Phase change models
E. Rocca

The model
Free-energy
functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

E. Rocca

University of Milan, Italy
www.mat.unimi.it/users/rocca

7th AIMS International Conference on
Dyn. Systems, Diff. Equations and Applications
Arlington Texas USA - May 18-21, 2008

The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2

Assumptions
Existence of strong solutions
Existence of weak solutions

Plan of the Talk

Phase change models

E. Rocca

The model

Free-energy
functional
Pseudo-Potential of dissipation
Macroscopic motion
Microscopic motion
Internal energy
balance
The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

Plan of the Talk

Phase change models
E. Rocca

The model
Free-energy
functional
Pseudo-Potential of dissipation
Macroscopic motion
Microscopic motion
Internal energy
balance
The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

Plan of the Talk

Phase change models
E. Rocca

The model
Free-energy
functional
Pseudo-Potential of
dissipation
Macroscopic motion
Microscopic motion
Internal energy
balance
The PDE systems
Problem 1
Problem 2
Main analytical results
for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Assumptions
Existence of strong solutions
Existence of weak solutions

Plan of the Talk

E. Rocca

The model
Free-energy
functional
Pseudo-Potential of
dissipation
Macroscopic motion
Microscopic motion
Internal energy
balance
The PDE systems
Problem 1
Problem 2
Main analytical results
for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Assumptions
Existence of strong solutions
Existence of weak solutions

Phase transitions and phase-field models

Assume that the two phases can coexist at every point: a parameter χ characterizes the different phases, e.g. the concentration or the local proportion of one of the two phases in a point.

Phase change models
E. Rocca

The model

Macroscopic motion Microscopic motion Internal energy balance

The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results
for Problem 2
Assumptions
Existence of strong
solutions
Existence of weak solutions

Phase transitions and phase-field models

Assume that the two phases can coexist at every point: a parameter χ characterizes the different phases, e.g. the concentration or the local proportion of one of the two phases in a point.
In a melting-solidification process we shall have $\chi \in[0,1]$ and

- $\chi=0$ in the solid (non viscous) phase and
- $\chi=1$ in the liquid (viscous) phase.

E. Rocca

The model

Phase transitions and phase-field models

Assume that the two phases can coexist at every point: a parameter χ characterizes the different phases, e.g. the concentration or the local proportion of one of the two phases in a point.
In a melting-solidification process we shall have $\chi \in[0,1]$ and

- $\chi=0$ in the solid (non viscous) phase and
- $\chi=1$ in the liquid (viscous) phase.

Use the basic laws of continuum mechanics:

E. Rocca

The model

Phase transitions and phase-field models

Assume that the two phases can coexist at every point: a parameter χ characterizes the different phases, e.g. the concentration or the local proportion of one of the two phases in a point.
In a melting-solidification process we shall have $\chi \in[0,1]$ and

- $\chi=0$ in the solid (non viscous) phase and
- $\chi=1$ in the liquid (viscous) phase.

Use the basic laws of continuum mechanics:

- The equation of macroscopic motion, i.e., the stress-strain relation for the vector of the small displacements u

E. Rocca

The model Free-energy functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

Assumptions
Existence of strong solutions
Existence of weak solutions

Phase transitions and phase-field models

Assume that the two phases can coexist at every point: a parameter χ characterizes the different phases, e.g. the concentration or the local proportion of one of the two phases in a point.
In a melting-solidification process we shall have $\chi \in[0,1]$ and

- $\chi=0$ in the solid (non viscous) phase and
- $\chi=1$ in the liquid (viscous) phase.

Use the basic laws of continuum mechanics:

- The equation of macroscopic motion, i.e., the stress-strain relation for the vector of the small displacements u
- The generalized principle of virtual power for microscopic forces by [M. Frémond, Non-smooth Thermomechanics, 2002] describing the evolution of the order parameter χ

The model Free-energy functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

Assumptions
Existence of strong solutions
Existence of weak solutions

Phase transitions and phase-field models

Assume that the two phases can coexist at every point: a parameter χ characterizes the different phases, e.g. the concentration or the local proportion of one of the two phases in a point.
In a melting-solidification process we shall have $\chi \in[0,1]$ and

- $\chi=0$ in the solid (non viscous) phase and
- $\chi=1$ in the liquid (viscous) phase.

Use the basic laws of continuum mechanics:

- The equation of macroscopic motion, i.e., the stress-strain relation for the vector of the small displacements u
- The generalized principle of virtual power for microscopic forces by [M. Frémond, Non-smooth Thermomechanics, 2002] describing the evolution of the order parameter χ
- The internal energy balance ruling the evolution of the absolute temperature ϑ of the system

The model

Assumptions
Existence of strong solutions
Existence of weak solutions

Phase transitions and phase-field models

Assume that the two phases can coexist at every point: a parameter χ characterizes the different phases, e.g. the concentration or the local proportion of one of the two phases in a point.
In a melting-solidification process we shall have $\chi \in[0,1]$ and

- $\chi=0$ in the solid (non viscous) phase and
- $\chi=1$ in the liquid (viscous) phase.

Use the basic laws of continuum mechanics:

- The equation of macroscopic motion, i.e., the stress-strain relation for the vector of the small displacements u
- The generalized principle of virtual power for microscopic forces by [M. Frémond, Non-smooth Thermomechanics, 2002] describing the evolution of the order parameter χ
- The internal energy balance ruling the evolution of the absolute temperature ϑ of the system
with a proper choice of the internal energy functional (depending on the state variables) and of the pseudo-potential of dissipation (depending on the dissipative variables).

The model Free-energy functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Assumptions
Existence of strong solutions
Existence of weak solutions

The free-energy functional

We take into account of elasticity effects by choosing

$$
\begin{aligned}
\frac{\Psi(\vartheta, \varepsilon(\mathbf{u}), \chi, \nabla \chi)}{} & =c_{\nu} \vartheta(1-\log \vartheta)-\frac{\lambda}{\vartheta_{c}}\left(\vartheta-\vartheta_{c}\right) \chi \\
& +\frac{(1-\chi) \varepsilon(\mathbf{u}) \mathcal{R}_{e} \varepsilon(\mathbf{u})}{2}+W(\chi)+\frac{\nu}{2}|\nabla \chi|^{2}
\end{aligned}
$$

- $\varepsilon(\mathbf{u})$ the linearized symmetric strain tensor, namely $\varepsilon_{i j}(\mathbf{u}):=\left(u_{i, j}+u_{j, i}\right) / 2, i, j=1,2,3$
- $(1-\chi)$ the local proportion of the non viscous phase, e.g. the solid phase in solid-liquid phase transitions
- \mathcal{R}_{e} a symmetric positive definite elasticity tensor (set $\mathcal{R}_{e} \equiv \mathbb{I}$)
- $c_{V}, \vartheta_{c}, \lambda$ and $\nu(>0)$ the specific heat, the equilibrium temperature, the latent heat of the system, and the interfacial energy coefficient (set $c_{V}=\lambda / \vartheta_{c}=1$)
- $W(\chi)+(\nu / 2)|\nabla \chi|^{2}$ a mixture or interaction free-energy

E. Rocca

Free-energy
 functional

Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results
for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

The Pseudo-Potential of dissipation

E. Rocca

Free-energy

functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The equation of macroscopic motion

Phase change models

E. Rocca

The model
Free-energy
functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

The equation of macroscopic motion

The equation of macroscopic motion is the following stress-strain relation, taking into account of accelerations:

$$
\mathbf{u}_{t t}-\operatorname{div} \sigma=\mathbf{0} \quad \text { in } \Omega \times(0, T)
$$

where σ represents the stress tensor. Using the constitutive law

$$
\sigma=\sigma^{n d}+\sigma^{d}=\frac{\partial \Psi}{\partial \varepsilon(\mathbf{u})}+\frac{\partial \Phi}{\partial \varepsilon\left(\mathbf{u}_{t}\right)}
$$

the tensor σ can be written as

$$
\sigma=(1-\chi) \varepsilon(\mathbf{u})+\chi \varepsilon\left(\mathbf{u}_{t}\right) \quad \text { in } \Omega \times(0, T)
$$

E. Rocca

Free-energy

functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The equation of macroscopic motion

The equation of macroscopic motion is the following stress-strain relation, taking into account of accelerations:

$$
\mathbf{u}_{t t}-\operatorname{div} \sigma=\mathbf{0} \quad \text { in } \Omega \times(0, T)
$$

where σ represents the stress tensor. Using the constitutive law

$$
\sigma=\sigma^{n d}+\sigma^{d}=\frac{\partial \Psi}{\partial \varepsilon(\mathbf{u})}+\frac{\partial \Phi}{\partial \varepsilon\left(\mathbf{u}_{t}\right)},
$$

the tensor σ can be written as

$$
\sigma=(1-\chi) \varepsilon(\mathbf{u})+\chi \varepsilon\left(\mathbf{u}_{t}\right) \quad \text { in } \Omega \times(0, T) .
$$

We treat here a pure displacement boundary value problem for \mathbf{u}

$$
\mathbf{u}=\mathbf{0} \quad \text { on } \partial \Omega \times(0, T)
$$

E. Rocca

Free-energy

functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The equation of macroscopic motion

The equation of macroscopic motion is the following stress-strain relation, taking into account of accelerations:

$$
\mathbf{u}_{t t}-\operatorname{div} \sigma=\mathbf{0} \quad \text { in } \Omega \times(0, T)
$$

where σ represents the stress tensor. Using the constitutive law

$$
\sigma=\sigma^{n d}+\sigma^{d}=\frac{\partial \Psi}{\partial \varepsilon(\mathbf{u})}+\frac{\partial \Phi}{\partial \varepsilon\left(\mathbf{u}_{t}\right)},
$$

the tensor σ can be written as

$$
\sigma=(1-\chi) \varepsilon(\mathbf{u})+\chi \varepsilon\left(\mathbf{u}_{t}\right) \quad \text { in } \Omega \times(0, T)
$$

We treat here a pure displacement boundary value problem for \mathbf{u}

$$
\mathbf{u}=\mathbf{0} \quad \text { on } \partial \Omega \times(0, T)
$$

However, our analysis carries over to other kinds of boundary conditions on \mathbf{u} like a pure traction problem or a displacement-traction problem.

