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of Sciences, Prague, Czech Republic)

I Related open problems and perspectives



Phase change models

E. Rocca

The model

Free-energy
functional

Pseudo-Potential of
dissipation

Macroscopic motion

Microscopic motion

Internal energy
balance

The PDE systems

Problem 1

Problem 2

Main analytical results
for Problem 1

Assumptions

Well-posedness in
finite times

Long-time behavior
of solution

Main analytical results
for Problem 2

Assumptions

Existence of strong
solutions

Existence of weak
solutions

Phase transitions and phase-field models

Assume that the two phases can coexist at every point: a parameter χ

characterizes the different phases, e.g. the concentration or the local
proportion of one of the two phases in a point.

In a melting-solidification process we shall have χ ∈ [0, 1] and

I χ = 0 in the solid (non viscous) phase and

I χ = 1 in the liquid (viscous) phase.

Use the basic laws of continuum mechanics:

I The equation of macroscopic motion, i.e., the stress-strain
relation for the vector of the small displacements u

I The generalized principle of virtual power for microscopic forces
by [M. Frémond, Non-smooth Thermomechanics, 2002] describing
the evolution of the order parameter χ

I The internal energy balance ruling the evolution of the absolute
temperature ϑ of the system

with a proper choice of the internal energy functional (depending on
the state variables) and of the pseudo-potential of dissipation
(depending on the dissipative variables).
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The free-energy functional

We take into account of elasticity effects by choosing

Ψ(ϑ, ε(u), χ,∇χ) = cV ϑ(1− log ϑ)− λ

ϑc
(ϑ− ϑc)χ

+
(1− χ)ε(u)Reε(u)

2
+ W (χ) +

ν

2
|∇χ|2

I ε(u) the linearized symmetric strain tensor, namely
εij(u) := (ui,j + uj,i )/2, i , j = 1, 2, 3

I (1− χ) the local proportion of the non viscous phase, e.g. the solid
phase in solid-liquid phase transitions

I Re a symmetric positive definite elasticity tensor (set Re ≡ I)

I cV , ϑc , λ and ν(> 0) the specific heat, the equilibrium
temperature, the latent heat of the system, and the interfacial
energy coefficient (set cV = λ/ϑc = 1)

I W (χ) + (ν/2)|∇χ|2 a mixture or interaction free-energy
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The Pseudo-Potential of dissipation

Following the line of [Moreau, ’71], we include dissipation by means
of the following functional

Φ(χt , ε(ut),∇ϑ) =
µ

2
|χt |2 +

χ

2
ε(ut)Rvε(ut) +

h(ϑ)|∇ϑ|2

2ϑ
,

where

I Rv is a symmetric and positive definite viscosity matrix (set
Rv ≡ I);

I χ represents the local proportion of the viscous phase, e.g. the
liquid phase in solid-liquid phase transitions;

I h(ϑ) ≥ h0 > 0 stands for the heat conductivity of the process;

I µ > 0 is a relaxation parameter
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The equation of macroscopic motion

The equation of macroscopic motion is the following stress-strain
relation, taking into account of accelerations:

utt − div σ = 0 in Ω× (0, T )

where σ represents the stress tensor.

Using the constitutive law

σ = σnd + σd =
∂Ψ

∂ε(u)
+

∂Φ

∂ε(ut)
,

the tensor σ can be written as

σ = (1− χ)ε(u) + χε(ut) in Ω× (0, T ).

We treat here a pure displacement boundary value problem for u

u = 0 on ∂Ω× (0, T ) .

However, our analysis carries over to other kinds of boundary conditions
on u like a pure traction problem or a displacement-traction problem.



