Recent results on nonlocal diffuse-interface models for binary fluids

Sergio Frigeri¹

¹Dipartimento di Matematica "F. Enriques" Università degli Studi di Milano www.mat.unimi.it/users/frigeri

Equadiff 13, Prague, August 26-30, 2013

Supported by the FP7-IDEAS-ERC-StG Grant "EntroPhase"

イロト イポト イヨト イヨト

erc

Local Cahn-Hilliard-Navier-Stokes systems

Flow of viscous incompressible Newtonian macroscopically immiscible two-phase fluids (diffuse-interface model).

In $\Omega \times (0,\infty)$, $\Omega \subset \mathbb{R}^d$, d=2,3

$$\mathbf{u}_{t} + (\mathbf{u} \cdot \nabla)\mathbf{u} - \nu\Delta\mathbf{u} + \nabla\pi = \mu\nabla\varphi + \mathbf{h}$$

div(\mathbf{u}) = 0
 $\varphi_{t} + \mathbf{u} \cdot \nabla\varphi = \operatorname{div}(m(\varphi)\nabla\mu)$
 $\mu = -\epsilon\Delta\varphi + \epsilon^{-1}F'(\varphi)$

 μ chemical potential, first variation of the (total Helmholtz) free energy

$$E(\varphi) = \int_{\Omega} \left(\frac{\epsilon}{2} |\nabla \varphi|^2 + \frac{1}{\epsilon} F(\varphi) \right) dx$$

(ロ) (同) (三) (三) (三) (○)

Local Cahn-Hilliard-Navier-Stokes systems

- (ϵ/2)|∇φ|² free energy increase due to presence of two components
- F double-well potential: Helmholtz free energy density
 - Singular

$$F(s) = -\frac{\theta_c}{2}s^2 + \frac{\theta}{2}((1+s)\log(1+s) + (1-s)\log(1-s))$$

for all $s \in (-1, 1)$, with $0 < \theta < \theta_c$

Regular

$$F(s) = (1 - s^2)^2 \qquad \forall s \in \mathbb{R}$$

 Some literature: Starovoitov '97, Boyer '99, Abels '09, Abels & Feireisl '08; Abels '09, Gal & Grasselli '09, Zhao, Wu & Huang '09; Abels '09, Gal & Grasselli '09, '10 and '11

ヘロン 人間 とくほ とくほ とう

э.

Nonlocal model for binary fluid motion

 Nonlocal free energy rigorously justified by Giacomin and Lebowitz ('97 & '98) as macroscopic limit of microscopic phase segregation models

$$E(\varphi) = \frac{1}{4} \int_{\Omega} \int_{\Omega} J(x-y)(\varphi(x) - \varphi(y))^2 dx dy + \int_{\Omega} F(\varphi(x)) dx$$

 $J : \mathbb{R}^d \to \mathbb{R}$ is an interaction kernel s.t. J(x) = J(-x) (usually nonnegative and radial)

Nonlocal chemical potential

$$\mu = a\varphi - J * \varphi + F'(\varphi)$$
$$(J * \varphi)(x) := \int_{\Omega} J(x - y)\varphi(y)dy \quad a(x) := \int_{\Omega} J(x - y)dy$$

・ 何 と く き と く き と … き

Nonlocal Cahn-Hilliard-Navier-Stokes systems

Consider in $\Omega \times (0,\infty)$

$$\varphi_t + \mathbf{u} \cdot \nabla \varphi = \operatorname{div} (m(\varphi) \nabla \mu)$$
$$\mu = \mathbf{a}\varphi - \mathbf{J} * \varphi + \mathbf{F}'(\varphi)$$
$$\mathbf{u}_t - \nu \Delta \mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla \pi = \mu \nabla \varphi + \mathbf{h}$$
$$\operatorname{div}(\mathbf{u}) = \mathbf{0}$$

subject to

$$egin{array}{ll} \displaystyle rac{\partial \mu}{\partial n} = 0 & \mathbf{u} = 0 & ext{on} & \partial \Omega imes (0,\infty) \ \mathbf{u}(0) = \mathbf{u}_0 & arphi(0) = arphi_0 & ext{in} & \Omega \end{array}$$

Mass is conserved

$$\overline{\varphi(t)} := |\Omega|^{-1} \int_{\Omega} \varphi(x, t) dx = \overline{\varphi}_0$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

