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Banach Spaces

X vector space on R

A norm on X is a function ‖ · ‖ : X → [0,+∞) s.t.
‖x‖ = 0 if and only if x = 0
‖λx‖ = |λ|‖x‖, ∀x ∈ X , ∀λ ∈ R
‖x + y‖ ≤ ‖x‖+ ‖y‖, ∀x , y ∈ X

(X , ‖ · ‖) is a normed space

(X , ‖ · ‖) is a metric space (X ,d) w.r.t. d induced by
d(x , y) = ‖x − y‖, ∀x , y ∈ X

xn → x∗ in X if ‖xn − x∗‖ → 0 as n→ +∞
(strong convergence)

A Banach space is a complete normed space
(any Cauchy sequence is convergent in X )
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Banach Spaces: separability and compactness

Y ⊂ X is dense if ∀ x ∈ X ∃ {yn} ⊂ Y : yn → x
(Y = X )

A Banach space is separable if there exists a countable
Y ⊂ X such that Y = X

E ⊂ X is compact if every open cover of E contains a finite
subcover

E ⊂ X is compact if and only if every bounded sequence in
E contains a convergent subsequence in E .
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Some remarks

Remark
We want to solve in X a problem P we cannot treat directly.
We formulate easier problems Pn, approximating P.
We find a solution xn in a compact E ⊂ X.
We construct a subsequence xnj → x∗ ∈ E.
We show that x∗ is solution to problem P.

Remark
The unit ball in an infinite-dimensional Banach space X
IS NOT compact.
The compact sets of X are THIN.
Introduction of weak convergence.
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Hilbert Spaces

X vector space on R

An inner product on X is a function (·, ·) : X × X → R s.t.
(x , x) ≥ 0, ∀x ∈ X , (x , x) = 0 iff x = 0
(y , x) = (x , y), ∀x , y ∈ X
(λx + µy , z) = λ(x , z) + µ(y , z), ∀x , y , z ∈ X , ∀λ, µ ∈ R

(X , (·, ·)) is an inner product space

(X , (·, ·)) is a normed space (X , ‖ · ‖) w.r.t. ‖ · ‖ induced by
‖x‖ = (x , x)1/2, ∀x ∈ X

|(x , y)| ≤ ‖x‖‖y‖, ∀x , y ∈ X Cauchy-Schwarz inequality

A Hilbert space is a complete inner product space
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Orthogonal projections and bases in Hilbert Spaces

M⊥ = {u ∈ H : (u, v) = 0, ∀ v ∈ M}
orthogonal complement of M ⊂ H, H Hilbert space

If M is a closed subspace of H then ∃! decomposition
x = u + v , u ∈ M, v ∈ M⊥, ∀ x ∈ H

PMx = u orthogonal projection of x onto M
‖x‖2 = ‖PMx‖2 + ‖x − PMx‖2, ‖PMx‖ ≤ ‖x‖

{ej} : (ei ,ej) = δij orthonormal (countable) set in H

{ej}, orthonormal set, is a (countable) basis for H if

x =
∞∑

j=1

(x ,ej)ej , ∀ x ∈ H

H is separable iff H has a countable basis

If {ej} is a basis for H then ‖x‖2 =
∞∑

j=1

(x ,ej)
2, ∀ x ∈ H
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Spaces of continuous functions

C0(Ω) = {u : Ω ⊂ Rm → R continuous on Ω}

If Ω is bounded (⇒ Ω is compact):
‖u‖C0(Ω) = ‖u‖∞ = sup

x∈Ω

|u(x)|

(C0(Ω), ‖ · ‖∞) is a separable Banach space

Cr (Ω) = {u : Ω→ R : Dαu ∈ C0(Ω)}, r ∈ N, |α| ≤ r

‖u‖Cr (Ω) =
∑
|α|≤r

sup
x∈Ω

|Dαu(x)| (Ω bounded)

