Equazioni di evoluzione

ELISABETTA ROCCA MARCO VENERONI

Dipartimento di Matematica
Università degli Studi di Pavia (ITALY)

PREREQUISITI

Banach Spaces

- X vector space on \mathbb{R}
- A norm on X is a function $\|\cdot\|: X \rightarrow[0,+\infty)$ s.t.
- $\|x\|=0$ if and only if $x=0$
- $\|\lambda x\|=|\lambda|\|x\|, \forall x \in X, \forall \lambda \in \mathbb{R}$
- $\|x+y\| \leq\|x\|+\|y\|, \forall x, y \in X$
- $(X,\|\cdot\|)$ is a normed space
- $(X,\|\cdot\|)$ is a metric space (X, d) w.r.t. d induced by $d(x, y)=\|x-y\|, \forall x, y \in X$
- $x_{n} \rightarrow x^{*}$ in X if $\left\|x_{n}-x^{*}\right\| \rightarrow 0$ as $n \rightarrow+\infty$ (strong convergence)
- A Banach space is a complete normed space (any Cauchy sequence is convergent in X)

Banach Spaces: separability and compactness

- $Y \subset X$ is dense if $\forall x \in X \exists\left\{y_{n}\right\} \subset Y: y_{n} \rightarrow x$ $(\bar{Y}=X)$
- A Banach space is separable if there exists a countable $Y \subset X$ such that $\bar{Y}=X$
- $E \subset X$ is compact if every open cover of E contains a finite subcover
- $E \subset X$ is compact if and only if every bounded sequence in E contains a convergent subsequence in E.

Some remarks

Remark

We want to solve in X a problem P we cannot treat directly. We formulate easier problems P_{n}, approximating P.
We find a solution x_{n} in a compact $E \subset X$.
We construct a subsequence $x_{n_{j}} \rightarrow x^{*} \in E$.
We show that x^{*} is solution to problem P.

Remark

The unit ball in an infinite-dimensional Banach space X IS NOT compact.
The compact sets of X are THIN. Introduction of weak convergence.

- X vector space on \mathbb{R}
- An inner product on X is a function $(\cdot, \cdot): X \times X \rightarrow \mathbb{R}$ s.t.
- $(x, x) \geq 0, \forall x \in X,(x, x)=0$ iff $x=0$
- $(y, x)=(x, y), \forall x, y \in X$
- $(\lambda x+\mu y, z)=\lambda(x, z)+\mu(y, z), \forall x, y, z \in X, \forall \lambda, \mu \in \mathbb{R}$
- $(X,(\cdot, \cdot))$ is an inner product space
- $(X,(\cdot, \cdot))$ is a normed space $(X,\|\cdot\|)$ w.r.t. $\|\cdot\|$ induced by $\|x\|=(x, x)^{1 / 2}, \forall x \in X$
- $|(x, y)| \leq\|x\|\|y\|, \forall x, y \in X \quad$ Cauchy-Schwarz inequality
- A Hilbert space is a complete inner product space

Orthogonal projections and bases in Hilbert Spaces

- $M^{\perp}=\{u \in H:(u, v)=0, \forall v \in M\}$ orthogonal complement of $M \subset H$, H Hilbert space
- If M is a closed subspace of H then \exists ! decomposition $x=u+v, u \in M, v \in M^{\perp}, \quad \forall x \in H$
- $P_{M} X=u$ orthogonal projection of x onto M $\|x\|^{2}=\left\|P_{M} X\right\|^{2}+\left\|x-P_{M} X\right\|^{2}, \quad\left\|P_{M} X\right\| \leq\|x\|$
- $\left\{e_{j}\right\}:\left(e_{i}, e_{j}\right)=\delta_{i j}$ orthonormal (countable) set in H
- $\left\{e_{j}\right\}$, orthonormal set, is a (countable) basis for H if

$$
x=\sum_{j=1}^{\infty}\left(x, e_{j}\right) e_{j}, \forall x \in H
$$

- H is separable iff H has a countable basis
- If $\left\{e_{j}\right\}$ is a basis for H then $\|x\|^{2}=\sum_{j=1}^{\infty}\left(x, e_{j}\right)^{2}, \forall x \in H$

Spaces of continuous functions

- $C^{0}(\Omega)=\left\{u: \Omega \subset \mathbb{R}^{m} \rightarrow \mathbb{R}\right.$ continuous on $\left.\Omega\right\}$
- If Ω is bounded ($\Rightarrow \bar{\Omega}$ is compact):

$$
\|u\|_{C^{0}(\bar{\Omega})}=\|u\|_{\infty}=\sup _{x \in \bar{\Omega}}|u(x)|
$$

