Equazioni di evoluzione

ELISABETTA ROCCA MARCO VENERONI

Dipartimento di Matematica Università degli Studi di Pavia (ITALY)

PREREQUISITI

(日)

1/1

Banach Spaces

- X vector space on ℝ
- A *norm* on X is a function $\|\cdot\| : X \to [0, +\infty)$ s.t.
 - ||x|| = 0 if and only if x = 0
 - $\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|, \ \forall \mathbf{x} \in \mathbf{X}, \ \forall \lambda \in \mathbb{R}$
 - $||x + y|| \le ||x|| + ||y||, \forall x, y \in X$
- $(X, \|\cdot\|)$ is a *normed* space
- $(X, \|\cdot\|)$ is a metric space (X, d) w.r.t. *d* induced by $d(x, y) = \|x y\|, \forall x, y \in X$
- $x_n \to x^*$ in X if $||x_n x^*|| \to 0$ as $n \to +\infty$ (strong convergence)
- A *Banach* space is a complete normed space (any Cauchy sequence is convergent in *X*)

Banach Spaces: separability and compactness

- $Y \subset X$ is dense if $\forall x \in X \exists \{y_n\} \subset Y$: $y_n \to x$ $(\overline{Y} = X)$
- A Banach space is *separable* if there exists a countable $Y \subset X$ such that $\overline{Y} = X$
- *E* ⊂ *X* is *compact* if every open cover of *E* contains a finite subcover
- *E* ⊂ *X* is compact if and only if every bounded sequence in *E* contains a convergent subsequence in *E*.

Remark

We want to solve in X a problem P we cannot treat directly. We formulate easier problems P_n , approximating P. We find a solution x_n in a compact $E \subset X$. We construct a subsequence $x_{n_j} \to x^* \in E$. We show that x^* is solution to problem P.

Remark

The unit ball in an infinite-dimensional Banach space X IS NOT compact. The compact sets of X are THIN. Introduction of weak convergence.

- X vector space on ℝ
- An *inner product* on X is a function $(\cdot, \cdot) : X \times X \to \mathbb{R}$ s.t.

•
$$(x, x) \ge 0, \forall x \in X, (x, x) = 0 \text{ iff } x = 0$$

• $(y, x) = (x, y), \forall x, y \in X$
• $(\lambda x + \mu y, z) = \lambda(x, z) + \mu(y, z), \forall x, y, z \in X, \forall \lambda, \mu \in \mathbb{R}$

- $(X, (\cdot, \cdot))$ is an *inner product* space
- $(X, (\cdot, \cdot))$ is a normed space $(X, \|\cdot\|)$ w.r.t. $\|\cdot\|$ induced by $\|x\| = (x, x)^{1/2}, \forall x \in X$
- $|(x, y)| \le ||x|| ||y||, \forall x, y \in X$ Cauchy-Schwarz inequality
- A Hilbert space is a complete inner product space

Orthogonal projections and bases in Hilbert Spaces

- *M*[⊥] = {*u* ∈ *H* : (*u*, *v*) = 0, ∀ *v* ∈ *M*} orthogonal complement of *M* ⊂ *H*, *H* Hilbert space
- If *M* is a closed subspace of *H* then \exists ! decomposition $x = u + v, u \in M, v \in M^{\perp}, \forall x \in H$
- $P_M x = u$ orthogonal projection of x onto M $||x||^2 = ||P_M x||^2 + ||x - P_M x||^2, ||P_M x|| \le ||x||$
- $\{e_j\}$: $(e_i, e_j) = \delta_{ij}$ orthonormal (countable) set in H

•
$$\{e_j\}$$
, orthonormal set, is a (countable) *basis* for *H* if
 $x = \sum_{j=1}^{\infty} (x, e_j) e_j, \forall x \in H$

• *H* is separable iff *H* has a countable basis

• If
$$\{e_j\}$$
 is a basis for H then $||x||^2 = \sum_{j=1}^{\infty} (x, e_j)^2, \forall x \in H$