Phase change models

E. Rocca

The model

Free-energy
functional

Pseudo-Potential of
dissipation

Macroscopic motion

Microscopic motion

Internal energy
balance

The PDE systems

Problem 1

Problem 2

Main analytical results
for Problem 1

Assumptions

Well-posedness in
finite times

Long-time behavior
of solution

Main analytical results
for Problem 2

Assumptions

Existence of strong
solutions

Existence of weak
solutions

The equation of macroscopic motion

The equation of macroscopic motion is the following stress-strain
relation, taking into account of accelerations:

utt − div σ = 0 in Ω× (0, T )

where σ represents the stress tensor. Using the constitutive law

σ = σnd + σd =
∂Ψ

∂ε(u)
+

∂Φ

∂ε(ut)
,

the tensor σ can be written as

σ = (1− χ)ε(u) + χε(ut) in Ω× (0, T ).

We treat here a pure displacement boundary value problem for u

u = 0 on ∂Ω× (0, T ) .

However, our analysis carries over to other kinds of boundary conditions
on u like a pure traction problem or a displacement-traction problem.



Phase change models

E. Rocca

The model

Free-energy
functional

Pseudo-Potential of
dissipation

Macroscopic motion

Microscopic motion

Internal energy
balance

The PDE systems

Problem 1

Problem 2

Main analytical results
for Problem 1

Assumptions

Well-posedness in
finite times

Long-time behavior
of solution

Main analytical results
for Problem 2

Assumptions

Existence of strong
solutions

Existence of weak
solutions

The equation of macroscopic motion

The equation of macroscopic motion is the following stress-strain
relation, taking into account of accelerations:

utt − div σ = 0 in Ω× (0, T )

where σ represents the stress tensor. Using the constitutive law

σ = σnd + σd =
∂Ψ

∂ε(u)
+

∂Φ

∂ε(ut)
,

the tensor σ can be written as

σ = (1− χ)ε(u) + χε(ut) in Ω× (0, T ).

We treat here a pure displacement boundary value problem for u

u = 0 on ∂Ω× (0, T ) .

However, our analysis carries over to other kinds of boundary conditions
on u like a pure traction problem or a displacement-traction problem.



Phase change models

E. Rocca

The model

Free-energy
functional

Pseudo-Potential of
dissipation

Macroscopic motion

Microscopic motion

Internal energy
balance

The PDE systems

Problem 1

Problem 2

Main analytical results
for Problem 1

Assumptions

Well-posedness in
finite times

Long-time behavior
of solution

Main analytical results
for Problem 2

Assumptions

Existence of strong
solutions

Existence of weak
solutions

The equation of macroscopic motion

The equation of macroscopic motion is the following stress-strain
relation, taking into account of accelerations:

utt − div σ = 0 in Ω× (0, T )

where σ represents the stress tensor. Using the constitutive law

σ = σnd + σd =
∂Ψ

∂ε(u)
+

∂Φ

∂ε(ut)
,

the tensor σ can be written as

σ = (1− χ)ε(u) + χε(ut) in Ω× (0, T ).

We treat here a pure displacement boundary value problem for u

u = 0 on ∂Ω× (0, T ) .

However, our analysis carries over to other kinds of boundary conditions
on u like a pure traction problem or a displacement-traction problem.



Phase change models

E. Rocca

The model

Free-energy
functional

Pseudo-Potential of
dissipation

Macroscopic motion

Microscopic motion

Internal energy
balance

The PDE systems

Problem 1

Problem 2

Main analytical results
for Problem 1

Assumptions

Well-posedness in
finite times

Long-time behavior
of solution

Main analytical results
for Problem 2

Assumptions

Existence of strong
solutions

Existence of weak
solutions

The equation of microscopic motion

If the volume amount of mechanical energy provided by the external
actions is zero, the generalized principle of virtual power by
[Frémond, ’02] gives

B − div H = 0 in Ω× (0, T ), H · n = 0 on ∂Ω× (0, T )

where B and H represent the internal microscopic forces responsible for
the mechanically induced heat sources. From the constitutive relations

B =
∂Ψ

∂χ +
∂Φ

∂χt
= −ϑ + ϑc −

|ε(u)|2

2
+ W ′(χ) + µχt

H =
∂Ψ

∂∇χ = ν∇χ

we derive the phase equation

µχt − ν∆χ + W ′(χ) = ϑ− ϑc +
|ε(u)|2

2
in Ω× (0, T )

coupled with the B.C. ∂nχ = 0 on ∂Ω× (0, T ).
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The internal energy balance