- ($\left.C^{0}(\bar{\Omega}),\|\cdot\|_{\infty}\right)$ is a separable Banach space
- $C^{r}(\Omega)=\left\{u: \Omega \rightarrow \mathbb{R}: D^{\alpha} u \in C^{0}(\Omega)\right\}, r \in \mathbb{N},|\alpha| \leq r$
- $\|u\|_{C^{r}(\bar{\Omega})}=\sum_{|\alpha| \leq r} \sup _{x \in \bar{\Omega}}\left|D^{\alpha} u(x)\right| \quad(\Omega$ bounded)
- $\left(C^{r}(\bar{\Omega}),\|\cdot\|_{C^{r}(\bar{\Omega})}\right)$ is a separable Banach space
- supp $u=\overline{\{x \in \Omega: u(x) \neq 0\}}$
- $C_{c}^{r}(\Omega)=\left\{u \in C^{r}(\Omega)\right.$ with compact support in $\left.\Omega\right\}$
- $C^{\infty}(\Omega)=\cap_{r=0}^{\infty} C^{r}(\Omega) \quad C_{c}^{\infty}(\Omega)=\cap_{r=0}^{\infty} C_{c}^{r}(\Omega)$
- $\Omega \subset \mathbb{R}^{m}$ L-measurable
- u : L-measurable on $\Omega\left(\Rightarrow u^{p}\right.$: L-measurable on $\left.\Omega\right)$
- $L^{p}(\Omega)=\left\{u:\left(\int_{\Omega}|u(x)|^{p} d x\right)^{1 / p}<+\infty\right\}, \quad 1 \leq p<+\infty$
- $u=0$ in $L^{p}(\Omega) \Leftrightarrow u=0$ a.e. in Ω
- $\|u\|_{p}=\left(\int_{\Omega}|u(x)|^{p} d x\right)^{1 / p}$
- $\left(L^{p}(\Omega),\|\cdot\|_{p}\right)$ is a Banach space
- $C_{c}^{0}(\Omega)$ is dense in $L^{p}(\Omega), \quad 1 \leq p<+\infty$
- $C_{c}^{\infty}(\Omega)$ is dense in $L^{p}(\Omega), \quad 1 \leq p<+\infty$
- $L^{p}(\Omega)$ is separable, $\quad 1 \leq p<+\infty$
- $L^{2}(\Omega)$ is a Hilbert space, $(u, v)=\int_{\Omega} u(x) v(x) d x$
- $\Omega \subset \mathbb{R}^{m}$ L-measurable
- u: L-measurable on Ω
- $L^{\infty}(\Omega)=\left\{u:\right.$ ess $\left.\sup _{x \in \Omega}|u(x)|<+\infty\right\}$
- ess $\sup _{x \in \Omega}|u(x)|=\inf \{M:|u(x)| \leq M$ a.e. in $\Omega\}$
- $u=0$ in $L^{\infty}(\Omega) \Leftrightarrow u=0$ a.e. in Ω
- $\|u\|_{\infty}=\operatorname{ess} \sup _{x \in \Omega}|u(x)|$
- $\left(L^{\infty}(\Omega),\|\cdot\|_{\infty}\right)$ is a Banach space (not separable!)
- $\left\{a_{k}\right\}=\left(a_{1}, a_{2}, \ldots\right), \quad a_{k} \in \mathbb{R}$
- $\ell^{2}=\left\{\mathbf{a}=\left\{a_{k}\right\}: \sum_{k=1}^{\infty} a_{k}^{2}<+\infty\right\}$
- $(\mathbf{a}, \mathbf{b})=\sum_{k=1}^{\infty} a_{k} b_{k}, \quad\|u\|_{\ell^{2}}=\left(\sum_{k=1}^{\infty} a_{k}^{2}\right)^{1 / 2}$
- ℓ^{2} is a Hilbert space
- $\mathbf{a}_{1}=(1,0, \ldots), \quad \mathbf{a}_{2}=(0,1, \ldots)$
- \mathbf{a}_{k} is an orthonormal basis in ℓ^{2}
- ℓ^{2} is separable

Results on L^{p} spaces

Theorem

If $u_{j} \rightarrow u$ in $L^{p}(\Omega), 1 \leq p \leq+\infty$, then there exists a subsequence that converges pointwise to u, a.e. in Ω.

