1,y_2,\ldots)$ tali che la serie

$$\sum_{n=1}^{\infty} 2^n x_n y_n$$

sia convergente, un numero reale. Si chiede

- a) se la forma $a(\cdot, \cdot)$ definisce un prodotto scalare in un certo spazio vettoriale reale X:
- b) se tale spazio X ha qualche relazione con lo spazio ℓ^2 a voi noto.

Prova scritta del 27 settembre 2005

Esercizio 1. Ci interessiamo a successioni di funzioni, definite su tutto l'asse reale, che convergono o non convergono puntualmente alla funzione identicamente nulla $u(x) := 0 \ \forall x \in \mathbb{R}$.

- (i) Per ognuna delle seguenti successioni di funzioni $\{u_n(x)\}$, precisate, per $x \in \mathbb{R}$ e $n \in \mathbb{N}$, dalle formule seguenti
 - 1. $u_n(x) = xe^{-n|x|}$;

2.
$$u_n(x) = \begin{cases} 0 & \text{se } x = 0 \\ 1/(nx) & \text{se } x \neq 0 \end{cases}$$
;

3.
$$u_n(x) = (\max\{2 - |x + 5|, 0\})^n$$
;

4.
$$u_n(x) = \begin{cases} nx & \text{se } 0 < x \le 1/n \\ 0 & \text{altrove} \end{cases}$$
;

5.
$$u_n(x) = n \arctan(x-4)$$

6.
$$u_n(x) = \begin{cases} 3 & \text{se } |x+n| \le 7 \\ 0 & \text{se } |x+n| > 7 \end{cases}$$
;

dire, motivando le risposte, se

- a) u_n converge uniformente a u;
- b) u_n converge puntualmente ma non uniformente a u;
- c) u_n non converge puntualmente a u.
- (ii) Se $\{f_n\}$ è una successione nella condizione a) e $\{g_n\}$ è una successione nella condizione b), possiamo concludere che la successione prodotto $\{f_ng_n\}$ converge uniformemente a u?

Esercizio 2. Nello spazio euclideo \mathbb{R}^3 sia $\{E_n\}$ una successione di insiemi misurabili tale che

$$\sum_{n=1}^{\infty} m(E_n) = 5,$$

con m che denota la misura tridimensionale di Lebesgue. Posto $F_k = \bigcup_{n=k}^{\infty} E_n$, provare che l'insieme

$$A = \{ x \in \mathbb{R}^3 : x \in F_k \text{ per tutti i } k \ge 125 \}$$

è misurabile e calcolarne la misura.

Esercizio 3. Sviluppare in serie di Fourier nello spazio $L^2(-\pi,\pi)$ la funzione f(x) = |x| rispetto al sistema ortonormale completo

$$\{(2\pi)^{-1/2}, \pi^{-1/2}\sin(nx), \pi^{-1/2}\cos(nx)\}.$$

4

Prova scritta del 28 ottobre 2005

Esercizio 1. Dare un esempio di operatore lineare e continuo $T: \mathbb{R}^3 \to \mathbb{R}^2$ tale che la sua norma $||T||_{\mathcal{L}(\mathbb{R}^3;\mathbb{R}^2)}$ sia esattamente uguale a 5. Si chiede naturalmente di motivare per bene la risposta data.

Esercizio 2. Nello spazio euclideo \mathbb{R}^N sia Ω un sottoinsieme misurabile e $f:\Omega\to\mathbb{R}$ una funzione sommabile in Ω . Dimostrare che la funzione h definita da

$$h(x) = \sqrt[3]{1 - f(x)}, \quad x \in \Omega,$$

è sommabile in Ω se e solo se Ω ha misura finita.

Aggiungo qui un esercizio assegnato in uno scrittino di un (analogo) appello in data

19 novembre 2004

Esercizio 3. Posto $X = C^0([0,1])$, sia T l'applicazione definita da

$$T:X\to X, \qquad (Tu)(t):=2u(t)-\sinh(u(t)), \quad u\in X,\ t\in [0,1].$$

- (a) L'operatore T è lineare?
- (b) T è continuo in 0 (elemento nullo di X)?
- (c) T mappa limitati di X in limitati di X?
- (d) Esiste una costante reale L > 0 tale che $||Tu||_X \le L||u||_X$ per ogni $u \in X$?
- (e) L'operatore T è iniettivo?