Spaces of continuous functions

• $C^0(\Omega) = \{ u : \Omega \subset \mathbb{R}^m \to \mathbb{R} \text{ continuous on } \Omega \}$

• If
$$\Omega$$
 is bounded ($\Rightarrow \overline{\Omega}$ is compact):
 $\|u\|_{C^0(\overline{\Omega})} = \|u\|_{\infty} = \sup_{x \in \overline{\Omega}} |u(x)|$

- $(C^0(\overline{\Omega}), \|\cdot\|_{\infty})$ is a separable Banach space
- $C^{r}(\Omega) = \{ u : \Omega \to \mathbb{R} : D^{\alpha}u \in C^{0}(\Omega) \}, r \in \mathbb{N}, |\alpha| \leq r$

•
$$\|u\|_{C^{r}(\overline{\Omega})} = \sum_{|\alpha| \leq r} \sup_{x \in \overline{\Omega}} |D^{\alpha}u(x)|$$
 (Ω bounded)

• $(C^{r}(\overline{\Omega}), \|\cdot\|_{C^{r}(\overline{\Omega})})$ is a separable Banach space

• supp
$$u = \overline{\{x \in \Omega : u(x) \neq 0\}}$$

- $C_c^r(\Omega) = \{ u \in C^r(\Omega) \text{ with compact support in } \Omega \}$
- $C^{\infty}(\Omega) = \cap_{r=0}^{\infty} C^{r}(\Omega)$ $C^{\infty}_{c}(\Omega) = \cap_{r=0}^{\infty} C^{r}_{c}(\Omega)$

L^p spaces, $1 \le p < \infty$

- $\Omega \subset \mathbb{R}^m$ *L*-measurable
- *u*: *L*-measurable on $\Omega \implies u^p$: *L*-measurable on Ω)
- $L^{p}(\Omega) = \{ u : (\int_{\Omega} |u(x)|^{p} dx)^{1/p} < +\infty \}, \quad 1 \le p < +\infty$
- u = 0 in $L^{p}(\Omega) \Leftrightarrow u = 0$ a.e. in Ω

•
$$||u||_{p} = (\int_{\Omega} |u(x)|^{p} dx)^{1/p}$$

- (L^p(Ω), || · ||_p) is a Banach space
- $C_c^0(\Omega)$ is dense in $L^p(\Omega)$, $1 \le p < +\infty$
- $C_c^{\infty}(\Omega)$ is dense in $L^p(\Omega)$, $1 \le p < +\infty$
- $L^p(\Omega)$ is separable, $1 \le p < +\infty$
- $L^2(\Omega)$ is a Hilbert space, $(u, v) = \int_{\Omega} u(x)v(x)dx$

- $\Omega \subset \mathbb{R}^m$ *L*-measurable
- u: L-measurable on Ω

•
$$L^{\infty}(\Omega) = \{u : \operatorname{ess sup}_{x \in \Omega} |u(x)| < +\infty\}$$

- ess $\sup_{x \in \Omega} |u(x)| = \inf\{M : |u(x)| \le M \text{ a.e. in } \Omega\}$
- u = 0 in $L^{\infty}(\Omega) \Leftrightarrow u = 0$ a.e. in Ω
- $\|u\|_{\infty} = \operatorname{ess} \sup_{x \in \Omega} |u(x)|$
- $(L^{\infty}(\Omega), \|\cdot\|_{\infty})$ is a Banach space (not separable!)

•
$$\{a_k\} = (a_1, a_2, ...), \quad a_k \in \mathbb{R}$$

• $\ell^2 = \left\{ \mathbf{a} = \{a_k\} : \sum_{k=1}^{\infty} a_k^2 < +\infty \right\}$
• $(\mathbf{a}, \mathbf{b}) = \sum_{k=1}^{\infty} a_k b_k, \quad ||u||_{\ell^2} = \left(\sum_{k=1}^{\infty} a_k^2\right)^{1/2}$

- l² is a Hilbert space
- $a_1 = (1, 0, ...), a_2 = (0, 1, ...)$
- \mathbf{a}_k is an orthonormal basis in ℓ^2
- ℓ^2 is separable

If $u_j \to u$ in $L^p(\Omega)$, $1 \le p \le +\infty$, then there exists a subsequence that converges pointwise to u, a.e. in Ω .

