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Hysteresis operators in mechanics

The equation of motion of a deformable body Ω⊂ R3 is, in classical
continuum mechanics (Landau, Lifschitz, 1953)

ρutt = divσ +g (1)

where x ∈Ω, t > 0, u is the displacement vector, ρ is the density, σ is
the stress tensor and g is the applied force
Well posedness of equation (1) is obtained by coupling suitable initial
and boundary conditions and a suitable constitutive relation between
stress σ and strain ε (defined as the symmetric gradient of u)
While (1) is a general law, the constitutive relation characterizes specific
properties of a concrete material subject to time-dependent loading
We will deal with the presentation and mathematical properties of some
constitutive operators corresponding to models of elasticity, plasticity,
elasto-plasticity (single-yield, multi-yield) until some recent models
including material fatigue
Particular care is given to rate-independent constitutive operators, while
we will not consider viscous, viscoelastic and viscoelastoplastic
materials
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Plan of the seminar

Rheological models

Models of elastoplasticity

A new theory of oscillating elastoplastic structures

The material fatigue

Main modeling assumption: proportionality between fatigue rate and
dissipation rate

Thermodynamic consistency

Fatigue and phase transitions

Numerics in PDEs with hysteresis in elastoplasticity?
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Rheological models

Definition

A system consisting of
(i) a constitutive relation between σ and ε

(ii) a potential energy U ≥ 0
is called rheological model

Definition

A rheological model is said to be thermodinamically consistent if the quantity

q̇ := 〈ε̇,σ〉−U̇

called dissipation rate, is non-negative (in the sense of distributions)
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Example: the elastic element E

In mechanics elastic materials are characterized by linear stress-strain
relation and complete reversibility of dynamical processes

σ = Aε A matrix, σ ,ε tensors

Reversibility⇒ q̇ = 0

Potential energy

U =
1
2
〈Aε,ε〉
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Example: the rigid-plastic element R

Basic concept in plasticity is the yield surface in the stress space, that
can be described as the boundary ∂Z of a closed convex set Z

the rigid-plastic behaviour consists in two different phases characterized
by the instantaneous value σ of the stress

the material remains rigid as long as σ ∈ IntZ. In this case, no
deformation occurs and ε̇ = 0. The material becomes plastic if σ

reaches ∂Z

Example in 1D: Z = [−r,r]

ε̇ = 0 −r < σ < r (σ̇ < 0 or σ̇ > 0)
ε̇ ≥ 0 σ = r (σ̇ = 0)
ε̇ ≤ 0 σ =−r (σ̇ = 0)

ε̇ σ̇ = 0

ε̇(σ − σ̃)≥ 0 ∀σ̃ ∈ Z
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Composition of rheological models

A large variety of models for describing the behaviour of materials can
be obtained by composing rheological elements in series or in parallel

series G1−G2 parallel G1|G2
ε = ε1 + ε2 ε = ε1 = ε2

σ = σ1 = σ2 σ = σ1 +σ2
U =U1 +U2 U =U1 +U2

Every combination of thermodynamically consistent elements is still
thermodynamically consistent
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Examples - Elastoplastic models E −R, E |R

εe, σ e strain and stress of the elastic element

εp, σp strain and stress of the plastic element

E −R in series (stop) E −R in parallel (play)
ε = εe + εp ε = εe = εp

σ = σ e = σp σ = σ e +σp

σ = Aεe σ e = Aε

σ ∈ Z σp ∈ Z
〈ε̇p,σ − σ̃〉 ≥ 0, ∀σ̃ ∈ Z 〈ε̇,σp− σ̃〉 ≥ 0, ∀σ̃ ∈ Z

U = 1
2 〈ε

e,σ〉 U = 1
2 〈ε,σ

e〉

In particular, for the stop

〈ε̇− ε̇
e,σ − σ̃〉 ≥ 0 ∀σ̃ ∈ Z
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The multidimensional stop model

Let Z be a closed convex set, 0 ∈ IntZ, Z ⊂ X real separable Banach
space; given ε : [0,T ]→ X and σ0 ∈ Z, we look for σ : [0,T ]→ X such
that σ(0) = σ0 and

σ(x,0) = QZ(ε(x,0))

σ(t) ∈ Z

〈ε̇(t)− σ̇(t),σ(t)− σ̃〉 ≥ 0 ∀σ̃ ∈ Z .

For all ε ∈W 1,1(0,T ;X) and σ0 ∈ Z, the previous system admits a
unique solution sZ [σ

0,ε] = σ ∈W 1,1(0,T ;X). The map
sZ : Z×W 1,1(0,T ;X)→W 1,1(0,T ;X) is called stop or
(multidimensional) elasto-plastic element.