Prova scritta del 9 dicembre 2005

Esercizio 1. Scrivere un esempio di serie di potenze reale del tipo

$$\sum a_n(x-x_0)^n$$

che converga uniformemente nell'intervallo [7,12) e al contempo non converga per $x \in [3,7)$.

Esercizio 2. Posto

$$f_n(x) = \begin{cases} \frac{e^{-n}}{\sqrt{n^2 - x^2}} & \text{se } |x| < n \\ 0 & \text{se } |x| \ge n \end{cases},$$

discutere la convergenza puntuale ed uniforme della serie di funzioni $\sum_{n=1}^{\infty} f_n$ in \mathbb{R} .

Esercizio 3. Sia X l'insieme delle (classi di) funzioni $f:(1,+\infty)\to\mathbb{R}$ misurabili (e tra loro uguali q.o.) tali che

$$\int_{(1,+\infty)} x|f(x)|^2 dx < +\infty.$$

- 1. Mostrare che X è un sottoinsieme di $L^2(1, +\infty)$.
- **2.** Controllare che X è un sottospazio di $L^2(1, +\infty)$.
- **3.** Provare che X è denso in $L^2(1, +\infty)$.
- 4. Posto

$$\langle f, g \rangle_X = \int_{(1, +\infty)} x f(x) g(x) dx \quad \forall f, g \in X,$$

provare che $\langle \cdot, \cdot \rangle_X$ è un prodotto scalare in X.

- 5. Dimostrare che X è completo, cioè che X è uno spazio di Hilbert rispetto al prodotto scalare di cui sopra (suggerimento: utilizzare la completezza di $L^2(1,+\infty)$).
- **6.** Dare un esempio di operatore T lineare e continuo da $L^2(1, +\infty)$ nello spazio X (munito della norma associata al prodotto scalare $\langle \cdot, \cdot \rangle_X$), operatore che abbia norma non nulla.

Prova scritta del 26 gennaio 2006

Esercizio 1. Posto, per $x \in \mathbb{R}$ e $n \in \mathbb{N}$,

$$f_n(x) = \begin{cases} 2^n & \text{se } 2^{-n} < x < 2^{-n+1} \\ 0 & \text{altrove} \end{cases}$$

si risponda alle seguenti domande.

- a) Perché le funzioni f_n sono (misurabili e) integrabili in \mathbb{R} ?
- b) Studiare la convergenza q.o. della successione $\{f_n\}$ in \mathbb{R} .
- c) È possibile applicare alla successione $\{f_n\}$ i teoremi di passaggio al limite sotto il segno di integrale? Se si, quali? Se no, perché?

Esercizio 2. Si consideri il sottoinsieme di \mathbb{R}^3

$$X = \{(x, y, z) \in \mathbb{R}^3 : x + 2y = z\}.$$

- a) Mostrare che X è un sottospazio di \mathbb{R}^3 . È chiuso?
- **b)** Individuare ed esplicitare il sottospazio $Y = X^{\perp}$.
- c) Calcolare la proiezione del vettore (1, 5/2, 0) su X.
- d) Calcolare la proiezione del vettore (1, 5/2, 0) su Y.

Esercizio 3. Sia $f: \mathbb{R}^2 \to \mathbb{R}$ una funzione continua tale che f(0,0)=0 e inoltre

$$\lim_{\|(x,y)\|_2 \to +\infty} f(x,y) = 0.$$

Si ponga in oltre, per $(x,y)\in\mathbb{R}^2$ e $n\in\mathbb{N},$

$$f_n(x,y) = f(nx, ny)$$
 e $g_n(x,y) = (x-y)e^{-n|y-x|}f_n(x,y)$.

- a) Dimostrare che $f_n \to 0$ puntualmente in \mathbb{R}^2 .
- b) Provare che se f non è identicamente nulla la convergenza $f_n \to 0$ non è mai uniforme in \mathbb{R}^2 .
- c) Studiare la convergenza puntuale e uniforme della successione $\{g_n\}$ in \mathbb{R}^2 .