Theorem

(Hölder inequality) If $p, q \in [1, +\infty]$: $\frac{1}{p} + \frac{1}{q} = 1$ (p, q conjugate indices) and $u \in L^{p}(\Omega), v \in L^{q}(\Omega)$ then

 $\|uv\|_{L^1(\Omega)} \leq \|u\|_{L^p(\Omega)} \|v\|_{L^q(\Omega)}$

If $a, b \ge 0$, $\varepsilon > 0$, $p, q \in (1, +\infty)$: $\frac{1}{p} + \frac{1}{q} = 1$, then $ab \le \frac{a^p}{p} + \frac{b^q}{q}$ $ab \le \frac{a^2}{2} + \frac{b^2}{2}$ $ab \le \varepsilon \frac{a^p}{p} + \varepsilon^{-q/p} \frac{b^q}{q}$ $ab \le \varepsilon \frac{a^2}{2} + \frac{1}{\varepsilon} \frac{b^2}{2}$

Let $y \in C^1([0,\infty)), g, h \in C([0,\infty))$ be such that

 $y' \leq g(t)y + h(t), \quad \forall t \geq 0$

then

$$y(t) \leq y(0) e^{\int_0^t g(\sigma) d\sigma} + \int_0^t e^{\int_s^t g(\sigma) d\sigma} h(s) ds, \quad \forall t \geq 0$$

Linear operators on normed spaces

- $A: (X, \|\cdot\|_X) \to (Y, \|\cdot\|_Y)$
- A is linear if $A(\lambda x + \mu z) = \lambda A x + \mu A z$, $\forall x, z \in X$
- A is bounded if $\exists M > 0$: $||Ax||_Y \le M ||x||_X$, $\forall x \in X$
- A is *continuous* if $x_n \to x$ in $X \Rightarrow Ax_n \to Ax$ in Y
- £(X, Y): set of all bounded linear operator from X to Y
 £(X, Y) vector space

•
$$\|A\|_{\mathcal{L}(X,Y)} = \sup_{x \neq 0} \frac{\|Ax\|_Y}{\|x\|_X} = \sup_{\|x\|_X = 1} \|Ax\|_Y$$

•
$$\|Ax\|_Y \leq \|A\|_{\mathcal{L}(X,Y)}\|x\|_X, \ \forall x \in X$$

If Y is a Banach space then $\mathcal{L}(X, Y)$ is a Banach space

Theorem

 $A: (X, \|\cdot\|_X) \to (Y, \|\cdot\|_Y)$, A linear. A is continuous \Leftrightarrow A is bounded.

Theorem

Uniform Boundedness Principle Let X be a Banach space and $S \subset \mathcal{L}(X, Y)$. Then: $\sup_{T \in S} ||Tx||_Y \le M_x, \forall x \in X \implies \sup_{T \in S} ||T||_{\mathcal{L}(X,Y)} \le M$

Linear functionals and dual spaces

- $f: (X, \|\cdot\|_X) \to \mathbb{R}$ bounded and linear: *functional* on X
- $\mathcal{L}(X,\mathbb{R})$ is the *dual space* of X: X^* or X'

•
$$X^* = \mathcal{L}(X, \mathbb{R}), \quad \|f\|_{X^*} = \|f\|_{\mathcal{L}(X, \mathbb{R})} = \sup_{x \neq 0} \frac{|f(x)|}{\|x\|_X}$$

- $(X^*, \|\cdot\|_{X^*})$ is a Banach space (\mathbb{R} is a Banach space)
- $_{X^*}\langle \cdot,\cdot\rangle_X:X^* imes X o \mathbb{R}$ $_{X^*}\langle f,x\rangle_X=f(x)$ is a bilinear form

•
$$_{X^*}\langle f, x \rangle_X$$
 or $\langle f, x \rangle$ (duality)

• $|\langle f, x \rangle| \leq ||f||_{X^*} ||x||_X$

Theorem

Let *X* be a Banach space. If $x, z \in X$ and $\langle f, x \rangle = \langle f, z \rangle$ for any $f \in X^*$, then x = z.