First mathematical results on nonlocal CHNS

Constant mobility+ regular potential

- ∃ global weak sols in 2D-3D (Colli, F. & Grasselli, J. Math. Anal. Appl. '12)
- global attractor in 2D and trajectory attractor in 3D (F. & Grasselli, J. Dynam Differential Equations '12)
- Constant mobility+singular potential
 - ∃ global weak sols in 2D-3D; global attractor in 2D and trajectory attractor in 3D (F. & Grasselli, Dyn. Partial Differ. Equ. '12)

ヘロト ヘアト ヘビト ヘビト

∃ weak sols (regular potential, constant mobility)

Assumptions on kernel and external force

$$egin{aligned} &J\in W^{1,1}(\mathbb{R}^d) \qquad a(x)=\int_\Omega J(x-y)dy\geq 0 \ &\mathbf{h}\in L^2_{loc}(\mathbb{R}^+;H^1_{div}(\Omega)') \qquad \mathbb{R}^+:=[0,\infty) \end{aligned}$$

Notion of weak sol

Let $\mathbf{u}_0 \in L^2_{div}(\Omega)^d$, $\varphi_0 \in L^2(\Omega)$ with $F(\varphi_0) \in L^1(\Omega)$ and $0 < T < +\infty$ be given.

 $[\mathbf{u}, \varphi]$ is a weak sol to nonlocal CHNS system on [0, T] if

$$\begin{aligned} \mathbf{u} &\in L^{\infty}(0, T; L^{2}_{div}(\Omega)^{d}) \cap L^{2}(0, T; H^{1}_{div}(\Omega)^{d} \\ \mathbf{u}_{t} &\in L^{4/d}(0, T; H^{1}_{div}(\Omega)'), \\ \varphi &\in L^{\infty}(0, T; L^{4}(\Omega)) \cap L^{2}(0, T; H^{1}(\Omega)) \\ \varphi_{t} &\in L^{2}(0, T; H^{1}(\Omega)') \\ \mu &\in L^{2}(0, T; H^{1}(\Omega)) \end{aligned}$$

伺き くほき くほう しほ

∃ weak sols (regular potential, constant mobility)

and
$$\forall \psi \in H^1(\Omega), \forall \mathbf{v} \in H^1_{div}(\Omega)^d$$
 and for a.e. $t \in (0, T)$

$$\begin{aligned} \langle \varphi_t, \psi \rangle + (\nabla \mu, \nabla \psi) &= (\mathbf{u}, \varphi \nabla \psi) \\ \langle \mathbf{u}_t, \mathbf{v} \rangle + \nu (\nabla \mathbf{u}, \nabla \mathbf{v}) + b(\mathbf{u}, \mathbf{u}, \mathbf{v}) &= -(\mathbf{v}, \varphi \nabla \mu) + \langle \mathbf{h}, \mathbf{v} \rangle \end{aligned}$$

with

$$\mathsf{u}(\mathsf{0}) = \mathsf{u}_{\mathsf{0}} \qquad arphi(\mathsf{0}) = arphi_{\mathsf{0}}$$

where

$$\mu = \mathbf{a}\varphi - \mathbf{J} * \varphi + \mathbf{F}'(\varphi)$$

and

$$b(\mathbf{u},\mathbf{v},\mathbf{w}) := \int_{\Omega} (\mathbf{u}\cdot
abla) \mathbf{v}\cdot \mathbf{w} \qquad orall \mathbf{u},\mathbf{v},\mathbf{w}\in H^1_{div}(\Omega)^d$$

通りメモトメモト

э

Theorem (Colli, F. & Grasselli '11)

Assume $\mathbf{u}_0 \in L^2_{div}(\Omega)^d$, $\varphi_0 \in L^2(\Omega)$ with $F(\varphi_0) \in L^1(\Omega)$. Then, $\forall T > 0 \exists a \text{ weak sol } [\mathbf{u}, \varphi] \text{ on } [0, T]$ which satisfies the energy inequality (identity if d = 2)

$$egin{aligned} \mathcal{E}(oldsymbol{u}(t),arphi(t)) &+ \int_0^t (
u \|
abla oldsymbol{u}(au)\|^2 + \|
abla \mu(au)\|^2) d au \ &\leq \mathcal{E}(oldsymbol{u}_0,arphi_0) + \int_0^t \langleoldsymbol{h},oldsymbol{u}(au)
angle d au &orall t > 0 \end{aligned}$$

where we have set

$$\begin{aligned} \mathcal{E}(\boldsymbol{u}(t),\varphi(t)) &= \frac{1}{2} \|\boldsymbol{u}(t)\|^2 \\ &+ \frac{1}{4} \int_{\Omega} \int_{\Omega} J(x-y) (\varphi(x,t) - \varphi(y,t))^2 dx dy + \int_{\Omega} F(\varphi(t)) \end{aligned}$$