(Cr (Ω), ‖ · ‖Cr (Ω)) is a separable Banach space

supp u = {x ∈ Ω : u(x) 6= 0}

Cr
c(Ω) = {u ∈ Cr (Ω) with compact support in Ω}

C∞(Ω) = ∩∞r=0Cr (Ω) C∞c (Ω) = ∩∞r=0Cr
c(Ω)
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Lp spaces, 1 ≤ p <∞

Ω ⊂ Rm L-measurable

u: L-measurable on Ω (⇒ up: L-measurable on Ω)

Lp(Ω) = {u :
(∫

Ω |u(x)|pdx
)1/p

< +∞}, 1 ≤ p < +∞

u = 0 in Lp(Ω) ⇔ u = 0 a.e. in Ω

‖u‖p =
(∫

Ω |u(x)|pdx
)1/p

(Lp(Ω), ‖ · ‖p) is a Banach space

C0
c (Ω) is dense in Lp(Ω), 1 ≤ p < +∞

C∞c (Ω) is dense in Lp(Ω), 1 ≤ p < +∞

Lp(Ω) is separable, 1 ≤ p < +∞

L2(Ω) is a Hilbert space, (u, v) =
∫

Ω u(x)v(x)dx
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L∞ space

Ω ⊂ Rm L-measurable

u: L-measurable on Ω

L∞(Ω) = {u : ess sup
x∈Ω
|u(x)| < +∞}

ess sup
x∈Ω
|u(x)| = inf{M : |u(x)| ≤ M a.e. in Ω}

u = 0 in L∞(Ω) ⇔ u = 0 a.e. in Ω

‖u‖∞ = ess sup
x∈Ω
|u(x)|

(L∞(Ω), ‖ · ‖∞) is a Banach space (not separable!)
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`2 space

{ak} = (a1,a2, . . . ), ak ∈ R

`2 =

{
a = {ak} :

∞∑
k=1

a2
k < +∞

}

(a,b) =
∞∑

k=1

akbk , ‖u‖`2 =

( ∞∑
k=1

a2
k

)1/2

`2 is a Hilbert space

a1 = (1,0, . . . ), a2 = (0,1, . . . )

ak is an orthonormal basis in `2

`2 is separable
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Results on Lp spaces

Theorem
If uj → u in Lp(Ω), 1 ≤ p ≤ +∞, then there exists a
subsequence that converges pointwise to u, a.e. in Ω.

Theorem
(Hölder inequality)
If p, q ∈ [1,+∞] : 1

p + 1
q = 1 (p,q conjugate indices) and

u ∈ Lp(Ω), v ∈ Lq(Ω) then

‖uv‖L1(Ω) ≤ ‖u‖Lp(Ω)‖v‖Lq(Ω)
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Young inequalities

Theorem

If a,b ≥ 0, ε > 0, p,q ∈ (1,+∞) : 1
p + 1

q = 1, then

ab ≤ ap

p
+

bq

q
ab ≤ a2

2
+

b2

2

ab ≤ εap

p
+ ε−q/p bq

q
ab ≤ εa2

2
+

1
ε

b2

2
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Gronwall inequality

Theorem

Let y ∈ C1([0,∞)), g, h ∈ C([0,∞)) be such that

y ′ ≤ g(t)y + h(t), ∀ t ≥ 0

then

y(t) ≤ y(0)e
∫ t

0 g(σ)dσ +

∫ t

0
e
∫ t

s g(σ)dσh(s)ds, ∀ t ≥ 0
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Linear operators on normed spaces

A : (X , ‖ · ‖X )→ (Y , ‖ · ‖Y )

A is linear if A(λx + µz) = λAx + µAz, ∀ x , z ∈ X

A is bounded if ∃M > 0 : ‖Ax‖Y ≤ M‖x‖X , ∀ x ∈ X

A is continuous if xn → x in X ⇒ Axn → Ax in Y

L(X ,Y ): set of all bounded linear operator from X to Y

L(X ,Y ) vector space

‖A‖L(X ,Y ) = sup
x 6=0

‖Ax‖Y
‖x‖X

= sup
‖x‖X =1

‖Ax‖Y

‖Ax‖Y ≤ ‖A‖L(X ,Y )‖x‖X , ∀ x ∈ X
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Results on linear operators

Theorem
If Y is a Banach space then L(X ,Y ) is a Banach space

Theorem
A : (X , ‖ · ‖X )→ (Y , ‖ · ‖Y ), A linear.
A is continuous ⇔ A is bounded.