- $\forall u \in L^p(\Omega)$, fix $v \in L^q(\Omega)$: $p, q \in (1, +\infty)$: $\frac{1}{p} + \frac{1}{q} = 1$
- $\langle f, u \rangle = \int_{\Omega} u(x) v(x) dx$
- $\left|\int_{\Omega} u(x)v(x)dx\right| \leq \|u\|_{L^{p}(\Omega)}\|v\|_{L^{q}(\Omega)}$
- $f \in (L^p(\Omega))^*$ and $||f||_{(L^p(\Omega))^*} = ||v||_{L^q(\Omega)}$

• ATTENTION! $(L^{\infty}(\Omega))^* \supset Y \simeq L^1(\Omega)$

- $(L^{p}(\Omega))^{*} \simeq L^{q}(\Omega)$ with $p, q \in (1, +\infty)$: $\frac{1}{p} + \frac{1}{q} = 1$

- $(L^1(\Omega))^* \simeq L^\infty(\Omega)$

(ロ) (同) (目) (日) (日) (0,000) 17/1 • $X^{**} = (X^*)^* = \{g: X^* \to \mathbb{R} \text{ bounded linear functional } \}$

•
$$G: X \to X^{**} : _{X^{**}} \langle Gx, f \rangle_{X^*} = _{X^*} \langle f, x \rangle_X, \quad \forall f \in X^*$$

- $Gx \in X^{**}$ and $||Gx||_{X^{**}} = ||x||_X \Rightarrow X \simeq Y \subset X^{**}$
- If $X^{**} \simeq X$ then X is *reflexive* (G is surjective)
- X is reflexive iff X* is reflexive
- $L^{p}(\Omega)$ is reflexive for $p \in (1, +\infty)$
- $L^1(\Omega)$ and $L^{\infty}(\Omega)$ are not reflexive

Riesz representation Theorem

Let *H* be a Hilbert space. Then, $\forall f \in H^* \Rightarrow \exists ! y = y_f \in H :$ $\langle f, x \rangle = (x, y), \forall x \in H$ and $\|f\|_{H^*} = \|y\|_H$

• If *H* is a Hilbert space then $H^* \simeq H$

•
$$(L^2(\Omega))^* \simeq L^2(\Omega)$$
 $(\ell^2)^* \simeq \ell^2$

Any Hilbert space is reflexive

Remark

Riesz Theorem \Rightarrow we identify H and H^{*}.

ATTENTION! If V and H are Hilbert spaces : $V \subset H$, then $H^* \subset V^*$ We identify only H and H^* , that is $V \subset H \equiv H^* \subset V^*$

Weak convergence

Definition

Let X be a Banach space, $x_n, x \in X$. $x_n \rightharpoonup x$ (*weak* convergence) if $\langle f, x_n \rangle \rightarrow \langle f, x \rangle$ for any $f \in X^*$.

Example

$$H = \ell^2 \qquad f \in (\ell^2)^* \rightleftarrows \mathbf{b} \in \ell^2$$

$$\langle f, \mathbf{a} \rangle = (\mathbf{a}, \mathbf{b}), \ \forall \, \mathbf{a} \in \ell^2 \quad \text{and} \quad \|\mathbf{b}\|_{\ell^2} = \|f\|_{(\ell^2)^*}$$

N.B. $\mathbf{b} \in \ell^2 \quad \Rightarrow \quad \sum_{k=1}^{\infty} b_k^2 < +\infty \quad \Rightarrow \quad b_k \to 0$

e_k orthonormal basis

 $\forall f \in (\ell^2)^* \quad \Rightarrow \quad \langle f, \mathbf{e}_k \rangle = (\mathbf{e}_k, \mathbf{b}) = b_k \to 0 \quad \Rightarrow \quad \mathbf{e}_k \rightharpoonup 0$

 $\mathbf{e}_k \nrightarrow 0$ strongly in *H* (\mathbf{e}_k is not a Cauchy sequence: $\|\mathbf{e}_k - \mathbf{e}_j\|_{\ell^2} = \sqrt{2}, \quad k \neq j$)

20/1

X Banach space, $x_n, x \in X$. $x_n \rightarrow x$ (strong convergence) $\Rightarrow x_n \rightarrow x$ (weak convergence)

Proof.