The first principle of thermodynamics can be expressed as

et + div q = σ : ε(ut) + Bχt + H · ∇χt

where

I e is the (density of) internal energy:

e = Ψ− ϑ
∂Ψ

∂ϑ
= ϑ + λχ +

(1− χ)|ε(u)|2

2
+ W (χ) +

ν

2
|∇χ|2;

I the heat flux is q = −ϑ
∂Φ

∂∇ϑ
= −h(ϑ)∇ϑ ;

I on the right-hand side: the mechanically induced heat sources,
related to macroscopic and microscopic stresses:

σ : ε(ut) +Bχt + H · ∇χt = χ|ε(ut)|2 + (1− χ)ε(u)ε(ut)− ϑχt

+µ|χt |2 +λχt −
|ε(u)|2χt

2
+ W ′(χ)χt + ν∇χ∇χt .

Due to the cancellations of the blue terms, we get

ϑt + ϑχt − div(h(ϑ)∇ϑ) = χ|ε(ut)|2 + µ|χt |2
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The thermodynamical consistency

Our model complies with the Second Principle of Thermodynamics:

in
fact, the following form of the Clausius-Duhem inequality

st + div
(q

ϑ

)
≥ 0

holds true.

I It is sufficient to note that the internal energy balance can be
expressed in terms of the entropy s = − ∂Ψ

∂ϑ
in this way:

ϑ
(

st + div
(q

ϑ

))
= σd : ε(ut) + Bdχt −

q

ϑ
· ∇ϑ

Bd being the dissipative part of B

I The right-hand side turns out to be non negative because
(σd, Bd, −q/ϑ) ∈ ∂Φ(ut , χt , ∇ϑ), and Φ is convex in all of its
variables

I Therefore, the Clausius-Duhem inequality ensues from the
positivity of ϑ
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The resulting PDE system

The PDE system in Ω× (0, T ) turns out to be:

ϑt + χtϑ− div(h(ϑ)∇ϑ) = µ|χt |2 + χ|ε(ut)|2

µχt − ν∆χ + W ′(χ) = ϑ− ϑc +
|ε(u)|2

2

utt − div ((1− χ)ε(u) + χε(ut)) = 0

coupled with the following initial and boundary conditions:

ϑ(0) = ϑ0 , χ(0) = χ0 , u(0) = u0, ut(0) = v0 in Ω

∂nϑ = 0, ∂nχ = 0, u = 0 on ∂Ω× (0, T )
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The literature on the full phase change system

3 The corresponding 3D problem was solved (locally in time) in
[E.R., R. Rossi, J. Differential Equations (2008)] under
the small perturbation assumptions, i.e. with

ϑt + ϑχt −∆ϑ = 0

in place of the internal energy balance

3 A more complex model is considered in [P. Krejč́ı, J. Sprekels,
U. Stefanelli, Adv. Math. Sci. Appl. (2003)], in the frame
of nonlinear thermoviscoplasticity: in the 1D (in space) case, they
get global well-posedness of a PDE system, incorporating both
hysteresis effects and modelling phase change. It does not display a
degenerating character

3 Degenerating stress-strain relations appear in models for damaging
phenomena coupling χ and u equations (cf., e.g., [Bonetti,
Schimperna, Segatti (2004–2005)]). The phase variable χ is
related to the local proportion of damaged material (χ = 0 when
the body is completely damaged). Local (in time) well-posedness is
proved
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The literature for the [ϑ+χ]-equations

3 So far Frémond’s models of phase change do not take into account
the different properties of the viscous and elastic parts of the
system (cf., e.g., Colli, Bonfanti, Laurençot, Luterotti,
Schimperna, Stefanelli (2000–2006)): the u-equation is
usually neglected