Remarks (regular potential, constant mobility)

- All results hold for more general double-well regular potentials *F*, i.e., for *F* with polynomial growth of arbitrary order
- Main difficulty: the nonlocal term implies that φ is not as regular as for the standard (local) CHNS system

 $\varphi \in L^2(H^1)$ (nonlocal), instead of $\varphi \in L^{\infty}(H^1)$ (local)

 Consequence: regularity results (higher order estimates in 2D and 3D) and uniqueness of weak sols in 2D difficult issues

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Theorem (F., Grasselli & Krejčí '13)

Let $h \in L^2_{loc}(\mathbb{R}^+; L^2_{div}(\Omega)^2)$ and in addition $J \in W^{2,1}(\mathbb{R}^2)$. If

$$oldsymbol{u}_0\in H^1_{div}(\Omega)^2\qquad arphi_0\in H^2(\Omega)$$

then, $\forall T > 0$, \exists unique strong sol $z := [\mathbf{u}, \varphi]$ s.t.

$$u \in L^{\infty}(0, T; H^{1}_{div}(\Omega)^{2}) \cap L^{2}(0, T; H^{2}(\Omega)^{2})$$

$$u_{t} \in L^{2}(0, T; L^{2}_{div}(\Omega)^{2})$$

$$\varphi \in L^{\infty}(0, T; H^{2}(\Omega))$$

$$\varphi_{t} \in L^{\infty}(0, T; L^{2}(\Omega)) \cap L^{2}(0, T; H^{1}(\Omega))$$

Moreover, a continuous dependence estimate w.r.t. data $(\mathbf{u}_0, \varphi_0, \mathbf{h}) \in L^2_{div}(\Omega)^2 \times H^1(\Omega)' \times L^2_{loc}(\mathbb{R}^+; L^2_{div}(\Omega)^2)$ holds

< ロ > < 回 > < 回 > < 回 > < 回 > 、

-

An idea of the proof

- 1) The fact that $\varphi \in L^{\infty}(\Omega \times (0, T))$ and NS regularity in 2D \Rightarrow regularity for **u**
- 2) (Nonlocal CH)× μ_t in $L^2(\Omega)$ and use the above regularity to get

$$\|\nabla \mu\|^2 + \int_0^t \|\varphi_t\|^2 d\tau \le \|\nabla \mu_0\|^2 + C + \int_0^t \alpha(\tau) \|\nabla \mu(\tau)\|^2 d\tau$$

where $\alpha \in L^1(0, T)$ and *C* depend on $\|\nabla \mathbf{u}_0\|$, $\|\varphi_0\|_{H^2}$, *T*. Hence

$$\varphi \in L^{\infty}(0, T; H^{1}(\Omega)) \qquad \varphi_{t} \in L^{2}(0, T; L^{2}(\Omega))$$

(ロ) (同) (三) (三) (三) (○)

(Nonlocal CH)_t×μ_t in L²(Ω) and use regularity at point 1). By means of *some technical arguments* (Gagliardo-Nirenberg in 2D) we deduce

$$\frac{d}{dt}\int_{\Omega}(a+F''(\varphi))\varphi_t^2+\frac{1}{4}\|\nabla\mu_t\|^2\leq\beta(t)\|\varphi_t\|^2+C\|\varphi_t\|^4+\gamma(t)$$

with $\beta, \gamma \in L^1(0, T)$. Then, use a nonlinear Gronwall lemma

$$\left. \begin{array}{c} w'(t) \leq C_1 \left(1 + w^2(t) \right) \\ \int_0^T w(\tau) d\tau \leq C_2 \end{array} \right\} \Rightarrow w(t) \leq C_3 = C_3(w(0), C_1, C_2, T)$$

and the improved regularity at point 2) to get

$$\varphi_t \in L^{\infty}(0, T; L^2(\Omega)) \cap L^2(0, T; H^1(\Omega))$$

 By comparison in the nonlocal CH we get µ ∈ L[∞](0, T; H²(Ω)) and finally, using assumption J ∈ W^{2,1}(ℝ²), we get

$$\varphi \in L^{\infty}(0, T; H^2(\Omega))$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

