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Abstract

We study a non-isothermal diffuse interface model for the flow of two viscous incompressible Newtonian fluids
of the same density in a bounded domain Ω ⊂ R3. We derive the model problem following the general
approach proposed by M. Frémond and find a weak solution to our model problem under suitable assumptions
on the data.

Diffuse interface models: motivation

In classical models the interface between the two fluids
is assumed to be a lower dimensional sufficiently
smooth surface; in this case capillarity phenomena are
related to contact angle conditions and a jump
condition for the stress tensor across the interface.
This classical description fails when some parts of the
interface merge or reconnect (developing singularities)
due to droplet formation or coalescence of several
droplets. Thus, in order to be able to describe flows
beyond these kinds of singularities an alternative
approach can be used, based on a class of models
called diffuse interface models. In this case the
classical sharp interface is replaced by a thin interfacial
region of finite “thickness”, measured by a small
parameter ε > 0. Therefore a partial mixing of the
macroscopically immiscible fluids is taken into account;
in this respect a variable ϕ is introduced representing
the order parameter related to the concentration of
the fluids (for instance the concentration difference or
the concentration of one component). Diffusional
effects are also included in the model.
The original idea of the diffuse interface model goes
back to Hohenberg and Halperin [4] and it is
referred with the name “model H”. Later Gurtin et
al. [3] gave a continuum mechanical derivation based
on the concept of microforces. For a review of the
development of diffuse-interface models and their
applications we refer to [2], see also [1].
• [1] H. Abels: Lecture notes, Max Planck Institute
for Mathematics in the Sciences, No. 36/2007, 2007.
• [2] D.M. Anderson, G.B. MacFadden,
A.A. Wheeler: Annual review of fluid mechanics,
1998.
• [3] M.E. Gurtin, D. Polignone, J.
Viñals: Math. Models Methods Appl. Sci., (1996).
• [4] P.C. Hohenberg, B.I. Halperin: Rev.
Mod. Phys., (1977).

Quantities involved and
assumptions

� u mean velocity and θ absolute
temperature

∗ ∗ ∗
� ϕ order parameter related to
the concentration of the fluids
and µ chemical potential

∗ ∗ ∗
� S = ν(θ)Du stress tensor (only
dissipative part)

∗ ∗ ∗
� F(ϕ) energy density function -
assumption: F(ϕ) is the
classical double well potential, for
instance F(ϕ) = 1

4(ϕ2 − 1)2

∗ ∗ ∗
� κ(θ) = 1 + θβ thermal
conductivity - assumption:
β > 2

∗ ∗ ∗
� ν(θ) viscosity of the mixture -
assumption: 0 < ν ≤ ν(θ) ≤ ν
for all θ ≥ 0

∗ ∗ ∗
� cV (θ) = θδ specific heat -
assumption: 1

2 < δ < 1

The equations of the model

incompressibility

div u = 0

conservation of momentum

ut + u · ∇xu +∇x p̃ = divS + (µ + θ)∇xϕ

modified cahn-hilliard system{
ϕt + u · ∇xϕ = 4µ
µ = −4ϕ + F

′(ϕ)− θ

equation for the temperature

cV (θ)θt + θ
Dϕ

Dt
+ u · ∇xθ − div(κ(θ)∇xθ) = ν(θ)|Du|2 + |∇xµ|2

total energy balance

∂t

(
|u|2

2
+ F(ϕ) +

|∇ϕ|2

2
+ Q(θ)

)
+ div

(
|u|2

2
u + θu + p̃u− ϕt∇xϕ

)
−div(κ(θ)∇xθ) = div(Su + µ∇xµ)

where Q is an antiderivative of cV

entropy inequality

(Λ(θ) + ϕ)t + u · ∇x(log(θ)) + u · ∇xϕ− div

(
κ(θ)∇θ

θ

)
≥ ν(θ)

θ
|∇xu|2 +

1

θ
|∇xµ|2 +

κ(θ)

θ2
|∇xθ|2

where Λ(θ) =
∫ θ

1
cV (s)
s ds
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Main existence theorem

Existence of a weak solution with the following regularity:

u ∈ L
∞(0, T ; L2(Ω;R3)) ∩ L

2(0, T ; H1(Ω;R3))

ϕ ∈ L
∞(0, T ; H1(Ω)) ∩ L

2(0, T ; H3(Ω))

µ ∈ L
2(0, T ; H1(Ω)) ∩ L

14
5 ((0, T)× Ω)

θ ∈ L
∞(0, T ; Lδ+1(Ω)) ∩ L

β(0, T ; L3β(Ω)),

A priori bounds

� energy estimates

||Q(θ)||L∞(0,T ;L1(Ω)) ≤ c; ||u||L∞(0,T ;L2(Ω;R3)) ≤ c; ||F(ϕ)||L∞(0,T ;L1(Ω)) ≤ c;
||ϕ||L∞(0,T ;H1(Ω)) ≤ c; ||θ||L∞(0,T ;Lδ+1(Ω)) ≤ c.

� entropy estimates

||θ−1/2∇xu||L2((0,T )×Ω;R3×3) ≤ c; ||θ−1/2∇xµ||L2((0,T )×Ω;R3) ≤ c;∫ T
0

∫
Ω
κ(θ)
θ2 |∇xθ|2 ≤ c; ||∇xθ||L2((0,T )×Ω;R3) ≤ c; ||θ||Lβ(0,T ;L3β(Ω)) ≤ c.

� temperature estimates

||Du||L2((0,T )×Ω;R3×3) ≤ c; ||∇xµ||L2((0,T )×Ω;R3) ≤ c.

� consequences

||ϕ||L2(0,T ;H3(Ω)) ≤ c; ||∇x(F ′(ϕ))||L2((0,T )×Ω;R3) ≤ c;
||µ||

L2(0,T ;W 1,2(Ω))∩L
14
5 ((0,T )×Ω)

≤ c.

Perspectives and future work

• the 2D case: better embedding estimates ⇒ more regularity for the solution ⇒ regularization estimates uniform in time ⇒ global attractor?

• logarithmic potential (singular) and non constant mobility (degenerate) in Cahn-Hilliard equation.
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