Theorem

(Hölder inequality)
If $p, q \in[1,+\infty]: \frac{1}{p}+\frac{1}{q}=1(p, q$ conjugate indices) and $u \in L^{p}(\Omega), v \in L^{q}(\Omega)$ then

$$
\|u v\|_{L^{1}(\Omega)} \leq\|u\|_{L^{p}(\Omega)}\|v\|_{L^{q}(\Omega)}
$$

Young inequalities

Theorem

If $a, b \geq 0, \varepsilon>0, p, q \in(1,+\infty): \frac{1}{p}+\frac{1}{q}=1$, then

$$
a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q} \quad a b \leq \frac{a^{2}}{2}+\frac{b^{2}}{2}
$$

$$
a b \leq \varepsilon \frac{a^{p}}{p}+\varepsilon^{-q / p} \frac{b^{q}}{q} \quad a b \leq \varepsilon \frac{a^{2}}{2}+\frac{1}{\varepsilon} \frac{b^{2}}{2}
$$

Gronwall inequality

Theorem
Let $y \in C^{1}([0, \infty)), g, h \in C([0, \infty))$ be such that

$$
y^{\prime} \leq g(t) y+h(t), \quad \forall t \geq 0
$$

then

$$
y(t) \leq y(0) e^{\int_{0}^{t} g(\sigma) d \sigma}+\int_{0}^{t} e^{\int_{s}^{t} g(\sigma) d \sigma} h(s) d s, \quad \forall t \geq 0
$$

Linear operators on normed spaces

- $A:\left(X,\|\cdot\|_{X}\right) \rightarrow\left(Y,\|\cdot\|_{Y}\right)$
- A is linear if $A(\lambda x+\mu z)=\lambda A x+\mu A z, \quad \forall x, z \in X$
- A is bounded if $\exists M>0:\|A x\|_{Y} \leq M\|x\|_{X}, \forall x \in X$
- A is continuous if $x_{n} \rightarrow x$ in $X \Rightarrow A x_{n} \rightarrow A x$ in Y
- $\mathcal{L}(X, Y)$: set of all bounded linear operator from X to Y $\mathcal{L}(X, Y)$ vector space
- $\|A\|_{\mathcal{L}(X, Y)}=\sup _{x \neq 0} \frac{\|A x\|_{Y}}{\|x\|_{X}}=\sup _{\|x\|_{X}=1}\|A x\|_{Y}$
- $\|A x\|_{Y} \leq\|A\|_{\mathcal{L}(X, Y)}\|x\|_{X}, \forall x \in X$

Results on linear operators

Theorem

If Y is a Banach space then $\mathcal{L}(X, Y)$ is a Banach space

Theorem

$A:\left(X,\|\cdot\|_{X}\right) \rightarrow\left(Y,\|\cdot\|_{Y}\right)$, A linear.
A is continuous $\Leftrightarrow A$ is bounded.

Theorem

Uniform Boundedness Principle

Let X be a Banach space and $S \subset \mathcal{L}(X, Y)$. Then:

$$
\sup _{T \in S}\|T x\| Y \leq M_{X}, \forall x \in X \quad \Rightarrow \quad \sup _{T \in S}\|T\|_{\mathcal{L}(X, Y)} \leq M
$$

Linear functionals and dual spaces

- $f:\left(X,\|\cdot\|_{X}\right) \rightarrow \mathbb{R}$ bounded and linear: functional on X
- $\mathcal{L}(X, \mathbb{R})$ is the dual space of $X: X^{*}$ or X^{\prime}
- $X^{*}=\mathcal{L}(X, \mathbb{R}), \quad\|f\|_{X^{*}}=\|f\|_{\mathcal{L}(X, \mathbb{R})}=\sup _{x \neq 0} \frac{|f(x)|}{\|x\|_{X}}$
- $\left(X^{*},\|\cdot\|_{X^{*}}\right)$ is a Banach space
(\mathbb{R} is a Banach space)
- $x_{*}\langle\cdot, \cdot\rangle_{X}: X^{*} \times X \rightarrow \mathbb{R} \quad{ }^{*}\langle f, x\rangle_{X}=f(x)$ is a bilinear form
- $x^{*}\langle f, x\rangle_{x}$ or $\langle f, x\rangle$ (duality)
- $|\langle f, x\rangle| \leq\|f\|_{X^{*}}\|x\|_{X}$

Theorem

Let X be a Banach space.
If $x, z \in X$ and $\langle f, x\rangle=\langle f, z\rangle$ for any $f \in X^{*}$, then $x=z$.