• Regularization in finite time of weak sols

For $\eta \geq 0$ given, introduce the *phase spaces*

$$\begin{split} \mathcal{X}_{\eta} &= L^{2}_{div}(\Omega)^{2} \times \mathcal{Y}_{\eta} \quad \mathcal{Y}_{\eta} = \{ \varphi \in L^{2}(\Omega) : F(\varphi) \in L^{1}(\Omega), |\bar{\varphi}| \leq \eta \} \\ \mathcal{X}^{1}_{\eta} &:= H^{1}_{div}(\Omega)^{2} \times \mathcal{Y}^{1}_{\eta} \qquad \mathcal{Y}^{1}_{\eta} := \{ \psi \in H^{2}(\Omega) : |\overline{\psi}| \leq \eta \} \end{split}$$

If $z_0 = [\mathbf{u}_0, \varphi_0] \in \mathcal{X}_\eta$, then $\forall \tau > 0 \exists s_\tau \in (0, \tau]$ s.t. $z(s_\tau) \in \mathcal{X}_\eta^1$. Starting from s_τ the weak sol corresponding to z_0 becomes a (unique) strong sol $z \in C([s_\tau, \infty); \mathcal{X}_\eta^1)$.

The regularization is also uniform w.r.t. bdd in \mathcal{X}_{η} sets of initial data, i.e.

Theorem (F., Grasselli & Krejčí '13)

 $\exists \Lambda(\eta) > 0 \text{ s.t. } \forall z_0 \in H^1_{div}(\Omega)^2 \times H^2(\Omega) \text{ with } |\overline{\varphi}_0| \leq \eta \exists t^* = t^*(\mathcal{E}(z_0))$ s.t. the strong sol corresponding to z_0 satisfies

$$\|
abla oldsymbol{u}(t)\|+\|arphi(t)\|_{H^2(\Omega)}+\int_t^{t+1}\|oldsymbol{u}(oldsymbol{s})\|_{H^2(\Omega)^2}\leq \Lambda(\eta)\qquad orall t\geq t^*$$

• The global attractor (autonomous case)

Let \mathcal{G}_{η} be the set of all weak sols corresponding to all initial data $z_0 = [\mathbf{u}_0, \varphi_0] \in \mathcal{X}_{\eta}$

Theorem (F. & Grasselli '11)

Let $\mathbf{h} \in H^1_{div}(\Omega)'$. Then \mathcal{G}_η is a generalized semiflow on \mathcal{X}_η which possesses the global attractor \mathcal{A}_η

Take $z_0 \in \mathcal{B}$ bdd subset of \mathcal{X}_{η} and $\tau = 1$. Then $\exists t^* = t^*(\mathcal{B})$ s.t.

$$oldsymbol{z}(t)\in oldsymbol{B}_{\mathcal{X}_n^1}(0,\Lambda(\eta)) \qquad orall t\geq t^*$$

 \Rightarrow regularity of the global attractor

$$\mathcal{A}_\eta \subset \mathcal{B}_{\mathcal{X}^1_\eta}(\mathbf{0}, \Lambda(\eta))$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Convergence to equilibria of weak sols

Set of stationary sols

$$\begin{aligned} \mathcal{E}_{\eta} &:= \Big\{ \boldsymbol{Z}_{\infty} = [\boldsymbol{0}, \varphi_{\infty}] : \ \varphi_{\infty} \in L^{2}(\Omega), \ \boldsymbol{F}(\varphi_{\infty}) \in L^{1}(\Omega), \ |\overline{\varphi}_{\infty}| \leq \eta, \\ \boldsymbol{a}\varphi_{\infty} - \boldsymbol{J} * \varphi_{\infty} + \boldsymbol{F}'(\varphi_{\infty}) = \mu_{\infty}, \ \mu_{\infty} = \overline{\boldsymbol{F}'(\varphi_{\infty})} \quad \text{a.e. in } \Omega \Big\} \end{aligned}$$

Theorem (F., Grasselli & Krejčí '13)

Take $z_0 \in \mathcal{X}_\eta$ and let $z \in C(\mathbb{R}^+; \mathcal{X}_\eta)$ be a corresponding weak sol. Then

 $\emptyset
eq \omega(z) \subset \mathcal{E}_\eta$

and $\exists t^* = t^*(z_0)$ s.t. the trajectory $\cup_{t \ge t^*} \{z(t)\}$ is precompact in \mathcal{X}_{η} . Moreover $\exists z_{\infty} \in \mathcal{E}_{\eta}$ s.t.