This map is continuous and admits a continuous extension
sZ : Z×C([0,T ];X)→C([0,T ];X)

Consequence (if σ regular enough): 〈ε̇− σ̇ , σ̇〉= 0
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〈ε̇(t)− σ̇(t),σ(t)− σ̃〉 ≥ 0 ∀σ̃ ∈ Z .

For all ε ∈W 1,1(0,T ;X) and σ0 ∈ Z, the previous system admits a
unique solution sZ [σ

0,ε] = σ ∈W 1,1(0,T ;X). The map
sZ : Z×W 1,1(0,T ;X)→W 1,1(0,T ;X) is called stop or
(multidimensional) elasto-plastic element.

This map is continuous and admits a continuous extension
sZ : Z×C([0,T ];X)→C([0,T ];X)

Consequence (if σ regular enough): 〈ε̇− σ̇ , σ̇〉= 0
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The stop model (1D)

Figure: The stop model.
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The stop model (1D)

Figure: Hysteretic behaviour of the stop model.
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Geometric interpretation

Projection on a convex set

Let Z ⊂ X convex, closed, nonempty set. Then ∀ f ∈ X , there exists a unique
u ∈ Z such that

| f −u|= min
v∈Z
| f − v|= dist( f ,Z).

Moreover u is characterized by the property{
u ∈ Z
〈 f −u,v−u〉 ≤ 0 ∀v ∈ Z

We set u = PZ f projection of f on Z
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Tangential and normal cone on a convex set

Tangential and normal cone

TZ(σ) = {x ∈ X : 〈x,y〉 ≤ 0 ∀y ∈ NZ(σ)}
NZ(σ) = {y ∈ X : 〈y,σ − σ̃〉 ≥ 0 ∀σ̃ ∈ Z}
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Geometric interpretation

Tangential and normal cone

TZ(σ) = {x ∈ X : 〈x,y〉 ≤ 0 ∀y ∈ NZ(σ)}
NZ(σ) = {y ∈ X : 〈y,σ − σ̃〉 ≥ 0 ∀σ̃ ∈ Z}

Coming back to the stop

ε̇− σ̇ ∈ NZ(σ)

σ̇ ∈ TZ(σ) (otherwise a contradiction)
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Geometric interpretation

Tangential and normal cone

TZ(σ) = {x ∈ X : 〈x,y〉 ≤ 0 ∀y ∈ NZ(σ)}
NZ(σ) = {y ∈ X : 〈y,σ − σ̃〉 ≥ 0 ∀σ̃ ∈ Z}

Coming back to the stop

ε̇− σ̇ ∈ NZ(σ)

σ̇ ∈ TZ(σ)

ε̇ = (ε̇− σ̇)+ σ̇ unique orthogonal decomposition into the normal and
tangential components
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Geometric interpretation

Projection on a convex set

Let Z ⊂ X convex, closed, nonempty set. Then ∀ f ∈ X , there exists a unique
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Projection on a convex set

Let Z ⊂ X convex, closed, nonempty set. Then ∀ f ∈ X , there exists a unique
u ∈ Z such that

| f −u|= min
v∈Z
| f − v|= dist( f ,Z).

Moreover u is characterized by the property{
u ∈ Z
〈 f −u,v−u〉 ≤ 0 ∀v ∈ Z

We set u = PZ f projection of f on Z

Claim:

σ̇ = PTZ(σ)(ε̇)⇔ 〈ε̇− σ̇ ,v− σ̇〉 ≤ 0 ∀v ∈ TZ(σ)
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Geometric interpretation

Claim:

σ̇ = PTZ(σ)(ε̇)⇔ 〈ε̇− σ̇ ,v− σ̇〉 ≤ 0 ∀v ∈ TZ(σ)

Tangential and normal cone

TZ(σ) = {x ∈ X : 〈x,y〉 ≤ 0 ∀y ∈ NZ(σ)}
NZ(σ) = {y ∈ X : 〈y,σ − σ̃〉 ≥ 0 ∀σ̃ ∈ Z}

But if v ∈ TZ(σ), then remembering that ε̇− σ̇ ∈ NZ(σ), we have

〈ε̇− σ̇ ,v〉 ≤ 0 = 〈ε̇− σ̇ , σ̇〉
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Geometric interpretation
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Other models of (perfect) plasticity