Prova scritta del 27 febbraio 2006

Esercizio 1. Siano $A = (0, +\infty)$, $B = A \setminus \mathbb{N}$, f(x) = 1/x per $x \in A$. Per ognuno dei seguenti punti, fornire un esempio di successione di funzioni $\{f_n\}_{n\in\mathbb{N}}$ tale che le $f_n : A \to \mathbb{R}$ siano tutte misurabili e inoltre

- a) $f_n \to f$ uniformemente in A;
- **b)** $f_n \to f$ uniformemente in B ma $f_n \not\to f$ uniformemente in A;
- c) $f_n \to f$ puntualmente ma non uniformemente in A;
- d) $f_n \to f$ puntualmente in B ma non in A.

Esercizio 2. Si consideri il sottoinsieme di \mathbb{R}^2

$$E = \left\{ (x, y) \in \mathbb{R}^2 : |x| \le \min \left\{ 1, \frac{2}{1 + y^2} \right\} \right\}.$$

Sia inoltre $\{u_n\}_{n\in\mathbb{N}}$ una successione di funzioni misurabili che converge q.o. in E ad una funzione u.

- a) Provare che E è misurabile secondo Lebesgue e calcolarne la misura.
- **b)** Si chiede se $\arctan u_n \to \arctan u$ q.o. in E.
- c) Dire, motivando la risposta, se $\arctan u_n \to \arctan u$ in $L^1(E)$.
- **d)** Dire, motivando la risposta, se $\arctan u_n \to \arctan u$ in $L^{\infty}(E)$.

Esercizio 3. Indicati con ℓ^1 lo spazio delle successioni reali $x=(x_1,x_2,\ldots)$ tali che la serie $\sum_{n=1}^{\infty} |x_n|$ sia convergente e con ℓ^{∞} lo spazio delle successioni reali $y=(y_1,y_2,\ldots)$ limitate, tali spazi siano muniti delle rispettive norme

$$||x||_1 = \sum_{n=1}^{\infty} |x_n|$$
 e $||y||_{\infty} = \sup_{n \ge 1} |y_n|$.

Si consideri l'applicazione

$$T: x = (x_1, x_2, \ldots) \mapsto y = (y_1, y_2, \ldots), \quad \text{con } y_n = \sum_{k=1}^{2n} x_k.$$

- a) Controllare che T è ben definita da ℓ^1 in ℓ^{∞} .
- b) Mostrare che $T:\ell^1\to\ell^\infty$ è un operatore linerare e continuo e calcolarne la norma.
- c) L'operatore $T: \ell^1 \to \ell^\infty$ è iniettivo? è suriettivo?

Prova scritta del 22 giugno 2006

Esercizio 1. Si consideri, al variare di $\lambda \in \mathbb{R}$, la seguente serie di potenze

$$\sum_{n=1}^{\infty} (\sin \lambda)^n \left(1 - \cos \frac{\lambda}{n} \right) (x + 2\lambda)^n.$$

- a) Per ogni $\lambda \in \mathbb{R}$ determinare centro e raggio di convergenza;
- b) per $\lambda = \pi/4$ individuare con precisione l'insieme di convergenza

$$\{x \in \mathbb{R} : \text{ la serie } \sum_{n=1}^{\infty} (\sin \lambda)^n \left(1 - \cos \frac{\lambda}{n}\right) (x + 2\lambda)^n \text{ converge}\},$$

motivando la risposta data.

Esercizio 2. Sia $f \in L^1(0, +\infty) \cap C^1([0, +\infty))$. Calcolare, giustificando la risposta, il limite

$$\lim_{n \to \infty} \int_{n/2}^{n+\pi} f(x) dx.$$

Esercizio 3. Fornire un esempio di operatore lineare e continuo $T: \mathbb{R} \to L^2(\mathbb{R})$ con norma $\|T\|_{\mathcal{L}(\mathbb{R};L^2(\mathbb{R}))}$ esattamente uguale a 1.

Prova scritta del 1 agosto 2006

Esercizio 1. Discutere, al variare di $\alpha \in \mathbb{R}$, la convegenza puntuale e uniforme della serie

$$\sum_{n=1}^{\infty} \frac{x}{n^{\alpha} (1 + nx^2)}, \quad x \in \mathbb{R}.$$

Esercizio 2. Siano Ω un aperto di \mathbb{R}^3 con misura di Lebesgue $m(\Omega)<+\infty$ e $f:\Omega\to\mathbb{R}$ una funzione misurabile e tale che

$$\int_{\Omega} |f(x)|^2 dm < +\infty.$$

Posto $A_n = \{x \in \Omega : f(x) \ge n\}$ per ogni $n \in \mathbb{N}$, dimostrare la convergenza della serie