E. Rocca

Free-energy
functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

Assumptions
Existence of strong solutions

The equation of microscopic motion

If the volume amount of mechanical energy provided by the external actions is zero, the generalized principle of virtual power by [Frémond, '02] gives

$$
B-\operatorname{div} \mathbf{H}=0 \quad \text { in } \Omega \times(0, T), \quad \mathbf{H} \cdot \mathbf{n}=0 \quad \text { on } \partial \Omega \times(0, T)
$$

Phase change models

E. Rocca

The model
Free-energy
functional
Pseudo-Potential of dissipation
Macroscopic motion
Microscopic motion
Internal energy
balance
The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong
solutions
Existence of weak solutions

The equation of microscopic motion

If the volume amount of mechanical energy provided by the external actions is zero, the generalized principle of virtual power by [Frémond, '02] gives

$$
B-\operatorname{div} \mathbf{H}=0 \quad \text { in } \Omega \times(0, T), \quad \mathbf{H} \cdot \mathbf{n}=0 \quad \text { on } \partial \Omega \times(0, T)
$$

where B and H represent the internal microscopic forces responsible for the mechanically induced heat sources.

E. Rocca

The model
Free-energy
functional
Pseudo-Potential of dissipation
Macroscopic motion
Microscopic motion
Internal energy
balance
The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

The equation of microscopic motion

If the volume amount of mechanical energy provided by the external actions is zero, the generalized principle of virtual power by [Frémond, '02] gives

$$
B-\operatorname{div} \mathbf{H}=0 \quad \text { in } \Omega \times(0, T), \quad \mathbf{H} \cdot \mathbf{n}=0 \quad \text { on } \partial \Omega \times(0, T)
$$

where B and H represent the internal microscopic forces responsible for the mechanically induced heat sources. From the constitutive relations

$$
\begin{aligned}
& B=\frac{\partial \Psi}{\partial \chi}+\frac{\partial \Phi}{\partial \chi_{t}}=-\vartheta+\vartheta_{c}-\frac{|\varepsilon(\mathbf{u})|^{2}}{2}+W^{\prime}(\chi)+\mu \chi_{t} \\
& \mathbf{H}=\frac{\partial \Psi}{\partial \nabla \chi}=\nu \nabla \chi
\end{aligned}
$$

E. Rocca

Free-energy functional
Pseudo-Potential of dissipation
Macroscopic motion
Microscopic motion Internal energy balance

Assumptions
Existence of strong solutions
Existence of weak solutions

The equation of microscopic motion

If the volume amount of mechanical energy provided by the external actions is zero, the generalized principle of virtual power by [Frémond, '02] gives

$$
B-\operatorname{div} \mathbf{H}=0 \quad \text { in } \Omega \times(0, T), \quad \mathbf{H} \cdot \mathbf{n}=0 \quad \text { on } \partial \Omega \times(0, T)
$$

where B and H represent the internal microscopic forces responsible for the mechanically induced heat sources. From the constitutive relations

$$
\begin{aligned}
& B=\frac{\partial \Psi}{\partial \chi}+\frac{\partial \Phi}{\partial \chi_{t}}=-\vartheta+\vartheta_{c}-\frac{|\varepsilon(\mathbf{u})|^{2}}{2}+W^{\prime}(\chi)+\mu \chi_{t} \\
& \mathbf{H}=\frac{\partial \Psi}{\partial \nabla \chi}=\nu \nabla \chi
\end{aligned}
$$

we derive the phase equation

$$
\mu \chi_{t}-\nu \Delta \chi+W^{\prime}(\chi)=\vartheta-\vartheta_{c}+\frac{|\varepsilon(\mathbf{u})|^{2}}{2} \quad \text { in } \Omega \times(0, T)
$$

coupled with the B.C. $\partial_{\mathbf{n}} \chi=0$ on $\partial \Omega \times(0, T)$.

E. Rocca

Free-energy

functional
Pseudo-Potential of dissipation
Macroscopic motion
Microscopic motion Internal energy balance

The internal energy balance

The first principle of thermodynamics can be expressed as

$$
e_{t}+\operatorname{div} \mathbf{q}=\sigma: \varepsilon\left(\mathbf{u}_{t}\right)+B \chi_{t}+\mathbf{H} \cdot \nabla \chi_{t}
$$

Phase change models
E. Rocca

The model
Free-energy
functional
Pseudo-Potential of dissipation
Macroscopic motion
Microscopic motion
Internal energy
balance
The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2

Assumptions
Existence of strong solutions
Existence of weak solutions

The internal energy balance

The first principle of thermodynamics can be expressed as

$$
e_{t}+\operatorname{div} \mathbf{q}=\sigma: \varepsilon\left(\mathbf{u}_{t}\right)+B \chi_{t}+\mathbf{H} \cdot \nabla \chi_{t}
$$

where

- e is the (density of) internal energy:

$$
e=\Psi-\vartheta \frac{\partial \Psi}{\partial \vartheta}=\vartheta+\lambda \chi+\frac{(1-\chi)|\varepsilon(\mathbf{u})|^{2}}{2}+W(\chi)+\frac{\nu}{2}|\nabla \chi|^{2} ;
$$

Phase change models

E. Rocca

The model

Free-energy
functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion
Internal energy balance

The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

The internal energy balance

The first principle of thermodynamics can be expressed as

$$
e_{t}+\operatorname{div} \mathbf{q}=\sigma: \varepsilon\left(\mathbf{u}_{t}\right)+B \chi_{t}+\mathbf{H} \cdot \nabla \chi_{t}
$$

where

- e is the (density of) internal energy:

$$
e=\Psi-\vartheta \frac{\partial \Psi}{\partial \vartheta}=\vartheta+\lambda \chi+\frac{(1-\chi)|\varepsilon(\mathbf{u})|^{2}}{2}+W(\chi)+\frac{\nu}{2}|\nabla \chi|^{2}
$$

- the heat flux is $\mathbf{q}=-\vartheta \frac{\partial \Phi}{\partial \nabla \vartheta}=-h(\vartheta) \nabla \vartheta$;

Phase change models

E. Rocca

The model

Free-energy
functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion
Internal energy balance

The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

The internal energy balance

The first principle of thermodynamics can be expressed as

$$
e_{t}+\operatorname{div} \mathbf{q}=\sigma: \varepsilon\left(\mathbf{u}_{t}\right)+B \chi_{t}+\mathbf{H} \cdot \nabla \chi_{t}
$$

where

- e is the (density of) internal energy:

$$
e=\Psi-\vartheta \frac{\partial \Psi}{\partial \vartheta}=\vartheta+\lambda \chi+\frac{(1-\chi)|\varepsilon(\mathbf{u})|^{2}}{2}+W(\chi)+\frac{\nu}{2}|\nabla \chi|^{2}
$$

- the heat flux is $\mathbf{q}=-\vartheta \frac{\partial \Phi}{\partial \nabla \vartheta}=-h(\vartheta) \nabla \vartheta$;
- on the right-hand side: the mechanically induced heat sources, related to macroscopic and microscopic stresses:

$$
\begin{gathered}
\sigma: \varepsilon\left(\mathbf{u}_{t}\right)+B \chi_{t}+\mathbf{H} \cdot \nabla \chi_{t}=\chi\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+(1-\chi) \varepsilon(\mathbf{u}) \varepsilon\left(\mathbf{u}_{t}\right)-\vartheta \chi_{t} \\
\quad+\mu\left|\chi_{t}\right|^{2}+\lambda \chi_{t}-\frac{|\varepsilon(\mathbf{u})|^{2} \chi_{t}}{2}+W^{\prime}(\chi) \chi_{t}+\nu \nabla \chi \nabla \chi_{t}
\end{gathered}
$$