L^{p} and dual spaces

- $\forall u \in L^{p}(\Omega)$, fix $v \in L^{q}(\Omega): p, q \in(1,+\infty): \frac{1}{p}+\frac{1}{q}=1$
- $\langle f, u\rangle=\int_{\Omega} u(x) v(x) d x$
- $\left|\int_{\Omega} u(x) v(x) d x\right| \leq\|u\|_{L^{p}(\Omega)}\|v\|_{L^{q}(\Omega)}$
- $f \in\left(L^{p}(\Omega)\right)^{*}$ and $\|f\|_{\left(L^{p}(\Omega)\right)^{*}}=\|v\|_{L^{q}(\Omega)}$
- $\left(L^{p}(\Omega)\right)^{*} \simeq L^{q}(\Omega)$ with $p, q \in(1,+\infty): \frac{1}{p}+\frac{1}{q}=1$
- $\left(L^{1}(\Omega)\right)^{*} \simeq L^{\infty}(\Omega)$
- ATTENTION! $\left(L^{\infty}(\Omega)\right)^{*} \supset Y \simeq L^{1}(\Omega)$
- $X^{* *}=\left(X^{*}\right)^{*}=\left\{g: X^{*} \rightarrow \mathbb{R}\right.$ bounded linear functional $\}$
- $G: X \rightarrow X^{* *}: X^{* *}\langle G x, f\rangle_{X^{*}}=x^{*}\langle f, x\rangle_{X}, \quad \forall f \in X^{*}$
- $G x \in X^{* *}$ and $\|G x\|_{X^{* *}}=\|x\|_{X} \Rightarrow X \simeq Y \subset X^{* *}$
- If $X^{* *} \simeq X$ then X is reflexive (G is surjective)
- X is reflexive iff X^{*} is reflexive
- $L^{p}(\Omega)$ is reflexive for $p \in(1,+\infty)$
- $L^{1}(\Omega)$ and $L^{\infty}(\Omega)$ are not reflexive

Dual spaces of Hilbert spaces

Theorem

Riesz representation Theorem

Let H be a Hilbert space. Then, $\forall f \in H^{*} \Rightarrow \exists!y=y_{f} \in H$:
$\langle f, x\rangle=(x, y), \forall x \in H \quad$ and $\quad\|f\|_{H^{*}}=\|y\|_{H}$

- If H is a Hilbert space then $H^{*} \simeq H$
- $\left(L^{2}(\Omega)\right)^{*} \simeq L^{2}(\Omega) \quad\left(\ell^{2}\right)^{*} \simeq \ell^{2}$
- Any Hilbert space is reflexive

Remark

Riesz Theorem \Rightarrow we identify H and H^{*}.
ATTENTION!
If V and H are Hilbert spaces : $V \subset H$, then $H^{*} \subset V^{*}$
We identify only H and H^{*}, that is $V \subset H \equiv H^{*} \subset V^{*}$

Weak convergence

Definition

Let X be a Banach space, $x_{n}, x \in X$.
$x_{n} \rightharpoonup x$ (weak convergence) if $\left\langle f, x_{n}\right\rangle \rightarrow\langle f, x\rangle$ for any $f \in X^{*}$.

Example

$H=\ell^{2} \quad f \in\left(\ell^{2}\right)^{*} \rightleftarrows \mathbf{b} \in \ell^{2}$
$\langle f, \mathbf{a}\rangle=(\mathbf{a}, \mathbf{b}), \forall \mathbf{a} \in \ell^{2} \quad$ and $\quad\|\mathbf{b}\|_{\ell^{2}}=\|f\|_{\left(\ell^{2}\right)^{*}}$
N.B. $\mathbf{b} \in \ell^{2} \Rightarrow \sum_{k=1}^{\infty} b_{k}^{2}<+\infty \quad \Rightarrow \quad b_{k} \rightarrow 0$
\mathbf{e}_{k} orthonormal basis
$\forall f \in\left(\ell^{2}\right)^{*} \quad \Rightarrow \quad\left\langle f, \mathbf{e}_{k}\right\rangle=\left(\mathbf{e}_{k}, \mathbf{b}\right)=b_{k} \rightarrow 0 \quad \Rightarrow \quad \mathbf{e}_{k} \rightharpoonup 0$
$\mathbf{e}_{k} \nrightarrow 0$ strongly in H
(\mathbf{e}_{k} is not a Cauchy sequence: $\quad\left\|\mathbf{e}_{k}-\mathbf{e}_{j}\right\|_{\ell^{2}}=\sqrt{2}, \quad k \neq j$)

Strong and weak convergence

Theorem

X Banach space, $\quad x_{n}, x \in X$.
$x_{n} \rightarrow x$ (strong convergence) $\Rightarrow x_{n} \rightharpoonup x$ (weak convergence)

Proof.

