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Banach Spaces

@ X vector space on R

@ A normon Xis a function || - || : X — [0,4+00) s.t.
o ||x||=0ifandonly if x =0
o |xx| = |A|lIx], v¥x € X, VAER
o [x+yll <lx|+ Iyl vx, ¥y € X

@ (X,| ) is a normed space

@ (X,| -1 is a metric space (X, d) w.r.t. d induced by
d(X7.y) = ||X—_}/H, VX» ye X

@ X, —» x"inX if || xp—x*||] >0asn— +oo
(strong convergence)

@ A Banach space is a complete normed space
(any Cauchy sequence is convergent in X)



Banach Spaces: separability and compactness

@ YCX isdense if VxeX3I{y,;CY : yn—x
(Y =X)

@ A Banach space is separable if there exists a countable
Y c Xsuchthat Y = X

@ E C Xis compactif every open cover of E contains a finite
subcover

@ E c Xis compact if and only if every bounded sequence in
E contains a convergent subsequence in E.



Some remarks

We want to solve in X a problem P we cannot treat directly.
We formulate easier problems P,, approximating P.

We find a solution x, in a compact E C X.

We construct a subsequence x, — x* € E.

We show that x* is solution to problem P.

The unit ball in an infinite-dimensional Banach space X
IS NOT compact.
The compact sets of X are THIN.

Introduction of weak convergence.




Hilbert Spaces

@ X vector space on R

@ An inner producton X is a function (+,-) : X x X - R s.t.
o (x,x)>0,Vxe X, (x,x)=0iff x=0
° (y,x)=(xy), Vx,y € X
o (Ax+nuy,z) =Ax,2)+uly,2), Vx,y,z€ X, VA, p e R
@ (X,(+,-)) is an inner product space

@ (X,(-,-))isanormed space (X, | - ||) w.r.t. || - || induced by
x| = (x, %)%, ¥x € X

o [(x,y) <IIxll¥ll, vx,y € X Cauchy-Schwarz inequality

@ A Hilbert space is a complete inner product space



Orthogonal projections and bases in Hilbert Spaces

e Mt={ueH: (uv)=0,vVveM}
orthogonal complement of M C H, H Hilbert space
@ If Mis a closed subspace of H then 3! decomposition
X=u+v,uecM, veM:, VvxecH
@ Py x = u orthogonal projection of x onto M
X112 = 1 Pux|? + [Ix = Pux|2, [|Pux|| < [Ix|
@ {¢} : (e, €)=0; orthonormal (countable) setin H
@ {g;}, orthonormal set, is a (countable) basis for H if
x=> (x.)e,VxecH
j=1
@ His separable iff H has a countable basis
o If {g} is a basis for H then ||x||* =) "(x, €)% Vx € H
j=1



Spaces of continuous functions

e C°%Q) = {u:Q cR™— R continuous on Q}

@ If Qis bounded (= Q is compact):

lull goggyy = llulloc = sup |u(x)
XeQ

@ (C°%Q), |- ll=) is a separable Banach space
@C()={u: Q=R : DuecCl)}, reN,|a<r
o [ullgm = Y sup|D*u(x)| (2 bounded)

‘a|§,’XEQ

e (C'(Q),] - ||cr(§)) is a separable Banach space

@ suppu={xe€Q: u(x)+#0}
@ CL(Q) = {u e C"(Q2) with compact support in Q}
° C™(Q) =N2,CT(Q) CR(Q) = N2oCH(Q)



[Pspaces, 1<p<x

Q c R™ [-measurable

u: L-measurable on Q (= uP: L-measurable on Q)
LP(Q) = {u : ([ |u(x)Pdx)"P < 400}, 1< p< 400
u=0inLlP(Q) & u=0a.e. inQ

1
lullo = (Jg luCx)Pax)'/?
(LP(€2), ] - ||p) is a Banach space

Co(Q)isdensein LP(Q), 1<p< +oo
C(Q)isdensein LP(Q), 1<p< -+
LP(Q) is separable, 1 <p< +oo