 $z(t)
ightarrow z_{\infty}$ in \mathcal{X}_{η} as $t
ightarrow \infty$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Uniqueness of weak sol in 2D

Regular potentials, constant mobility

Theorem (F., Gal & Grasselli '13)

Let $\boldsymbol{u}_0 \in L^2_{div}(\Omega)^d$, $\varphi_0 \in L^2(\Omega)$ with $F(\varphi_0) \in L^1(\Omega)$. Then, \exists a unique weak sol $[\boldsymbol{u}, \varphi]$ corresponding to $[\boldsymbol{u}_0, \varphi_0]$.

 Idea of the proof. By redefining the pressure π, the Korteweg force μ∇φ can be rewritten as

$$-(
abla a/2)arphi^2-(J*arphi)
abla arphi$$

Consider two weak sols corresponding to the same initial data $[\mathbf{u}_0, \varphi_0]$. Then, setting $\mathbf{u} := \mathbf{u}_2 - \mathbf{u}_1$ and $\varphi := \varphi_2 - \varphi_1$

$$\begin{split} \varphi_t &= \Delta \widetilde{\mu} - \mathbf{u} \cdot \nabla \varphi_2 - \mathbf{u}_1 \cdot \nabla \varphi \\ \widetilde{\mu} &= \mathbf{a} \varphi - J * \varphi + F'(\varphi_2) - F'(\varphi_1) \\ \mathbf{u}_t &- \nu \Delta \mathbf{u} + ((\mathbf{u}_2 \cdot \nabla)\mathbf{u}_2 - (\mathbf{u}_1 \cdot \nabla)\mathbf{u}_1) \\ &= -\varphi(\varphi_1 + \varphi_2)(\nabla \mathbf{a}/2) - (J * \varphi)\nabla \varphi_2 - (J * \varphi_1)\nabla \varphi \end{split}$$

Uniqueness of weak sol in 2D

Multiply NS by **u**, nonlocal CH by $(-\Delta_N)^{-1}\varphi$ and sum. By means of some technical arguments (Gagliardo-Nirenberg in 2D) we are led to

$$\begin{aligned} \frac{d}{dt} \Big(\|\mathbf{u}\|^2 + \|(-\Delta_N)^{-1/2}\varphi\|^2 \Big) + c_0 \|\varphi\|^2 + \frac{\nu}{2} \|\nabla\mathbf{u}\|^2 \\ &\leq \beta \Big(\|\mathbf{u}\|^2 + \|(-\Delta_N)^{-1/2}\varphi\|^2 \Big) \\ \beta &:= c(\|\varphi_1\|_{L^4}^4 + \|\varphi_2\|_{L^4}^4 + \|\mathbf{u}_1\|_{L^4}^4 + \|\nabla\mathbf{u}_2\|^2 + 1) \in L^1(0,T) \end{aligned}$$

• A continuous dependence estimate in $L^2_{div} \times (H^1)'$ also holds

$$\begin{aligned} \|\mathbf{u}_{2}(t) - \mathbf{u}_{1}(t)\|^{2} + \|\varphi_{2}(t) - \varphi_{1}(t)\|_{(H^{1})'}^{2} \\ &+ \int_{0}^{t} \Big(C_{0} \|\varphi_{2}(\tau) - \varphi_{1}(\tau)\|^{2} + \frac{\nu}{2} \|\nabla(\mathbf{u}_{2}(\tau) - \mathbf{u}_{1}(\tau))\|^{2} \Big) d\tau \\ &\leq \Gamma_{1}(t) \Big(\|\mathbf{u}_{02} - \mathbf{u}_{01}\|^{2} + \|\varphi_{02} - \varphi_{01}\|_{(H^{1})'}^{2} \Big) + C_{\eta} \Gamma_{2}(t) |\overline{\varphi}_{02} - \overline{\varphi}_{01}| \\ &\overline{\varphi}_{01}|, |\overline{\varphi}_{02}| \leq \eta, \text{ with } \Gamma_{i} \in C(\mathbb{R}^{+}) \text{ depending on weak sols norms} \end{aligned}$$