E. Rocca

Free-energy

functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion
Internal energy balance

The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

The internal energy balance

The first principle of thermodynamics can be expressed as

$$
e_{t}+\operatorname{div} \mathbf{q}=\sigma: \varepsilon\left(\mathbf{u}_{t}\right)+B \chi_{t}+\mathbf{H} \cdot \nabla \chi_{t}
$$

where

- e is the (density of) internal energy:

$$
e=\Psi-\vartheta \frac{\partial \Psi}{\partial \vartheta}=\vartheta+\lambda \chi+\frac{(1-\chi)|\varepsilon(\mathbf{u})|^{2}}{2}+W(\chi)+\frac{\nu}{2}|\nabla \chi|^{2}
$$

- the heat flux is $\mathbf{q}=-\vartheta \frac{\partial \Phi}{\partial \nabla \vartheta}=-h(\vartheta) \nabla \vartheta$;
- on the right-hand side: the mechanically induced heat sources, related to macroscopic and microscopic stresses:

$$
\begin{gathered}
\sigma: \varepsilon\left(\mathbf{u}_{t}\right)+B \chi_{t}+\mathbf{H} \cdot \nabla \chi_{t}=\chi\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+(1-\chi) \varepsilon(\mathbf{u}) \varepsilon\left(\mathbf{u}_{t}\right)-\vartheta \chi_{t} \\
+\mu\left|\chi_{t}\right|^{2}+\lambda \chi_{t}-\frac{|\varepsilon(\mathbf{u})|^{2} \chi_{t}}{2}+W^{\prime}(\chi) \chi_{t}+\nu \nabla \chi \nabla \chi_{t}
\end{gathered}
$$

Due to the cancellations of the blue terms, we get

$$
\vartheta_{t}+\vartheta \chi_{t}-\operatorname{div}(h(\vartheta) \nabla \vartheta)=\chi\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+\mu\left|\chi_{t}\right|^{2}
$$

E. Rocca

Free-energy

functional

Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion

Internal energy

 balanceProblem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results
for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

The thermodynamical consistency

Our model complies with the Second Principle of Thermodynamics:

Phase change models
E. Rocca

The model
Free-energy
functional
Pseudo-Potential of dissipation
Macroscopic motion
Microscopic motion
Internal energy
balance
The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

The thermodynamical consistency

Our model complies with the Second Principle of Thermodynamics: in fact, the following form of the Clausius-Duhem inequality

$$
s_{t}+\operatorname{div}\left(\frac{\mathbf{q}}{\vartheta}\right) \geq 0
$$

holds true.

Phase change models

E. Rocca

The model
Free-energy
functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion
Internal energy balance

Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong
solutions
Existence of weak solutions

The thermodynamical consistency

Our model complies with the Second Principle of Thermodynamics: in fact, the following form of the Clausius-Duhem inequality

$$
s_{t}+\operatorname{div}\left(\frac{\mathbf{q}}{\vartheta}\right) \geq 0
$$

holds true.

- It is sufficient to note that the internal energy balance can be expressed in terms of the entropy $s=-\frac{\partial \Psi}{\partial \vartheta}$ in this way:

$$
\vartheta\left(s_{t}+\operatorname{div}\left(\frac{\mathbf{q}}{\vartheta}\right)\right)=\sigma^{\mathrm{d}}: \varepsilon\left(\mathbf{u}_{t}\right)+B^{\mathrm{d}} \chi_{t}-\frac{\mathbf{q}}{\vartheta} \cdot \nabla \vartheta
$$

$B^{\text {d }}$ being the dissipative part of B

E. Rocca

Free-energy functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion
Internal energy balance

Assumptions
Well-posedness in finite times
Long-time behavior of solution

Assumptions
Existence of strong solutions
Existence of weak solutions

The thermodynamical consistency

Our model complies with the Second Principle of Thermodynamics: in fact, the following form of the Clausius-Duhem inequality

$$
s_{t}+\operatorname{div}\left(\frac{\mathbf{q}}{\vartheta}\right) \geq 0
$$

holds true.

- It is sufficient to note that the internal energy balance can be expressed in terms of the entropy $s=-\frac{\partial \Psi}{\partial \vartheta}$ in this way:

$$
\vartheta\left(s_{t}+\operatorname{div}\left(\frac{\mathbf{q}}{\vartheta}\right)\right)=\sigma^{\mathrm{d}}: \varepsilon\left(\mathbf{u}_{t}\right)+B^{\mathrm{d}} \chi_{t}-\frac{\mathbf{q}}{\vartheta} \cdot \nabla \vartheta
$$

B^{d} being the dissipative part of B

- The right-hand side turns out to be non negative because $\left(\sigma^{\mathrm{d}}, B^{\mathrm{d}},-\mathbf{q} / \vartheta\right) \in \partial \Phi\left(\mathbf{u}_{t}, \chi_{t}, \nabla \vartheta\right)$, and Φ is convex in all of its variables

E. Rocca

Free-energy functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion
Internal energy balance

Assumptions
Well-posedness in finite times
Long-time behavior of solution

Assumptions
Existence of strong solutions
Existence of weak solutions

The thermodynamical consistency

Our model complies with the Second Principle of Thermodynamics: in fact, the following form of the Clausius-Duhem inequality

$$
s_{t}+\operatorname{div}\left(\frac{\mathbf{q}}{\vartheta}\right) \geq 0
$$

holds true.

- It is sufficient to note that the internal energy balance can be expressed in terms of the entropy $s=-\frac{\partial \Psi}{\partial \vartheta}$ in this way:

$$
\vartheta\left(s_{t}+\operatorname{div}\left(\frac{\mathbf{q}}{\vartheta}\right)\right)=\sigma^{\mathrm{d}}: \varepsilon\left(\mathbf{u}_{t}\right)+B^{\mathrm{d}} \chi_{t}-\frac{\mathbf{q}}{\vartheta} \cdot \nabla \vartheta
$$

B^{d} being the dissipative part of B

- The right-hand side turns out to be non negative because $\left(\sigma^{\mathrm{d}}, B^{\mathrm{d}},-\mathbf{q} / \vartheta\right) \in \partial \Phi\left(\mathbf{u}_{t}, \chi_{t}, \nabla \vartheta\right)$, and Φ is convex in all of its variables
- Therefore, the Clausius-Duhem inequality ensues from the positivity of ϑ

E. Rocca

Free-energy functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion
Internal energy
balance

Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

The resulting PDE system

E. Rocca

Free-energy

functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

The literature on the full phase change system

\checkmark The corresponding 3D problem was solved (locally in time) in [E.R., R. Rossi, J. Differential Equations (2008)] under the small perturbation assumptions, i.e. with

$$
\vartheta_{t}+\vartheta \chi_{t}-\Delta \vartheta=0
$$

in place of the internal energy balance

Phase change models

E. Rocca

The model
Free-energy
functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

The literature on the full phase change system

\checkmark The corresponding 3D problem was solved (locally in time) in [E.R., R. Rossi, J. Differential Equations (2008)] under the small perturbation assumptions, i.e. with

$$
\vartheta_{t}+\vartheta \chi_{t}-\Delta \vartheta=0
$$

in place of the internal energy balance
\checkmark A more complex model is considered in [P. Krejčí, J. Sprekels, U. Stefanelli, Adv. Math. Sci. Appl. (2003)], in the frame of nonlinear thermoviscoplasticity: in the 1D (in space) case, they get global well-posedness of a PDE system, incorporating both hysteresis effects and modelling phase change. It does not display a degenerating character

E. Rocca

Free-energy functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

The literature on the full phase change system

\checkmark The corresponding 3D problem was solved (locally in time) in [E.R., R. Rossi, J. Differential Equations (2008)] under the small perturbation assumptions, i.e. with

$$
\vartheta_{t}+\vartheta \chi_{t}-\Delta \vartheta=0
$$

in place of the internal energy balance
\checkmark A more complex model is considered in [P. Krejčí, J. Sprekels, U. Stefanelli, Adv. Math. Sci. Appl. (2003)], in the frame of nonlinear thermoviscoplasticity: in the 1D (in space) case, they get global well-posedness of a PDE system, incorporating both hysteresis effects and modelling phase change. It does not display a degenerating character
\checkmark Degenerating stress-strain relations appear in models for damaging phenomena coupling χ and \mathbf{u} equations (cf., e.g., [Bonetti, Schimperna, Segatti (2004-2005)]). The phase variable χ is related to the local proportion of damaged material ($\chi=0$ when the body is completely damaged). Local (in time) well-posedness is proved

The literature for the $[\vartheta+\chi]$-equations

\checkmark So far Frémond's models of phase change do not take into account the different properties of the viscous and elastic parts of the system (cf., e.g., Colli, Bonfanti, Laurençot, Luterotti, Schimperna, Stefanelli (2000-2006)): the u-equation is usually neglected

Phase change models

E. Rocca

The model
Free-energy
functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion
Internal energy balance

