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A diffuse interface model for two-phase flow
with nonlocal interactions

THE NONLOCAL CAHN-HILLIARD/NAVIER STOKES MODEL

Diffuse-interface model in which the sharp interface separating the two fluids (e.g., oil and water) is replaced
by a diffuse one by introducing an order parameter ϕ (relative concentration of one of the fluids). The
dynamics of ϕ is governed by a Cahn-Hilliard type equation with a transport term. ϕ influences the fluid
velocity u through a capillarity force µ∇ϕ. Assuming matched densities in Ω× (0,∞), Ω ⊂ Rd, d = 2, 3

(nlocCHNS)
ut + (u · ∇)u− 2div

(
ν(ϕ)Du

)
+∇π = µ∇ϕ + v

div(u) = 0

ϕt + u · ∇ϕ = div (m(ϕ)∇µ)

µ chemical potential, first variation of the (total Helmholtz) nonlocal free energy. This system is endowed
with the following boundary and initial conditions

(BIC)
∂nµ = 0 u = 0 on ∂Ω

u(0) = u0 ϕ(0) = ϕ0

� Nonlocal free energy (van der Waals) rigorously justified by Giacomin and Lebowitz as macroscopic
limit of microscopic phase segregation models

E(ϕ) =
1

4

∫
Ω

∫
Ω

K(x− y)(ϕ(x)− ϕ(y))2dxdy +

∫
Ω

F (ϕ(x))dx

where K : Rd → R s.t. K(x) = K(−x). Local free energy (having
∫

Ω
|∇ϕ|2 in place of the

interaction integral) is an approximation of the nonlocal one

� Nonlocal chemical potential
µ = aϕ−K ∗ ϕ + F ′(ϕ)

where

(K ∗ ϕ)(x) :=

∫
Ω

K(x− y)ϕ(y)dy a(x) :=

∫
Ω

K(x− y)dy

F double-well potential: Helmholtz free energy density of uniform mixture

� Singular

F (s) = −θc
2
s2 +

θ

2

(
(1 + s) log(1 + s) + (1− s) log(1− s)

)
∀s ∈ (−1, 1) 0 < θ < θc

� Regular F (s) = (1− s2)2 ∀s ∈ R

Weak solutions (regular potential+constant or non-degenerate mobility)
Theorem 1 (Colli, F., Grasselli ’12). Assume that K ∈ W 1,1(Rd), K(z) = K(−z), a(x) ≥ 0

and that v ∈ L2
loc(R+;H1

div(Ω)′). Let u0 ∈ L2
div(Ω)d, ϕ0 ∈ L2(Ω), F (ϕ0) ∈ L1(Ω). Then, ∀T > 0

∃ a weak sol [u, ϕ] to (nloc CHNS) s.t.

u ∈ L∞(0, T ;L2
div(Ω)d) ∩ L2(0, T ;H1

div(Ω)d) ut ∈ L4/d(0, T ;H1
div(Ω)′)

ϕ ∈ L∞(0, T ;L4(Ω)) ∩ L2(0, T ;H1(Ω)) ϕt ∈ L2(0, T ;H1(Ω)′)

µ ∈ L2(0, T ;H1(Ω))

and which satisfies the energy inequality (identity if d = 2)

E(u(t), ϕ(t)) +

∫ t

0

(‖
√
ν(ϕ)Du(τ )‖2 + ‖∇µ(τ )‖2)dτ ≤ E(u0, ϕ0) +

∫ t

0

〈v,u(τ )〉dτ ∀t > 0

where we have set E(u(t), ϕ(t)) = 1
2‖u(t)‖2 + E(ϕ(t))

Theorem 1 holds also for regular coercive potentials F of arbitrary polynomial growth. Furthermore,
existence of weak sols in 2D-3D has been obtained also for: constant mobility+singular potential
(F., Grasselli ’12) and degenerate mobility+singular potential (F., Grasselli, Rocca ’14).
For weak sols in 2D with constant viscosity we have also
Theorem 2 (F., Gal, Grasselli ’14). The weak sol [u, ϕ] corresponding to [u0, ϕ0] is unique .
Strong solutions in 2D (regular potential+constant mobility)
Theorem 3 (F., Grasselli, Krejčí ’13). Let v ∈ L2

loc(R+;L2
div(Ω)2) and in addition K ∈ W 2,1(R2) or K

newtonian. If u0 ∈ H1
div(Ω)2, ϕ0 ∈ H2(Ω) then, ∀T > 0 ∃ unique strong sol [u, ϕ] s.t.

u ∈ L∞(0, T ;H1
div(Ω)2) ∩ L2(0, T ;H2(Ω)2) ut ∈ L2(0, T ;L2

div(Ω)2)

ϕ ∈ L∞(0, T ;H2(Ω)) ϕt ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω))

Theorem 3 has been extended also for the case of nonconstant viscosity (F., Gal, Grasselli ’14)
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Optimal control for nloc CHNS in 2D (regular potential+constant mobility)
Problem (CP): minimize the cost functional

J(y,v) :=
β1

2
‖u− uQ‖2

L2(Q)2 +
β2

2
‖ϕ− ϕQ‖2

L2(Q) +
β3

2
‖u(T )− uΩ‖2 +

β4

2
‖ϕ(T )− ϕΩ‖2 +

γ

2
‖v‖2

L2(Q)2

where y := [u, ϕ] solves (nlocCHNS) (with m = 1) and BIC and the external body force density v, which
plays the role of the control, belongs to a suitable closed, bounded and convex subset of the space of
controls V := L2