3 Due to the presence of the term χt ϑ in the internal energy
balance, no global-in-time well-posedness result has yet been
obtained for Frémond’s phase-field model in the 3D case, even
neglecting the u-equation and the higher order dissipative
contributions on the r.h.s. in the internal energy balance

3 A 1D global result is proved in [Luterotti, Stefanelli, ZAA
(2002)]
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Our aim

Problem 1 (Joint work with Riccarda Rossi)

1) To prove the well-posedness on [0, T ] for the full PDE system in
the 1D (in space) case and for the standard Fourier heat flux law
(h ≡ 1 in the ϑ-equation)

2) To study the long-time behavior of solutions of 1) in case

ϑt + ϑχt −∆ϑ = 0

replaces the internal energy balance

Problem 2 (Joint work with Eduard Feireisl and Hana Petzeltová)

3) To study the PDE system for ϑ and χ in case ε(u) = const in the
3D (in space) case getting

3a) existence of regular solutions in case of a superlinear heat
conductivity h in the heat flux law

3b) existence of weak solutions for the standard Fourier heat flux law
(i.e. h ≡ 1)
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3D (in space) case getting

3a) existence of regular solutions in case of a superlinear heat
conductivity h in the heat flux law

3b) existence of weak solutions for the standard Fourier heat flux law
(i.e. h ≡ 1)
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µχt − ν∆χ + W ′(χ) = ϑ− ϑc +
|ε(u)|2

2
(P1b)

utt − div ((1− χ)ε(u) + χε(ut)) = 0 (P1c)

and the boundary conditions:

∂nϑ = 0, ∂nχ = 0, u = 0 on ∂Ω× (0, T ) . (BC1)
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Relations between Problem 2 and the “classical” models

I The Sfefan problem. If µ = ν = 0, h ≡ 1 and W ′ = ∂I[0,1] + ϑc

the system (P2a–P2b) reduces to

ϑt + ϑcχt −∆ϑ = −(ϑ− ϑc)χt

∂I[0,1](χ) 3 (ϑ− ϑc)

entailing the weak formulation of the two-phase Stefan problem:

ϑt + ϑcχt −∆ϑ = 0

χ ∈ H(ϑ− ϑc) .

I The phase-relaxation. If ν = 0, h ≡ 1 W ′ = ∂I[0,1] + ϑc and
multiplying (P2b) by χt , the system (P2a–P2b) reduces to

ϑt + ϑcχt −∆ϑ = 0

µχt + ∂I[0,1](χ) 3 (ϑ− ϑc)

which is the phase relaxation model introduced by Visintin.
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The global results

Joint work with R. Rossi. For Problem 1 in 1D :

I well-posedness for the full system (P1a–BC1) on [0, T ] ;

I analysis of the associated ω-limit of trajectory for the system
coupling (IC1), (P1b–BC1) with the simplified internal energy
equation:

ϑt + ϑχt −∆ϑ = 0 . (P1a’)

Joint work with E. Feireisl, H. Petzeltová. For Problem 2 in 3D :

I existence of regular solutions and uniqueness in case
h(ϑ) = h0 + εk(ϑ) and k(ϑ) ≥ ckϑ

p with ε > 0, p ∈ [3, +∞);

I existence of weak solutions in case h(ϑ) = h0 (Fourier heat flux
law), obtained as a limit for ε ↘ 0 of the previous one and
satisfying (P2b–BC2), an entropy inequality and the total energy
conservation in a suitable sense.
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I existence of regular solutions and uniqueness in case
h(ϑ) = h0 + εk(ϑ) and k(ϑ) ≥ ckϑ

p with ε > 0, p ∈ [3, +∞);

I existence of weak solutions in case h(ϑ) = h0 (Fourier heat flux
law), obtained as a limit for ε ↘ 0 of the previous one and
satisfying (P2b–BC2), an entropy inequality and the total energy
conservation in a suitable sense.