The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

The literature for the $[\vartheta+\chi]$-equations

\checkmark So far Frémond's models of phase change do not take into account the different properties of the viscous and elastic parts of the system (cf., e.g., Colli, Bonfanti, Laurençot, Luterotti, Schimperna, Stefanelli (2000-2006)): the u-equation is usually neglected
\checkmark Due to the presence of the term $\chi_{t} \vartheta$ in the internal energy balance, no global-in-time well-posedness result has yet been obtained for Frémond's phase-field model in the 3D case, even neglecting the \mathbf{u}-equation and the higher order dissipative contributions on the r.h.s. in the internal energy balance

E. Rocca

Free-energy

functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

The literature for the $[\vartheta+\chi]$-equations

\checkmark So far Frémond's models of phase change do not take into account the different properties of the viscous and elastic parts of the system (cf., e.g., Colli, Bonfanti, Laurençot, Luterotti, Schimperna, Stefanelli (2000-2006)): the u-equation is usually neglected
\checkmark Due to the presence of the term $\chi_{t} \vartheta$ in the internal energy balance, no global-in-time well-posedness result has yet been obtained for Frémond's phase-field model in the 3D case, even neglecting the \mathbf{u}-equation and the higher order dissipative contributions on the r.h.s. in the internal energy balance
\checkmark A 1D global result is proved in [Luterotti, Stefanelli, ZAA (2002)]

E. Rocca

Free-energy

 functionalPseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

Our aim

Phase change models

E. Rocca

Problem 1 (Joint work with Riccarda Rossi)

The model

Free-energy
functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

Our aim

Problem 1 (Joint work with Riccarda Rossi)

1) To prove the well-posedness on $[0, T]$ for the full PDE system in the 1D (in space) case and for the standard Fourier heat flux law ($h \equiv 1$ in the ϑ-equation)

Phase change models

E. Rocca

The model

Free-energy
functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

Our aim

Problem 1 (Joint work with Riccarda Rossi)

1) To prove the well-posedness on $[0, T]$ for the full PDE system in the 1D (in space) case and for the standard Fourier heat flux law ($h \equiv 1$ in the ϑ-equation)
2) To study the long-time behavior of solutions of 1) in case

$$
\vartheta_{t}+\vartheta \chi_{t}-\Delta \vartheta=0
$$

replaces the internal energy balance

Phase change models
E. Rocca

Free-energy

functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

Our aim

E. Rocca

Free-energy functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

Our aim

E. Rocca

Free-energy
functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

Our aim

E. Rocca

Free-energy functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Assumptions
Existence of strong solutions
Existence of weak solutions

Our aim

E. Rocca

Free-energy functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Assumptions
Existence of strong solutions
Existence of weak solutions

Formulation of Problem 1 (The case $h \equiv 1$ - Fourier heat flux)

Find functions $\vartheta, \chi: \Omega \times[0, T] \rightarrow \mathbb{R}$ such that

$$
\chi(x, t) \in \operatorname{dom}(W) \text { and } \vartheta(x, t)>0 \text { a.e. in } \Omega \times(0, T)
$$

and $\mathrm{u}: \Omega \times[0, T] \rightarrow \mathbb{R}^{3}$ fulfilling the initial conditions:

$$
\begin{equation*}
\vartheta(0)=\vartheta_{0}, \quad \chi(0)=\chi_{0}, \quad \mathbf{u}(0)=\mathbf{u}_{0}, \quad \mathbf{u}_{t}(0)=\mathbf{v}_{0} \quad \text { in } \Omega, \tag{IC1}
\end{equation*}
$$

the equations a.e. in $\Omega \times(0, T)$:

$$
\begin{align*}
& \vartheta_{t}+\chi_{t} \vartheta-\Delta \vartheta=\mu\left|\chi_{t}\right|^{2}+\chi\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2} \tag{P1a}\\
& \mu \chi_{t}-\nu \Delta \chi+W^{\prime}(\chi)=\vartheta-\vartheta_{c}+\frac{|\varepsilon(\mathbf{u})|^{2}}{2} \tag{P1b}\\
& \mathbf{u}_{t t}-\operatorname{div}\left((1-\chi) \varepsilon(\mathbf{u})+\chi \varepsilon\left(\mathbf{u}_{t}\right)\right)=\mathbf{0} \tag{P1c}
\end{align*}
$$

and the boundary conditions:

$$
\begin{equation*}
\partial_{\mathbf{n}} \vartheta=0, \quad \partial_{\mathbf{n}} \chi=0, \quad \mathbf{u}=\mathbf{0} \quad \text { on } \partial \Omega \times(0, T) . \tag{BC1}
\end{equation*}
$$

Problem 1

Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Assumptions
Existence of strong solutions
Existence of weak solutions

Formulation of Problem 2 (The case $\varepsilon(\mathbf{u})=$ const)

Find functions $\vartheta, \chi: \Omega \times[0, T] \rightarrow \mathbb{R}$ such that

$$
\chi(x, t) \in \operatorname{dom}(W) \text { and } \vartheta(x, t)>0 \text { a.e. in } \Omega \times(0, T)
$$

and fulfilling the equations a.e. in $\Omega \times(0, T)$:

$$
\begin{align*}
& \vartheta_{t}+\vartheta \chi_{t}-\operatorname{div}(h(\vartheta) \nabla \vartheta)=\mu\left|\chi_{t}\right|^{2} \tag{P2a}\\
& \mu \chi_{t}-\nu \Delta \chi+W^{\prime}(\chi)=\vartheta-\vartheta_{c} \tag{P2b}
\end{align*}
$$

and the initial and boundary conditions:

$$
\begin{align*}
& \vartheta(0)=\vartheta_{0}, \quad \chi(0)=\chi_{0} \quad \text { in } \Omega \tag{IC2}\\
& \partial_{\mathbf{n}} \vartheta=0, \quad \partial_{\mathbf{n}} \chi=0 \quad \text { on } \partial \Omega \times(0, T) . \tag{BC2}
\end{align*}
$$

Free-energy

functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems

Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

Relations between Problem 2 and the "classical" models

- The Sfefan problem. If $\mu=\nu=0, h \equiv 1$ and $W^{\prime}=\partial I_{[0,1]}+\vartheta_{c}$ the system (P2a-P2b) reduces to

Phase change models

E. Rocca

The model

Free-energy
functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems

Problem 1

Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

Relations between Problem 2 and the "classical" models

- The Sfefan problem. If $\mu=\nu=0, h \equiv 1$ and $W^{\prime}=\partial I_{[0,1]}+\vartheta_{c}$ the system (P2a-P2b) reduces to

$$
\begin{aligned}
& \vartheta_{t}+\vartheta_{c} \chi_{t}-\Delta \vartheta=-\left(\vartheta-\vartheta_{c}\right) \chi_{t} \\
& \partial I_{[0,1]}(\chi) \ni\left(\vartheta-\vartheta_{c}\right)
\end{aligned}
$$

Phase change models

E. Rocca

The model

Free-energy
functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems

Problem 1

Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

Relations between Problem 2 and the "classical" models

- The Sfefan problem. If $\mu=\nu=0, h \equiv 1$ and $W^{\prime}=\partial I_{[0,1]}+\vartheta_{c}$ the system (P2a-P2b) reduces to

$$
\begin{aligned}
& \vartheta_{t}+\vartheta_{c} \chi_{t}-\Delta \vartheta=-\left(\vartheta-\vartheta_{c}\right) \chi_{t} \\
& \partial I_{[0,1]}(\chi) \ni\left(\vartheta-\vartheta_{c}\right)
\end{aligned}
$$

entailing the weak formulation of the two-phase Stefan problem:

$$
\begin{aligned}
& \vartheta_{t}+\vartheta_{c} \chi_{t}-\Delta \vartheta=0 \\
& \chi \in H\left(\vartheta-\vartheta_{c}\right) .
\end{aligned}
$$

E. Rocca

Free-energy

functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems

Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

Relations between Problem 2 and the "classical" models

- The Sfefan problem. If $\mu=\nu=0, h \equiv 1$ and $W^{\prime}=\partial I_{[0,1]}+\vartheta_{c}$ the system (P2a-P2b) reduces to

$$
\begin{aligned}
& \vartheta_{t}+\vartheta_{c} \chi_{t}-\Delta \vartheta=-\left(\vartheta-\vartheta_{c}\right) \chi_{t} \\
& \partial I_{[0,1]}(\chi) \ni\left(\vartheta-\vartheta_{c}\right)
\end{aligned}
$$

entailing the weak formulation of the two-phase Stefan problem:

$$
\begin{aligned}
& \vartheta_{t}+\vartheta_{c} \chi_{t}-\Delta \vartheta=0 \\
& \chi \in H\left(\vartheta-\vartheta_{c}\right) .
\end{aligned}
$$

- The phase-relaxation. If $\nu=0, h \equiv 1 W^{\prime}=\partial I_{[0,1]}+\vartheta_{c}$ and multiplying (P2b) by χ_{t}, the system (P2a-P2b) reduces to