[2(Q) is a Hilbert space,  (u, V) = [, u(x)v(x



L> space

Q Cc R™ L-measurable

u: L-measurable on Q

L>°(Q) = {u : esssup|u(x)| < +oo}
XeQ

ess sup |u(x)| =inf{M : |u(x)| <M a.e.inQ}
xeQ

u=0inL*(Q) & u=0a.e. inQ

[Ulloo = ess sup [u(X)|
XEQ

@ (L>°(9Q),] - lls) is a Banach space (not separable!)



o {a}=(ai,a,...), acR

° 62:{a:{ak} : ia,z(<+oo}
k=1

oo 00 1/2
° (aa b) = Z akbka ||u||E2 = (Z ai)
k=1 k=1

@ (2 is a Hilbert space
@ a;=(1,0,...), a,=(0,1,...)
@ a, is an orthonormal basis in (2

@ (2 is separable



Results on LP spaces

If uj — uinLP(Q), 1 < p < 400, then there exists a
subsequence that converges pointwise to u, a.e. in Q.

Theorem

(Hélder inequality)

If p, ge[1,+] : }) + }, =1 (p, g conjugate indices) and
uelP(Q), veldQ)then

| A

luvile) < llulle@ Vi@




Young inequalities

If a,b>0, >0, p,ge(1,+00) : 1+1 =1, then
P pa 2 B2
abga—+b— abga—Jr—
p q 2 2
P i 2 b?
abgea—+s_Q/pb— ab_ea—+ff
p q 2 g2




Gronwall inequality

Let y € C'([0,)), g, h € C([0,0)) be such that

y' <g(t)y+h(t), vt=0

then

t
V(D) < y(O)elie@ 1 [ elio@ien(s)as, =0
0




Linear operators on normed spaces

o A (X.Il-Ilx) = (Y.Il - Ily)

@ Ais linear if A(AX + uz) = MAx + pAz, Vx,ze X

@ Ais bounded if 3M >0 : ||Ax||ly < M||x]||x, Vx € X

@ Ais continuous if x, —- xin X = Ax, — AxinY

@ L(X,Y): set of all bounded linear operator from X to Y
L(X,Y) vector space

[AX]ly

® [|Allz(x,y) = sup = sup |[|Ax|y
x20 XX xie=1

o [Axlly < l[Allzex,vylixllx, Vx e X



Results on linear operators

If Y is a Banach space then L(X, Y) is a Banach space

A (X DIx) = (Y- llv), A linear.
A is continuous < A is bounded.

Uniform Boundedness Principle
Let X be a Banach space and S C L(X,Y). Then:

sup|[Tx[ly < My, vx e X = sup||Tlgx,y)<M
TeS TeS




Linear functionals and dual spaces

@ f:(X,|-|lx) R bounded and linear: functional on X
@ L(X,R) is the dual space of X: X* or X’

f(x
o X*= LOGR), |Iflx- = Iflleps = sup 1)
x£0 |1XIIx

@ (X*,||-|lx+) is a Banach space (R is a Banach space)

@ (-, )x: X*x X >R x(f,X)x = f(x) is abilinear form

@ x-(f,x)x or(f, x) (duality)
o [{£, )] < [Ifllx-lIxllx

Let X be a Banach space.
If x,ze X and (f,x) = (f,z) forany f € X*, then x = z.




LP and dual spaces

oVueLP(Q) fixveLq(Q) : p,qe(1,400) : =1

= Jq u(x)v(x)dx

e UQ v(x)dx\ < [[ulle@lIVIILa(e)

o fe(LP() and | fllie) = IVilLae)

b\—‘
Q\—‘

@ (LP(Q))* ~ LI(Q) with p,g € (1, +00) :
o (L'(Q))" =~ L>*(Q)
@ ATTENTION! (L>®(Q))* D> Y ~ L'(Q)



Reflexive spaces

X = (X*)* = {g: X* - R bounded linear functional }
G: X = X" 1 x(GX, F)x» = x«(,X)x, VFfeX*

Gx € X* and ||Gx||x= = ||X|lx = X = Y C X**

If X** ~ X then X is reflexive (G is surjective)