If $f \in X^{*}$ (f bounded linear functional) then f is continuous.
If $x_{n} \rightarrow x$ then $\left\langle f, x_{n}\right\rangle \rightarrow\langle f, x\rangle, \forall f \in X^{*} \quad \Rightarrow \quad x_{n} \rightharpoonup x$

Theorem

X finite dimensional Banach space, $\quad x_{n}, x \in X$.
$x_{n} \rightarrow x$ (strong convergence) $\Leftrightarrow x_{n} \rightharpoonup x$ (weak convergence)

Theorem

X Banach space, $x_{n} \in X$.
If $x_{n} \rightharpoonup x \in X$ then x is unique

Proof.

If $x_{n} \rightharpoonup x, x_{n} \rightharpoonup z$ then $\left\langle f, x_{n}\right\rangle \rightarrow\langle f, x\rangle,\left\langle f, x_{n}\right\rangle \rightarrow\langle f, z\rangle \Rightarrow$
$\langle f, x\rangle=\langle f, z\rangle, \forall f \in X^{*} \Rightarrow x=z$ (cf. previous Theorem)

Boundedness of weak convergent sequences

Theorem

X Banach space, $x_{n} \in X$.
If $x_{n} \rightharpoonup x \in X$ then x_{n} is bounded

Proof.

- $\forall f \in X^{*},\left\langle f, x_{n}\right\rangle$ is convergent (to $\langle f, x\rangle$ in \mathbb{R}) \Rightarrow $\left|\left\langle f, x_{n}\right\rangle\right| \leq C_{f}, \forall n$
- $G x_{n} \in X^{* *}:\left\langle G x_{n}, f\right\rangle=\left\langle f, x_{n}\right\rangle, \forall f \in X^{*},\left\|G x_{n}\right\|_{X^{* *}}=\left\|x_{n}\right\|_{x}$
- $\left|\left\langle G x_{n}, f\right\rangle\right| \leq C_{f}, \forall n$, and X^{*} is complete \Rightarrow
(Uniform Boundedness Principle) $\left\|G x_{n}\right\|_{X^{* *}}$ is bounded
- $\left\|x_{n}\right\|_{X}$ is bounded

An estimate of the norm of the weak limit

Theorem

X Banach space, $x_{n} \in X$.
If $x_{n} \rightharpoonup x \in X$ then $\|x\| \leq \liminf _{n \rightarrow \infty}\left\|x_{n}\right\|$

Proof.

($X=H$ Hilbert space case)
$x_{n} \rightharpoonup x \quad \Rightarrow \quad$ (Riesz representation Theorem)
$\|x\|^{2}=(x, x)=\lim _{n \rightarrow \infty}\left(x_{n}, x\right)=\liminf _{n \rightarrow \infty}\left(x_{n}, x\right)$
$\leq \liminf _{n \rightarrow \infty}\left\|x_{n}\right\|\|x\|=\|x\| \lim \inf _{n \rightarrow \infty}\left\|x_{n}\right\|$

Compact operators and weak convergence

Definition

$K:\left(X,\|\cdot\|_{X}\right) \rightarrow\left(Y,\|\cdot\|_{Y}\right)$ is compact if
$\overline{K(W)}$ is compact in Y, for any bounded set $W \subset X$.
Remark: A compact operator is bounded.

Theorem

$A: X \rightarrow Y, A$ compact, and $x_{n} \rightharpoonup x$ in X. Then $A x_{n} \rightarrow A x$ in Y (strong convergence).

Weak-* convergence

Definition

Let X be a Banach space, f_{n} and $f \in X^{*}$. $f_{n} \stackrel{*}{\rightharpoonup} f$ (weak-* convergence) if $\left\langle f_{n}, x\right\rangle \rightarrow\langle f, x\rangle \forall x \in X$.

Theorem

Weak-* limits are unique.
Weak-* convergent sequences are bounded.
Weak convergence implies weak-* convergence.
If X reflexive, weak-* convergence implies weak convergence.

Weak and weak-* compactness Theorems

Theorem
Banach-Alaoglu Theorem
Let X be a Banach space.
Let f_{n} be a bounded sequence in X^{*}.
Then f_{n} has a weak-* convergent subsequence in X^{*}.

Theorem

Let X be a reflexive Banach space.
Let x_{n} be a bounded sequence in X.
Then x_{n} has a weak convergent subsequence in X.

Corollary

Any bounded sequence in a Hilbert space H has a weak convergent subsequence in H .