E. Rocca

Free-energy

functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems

Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Assumptions
Existence of strong solutions
Existence of weak solutions

Relations between Problem 2 and the "classical" models

- The Sfefan problem. If $\mu=\nu=0, h \equiv 1$ and $W^{\prime}=\partial I_{[0,1]}+\vartheta_{c}$ the system (P2a-P2b) reduces to

$$
\begin{aligned}
& \vartheta_{t}+\vartheta_{c} \chi_{t}-\Delta \vartheta=-\left(\vartheta-\vartheta_{c}\right) \chi_{t} \\
& \partial I_{[0,1]}(\chi) \ni\left(\vartheta-\vartheta_{c}\right)
\end{aligned}
$$

entailing the weak formulation of the two-phase Stefan problem:

$$
\begin{aligned}
& \vartheta_{t}+\vartheta_{c} \chi_{t}-\Delta \vartheta=0 \\
& \chi \in H\left(\vartheta-\vartheta_{c}\right)
\end{aligned}
$$

- The phase-relaxation. If $\nu=0, h \equiv 1 W^{\prime}=\partial I_{[0,1]}+\vartheta_{c}$ and multiplying (P2b) by χ_{t}, the system (P2a-P2b) reduces to

$$
\begin{aligned}
& \vartheta_{t}+\vartheta_{c} \chi_{t}-\Delta \vartheta=0 \\
& \mu \chi_{t}+\partial I_{[0,1]}(\chi) \ni\left(\vartheta-\vartheta_{c}\right)
\end{aligned}
$$

which is the phase relaxation model introduced by Visintin.

The global results

Phase change models
E. Rocca

The model
Free-energy
functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems

Problem 1

Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

The global results

Phase change models

E. Rocca

The model
Free-energy
functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems

Problem 1

Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

The global results

Joint work with R. Rossi. For Problem 1 in 1D:

- well-posedness for the full system (P1a-BC1) on $[0, T]$;
- analysis of the associated ω-limit of trajectory for the system coupling (IC1), (P1b-BC1) with the simplified internal energy equation:

$$
\begin{equation*}
\vartheta_{t}+\vartheta \chi_{t}-\Delta \vartheta=0 \tag{P1a'}
\end{equation*}
$$

Phase change models
E. Rocca

Free-energy functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

The global results

Phase change models
E. Rocca

Free-energy
functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results
for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

The global results

Joint work with R. Rossi. For Problem 1 in 1D:

- well-posedness for the full system (P1a-BC1) on $[0, T]$;
- analysis of the associated ω-limit of trajectory for the system coupling (IC1), (P1b-BC1) with the simplified internal energy equation:

$$
\begin{equation*}
\vartheta_{t}+\vartheta \chi_{t}-\Delta \vartheta=0 \tag{P1a'}
\end{equation*}
$$

Joint work with E. Feireisl, H. Petzeltová. For Problem 2 in 3D:

- existence of regular solutions and uniqueness in case $h(\vartheta)=h_{0}+\varepsilon k(\vartheta)$ and $k(\vartheta) \geq c_{k} \vartheta^{p}$ with $\varepsilon>0, p \in[3,+\infty)$;

E. Rocca

Free-energy

functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Assumptions
Existence of strong solutions
Existence of weak solutions

The global results

Joint work with R. Rossi. For Problem 1 in 1D:

- well-posedness for the full system (P1a-BC1) on $[0, T]$;
- analysis of the associated ω-limit of trajectory for the system coupling (IC1), (P1b-BC1) with the simplified internal energy equation:

$$
\begin{equation*}
\vartheta_{t}+\vartheta \chi_{t}-\Delta \vartheta=0 . \tag{P1a'}
\end{equation*}
$$

Joint work with E. Feireisl, H. Petzeltová. For Problem 2 in 3D:

- existence of regular solutions and uniqueness in case $h(\vartheta)=h_{0}+\varepsilon k(\vartheta)$ and $k(\vartheta) \geq c_{k} \vartheta^{p}$ with $\varepsilon>0, p \in[3,+\infty)$;
- existence of weak solutions in case $h(\vartheta)=h_{0}$ (Fourier heat flux law), obtained as a limit for $\varepsilon \searrow 0$ of the previous one and satisfying (P2b-BC2), an entropy inequality and the total energy conservation in a suitable sense.

Assumptions
Existence of strong solutions
Existence of weak solutions

Hypothesis 1 (To solve Problem 1)

Phase change models
E. Rocca

The model
Free-energy
functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1

Assumptions

Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions

Existence of weak solutions

Hypothesis 1 (To solve Problem 1)

Phase change models
E. Rocca

The model
Free-energy
functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1

Assumptions

Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2

Assumptions
Existence of strong solutions
Existence of weak solutions

Hypothesis 1 (To solve Problem 1)

Phase change models

E. Rocca

Free-energy

functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

Assumptions

Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

Hypothesis 1 (To solve Problem 1)

(i) $\Omega=(0, \ell)$, for some $\ell>0$
(ii) $W=\widehat{\beta}+\widehat{\gamma}$, where $\widehat{\gamma} \in \mathrm{C}^{2}([0,1])$, with derivative $\gamma:=\widehat{\gamma}^{\prime}$
(iii) $\overline{\operatorname{dom}(\widehat{\beta})}=[0,1]$
$\widehat{\beta}: \operatorname{dom}(\widehat{\beta}) \rightarrow \mathbb{R}$ I.s.c., convex, differentiable in $(0,1)$
the graph $\beta=\widehat{\beta}^{\prime}$ satisfies the "coercivity" conditions:

$$
\lim _{x \rightarrow 0^{+}} \beta(x)=-\infty, \quad \lim _{x \rightarrow 1^{-}} \beta(x)=+\infty
$$

E. Rocca

Free-energy

functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1

Assumptions

Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

Hypothesis 1 (To solve Problem 1)

(i) $\Omega=(0, \ell)$, for some $\ell>0$
(ii) $W=\widehat{\beta}+\widehat{\gamma}$, where $\widehat{\gamma} \in \mathrm{C}^{2}([0,1])$, with derivative $\gamma:=\widehat{\gamma}^{\prime}$
(iii) $\overline{\operatorname{dom}(\widehat{\beta})}=[0,1]$
$\widehat{\beta}: \operatorname{dom}(\widehat{\beta}) \rightarrow \mathbb{R}$ I.s.c., convex, differentiable in $(0,1)$
the graph $\beta=\widehat{\beta}^{\prime}$ satisfies the "coercivity" conditions:

$$
\lim _{x \rightarrow 0^{+}} \beta(x)=-\infty, \quad \lim _{x \rightarrow 1^{-}} \beta(x)=+\infty
$$

and, for all $\rho>0, \beta$ is a Lipschitz continuous function on $[\rho, 1-\rho]$

E. Rocca

Free-energy

functional
Pseudo-Potentlal of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems

Problem 1
Problem 2
Main analytical results for Problem 1

Assumptions

Well-posedness in finite times
Long-time behavior of solution

Assumptions
Existence of strong solutions
Existence of weak solutions

Hypothesis 1 (To solve Problem 1)

(i) $\Omega=(0, \ell)$, for some $\ell>0$
(ii) $W=\widehat{\beta}+\widehat{\gamma}$, where $\widehat{\gamma} \in \mathrm{C}^{2}([0,1])$, with derivative $\gamma:=\widehat{\gamma}^{\prime}$
(iii) $\overline{\operatorname{dom}(\widehat{\beta})}=[0,1]$

$$
\widehat{\beta}: \operatorname{dom}(\widehat{\beta}) \rightarrow \mathbb{R} \text { I.s.c., convex, differentiable in }(0,1)
$$ the graph $\beta=\widehat{\beta}^{\prime}$ satisfies the "coercivity" conditions:

$$
\lim _{x \rightarrow 0^{+}} \beta(x)=-\infty, \quad \lim _{x \rightarrow 1^{-}} \beta(x)=+\infty
$$

and, for all $\rho>0, \beta$ is a Lipschitz continuous function on $[\rho, 1-\rho]$
(iii) the data satisfy:

$$
\begin{aligned}
& \mathbf{u}_{0} \in H_{0}^{2}(0, \ell), \quad \mathbf{v}_{0} \in H_{0}^{1}(0, \ell) \\
& \vartheta_{0} \in H^{1}(0, \ell) \quad \text { and } \quad \min _{x \in[0, \ell]} \vartheta_{0}(x)>0, \quad \chi_{0} \in H_{N}^{2}(\Omega)
\end{aligned}
$$

E. Rocca

Free-energy

functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems

Problem 1
Problem 2
Main analytical results for Problem 1

Assumptions

Well-posedness in finite times
Long-time behavior of solution

Assumptions
Existence of strong solutions
Existence of weak solutions

Hypothesis 1 (To solve Problem 1)