Theorem
Uniform Boundedness Principle
Let X be a Banach space and S ⊂ L(X ,Y ). Then:

sup
T∈S
‖Tx‖Y ≤ Mx , ∀x ∈ X ⇒ sup

T∈S
‖T‖L(X ,Y ) ≤ M
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Linear functionals and dual spaces

f : (X , ‖ · ‖X )→ R bounded and linear: functional on X

L(X ,R) is the dual space of X : X ∗ or X ′

X ∗ = L(X ,R), ‖f‖X∗ = ‖f‖L(X ,R) = sup
x 6=0

|f (x)|
‖x‖X

(X ∗, ‖ · ‖X∗) is a Banach space (R is a Banach space)

X∗〈·, ·〉X : X ∗ × X → R X∗〈f , x〉X = f (x) is a bilinear form

X∗〈f , x〉X or 〈f , x〉 (duality)

|〈f , x〉| ≤ ‖f‖X∗‖x‖X

Theorem
Let X be a Banach space.
If x , z ∈ X and 〈f , x〉 = 〈f , z〉 for any f ∈ X ∗, then x = z.
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Lp and dual spaces

∀u ∈ Lp(Ω), fix v ∈ Lq(Ω) : p,q ∈ (1,+∞) : 1
p + 1

q = 1

〈f ,u〉 =
∫

Ω u(x)v(x)dx∣∣∫
Ω u(x)v(x)dx

∣∣ ≤ ‖u‖Lp(Ω)‖v‖Lq(Ω)

f ∈ (Lp(Ω))∗ and ‖f‖(Lp(Ω))∗ = ‖v‖Lq(Ω)

(Lp(Ω))∗ ' Lq(Ω) with p,q ∈ (1,+∞) : 1
p + 1

q = 1

(L1(Ω))∗ ' L∞(Ω)

ATTENTION! (L∞(Ω))∗ ⊃ Y ' L1(Ω)
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Reflexive spaces

X ∗∗ = (X ∗)∗ = {g : X ∗ → R bounded linear functional }

G : X → X ∗∗ : X∗∗〈Gx , f 〉X∗ = X∗〈f , x〉X , ∀ f ∈ X ∗

Gx ∈ X ∗∗ and ‖Gx‖X∗∗ = ‖x‖X ⇒ X ' Y ⊂ X ∗∗

If X ∗∗ ' X then X is reflexive (G is surjective)

X is reflexive iff X ∗ is reflexive

Lp(Ω) is reflexive for p ∈ (1,+∞)

L1(Ω) and L∞(Ω) are not reflexive
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Dual spaces of Hilbert spaces

Theorem
Riesz representation Theorem
Let H be a Hilbert space. Then, ∀ f ∈ H∗ ⇒ ∃! y = yf ∈ H :
〈f , x〉 = (x , y),∀ x ∈ H and ‖f‖H∗ = ‖y‖H

If H is a Hilbert space then H∗ ' H
(L2(Ω))∗ ' L2(Ω) (`2)∗ ' `2

Any Hilbert space is reflexive

Remark
Riesz Theorem ⇒ we identify H and H∗.

ATTENTION!
If V and H are Hilbert spaces : V ⊂ H, then H∗ ⊂ V ∗

We identify only H and H∗, that is V ⊂ H ≡ H∗ ⊂ V ∗
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Weak convergence

Definition
Let X be a Banach space, xn, x ∈ X .
xn ⇀ x (weak convergence) if 〈f , xn〉 → 〈f , x〉 for any f ∈ X ∗.