Basic concept in plasticity is the yield surface in the stress space, that
can be described as the boundary ∂Z of a closed convex set Z
the rigid-plastic behaviour consists in two different phases characterized
by the instantaneous value σ of the stress
the material remains rigid as long as σ ∈ IntZ. In this case, no
deformation occurs and ε̇ = 0. The material becomes plastic if σ

reaches ∂Z
Von Mises criterion:

KM :=

{
σ : ∑

i, j=1,2,3
σ
(d)
i j σ

(d)
i j ≤ κM

}
Tresca criterion:

KT :=
{

σ : max
i 6= j
|λi−λ j| ≤ κT

}
where λi are the eigenvalues of σ (d) := σ −σ (s) = σ − 1

3 ∑
3
i=1 σ iiI

while κM,κT are given constants
All the models presented so far are single-yield models
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Single-yield v.s. multi-yield models

Models of plasticity involving a single yield surface cannot provide a
satisfactory description of the real material behaviour

In concrete experiments, the transition between the elastic and the
plastic regime is smooth

If we neglect relaxation effects and assume that the process is
rate-independent, the most natural way to proceed is to combine a
continuum of plastic elements which are not all active (i.e. in the plastic
regime) at the same time

In this respect the standard model in elasto-plasticity is the
Prandtl-Ishlinshii model
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A classical hysteresis-type model for elastoplasticity

A classical hysteresis-type model for elastoplasticity was introduced by
L. Prandtl and A. Yu. Ishlinskii (first in 1D)

In their model, the relation between strain ε and stress σ is given in the
form of the so-called Prandtl-Ishlinskii operator

σ = P[ε](t) =
∫

∞

0
srZ [ε](t)ϕ(r)dr

for all ε ∈W 1,1(0,T ). Here ϕ > 0 is a nonnegative weight function not
known a priori and srZ represents the (multidimensional)
elastic-ideally plastic element or stop operator.
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The stop model (1D)

Figure: Hysteretic behaviour of the stop model.
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The stop operators and their combinations

Figure: the stop operators and their combinations.
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Prandtl-Ishlinskii model v.s. Von Mises model

The Prandtl-Ishlinskii model

,̂̈ very imaginative and easily understood (superposition of many stops
having different thresholds

,̂̈ multi-yield: describes gradual plasticization process

/ the weight function ϕ is not known a priori and must be identified

The Von Mises model

,̂̈ simple

/ single-yield: sharp interface between elastic and plastic regime - not so
realistic!
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New theory of oscillating elastoplastic beams and plates

New theory of oscillating elastoplastic beams and plates

P. Krejčí, J. Sprekels: Math. Methods Appl. Sci. (2007).

R. Guenther, P. Krejčí, J. Sprekels: Z. Angew. Math. Mech. (2008).

They demonstrated that the three-dimensional single-yield von Mises
criterion leads after a dimensional reduction to a multi-yield
Prandtl-Ishlinskii operator where the weight function ϕ can be explicitly
determined!

The new theory is based on the idea that a lower-dimensional observer
does not see anymore the sharp transition from the purely elastic to the
purely plastic regime as in the von Mises model
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A plate section with grey plasticized zone

Figure: A plate section with grey plasticized zone.
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Motivation for the material fatigue

. It is well known that plastic deformations lead to energy dissipation and
material fatigue

. Material fatigue is manifested by material softening, heat release,
material failure in finite time

. Very important: take into account the effects of energy exchange
between heat and mechanical energy, thermal stresses, and material
fatigue

. In particular great importance for the applications: methods for
estimating the lifetime of oscillating thermoelastoplastic structures under
material fatigue

. The existing mathematical literature mainly goes in the direction of the
quasistatic apprach of elastoplastic processes with hysteresis; few
results on the dynamics
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The system of PDEs

The resulting system from the theory developed by Krejčí and
coworkers (starting point of our new project) is the following:

∂ttw − ∂tt∆w+D∗2σ = g ,

σ = Bε +
∫

∞

0
srZ [ε](t)ϕ(r)dr

ε = D2w

where D2 is the second derivative operator (∂xx,∂yy,∂xy) and D∗2 is its
adjoint

We introduce a positive parameter θ > 0 indicating the absolute
temperature and m(x, t)≥ 0 a parameter which represents the material
fatigue accumulated in the point x in the time interval [0, t]

Basic modeling assumption: replacing the classical elastoplastic
constitutive law with a new one, where we account for the material
fatigue and where the memory keeps into consideration the temperature
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coworkers (starting point of our new project) is the following:

∂ttw − ∂tt∆w+D∗2σ = g ,

σ = B(m)ε +
∫

∞

0
srZ [ε](t)ϕ(θ ,r)dr−β (θ −θc)1

ε = D2w

where D2 is the second derivative operator (∂xx,∂yy,∂xy) and D∗2 is its
adjoint

We introduce a positive parameter θ > 0 indicating the absolute
temperature and m(x, t)≥ 0 a parameter which represents the material
fatigue accumulated in the point x in the time interval [0, t]

Basic modeling assumption: replacing the classical elastoplastic
constitutive law with a new one, where we account for the material
fatigue and where the memory keeps into consideration the temperature

Michela Eleuteri Mathematical modelling of elastoplastic processes: past, present and future



The system of PDEs

The resulting system from the theory developed by Krejčí and
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which is consistent from the thermodynamic point of view
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Coupling with the energy balance laws

To the previous system we associate the specific free energy

F [θ ,ε] = cV θ(1− log(θ/θc))+
1
2
〈B(m)ε,ε〉

+
1
2

∫
∞

0
〈srZ [ε],srZ [ε]〉ϕ(θ ,r)dr−β (θ −θc)〈ε,1〉 ,

with a constant specific heat cV > 0

The specific entropy has the following form

S [θ ,ε] = cV log(θ/θc)−
1
2

∫
∞

0
〈srZ [ε],srZ [ε]〉∂θ ϕ(θ ,r)dr

+β 〈ε,1〉 ,
from which, exploiting the well know relation F = U −θS we get the
following form of the internal energy

U [θ ,ε] = cV θ +
1
2
〈B(m)ε,ε〉

+
1
2

∫
∞

0
〈srZ [ε],srZ [ε]〉(ϕ(θ ,r)−θ∂θ ϕ(θ ,r))dr+βθc 〈ε,1〉 .
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Coupling with the energy balance laws

The energy balance can be written as

∂tU [θ ,ε]+divq = 〈σ ,∂tε〉 ,

where q is the heat flux vector

We derive the evolution law for the fatigue parameter which has to be
compatible with the Second Principle of Thermodynamics, which we
state in the form of the Clausius-Duhem inequality

ψ := ∂tS [θ ,ε]+div
(q

θ

)
≥ 0 ,

where ψ is the entropy production

This implies that the dissipation rate

D = 〈σ ,∂tε〉−∂tθS [θ ,ε]−∂tF [θ ,ε]

=−1
2
〈
B′(m)ε,ε

〉
∂tm+

∫
∞

0
〈∂t(ε− srZ [ε]),srZ [ε]〉ϕ(θ ,r)dr

has to be non-negative.
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Evolution equation for the fatigue

D = 〈σ ,∂tε〉−∂tθS [θ ,ε]−∂tF [θ ,ε]

=−1
2
〈
B′(m)ε,ε

〉
∂tm+

∫
∞

0
〈∂t(ε− srZ [ε]),srZ [ε]〉ϕ(θ ,r)dr

The integral is non negative by virtue of the variational inequality which
defines the stop operator

The fatigue accumulation rate ∂tm should be nonnegative. Hence, it
suffices to assume that B′(m) is a negative semidefinite matrix
(softening!)

The system will be complete by assuming the linear Fourier law
between the heat flux and the temperature gradient

q =−κ∇θ ,

Fundamental assumption: proportionality between the rate of fatigue
∂tm and the dissipation rate D
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The rainflow algorithm

Rainflow method for cyclic fatigue accumulation - M. Endo (1968)

The analysis of the rainflow algorithm in uniaxial processes has
discovered a qualitative and quantitative relationship between
accumulated fatigue and dissipated energy

With an undamaged material, we associate fatigue value 0 , and 1
corresponds to total failure. Values between 0 and 1 quantify the degree
of fatigue

Experimental (decreasing!) curve n(b) (the so-called Wöhler line)
determines how many closed cycles of amplitude b lead to total failure

With each closed cycle of amplitude b we associate the contribution
d(b) = 1

n(b) of the individual cycle to total fatigue

Therefore, the rainflow algorithm counts closed hysteresis loops in the
loading history, and with each closed loop associates a number
depending on its amplitude (the contribution of the loop to total damage)
taken from the Wöler line
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The rainflow algorithm

This corresponds to the mechanism of energy dissipation: the number
associated with a closed loop is its area in this case

Let a real loading process consist of a sequence of cycles with
amplitudes b j, j = 1, . . . ,n. The Palmgren-Miner additivity rule states
that the total fatigue can be computed as the sum of all individual
contributions Dn = ∑

n
j=1 d(b j)

When the contribution of a closed cycle to total fatigue is evaluated, the
cycle is removed from the history. At the end of the process, the
remaining residual of the input signal contains no more closed cycles

For a numerical treatment of large data sets it is important to assume
that oscillations of very small amplitude cause no damage

The rainflow method is then stable with respect to small measurement
errors independently of the number of cycles

Brokate, Dressler, Krejčí, Euro J. Mech. A/Solids 1996
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In multiassial processes?