Phase change models

E. Rocca

The model

Free-energy
functional

Pseudo-Potential of
dissipation

Macroscopic motion

Microscopic motion

Internal energy
balance

The PDE systems

Problem 1

Problem 2

Main analytical results
for Problem 1

Assumptions

Well-posedness in
finite times

Long-time behavior
of solution

Main analytical results
for Problem 2

Assumptions

Existence of strong
solutions

Existence of weak
solutions

The global results

Joint work with R. Rossi. For Problem 1 in 1D :

I well-posedness for the full system (P1a–BC1) on [0, T ] ;

I analysis of the associated ω-limit of trajectory for the system
coupling (IC1), (P1b–BC1) with the simplified internal energy
equation:

ϑt + ϑχt −∆ϑ = 0 . (P1a’)

Joint work with E. Feireisl, H. Petzeltová. For Problem 2 in 3D :
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Hypothesis 1 (To solve Problem 1)

(i) Ω = (0, `), for some ` > 0

(ii) W = β̂ + γ̂ , where γ̂ ∈ C2([0, 1]) , with derivative γ := γ̂′

(iii) dom(β̂) = [0, 1]

β̂ : dom(β̂) → R l.s.c., convex, differentiable in (0, 1)

the graph β = β̂′ satisfies the “coercivity” conditions:

lim
x→0+

β(x) = −∞ , lim
x→1−

β(x) = +∞

and, for all ρ > 0, β is a Lipschitz continuous function on [ρ, 1− ρ]

(iii) the data satisfy:

u0 ∈ H2
0 (0, `), v0 ∈ H1

0 (0, `),

ϑ0 ∈ H1(0, `) and min
x∈[0,`]

ϑ0(x) > 0, χ0 ∈ H2
N(Ω)

(iv) the datum χ0 is “separated from the potential barriers”:

min
x∈Ω

χ0(x) > 0, max
x∈Ω

χ0(x) < 1 .
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Theorem 1 (Well-posedness for Problem 1 on [0,T ])

Fix T > 0 and assume Hypothesis 1.

Then

� there exist δ ∈ (0, 1) - depending on the potential W and on the
initial datum χ0,

� there exist ζT ∈ (0, 1) - depending on the potential W , on the
initial datum χ0, and on the final time T ,

� there exist θ∗T > 0 - depending on T and on the problem data,

� and there exist a unique triple (ϑ, χ, u) solving Problem 1 and
complying with

ϑ ∈ L2(0, T ; H2
N(Ω)) ∩ L∞(0, T ; H1(0, `)) ∩ H1(0, T ; L2(Ω))

∩W 1,∞(0, T ; H1(0, `)′)

χ ∈ L∞(0, T ; H2
N(Ω)) ∩ H1(0, T ; H1(0, `)) ∩W 1,∞(0, T ; L2(Ω))

u ∈ H1(0, T ; H2
0 (0, `)) ∩W 1,∞(0, T ; H1

0 (0, `)) ∩ H2(0, T ; L2(Ω))

and such that the following separation inequalities hold true:

ϑ(x , t) ≥ θ∗T , δ ≤χ(x , t)≤ ζT ∀(x , t) ∈ [0, `]× [0, T ] .
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Remarks on Theorem 1

3 The two separation inequalities for χ:

χ(x , t) ≥ δ > 0 and χ(x , t) ≤ ζT < 1

have a different character:

I the first one is a direct consequence of the weak maximum
principle for parabolic equations and essentially relies on the
positivity of the right-hand side of (P1b).

The constant δ is fixed
right from the beginning and invariant in time: the separation of χ

from 0 is a global in time separation inequality;

I the second one has a quantitative nature, i.e. it holds with a
constant ζT depending on the L∞(0, T ; L∞(0, `))-norm of the
right-hand side of (P1b), and thus, ultimately, on the time interval
in which (P1b) is considered
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Theorem 2 (Long-time behavior of solution to Problem 1)

We consider Problem 1, where (P1a) is replaced (within the framework
of small perturbation assumptions) with

ϑt + ϑχt −∆ϑ = 0 a.e. in (0, `)× (0, T ). (P1a’)

Then, the nonempty ω-limit set:

ω(ϑ0, χ0, u0) := {(ϑ∞, χ∞, u∞) ∈ H1(0, `)× H1(0, `)× H1
0 (0, `) :

∃ tn ↗∞ : (ϑ(tn), χ(tn), u(tn)) → (ϑ∞, χ∞, u∞)

in H1−ν(0, `)× H1−ν(0, `)× H1−ν
0 (0, `) ∀ν ∈ (0, 1)}

is compact and connected in H1−ν(0, `)× H1−ν(0, `)×H1−ν
0 (0, `) for all

ν ∈ (0, 1). Moreover, ∃ ζ∞ ∈ (0, 1) : all (ϑ∞, χ∞, u∞) ∈ ω(ϑ0, χ0, u0)
solves the stationary problem in (0, `):

−∆ϑ∞ = 0, −∆χ∞ + β(χ∞) + γ(χ∞) = ϑ∞, u∞ = 0

and fulfils

ϑ∞(x) ≥ 0 , min
x∈[0,`]

χ∞(x) ≥ δ , max
x∈[0,`]

χ∞(x) ≤ ζ∞ .

In particular, ∃ ϑ̄∞ ∈ [0, +∞) : ϑ∞(x) = ϑ̄∞ for all x ∈ [0, `].
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Remarks on Theorem 2

3 In addition to Theorem 2, if

W ′ = β + γ is strictly increasing in (0, 1),

for every (ϑ∞, χ∞, 0) ∈ ω(ϑ0, χ0, u0), the component χ∞ is also
constant on (0, `) and

χ∞(x) = (β + γ)−1 (ϑ̄∞) ∀ x ∈ [0, `] .

3 A crucial step: the first separation inequality extends to (0, +∞)

χ(x , t) ≥ δ ∀ (x , t) ∈ [0, `]× [0, +∞) . (Sep0)

Instead, the separation from 1 does not hold globally on (0, +∞).

3 In order to prove the existence of the global attractor for bundle of
trajectories we would need to strengthen our large-time a priori
estimates on u. However, it seems to us that better large-time
estimates on u cannot be obtained, if one relies on the sole (Sep0).
The same technical drawback makes it difficult to implement
 Lojasiewicz-Simon procedures to prove the convergence as
t → +∞ of the whole trajectories (ϑ(t), χ(t), u(t))t∈(0,+∞) to the
elements of their ω-limit.
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Recall: Problem 2 (The case ε(u) = const)

Find functions ϑ, χ : Ω× [0, T ] → R such that

χ(x , t) ∈ dom(W ) and ϑ(x , t) > 0 a.e. in Ω× (0, T )

fulfilling the equations a.e. in Ω× (0, T ):

ϑt + ϑχt − div(h(ϑ)∇ϑ) = µ|χt |2 (P2a)

µχt − ν∆χ + W ′(χ) = ϑ− ϑc (P2b)

and the initial and boundary conditions:

ϑ(0) = ϑ0, χ(0) = χ0 in Ω (BC2)

∂nϑ = 0, ∂nχ = 0 on ∂Ω× (0, T ) . (IC2)



Phase change models

E. Rocca

The model

Free-energy
functional

Pseudo-Potential of
dissipation

Macroscopic motion

Microscopic motion

Internal energy
balance

The PDE systems

Problem 1

Problem 2

Main analytical results
for Problem 1

Assumptions

Well-posedness in
finite times

Long-time behavior
of solution

Main analytical results
for Problem 2

Assumptions

Existence of strong
solutions

Existence of weak
solutions

Hypothesis 2 (To solve Problem 2)

We fix two positive constants ck , cw , an three exponents p ∈ [3, +∞),
q ∈ (5, +∞), α ∈ (0, 1), and assume that

(i) q := −∇ϑ− εk(ϑ)∇ϑ, with ε ≥ 0 and k : [0, +∞) → [0, +∞),
k ∈ C 1([0, +∞)), such that k(r) ≥ ck rp

(ii) W = β̂ + γ̂ where

β̂ : dom(β̂) → R is proper, lower semi-continuous, convex,

γ̂ ∈ C 1,1(dom(β̂)) and W (r) ≥ cw r 2 for all r ∈ dom(β̂)

(iii) ϑ0 ∈ C 0,α(Ω), ϑ0 > 0 a. e. in Ω

(iv) χ0 ∈ [Lq(Ω), W 2,q
N (Ω)]1−1/q,q, W (χ0) ∈ L1(Ω).
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Theorem 3 (Well-posedness for Problem 2 in case ε > 0).