(
0, T ;L2

div(Ω)2
)

� Introducing the spaceH :=
[
L∞(0, T ;H1

div(Ω)2) ∩ L2(0, T ;H2(Ω)2)
]
× L∞(0, T ;H2(Ω)), then, the

control-to-state map S : V → H, v ∈ V 7→ S(v) := y := [u, ϕ] ∈ H, where y := [u, ϕ]

is the unique strong sol to Problem (nloc CHNS) corresponding to v ∈ V and to fixed initial data
u0 ∈ H1

div(Ω)2, ϕ0 ∈ H2(Ω), is well defined

� Set of admissible controls Vad :=
{
v ∈ V : va,i(x, t) ≤ vi(x, t) ≤ vb,i(x, t), a.e. (x, t) ∈

Ω× (0, T )
}

with va,vb ∈ V ∩ L∞(Q)2 prescribed

Theorem 4 (F., Rocca, Sprekels ’14). Problem (CP) admits a sol v ∈ Vad
By studying the differentiability property of

S : V →
[
C([0, T ];L2

div(Ω)2) ∩ L2(0, T ;H1
div(Ω)2)

]
×
[
C([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω))

]
First order necessary optimality conditions. Introduce the adjoint system

p̃t =− 2div
(
ν(ϕ)Dp̃

)
− (u · ∇)p̃ + (p̃ · ∇T )u + q̃∇ϕ− β1(u− uQ)

q̃t =− (a∆q̃ +∇K∗̇∇q̃ + F ′′(ϕ)∆q̃)− u · ∇q̃ + 2ν ′(ϕ)Du : Dp̃

−
(
ap̃ · ∇ϕ−K ∗ (p̃ · ∇ϕ) + F ′′(ϕ)p̃ · ∇ϕ

)
+ p̃ · ∇µ− β2(ϕ− ϕQ)

div(p̃) = 0

p̃ =0, ∂nq̃ = 0 on Σ

p̃(T ) = β3(u(T )− uΩ), q̃(T ) = β4(ϕ(T )− ϕΩ)

Theorem 5 (F., Rocca, Sprekels ’14). Let v ∈ Vad be an optimal control for Problem (CP) with associated
state y = [u, ϕ] = S(v) and adjoint state [p̃, q̃]. Then

γ

∫ T

0

∫
Ω

v · (v − v) +

∫ T

0

∫
Ω

p̃ · (v − v) ≥ 0 ∀v ∈ Vad
(
⇔ v = PVad

({
− p̃/γ}

}))
,

where PVad is the orthogonal projector in L2(Q)2 onto Vad
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Nonlocal Cahn-Hilliard/Navier-Stokes system with unmatched densities
The following system is the nonlocal version of the model derived by Abels, Garcke and Grün describing
the two-phase flow of incompressible newtonian viscous fluids with different densities

(nloc AGG)

(ρu)t + div(ρu⊗ u)− ν∆u +∇π + div(u⊗ J̃) = µ∇ϕ
div(u) = 0

ϕt + u · ∇ϕ = div(m(ϕ)∇µ)

µ = aϕ−K ∗ ϕ + F ′(ϕ)

J̃ := −βm(ϕ)∇µ, β = (ρ̃2 − ρ̃1)/2

where

ρ(ϕ) = (ρ̃2 + ρ̃1)/2 + (ρ̃2 − ρ̃1)(ϕ/2)

and where ρ̃1, ρ̃2 > 0 are the specific constant mass densities of the unmixed fluids.

Assuming singular potential and nonconstant and non-degenerate mobility, i.e. satisfying

m∗ ≤ m(s) ≤ m∗, ∀s ∈ R,

for some m∗,m∗ > 0, we can prove

Theorem 6. Assume that K ∈ W 1,1(Rd), K(z) = K(−z), a(x) ≥ 0. Let u0 ∈ L2
div(Ω)d, ϕ0 ∈ L∞(Ω)

such that F (ϕ0) ∈ L1(Ω) and |ϕ0| < 1. Then, ∀T > 0 and ∀p ∈ [2,∞) Problem (nloc AGG) admits a
weak sol [u, ϕ] such that

u ∈ L∞(0, T ;L2
div(Ω)d) ∩ L2(0, T ;H1

div(Ω)d)

ϕ ∈ L∞(0, T ;Lp(Ω)) ∩ L2(0, T ;H1(Ω))

|ϕ(x, t)| < 1, a.e. (x, t) ∈ Ω× (0, T )

µ ∈ L2(0, T ;H1(Ω))

(ρu)t ∈ L4/3(0, T ;D(A)′) ϕt ∈ L2(0, T ;H1(Ω)′)

(A is the Stokes operator with non-slip boundary condition) satisfying the following energy inequality∫
Ω

1

2
ρu2 + E(ϕ) + ν

∫ t

0

‖∇u‖2dτ +

∫ t

0

∥∥√m(ϕ)∇µ
∥∥2
dτ ≤

∫
Ω

1

2
ρ(ϕ0)u

2
0 + E(ϕ0) ∀t ∈ [0, T ]
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