Consequence: the nonlocal CHNS system generates a *semigroup* S(t) of *closed* operators on \mathcal{X}_{η}

$$\boldsymbol{z}(t) := [\boldsymbol{\mathsf{u}}(t), \varphi(t)] = \boldsymbol{S}(t)\boldsymbol{z}_0 := \boldsymbol{S}(t)[\boldsymbol{\mathsf{u}}_0, \varphi_0]$$

Remark: by similar arguments uniqueness of the weak sol in 2D holds for the nonlocal CHNS system also for the following cases

- constant mobility+singular potential
- degenerate mobility+singular potential

・聞き ・ヨト ・ヨト

Definition

A compact set $\mathcal{M} \subset \mathcal{X}_{\eta}$ is an *exponential attractor* for the semigroup S(t) if the following properties are satisfied

- (i) Positively invariance: $S(t)\mathcal{M} \subset \mathcal{M} \ \forall t \geq 0$
- (ii) Finite dimensionality: $dim_F \mathcal{M} < \infty$
- (iii) Exponential attraction: $\exists J : \mathbb{R}^+ \to \mathbb{R}^+$ increasing and $\kappa > 0$ s.t., $\forall R > 0$ and $\forall B \subset \mathcal{X}_{\eta}$ with $\sup_{z \in \mathcal{B}} \mathbf{d}_{\mathcal{X}_{\eta}}(z, 0) \leq R$ there holds

$$\mathsf{dist}(\mathcal{S}(t)\mathcal{B},\mathcal{M}) \leq J(R)e^{-\kappa t}$$

ヘロン 人間 とくほ とくほ とう

э.

Theorem (Efendiev & Zelik '09)

Let \mathcal{H} be a metric space and $\mathcal{V}, \mathcal{V}_1$ Banach spaces s.t. $\mathcal{V}_1 \hookrightarrow \hookrightarrow \mathcal{V}$. Let B be a bdd subset of \mathcal{H} and $\mathbb{S} : B \to B$ a map s.t.

$$d_{\mathcal{H}}(\mathbb{S}z_{02},\mathbb{S}z_{01}) \leq \gamma d_{\mathcal{H}}(z_{02},z_{01}) + \mathcal{K} \|\mathbb{T}z_{02} - \mathbb{T}z_{01}\|_{\mathcal{V}}$$

 $\forall z_{01}, z_{02} \in B$, where $\gamma < 1/2$, $K \ge 0$ and $\mathbb{T} : B \to \mathcal{V}_1$ is a globally Lipschitz continuous map, i.e.,

 $\|\mathbb{T}z_{02} - \mathbb{T}z_{01}\|_{\mathcal{V}_1} \leq Ld_{\mathcal{H}}(z_{02}, z_{01}), \quad \forall z_{01}, z_{02} \in B,$

for some $L \ge 0$. Then, \exists a (discrete) exponential attractor $\mathcal{M}_d \subset B$ for the (time discrete) semigroup $\{\mathbb{S}^n\}_{n=0,1,2,...}$ on B (with the topology of \mathcal{H} induced on B).

イロト イポト イヨト イヨト

Theorem (F., Gal & Grasselli '13)

For every $\eta \ge 0$ the dynamical system $(\mathcal{X}_{\eta}, S(t))$ possesses an exponential attractor \mathcal{M}_{η}

Main steps of the proof:

- using the results on existence of strong sols, we need estimates for the difference of two sols in the $L_{div}^2 \times L^2$ -norms with data in $H_{div}^1 \times H^2$ (also for time derivatives)
- introduce $B_1 := \bigcup_{t \ge t_0} S(t) \mathcal{B}_0$ (\mathcal{B}_0 a bdd absorbing set in \mathcal{X}_η) and by means of eventual regularization result, construct $\mathbb{B} = S(t^*)B_1$ bdd in $H^1_{div} \times H^2$, positively invariant and absorbing in \mathcal{X}_η
- uniform Hölder-continuity of (t, z₀) → S(t)z₀ on [0, T] × B to get an exponential attractor for the continuous S(t)

ヘロア 人間 アメヨア 人口 ア