Fix T > 0 and assume Hypothesis 2. Suppose that W , satisfies

I either the regularity assumption

W ∈ C 2(R), |W ′′(r)| ≤ cLip ∀r ∈ R,

for some positive constant cLip

I or dom(β̂) = [0, 1], β is differentiable on (0, 1) and for all ρ > 0, β
is a Lipschitz continuous function on [ρ, 1− ρ]. It satisfy the
following “coercivity” conditions

lim
x→0+

β(x) = −∞ , lim
x→1−

β(x) = +∞ ;

the datum χ0 is separated from 0 and 1:

min
x∈Ω

χ0(x) > 0, max
x∈Ω

χ0(x) < 1 .

Then, there exist a unique solution (ϑ, χ) to Problem 2 such that it
complies with the following regularity properties:

ϑ ∈ C 0,σ(QT ) ∩ C 0((0, T ]; H2(Ω)) ∩ C 1((0, T ]; C 0,σ(Ω))

χ ∈ C 0,σ(QT ) ∩ C 0((0, T ]; H2(Ω)) ∩ C 1((0, T ]; C 0,σ(Ω)) .
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Theorem 4 (Existence for Problem 2 in case ε = 0)

Fix T > 0 and assume Hypothesis 2. Let s ∈ (13/8, 11/6) in the 3D
case, s ∈ (5/3, 2) in the 2D case.

Then there exists at least one pair
(ϑ, χ) with the regularities

ϑ ∈ L∞(0, T ; L1(Ω)) ∩ Ls(QT )

ϑ(x , t) > 0 a. e. in QT

log(ϑ) ∈ L∞(0, T ; L1(Ω)) ∩ L2(0, T ; H1(Ω))

χ ∈ C 0([0, T ]; H1(Ω)) ∩ Ls(0, T ; W 2,s(Ω)), χt ∈ Ls(QT )

satisfying the entropy inequality (∀ϕ ∈ D(QT ), ϕ ≥ 0):∫ T

0

∫
Ω

((log ϑ + χ) ∂tϕ +∇ log ϑ · ∇ϕ) dx dt

≤
∫ T

0

∫
Ω

1

ϑ

(
−µ|χt |2 +∇ log ϑ · ∇ϑ

)
ϕ dx dt ,

equation (P2b), initial and boundary conditions (BC2–IC2), and the
total energy conservation

E(t) = E(0) a.e. in [0, T ], where E ≡
∫

Ω

(
ϑ + W (χ) +

ν

2
|∇χ|2

)
dx .
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Remarks on Theorems 3 and 4

I The energy estimate on Problem 2 [(P2a)× 1 + (P2b)× χt ] gives
ϑ bdd only in L∞(0, T ; L1(Ω))

I The crucial estimate leading to the existence of strong solutions
(cf. Theorem 3) is (P2a)× 1/ϑ leading to

ε1/2|∇ϑp/2|L2(Ω×(0,T )) ≤ c

I In case ε > 0 this lead us to improve the regularity of ϑ (and hence
of χ) by means of regularity results for semi-linear parabolic
equations

I The existence of weak solutions in case ε = 0 (cf. Theorem 4) is
obtained by passing to the limit as ε ↘ 0 and using convexity and
semi-continuity arguments

I It is easy to check that the entropy inequality and the energy
conservation in Theorem 4, together with equation (P2b) give rise
to the standard energy balance (P2a) in case the solution is
sufficiently smooth
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