Drawback: the rainflow method is exclusively uniaxial - no closed cycles
in the vector case
In multiaxial loading processes, the concept of closed loop is
meaningless, and no counterpart of the rainflow algorithm is known
On the other hand, the notion of energy dissipation is independent of the
experimental setting: experimental measurements at the point of
material failure confirm strong temperature increase, which manifests an
energy dissipation peak
In fact, temperature tests are regularly used in engineering practice for
damage analysis in high frequency regimes (e.g. in aircraft industry).

Fundamental assumption

Assuming that the fatigue rate is proportional to the dissipation rate, and that
the material parameters depend on the fatigue parameter

Assumption realistic: plastic deformations are driven by moving
dislocations and ruptures of interatomic connections, which at the same
time dissipate energy, and reduce the cohesion of the solid
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Evolution equation for the fatigue

D = 〈σ ,∂tε〉−∂tθS [θ ,ε]−∂tF [θ ,ε]

=−1
2
〈
B′(m)ε,ε

〉
∂tm+

∫
∞

0
〈∂t(ε− srZ [ε]),srZ [ε]〉ϕ(θ ,r)dr

The integral is non negative by virtue of the variational inequality which
defines the stop operator

The fatigue accumulation rate ∂tm should be nonnegative. Hence, it
suffices to assume that B′(m) is a negative semidefinite matrix
(softening!)

Fundamental assumption: proportionality between the rate of fatigue
∂tm and the dissipation rate D( 1

C(θ)
+

1
2
〈
B′(m)ε,ε

〉)
∂tm =

∫
∞

0
〈∂t(ε− srZ [ε]),srZ [ε]〉ϕ(θ ,r)dr

B′(m)≤ 0 softening⇒ singularity! Material failure in finite time!
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The model with phase transition

Motivation:
possibility to account also for decreasing fatigue rate (in view of
engineering applications)
the material can be partially repaired by local melting

How to achieve this goal:
account for phase transition in the model
m material fatigue and χ degree of melting
the time of failure of the material can be shifted
possibly considering a sufficiently large time interval of observation (usual
engineering viewpoint) a global solution of the corresponding PDEs
system can be found

Phase transition equation in the form of melting-solidification law

αχt ∈ −∂χF [ε,θ ,χ] χ ∈ [0,1]

χ0 ∈ [0,1] some initial condition, A(x, t) :=
∫ t

0
1
α

(
L
θc
(θ −θc)

)
(x,τ)dτ

〈χt −At ,z−χ〉 ≥ 0 for all z ∈ [0,1]
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Thermodynamical consistency

If we introduce F [ε,θ ,χ] specific free energy, S [ε,θ ,χ] specific
entropy and U [ε,θ ,χ] internal energy we are able to show that the
first and second principles of thermodynamics are satisfied

∂

∂ t
U [ε,θ ,χ]+divq = 〈σ ,εt〉 (energy conservation)

∂

∂ t
S [ε,θ ,χ]+div

q
θ
≥ 0, (Clausius-Duhem inequality)

Evolution equation for m:

(C+K [m,θ ,ε])mt =−h(χt)+D [m,θ ,ε]

where

D [m,θ ,ε] :=
∫

∞

0
ϕ(m,θ ,r)〈KsrZ [ε],(ε− srZ [ε])t〉dr

K [m,θ ,ε] :=−1
2
〈B′(m)ε,ε〉− 1

2

∫
∞

0
ϕm(m,θ ,r)〈KsrZ [ε],srZ [ε]〉dr.

allow the possibility of decreasing rate (i.e. mt < 0) but only in the case
if χ grows faster than the plastic dissipation rate (strong melting)
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Numerical approximation for PDEs with hysteresis in
elastoplasticity?

Numerical approximation for PDEs with hysteresis is a challenging (and
difficult) problem

C. Verdi, A. Visintin (1985)-(1989): numerical approximation of
hysteresis problems and of the Preisach model

M. Siegfanz Ph.D. Thesis
1D wave equation with hysteresis

not only numerical scheme proposed but also convergence results and
error estimates

Future work:
extend the work of M. Siegfanz to the beam equation (1D)

propose a numerical scheme and (possibly!) prove convergence results
and error estimates
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