(i) $\Omega=(0, \ell)$, for some $\ell>0$
(ii) $W=\widehat{\beta}+\widehat{\gamma}$, where $\widehat{\gamma} \in \mathrm{C}^{2}([0,1])$, with derivative $\gamma:=\widehat{\gamma}^{\prime}$
(iii) $\overline{\operatorname{dom}(\widehat{\beta})}=[0,1]$

$$
\widehat{\beta}: \operatorname{dom}(\widehat{\beta}) \rightarrow \mathbb{R} \text { I.s.c., convex, differentiable in }(0,1)
$$ the graph $\beta=\widehat{\beta}^{\prime}$ satisfies the "coercivity" conditions:

$$
\lim _{x \rightarrow 0^{+}} \beta(x)=-\infty, \quad \lim _{x \rightarrow 1^{-}} \beta(x)=+\infty
$$

and, for all $\rho>0, \beta$ is a Lipschitz continuous function on $[\rho, 1-\rho]$
(iii) the data satisfy:

$$
\begin{aligned}
& \mathbf{u}_{0} \in H_{0}^{2}(0, \ell), \quad \mathbf{v}_{0} \in H_{0}^{1}(0, \ell) \\
& \vartheta_{0} \in H^{1}(0, \ell) \quad \text { and } \quad \min _{x \in[0, \ell]} \vartheta_{0}(x)>0, \quad \chi_{0} \in H_{N}^{2}(\Omega)
\end{aligned}
$$

(iv) the datum χ_{0} is "separated from the potential barriers":

$$
\min _{x \in \bar{\Omega}} \chi_{0}(x)>0, \quad \max _{x \in \bar{\Omega}} \chi_{0}(x)<1
$$

Phase change models

E. Rocca

The model

Free-energy
functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1

Assumptions

Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

Theorem 1 (Well-posedness for Problem 1 on $[0, T]$)

Fix $T>0$ and assume Hypothesis 1 .

Phase change models
E. Rocca

The model
Free-energy
functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in
finite times
Long-time behavior of solution

Main analytical results for Problem 2

Assumptions
Existence of strong solutions

Existence of weak solutions

Theorem 1 (Well-posedness for Problem 1 on $[0, T]$)

Fix $T>0$ and assume Hypothesis 1. Then
\diamond there exist $\delta \in(0,1)$ - depending on the potential W and on the initial datum χ_{0},
\diamond there exist $\zeta_{T} \in(0,1)$ - depending on the potential W, on the initial datum χ_{0}, and on the final time T,
\diamond there exist $\theta_{T}^{*}>0$ - depending on T and on the problem data,
\diamond and there exist a unique triple $(\vartheta, \chi, \mathbf{u})$ solving Problem 1 and complying with

$$
\begin{aligned}
& \vartheta \in L^{2}\left(0, T ; H_{N}^{2}(\Omega)\right) \cap L^{\infty}\left(0, T ; H^{1}(0, \ell)\right) \cap H^{1}\left(0, T ; L^{2}(\Omega)\right) \\
& \cap W^{1, \infty}\left(0, T ; H^{1}(0, \ell)^{\prime}\right) \\
& \chi \in L^{\infty}\left(0, T ; H_{N}^{2}(\Omega)\right) \cap H^{1}\left(0, T ; H^{1}(0, \ell)\right) \cap W^{1, \infty}\left(0, T ; L^{2}(\Omega)\right) \\
& \mathbf{u} \in H^{1}\left(0, T ; H_{0}^{2}(0, \ell)\right) \cap W^{1, \infty}\left(0, T ; H_{0}^{1}(0, \ell)\right) \cap H^{2}\left(0, T ; L^{2}(\Omega)\right)
\end{aligned}
$$

and such that the following separation inequalities hold true:

$$
\vartheta(x, t) \geq \theta_{T}^{*}, \quad \delta \leq \chi(x, t) \leq \zeta_{T} \quad \forall(x, t) \in[0, \ell] \times[0, T]
$$

Remarks on Theorem 1

Phase change models
E. Rocca

Free-energy
functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

Remarks on Theorem 1

E. Rocca

Free-energy functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

Remarks on Theorem 1

E. Rocca

Free-energy

functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

Assumptions
Existence of strong solutions
Existence of weak solutions

Theorem 2 (Long-time behavior of solution to Problem 1)

We consider Problem 1, where (P1a) is replaced (within the framework of small perturbation assumptions) with

$$
\begin{equation*}
\vartheta_{t}+\vartheta \chi_{t}-\Delta \vartheta=0 \quad \text { a.e. in }(0, \ell) \times(0, T) . \tag{P1a'}
\end{equation*}
$$

E. Rocca

Free-energy

functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

Theorem 2 (Long-time behavior of solution to Problem 1)

We consider Problem 1, where (P1a) is replaced (within the framework of small perturbation assumptions) with

$$
\begin{equation*}
\vartheta_{t}+\vartheta \chi_{t}-\Delta \vartheta=0 \quad \text { a.e. in }(0, \ell) \times(0, T) . \tag{P1a'}
\end{equation*}
$$

Then, the nonempty ω-limit set:

$$
\begin{aligned}
\omega\left(\vartheta_{0}, \chi_{0}, \mathbf{u}_{0}\right):= & \left\{\left(\vartheta_{\infty}, \chi_{\infty}, \mathbf{u}_{\infty}\right) \in H^{1}(0, \ell) \times H^{1}(0, \ell) \times H_{0}^{1}(0, \ell):\right. \\
& \exists t_{n} \nearrow \infty:\left(\vartheta\left(t_{n}\right), \chi\left(t_{n}\right), \mathbf{u}\left(t_{n}\right)\right) \rightarrow\left(\vartheta_{\infty}, \chi_{\infty}, \mathbf{u}_{\infty}\right) \\
& \text { in } \left.H^{1-\nu}(0, \ell) \times H^{1-\nu}(0, \ell) \times H_{0}^{1-\nu}(0, \ell) \forall \nu \in(0,1)\right\}
\end{aligned}
$$

is compact and connected in $H^{1-\nu}(0, \ell) \times H^{1-\nu}(0, \ell) \times H_{0}^{1-\nu}(0, \ell)$ for all $\nu \in(0,1)$.

E. Rocca

Free-energy

functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

Theorem 2 (Long-time behavior of solution to Problem 1)

We consider Problem 1, where (P1a) is replaced (within the framework of small perturbation assumptions) with

$$
\begin{equation*}
\vartheta_{t}+\vartheta \chi_{t}-\Delta \vartheta=0 \quad \text { a.e. in }(0, \ell) \times(0, T) . \tag{P1a'}
\end{equation*}
$$

Then, the nonempty ω-limit set:

$$
\begin{aligned}
\omega\left(\vartheta_{0}, \chi_{0}, \mathbf{u}_{0}\right):= & \left\{\left(\vartheta_{\infty}, \chi_{\infty}, \mathbf{u}_{\infty}\right) \in H^{1}(0, \ell) \times H^{1}(0, \ell) \times H_{0}^{1}(0, \ell):\right. \\
& \exists t_{n} \nearrow \infty:\left(\vartheta\left(t_{n}\right), \chi\left(t_{n}\right), \mathbf{u}\left(t_{n}\right)\right) \rightarrow\left(\vartheta_{\infty}, \chi_{\infty}, \mathbf{u}_{\infty}\right) \\
& \text { in } \left.H^{1-\nu}(0, \ell) \times H^{1-\nu}(0, \ell) \times H_{0}^{1-\nu}(0, \ell) \forall \nu \in(0,1)\right\}
\end{aligned}
$$

is compact and connected in $H^{1-\nu}(0, \ell) \times H^{1-\nu}(0, \ell) \times H_{0}^{1-\nu}(0, \ell)$ for all $\nu \in(0,1)$. Moreover, $\exists \zeta_{\infty} \in(0,1):$ all $\left(\vartheta_{\infty}, \chi_{\infty}, \mathbf{u}_{\infty}\right) \in \omega\left(\vartheta_{0}, \chi_{0}, \mathbf{u}_{0}\right)$ solves the stationary problem in $(0, \ell)$:

$$
-\Delta \vartheta_{\infty}=0, \quad-\Delta \chi_{\infty}+\beta\left(\chi_{\infty}\right)+\gamma\left(\chi_{\infty}\right)=\vartheta_{\infty}, \quad \mathbf{u}_{\infty}=0
$$

and fulfils

$$
\vartheta_{\infty}(x) \geq 0, \quad \min _{x \in[0, e]} \chi_{\infty}(x) \geq \delta, \quad \max _{x \in[0, e]} \chi_{\infty}(x) \leq \zeta_{\infty} .
$$

In particular, $\exists \bar{\vartheta}_{\infty} \in[0,+\infty): \vartheta_{\infty}(x)=\bar{\vartheta}_{\infty}$ for all $x \in[0, \ell]$.