If $f \in X^*$ (*f* bounded linear functional) then *f* is continuous. If $x_n \to x$ then $\langle f, x_n \rangle \to \langle f, x \rangle$, $\forall f \in X^* \Rightarrow x_n \rightharpoonup x$

Theorem

X finite dimensional Banach space, $x_n, x \in X$. $x_n \rightarrow x$ (strong convergence) $\Leftrightarrow x_n \rightarrow x$ (weak convergence)

X Banach space, $x_n \in X$. If $x_n \rightharpoonup x \in X$ then x is unique

Proof.

If
$$x_n \rightarrow x$$
, $x_n \rightarrow z$ then $\langle f, x_n \rangle \rightarrow \langle f, x \rangle$, $\langle f, x_n \rangle \rightarrow \langle f, z \rangle \Rightarrow \langle f, x \rangle = \langle f, z \rangle$, $\forall f \in X^* \Rightarrow x = z$ (cf. previous Theorem)

X Banach space, $x_n \in X$. If $x_n \rightarrow x \in X$ then x_n is bounded

Proof.

- $\forall f \in X^*, \langle f, x_n \rangle$ is convergent (to $\langle f, x \rangle$ in \mathbb{R}) $\Rightarrow |\langle f, x_n \rangle| \le C_f, \forall n$
- $Gx_n \in X^{**}$: $\langle Gx_n, f \rangle = \langle f, x_n \rangle, \forall f \in X^*, \|Gx_n\|_{X^{**}} = \|x_n\|_X$
- $|\langle Gx_n, f \rangle| \leq C_f, \forall n, \text{ and } X^* \text{ is complete } \Rightarrow$ (Uniform Boundedness Principle) $||Gx_n||_{X^{**}}$ is bounded
- $||x_n||_X$ is bounded

An estimate of the norm of the weak limit

Theorem

X Banach space, $x_n \in X$. If $x_n \rightarrow x \in X$ then $||x|| \le \liminf_{n \rightarrow \infty} ||x_n||$

Proof.

$$(X = H$$
 Hilbert space case)

 $x_n
ightarrow x \Rightarrow$ (Riesz representation Theorem)

$$\|x\|^2 = (x, x) = \lim_{n \to \infty} (x_n, x) = \lim_{n \to \infty} \inf_{n \to \infty} (x_n, x)$$

$$\leq \liminf_{n \to \infty} \|x_n\| \|x\| = \|x\| \liminf_{n \to \infty} \|x_n\|$$

Definition

 $K: (X, \|\cdot\|_X) \to (Y, \|\cdot\|_Y)$ is compact if

 $\overline{K(W)}$ is compact in Y, for any bounded set $W \subset X$.

Remark: A compact operator is bounded.

Theorem

 $A: X \rightarrow Y$, A compact, and $x_n \rightarrow x$ in X. Then $Ax_n \rightarrow Ax$ in Y (strong convergence).

Definition

Let X be a Banach space, f_n and $f \in X^*$. $f_n \stackrel{*}{\rightharpoonup} f$ (*weak*-* convergence) if $\langle f_n, x \rangle \rightarrow \langle f, x \rangle \quad \forall x \in X$.

Theorem

Weak-* limits are unique. Weak-* convergent sequences are bounded. Weak convergence implies weak-* convergence. If X reflexive, weak-* convergence implies weak convergence.

Banach-Alaoglu Theorem Let X be a Banach space. Let f_n be a bounded sequence in X^* . Then f_n has a weak-* convergent subsequence in X^* .

Theorem

Let X be a reflexive Banach space. Let x_n be a bounded sequence in X. Then x_n has a weak convergent subsequence in X.

Corollary

Any bounded sequence in a Hilbert space H has a weak convergent subsequence in H.