X is reflexive iff X* is reflexive

LP(Q) is reflexive for p € (1, +00)

L1(Q) and L>°(Q) are not reflexive



Dual spaces of Hilbert spaces

Riesz representation Theorem
Let H be a Hilbert space. Then, Vfe H* = 3y =y; € H :
(f,x)=(x,y),YxeH and |fllg=|ylln

@ If His a Hilbert space then H* ~ H
@ (L2(Q)* ~ L2(Q) () ~r?
@ Any Hilbert space is reflexive

Riesz Theorem = we identify H and H*.

ATTENTION!
If V and H are Hilbert spaces : V c H, then H* c V*
We identify only H and H*, thatis V ¢ H= H* C V*




Weak convergence

Let X be a Banach space, x,, x € X.
Xn — X (weak convergence) if (f,x,) — (f,x) forany f € X*.

| A\

Example
H=¢ fc(P)=bc
(f,a)=(a,b), vac®* and bz = |fl2)

NB. be® = > bi<+oo = b—0
k=1
e, orthonormal basis
Vf€(€2)* = (f,ek>:(ek,b):bk—>0 = ex—0

ex — 0 strongly in H
(ex is not a Cauchy sequence: |ex —ejlle = V2, k#j)




Strong and weak convergence

X Banach space, xp, x € X.
Xn — X (Strong convergence) = x, — x (weak convergence)

If f € X* (f bounded linear functional) then f is continuous.
If X, = x then (f, x,) = (f,x), Ve X* = xp—Xx O

X finite dimensional Banach space, Xxp, x € X.
Xn — X (Strong convergence) < x, — x (weak convergence)
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Uniqueness of weak limit

X Banach space, xp € X.
If x, — x € X then x is unique

Proof.
If X, — x, xp = z then (f, xn) — (f, x), (f, xn) — (f,2) =
(f,x) = (f,z), ¥f € X* = x =z (cf. previous Theorem) O

| A\

v




Boundedness of weak convergent sequences

X Banach space, x, € X.
If x, =~ x € X then x,is bounded

e Vfe X* (f xn) is convergent (to (f,x) in R) =
[(f, Xn)| < Cr, ¥

o GXn € X** . <GXn7 f> e <f, Xn>, Vf € X*, ||GXnHX** = ||Xn||X

@ |(Gxp, f)| < Cf,Vn, and X*is complete =
(Uniform Boundedness Principle) | Gx,|| x-+ is bounded

@ ||xp||x is bounded
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An estimate of the norm of the weak limit

X Banach space, xp € X.
If xp — x € X then || x|| <liminfy_ .|| Xnl|

| \

Proof.
(X = H Hilbert space case)

Xn — X = (Riesz representation Theorem)
X112 = (x, X) = liMp_s00(Xn, X) = liminfp_ (X, X)

< liminfa ool XnlllIX|| = IIX||liminf,_ oo Xnl|

A\




Compact operators and weak convergence

Definition

K:(X |- llx) = (Y,l-lly)is compact if

K(W) is compactin Y, for any bounded set W C X.

Remark: A compact operator is bounded.

A: X =Y, Acompact, and x, — x in X.
Then Ax, — Ax in'Y (strong convergence).
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Weak-x convergence

Definition

Let X be a Banach space, f,and f € X*.
fo = f (weak-+ convergence) if (f,,x) — (f,x) Vx € X.

Weak-+ limits are unique.
Weak-+ convergent sequences are bounded.

Weak convergence implies weak-+ convergence.

If X reflexive, weak-+ convergence implies weak convergence.
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Weak and weak-x compactness Theorems

Theorem

Banach-Alaoglu Theorem

Let X be a Banach space.

Let f, be a bounded sequence in X*.

Then f, has a weak-«x convergent subsequence in X*.

Theorem

Let X be a reflexive Banach space.
Let x, be a bounded sequence in X.
Then x, has a weak convergent subsequence in X.

Any bounded sequence in a Hilbert space H has a weak
convergent subsequence in H.
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