Free-energy

functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

Problem 1
Problem 2
Main analytical result for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

```
for Problem 2
```

Assumptions
Existence of strong solutions
Existence of weak solutions

Remarks on Theorem 2

\checkmark In addition to Theorem 2, if

$$
W^{\prime}=\beta+\gamma \text { is strictly increasing in }(0,1)
$$

for every $\left(\vartheta_{\infty}, \chi_{\infty}, 0\right) \in \omega\left(\vartheta_{0}, \chi_{0}, \mathbf{u}_{0}\right)$, the component χ_{∞} is also constant on $(0, \ell)$ and

$$
\chi_{\infty}(x)=(\beta+\gamma)^{-1}\left(\bar{\vartheta}_{\infty}\right) \quad \forall x \in[0, \ell] .
$$

Phase change models

E. Rocca

The model

Free-energy
functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

Remarks on Theorem 2

\checkmark In addition to Theorem 2, if

$$
W^{\prime}=\beta+\gamma \text { is strictly increasing in }(0,1),
$$

for every $\left(\vartheta_{\infty}, \chi_{\infty}, 0\right) \in \omega\left(\vartheta_{0}, \chi_{0}, \mathbf{u}_{0}\right)$, the component χ_{∞} is also constant on ($0, \ell$) and

$$
\chi_{\infty}(x)=(\beta+\gamma)^{-1}\left(\bar{\vartheta}_{\infty}\right) \quad \forall x \in[0, \ell] .
$$

\checkmark A crucial step: the first separation inequality extends to $(0,+\infty)$

$$
\chi(x, t) \geq \delta \quad \forall(x, t) \in[0, \ell] \times[0,+\infty) .
$$

(Sep0)
Instead, the separation from 1 does not hold globally on $(0,+\infty)$.

E. Rocca

Free-energy

functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in
finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

Remarks on Theorem 2

\checkmark In addition to Theorem 2, if

$$
W^{\prime}=\beta+\gamma \text { is strictly increasing in }(0,1),
$$

for every $\left(\vartheta_{\infty}, \chi_{\infty}, 0\right) \in \omega\left(\vartheta_{0}, \chi_{0}, \mathbf{u}_{0}\right)$, the component χ_{∞} is also constant on ($0, \ell$) and

$$
\chi_{\infty}(x)=(\beta+\gamma)^{-1}\left(\bar{\vartheta}_{\infty}\right) \quad \forall x \in[0, \ell] .
$$

\checkmark A crucial step: the first separation inequality extends to $(0,+\infty)$

$$
\begin{equation*}
\chi(x, t) \geq \delta \quad \forall(x, t) \in[0, \ell] \times[0,+\infty) . \tag{Sep0}
\end{equation*}
$$

Instead, the separation from 1 does not hold globally on $(0,+\infty)$.
\checkmark In order to prove the existence of the global attractor for bundle of trajectories we would need to strengthen our large-time a priori estimates on \mathbf{u}. However, it seems to us that better large-time estimates on \mathbf{u} cannot be obtained, if one relies on the sole (Sep0).

E. Rocca

Free-energy

functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems

Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Assumptions
Existence of strong solutions
Existence of weak solutions

Remarks on Theorem 2

\checkmark In addition to Theorem 2, if

$$
W^{\prime}=\beta+\gamma \text { is strictly increasing in }(0,1)
$$

for every $\left(\vartheta_{\infty}, \chi_{\infty}, 0\right) \in \omega\left(\vartheta_{0}, \chi_{0}, \mathbf{u}_{0}\right)$, the component χ_{∞} is also constant on $(0, \ell)$ and

$$
\chi_{\infty}(x)=(\beta+\gamma)^{-1}\left(\bar{\vartheta}_{\infty}\right) \quad \forall x \in[0, \ell]
$$

\checkmark A crucial step: the first separation inequality extends to $(0,+\infty)$

$$
\begin{equation*}
\chi(x, t) \geq \delta \quad \forall(x, t) \in[0, \ell] \times[0,+\infty) \tag{Sep0}
\end{equation*}
$$

Instead, the separation from 1 does not hold globally on $(0,+\infty)$.
\checkmark In order to prove the existence of the global attractor for bundle of trajectories we would need to strengthen our large-time a priori estimates on \mathbf{u}. However, it seems to us that better large-time estimates on \mathbf{u} cannot be obtained, if one relies on the sole (Sep0). The same technical drawback makes it difficult to implement Łojasiewicz-Simon procedures to prove the convergence as $t \rightarrow+\infty$ of the whole trajectories $(\vartheta(t), \chi(t), u(t))_{t \in(0,+\infty)}$ to the elements of their ω-limit.

Assumptions
Existence of strong solutions
Existence of weak solutions

Recall: Problem 2 (The case $\varepsilon(\mathbf{u})=$ const)

Find functions $\vartheta, \chi: \Omega \times[0, T] \rightarrow \mathbb{R}$ such that

$$
\chi(x, t) \in \operatorname{dom}(W) \text { and } \vartheta(x, t)>0 \text { a.e. in } \Omega \times(0, T)
$$

fulfilling the equations a.e. in $\Omega \times(0, T)$:

$$
\begin{align*}
& \vartheta_{t}+\vartheta \chi_{t}-\operatorname{div}(h(\vartheta) \nabla \vartheta)=\mu\left|\chi_{t}\right|^{2} \tag{P2a}\\
& \mu \chi_{t}-\nu \Delta \chi+W^{\prime}(\chi)=\vartheta-\vartheta_{c} \tag{P2b}
\end{align*}
$$

and the initial and boundary conditions:

$$
\begin{align*}
& \vartheta(0)=\vartheta_{0}, \quad \chi(0)=\chi_{0} \quad \text { in } \Omega \tag{BC2}\\
& \partial_{\mathbf{n}} \vartheta=0, \quad \partial_{\mathbf{n}} \chi=0 \quad \text { on } \partial \Omega \times(0, T) . \tag{IC2}
\end{align*}
$$

E. Rocca

Free-energy

functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

Hypothesis 2 (To solve Problem 2)

Phase change models
E. Rocca

The model
Free-energy
functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2

Assumptions

Existence of strong solutions
Existence of weak solutions

Hypothesis 2 (To solve Problem 2)

Phase change models

E. Rocca

Free-energy

functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results

 for Problem 2Assumptions
Existence of strong solutions
Existence of weak solutions

Hypothesis 2 (To solve Problem 2)

E. Rocca

Free-energy

functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems

Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results

 for Problem 2Assumptions
Existence of strong solutions
Existence of weak solutions

Hypothesis 2 (To solve Problem 2)

E. Rocca

Free-energy

functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems

Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results

 for Problem 2Assumptions
Existence of strong solutions
Existence of weak solutions

Hypothesis 2 (To solve Problem 2)

E. Rocca

Free-energy

functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems

Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

Theorem 3 (Well-posedness for Problem 2 in case $\varepsilon>0$).

Fix $T>0$ and assume Hypothesis 2. Suppose that W, satisfies

- either the regularity assumption

$$
W \in C^{2}(\mathbb{R}), \quad\left|W^{\prime \prime}(r)\right| \leq c_{L i p} \quad \forall r \in \mathbb{R}
$$

for some positive constant $c_{\text {Lip }}$

Phase change models

E. Rocca

The model
Free-energy
functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

Theorem 3 (Well-posedness for Problem 2 in case $\varepsilon>0$).

Fix $T>0$ and assume Hypothesis 2. Suppose that W, satisfies

- either the regularity assumption

$$
W \in C^{2}(\mathbb{R}), \quad\left|W^{\prime \prime}(r)\right| \leq c_{L i p} \quad \forall r \in \mathbb{R}
$$

for some positive constant $c_{\text {Lip }}$

- or $\overline{\operatorname{dom}(\widehat{\beta})}=[0,1], \beta$ is differentiable on $(0,1)$ and for all $\rho>0, \beta$ is a Lipschitz continuous function on $[\rho, 1-\rho]$.

E. Rocca

Free-energy

functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

Theorem 3 (Well-posedness for Problem 2 in case $\varepsilon>0$).

Fix $T>0$ and assume Hypothesis 2. Suppose that W, satisfies

- either the regularity assumption

$$
W \in C^{2}(\mathbb{R}), \quad\left|W^{\prime \prime}(r)\right| \leq c_{L i p} \quad \forall r \in \mathbb{R}
$$

for some positive constant $c_{\text {Lip }}$

- or $\overline{\operatorname{dom}(\widehat{\beta})}=[0,1], \beta$ is differentiable on $(0,1)$ and for all $\rho>0, \beta$ is a Lipschitz continuous function on $[\rho, 1-\rho]$. It satisfy the following "coercivity" conditions

$$
\lim _{x \rightarrow 0^{+}} \beta(x)=-\infty, \quad \lim _{x \rightarrow 1^{-}} \beta(x)=+\infty
$$

E. Rocca

Free-energy

functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions

Existence of weak solutions

Theorem 3 (Well-posedness for Problem 2 in case $\varepsilon>0$).