$$\sum_{n=1}^{\infty} m(A_n).$$

Esercizio 3. Sia ℓ^2 lo spazio di Hilbert delle successioni reali $x=(x_1,x_2,\ldots)$ tali che la serie

$$\sum_{n=1}^{\infty} |x_n|^2$$

converga, munito dell'usuale prodotto scalare. Per λ fissato in \mathbb{R} , si consideri l'applicazione $T_\lambda:\ell^2\to\mathbb{R}$ definita da

$$T_{\lambda}(x) = \sum_{n=3}^{85} \lambda^n x_n .$$

- a) Valutare, in dipendenza del parametro $\lambda \in \mathbb{R}$, se $T_{\lambda} \in (\ell^2)'$ giustificando per bene le risposte date.
- **b)** Per i valori λ per i quali $T_{\lambda} \in (\ell^2)'$, calcolare $||T_{\lambda}||_{(\ell^2)'}$.

Prova scritta del 27 settembre 2006

Esercizio 1. Trovare il raggio di convergenza della serie di potenze reale

$$\sum_{n=0}^{\infty} (2 \arctan n)^n \frac{n^3 + 4}{3n + 5} \cos \left(\frac{\pi}{2}(n+1)\right) x^n.$$

Discutere poi la convergenza o meno della serie nei due estremi dell'intervallo di convergenza.

Esercizio 2. Sia $f:[0,1]\to\mathbb{R}$ una funzione continua e non decrescente. Calcolare, motivando adeguatamente la risposta data, il

$$\lim_{n\to\infty} \int_0^1 f\left(\frac{nx+1}{nx+2}\right) dx.$$

Esercizio 3. Sviluppare in serie di Fourier la funzione periodica dispari che coincide con x^2 per $x \in [0, \pi)$ e vale 0 per $x = \pi$, rispetto al sistema ortonormale completo

$$\{(2\pi)^{-1/2}, \, \pi^{-1/2}\sin(nx), \, \pi^{-1/2}\cos(nx)\}.$$

Prova scritta del 22 dicembre 2006

Esercizio 1. Sviluppare $\cos x$ in una serie di potenze reale di centro $\pi/4$. Una volta scritta la serie, calcolarne il raggio di convergenza.

Esercizio 2. Posto, per $j \in \mathbb{N}$ e $x \in \mathbb{R}$,

$$f_{j,k}(x) = \begin{cases} j & \text{se } 2^{-j}k \le x \le 2^{-j}(k+1) \\ 0 & \text{altrove} \end{cases}, \quad k = 0, 1, \dots, 2^{j} - 1,$$

ordinare le $f_{j,k}$ in una successione $\{g_n\}$ in questo modo

$$g_1 = f_{1,0},$$
 $g_2 = f_{1,1},$ $g_3 = f_{2,0},$ $g_4 = f_{2,1},$ $g_5 = f_{2,2},$ $g_6 = f_{3,0},$ $g_7 = f_{3,1},$ $g_8 = f_{3,2},$ $g_9 = f_{3,3},$ $g_{10} = f_{4,0},$ eccentrical expressions of $g_{10} = g_{10}$ and $g_{10} = g_{10} = g_{10}$ and $g_{10} = g_{10} = g_{10}$ and $g_{10} = g_{10} = g_{10} = g_{10}$ and $g_{10} = g_{10} = g_{10$

- a) Studiare la convergenza puntuale e uniforme di g_n su \mathbb{R} .
- b) Le funzioni g_n sono integrabili in \mathbb{R} ?
- c) È possibile applicare alla successione $\{g_n\}$ qualche teorema di passaggio al limite sotto il segno di integrale? Motivare adeguatamente le risposte.

Esercizio 3. Sia ℓ^1 lo spazio di Banach delle successioni reali $x=(x_1,x_2,\ldots)$ tali che la serie

$$\sum_{n=1}^{\infty} |x_n|$$

converga e la sua somma fornisca la norma dell'elemento x. Proporre un esempio di due sottospazi X, Y di ℓ^1 , che siano diversi da ℓ^1 e dal sottospazio costituito dal solo vettore nullo, tali che

- a) X sia un chiuso di ℓ^1 ;
- b) Y sia denso in ℓ^1 .