Example

H = `2 f ∈ (`2)∗ � b ∈ `2

〈f ,a〉 = (a,b), ∀a ∈ `2 and ‖b‖`2 = ‖f‖(`2)∗

N.B. b ∈ `2 ⇒
∞∑

k=1

b2
k < +∞ ⇒ bk → 0

ek orthonormal basis

∀ f ∈ (`2)∗ ⇒ 〈f ,ek 〉 = (ek ,b) = bk → 0 ⇒ ek ⇀ 0

ek 9 0 strongly in H
(ek is not a Cauchy sequence: ‖ek − ej‖`2 =

√
2, k 6= j )
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Strong and weak convergence

Theorem
X Banach space, xn, x ∈ X.
xn → x (strong convergence) ⇒ xn ⇀ x (weak convergence)

Proof.
If f ∈ X ∗ (f bounded linear functional) then f is continuous.
If xn → x then 〈f , xn〉 → 〈f , x〉, ∀f ∈ X ∗ ⇒ xn ⇀ x

Theorem
X finite dimensional Banach space, xn, x ∈ X.
xn → x (strong convergence) ⇔ xn ⇀ x (weak convergence)
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Uniqueness of weak limit

Theorem
X Banach space, xn ∈ X.
If xn ⇀ x ∈ X then x is unique

Proof.
If xn ⇀ x , xn ⇀ z then 〈f , xn〉 → 〈f , x〉, 〈f , xn〉 → 〈f , z〉 ⇒
〈f , x〉 = 〈f , z〉, ∀f ∈ X ∗ ⇒ x = z (cf. previous Theorem)
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Boundedness of weak convergent sequences

Theorem
X Banach space, xn ∈ X.
If xn ⇀ x ∈ X then xn is bounded

Proof.
∀ f ∈ X ∗, 〈f , xn〉 is convergent (to 〈f , x〉 in R) ⇒
|〈f , xn〉| ≤ Cf , ∀n

Gxn ∈ X ∗∗ : 〈Gxn, f 〉 = 〈f , xn〉, ∀ f ∈ X ∗, ‖Gxn‖X∗∗ = ‖xn‖X
|〈Gxn, f 〉| ≤ Cf , ∀n, and X ∗ is complete ⇒
(Uniform Boundedness Principle) ‖Gxn‖X∗∗ is bounded

‖xn‖X is bounded
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An estimate of the norm of the weak limit

Theorem
X Banach space, xn ∈ X.
If xn ⇀ x ∈ X then ‖x‖ ≤ lim infn→∞‖xn‖

Proof.
(X = H Hilbert space case)

xn ⇀ x ⇒ (Riesz representation Theorem)

‖x‖2 = (x , x) = limn→∞(xn, x) = lim infn→∞(xn, x)

≤ lim infn→∞‖xn‖‖x‖ = ‖x‖lim infn→∞‖xn‖
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Compact operators and weak convergence

Definition
K : (X , ‖ · ‖X )→ (Y , ‖ · ‖Y ) is compact if

K (W ) is compact in Y , for any bounded set W ⊂ X .

Remark: A compact operator is bounded.

Theorem
A : X → Y, A compact, and xn ⇀ x in X.
Then Axn → Ax in Y (strong convergence).
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Weak-∗ convergence

Definition
Let X be a Banach space, fn and f ∈ X ∗.
fn
∗
⇀ f (weak-∗ convergence) if 〈fn, x〉 → 〈f , x〉 ∀ x ∈ X .

Theorem
Weak-∗ limits are unique.
Weak-∗ convergent sequences are bounded.
Weak convergence implies weak-∗ convergence.
If X reflexive, weak-∗ convergence implies weak convergence.
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Weak and weak-∗ compactness Theorems

Theorem
Banach-Alaoglu Theorem
Let X be a Banach space.
Let fn be a bounded sequence in X ∗.
Then fn has a weak-∗ convergent subsequence in X ∗.

Theorem
Let X be a reflexive Banach space.
Let xn be a bounded sequence in X.
Then xn has a weak convergent subsequence in X.

Corollary
Any bounded sequence in a Hilbert space H has a weak
convergent subsequence in H.
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