Fix $T>0$ and assume Hypothesis 2. Suppose that W, satisfies

- either the regularity assumption

$$
W \in C^{2}(\mathbb{R}), \quad\left|W^{\prime \prime}(r)\right| \leq c_{L i p} \quad \forall r \in \mathbb{R}
$$

for some positive constant $c_{\text {Lip }}$

- or $\overline{\operatorname{dom}(\widehat{\beta})}=[0,1], \beta$ is differentiable on $(0,1)$ and for all $\rho>0, \beta$ is a Lipschitz continuous function on $[\rho, 1-\rho]$. It satisfy the following "coercivity" conditions

$$
\lim _{x \rightarrow 0^{+}} \beta(x)=-\infty, \quad \lim _{x \rightarrow 1^{-}} \beta(x)=+\infty ;
$$

the datum χ_{0} is separated from 0 and 1 :

$$
\min _{x \in \bar{\Omega}} \chi_{0}(x)>0, \quad \max _{x \in \bar{\Omega}} \chi_{0}(x)<1
$$

E. Rocca

Free-energy

functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

Theorem 3 (Well-posedness for Problem 2 in case $\varepsilon>0$).

Fix $T>0$ and assume Hypothesis 2. Suppose that W, satisfies

- either the regularity assumption

$$
W \in C^{2}(\mathbb{R}), \quad\left|W^{\prime \prime}(r)\right| \leq c_{L i p} \quad \forall r \in \mathbb{R}
$$

for some positive constant $c_{\text {Lip }}$

- or $\overline{\operatorname{dom}(\widehat{\beta})}=[0,1], \beta$ is differentiable on $(0,1)$ and for all $\rho>0, \beta$ is a Lipschitz continuous function on $[\rho, 1-\rho]$. It satisfy the following "coercivity" conditions

$$
\lim _{x \rightarrow 0^{+}} \beta(x)=-\infty, \quad \lim _{x \rightarrow 1^{-}} \beta(x)=+\infty
$$

the datum χ_{0} is separated from 0 and 1 :

$$
\min _{x \in \bar{\Omega}} \chi_{0}(x)>0, \quad \max _{x \in \bar{\Omega}} \chi_{0}(x)<1
$$

Then, there exist a unique solution (ϑ, χ) to Problem 2 such that it complies with the following regularity properties:

$$
\begin{aligned}
& \vartheta \in C^{0, \sigma}\left(\bar{Q}_{T}\right) \cap C^{0}\left((0, T] ; H^{2}(\Omega)\right) \cap C^{1}\left((0, T] ; C^{0, \sigma}(\bar{\Omega})\right) \\
& \chi \in C^{0, \sigma}\left(\bar{Q}_{T}\right) \cap C^{0}\left((0, T] ; H^{2}(\Omega)\right) \cap C^{1}\left((0, T] ; C^{0, \sigma}(\bar{\Omega})\right) .
\end{aligned}
$$

Theorem 4 (Existence for Problem 2 in case $\varepsilon=0$)

Fix $T>0$ and assume Hypothesis 2 . Let $s \in(13 / 8,11 / 6)$ in the 3D case, $s \in(5 / 3,2)$ in the 2D case.

Phase change models

E. Rocca

The model
Free-energy
functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong
solutions
Existence of weak solutions

Theorem 4 (Existence for Problem 2 in case $\varepsilon=0$)

Fix $T>0$ and assume Hypothesis 2. Let $s \in(13 / 8,11 / 6)$ in the 3D case, $s \in(5 / 3,2)$ in the 2D case. Then there exists at least one pair (ϑ, χ) with the regularities

$$
\begin{aligned}
& \vartheta \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right) \cap L^{s}\left(Q_{T}\right) \\
& \quad \vartheta(x, t)>0 \quad \text { a. e. in } Q_{T} \\
& \log (\vartheta) \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right) \cap L^{2}\left(0, T ; H^{1}(\Omega)\right) \\
& \chi \in C^{0}\left([0, T] ; H^{1}(\Omega)\right) \cap L^{s}\left(0, T ; W^{2, s}(\Omega)\right), \quad \chi_{t} \in L^{s}\left(Q_{T}\right)
\end{aligned}
$$

satisfying the entropy inequality $\left(\forall \varphi \in \mathcal{D}\left(\bar{Q}_{T}\right), \varphi \geq 0\right)$:

$$
\begin{aligned}
\int_{0}^{T} \int_{\Omega}((\log \vartheta+\chi) & \left.\partial_{t} \varphi+\nabla \log \vartheta \cdot \nabla \varphi\right) d x d t \\
& \leq \int_{0}^{T} \int_{\Omega} \frac{1}{\vartheta}\left(-\mu\left|\chi_{t}\right|^{2}+\nabla \log \vartheta \cdot \nabla \vartheta\right) \varphi d x d t
\end{aligned}
$$

equation (P2b), initial and boundary conditions (BC2-IC2), and the total energy conservation
$E(t)=E(0) \quad$ a.e. in $[0, T], \quad$ where $E \equiv \int_{\Omega}\left(\vartheta+W(\chi)+\frac{\nu}{2}|\nabla \chi|^{2}\right) d x$.

Remarks on Theorems 3 and 4

Phase change models
E. Rocca

The model
Free-energy
functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy
balance
The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong
solutions
Existence of weak
solutions

Remarks on Theorems 3 and 4

- The energy estimate on Problem $2\left[(\mathrm{P} 2 \mathrm{a}) \times 1+(\mathrm{P} 2 \mathrm{~b}) \times \chi_{t}\right]$ gives ϑ bdd only in $L^{\infty}\left(0, T ; L^{1}(\Omega)\right)$
- The crucial estimate leading to the existence of strong solutions (cf. Theorem 3) is (P2a) $\times 1 / \vartheta$ leading to

$$
\varepsilon^{1 / 2}\left|\nabla \vartheta^{p / 2}\right|_{L^{2}(\Omega \times(0, T))} \leq c
$$

Phase change models

E. Rocca

The model

Free-energy
functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

Remarks on Theorems 3 and 4

- The energy estimate on Problem $2\left[(\mathrm{P} 2 \mathrm{a}) \times 1+(\mathrm{P} 2 \mathrm{~b}) \times \chi_{t}\right]$ gives ϑ bdd only in $L^{\infty}\left(0, T ; L^{1}(\Omega)\right)$
- The crucial estimate leading to the existence of strong solutions (cf. Theorem 3) is (P2a) $\times 1 / \vartheta$ leading to

$$
\varepsilon^{1 / 2}\left|\nabla \vartheta^{p / 2}\right|_{L^{2}(\Omega \times(0, T))} \leq c
$$

- In case $\varepsilon>0$ this lead us to improve the regularity of ϑ (and hence of χ) by means of regularity results for semi-linear parabolic equations

E. Rocca

Free-energy
functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

The PDE systems
Problem 1
Problem 2
Main analytical results for Problem 1
Assumptions
Well-posedness in finite times
Long-time behavior of solution

Main analytical results for Problem 2
Assumptions
Existence of strong solutions
Existence of weak solutions

Remarks on Theorems 3 and 4

- The energy estimate on Problem $2\left[(\mathrm{P} 2 \mathrm{a}) \times 1+(\mathrm{P} 2 \mathrm{~b}) \times \chi_{t}\right]$ gives ϑ bdd only in $L^{\infty}\left(0, T ; L^{1}(\Omega)\right)$
- The crucial estimate leading to the existence of strong solutions (cf. Theorem 3) is (P2a) $\times 1 / \vartheta$ leading to

$$
\varepsilon^{1 / 2}\left|\nabla \vartheta^{p / 2}\right|_{L^{2}(\Omega \times(0, T))} \leq c
$$

- In case $\varepsilon>0$ this lead us to improve the regularity of ϑ (and hence of χ) by means of regularity results for semi-linear parabolic equations
- The existence of weak solutions in case $\varepsilon=0$ (cf. Theorem 4) is obtained by passing to the limit as $\varepsilon \searrow 0$ and using convexity and semi-continuity arguments

E. Rocca

Free-energy
functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

Remarks on Theorems 3 and 4

- The energy estimate on Problem $2\left[(\mathrm{P} 2 \mathrm{a}) \times 1+(\mathrm{P} 2 \mathrm{~b}) \times \chi_{t}\right]$ gives ϑ bdd only in $L^{\infty}\left(0, T ; L^{1}(\Omega)\right)$
- The crucial estimate leading to the existence of strong solutions (cf. Theorem 3) is (P2a) $\times 1 / \vartheta$ leading to

$$
\varepsilon^{1 / 2}\left|\nabla \vartheta^{p / 2}\right|_{L^{2}(\Omega \times(0, T))} \leq c
$$

- In case $\varepsilon>0$ this lead us to improve the regularity of ϑ (and hence of χ) by means of regularity results for semi-linear parabolic equations
- The existence of weak solutions in case $\varepsilon=0$ (cf. Theorem 4) is obtained by passing to the limit as $\varepsilon \searrow 0$ and using convexity and semi-continuity arguments
- It is easy to check that the entropy inequality and the energy conservation in Theorem 4, together with equation (P2b) give rise to the standard energy balance (P2a) in case the solution is sufficiently smooth

E. Rocca

Free-energy

functional
Pseudo-Potential of dissipation
Macroscopic motion Microscopic motion Internal energy balance

