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The nonlocal Cahn-Hilliard-Navier-Stokes system

A well-known model which describes the evolution of an incompressible isothermal mixture of two
immiscible fluids is the so-called model H (see [10,9]). This is a diffuse-interface model (cf. [1]) in which
the sharp interface separating the two fluids (e.g., oil and water) is replaced by a diffuse one by
introducing an order parameter ϕ. The dynamics of ϕ, which represents the (relative) concentration of
one of the fluids (or the difference of the two concentrations), is governed by a Cahn-Hilliard type
equation with a transport term. This parameter influences the (average) fluid velocity u through a
capillarity force (called Korteweg force) proportional to µ∇ϕ, where µ is the chemical potential (see,
e.g., [11,Appendix]). Note that this force is concentrated close to the diffuse interface.
Assuming constant density and viscosity, the model reduces to the following system in Ω× (0,∞),
Ω ⊂ Rd , d = 2, 3

ut + (u · ∇)u− ν∆u +∇π = µ∇ϕ + h
div(u) = 0
ϕt + u · ∇ϕ = div (m(ϕ)∇µ)

µ chemical potential, first variation of the (total Helmholtz) nonlocal free energy
Nonlocal free energy (van der Waals) rigorously justified by Giacomin and Lebowitz (see [7,8]) as
macroscopic limit of microscopic phase segregation models

E(ϕ) =
1
4

∫
Ω

∫
Ω

J(x − y)(ϕ(x)− ϕ(y))2dxdy +

∫
Ω

F (ϕ(x))dx

where J : Rd → R s.t. J(x) = J(−x)
Local free energy (having

∫
Ω |∇ϕ|

2 in place of the interaction integral) is an approximation of the
nonlocal one
Nonlocal chemical potential

µ = aϕ− J ∗ ϕ + F ′(ϕ)

where
(J ∗ ϕ)(x) :=

∫
Ω

J(x − y)ϕ(y)dy a(x) :=

∫
Ω

J(x − y)dy

F double-well potential: Helmholtz free energy density of uniform mixture
Singular

F (s) = −
θc

2
s2 +

θ

2
(
(1 + s) log(1 + s) + (1− s) log(1− s)

)
for all s ∈ (−1, 1), with 0 < θ < θc

Regular
F (s) = (1− s2)2 ∀s ∈ R

Weak solutions-Regular potentials, constant mobility [2]

Theorem 1 (Colli, F. & Grasselli ’11)
Assume that J ∈ W 1,1(Rd), a(x) ≥ 0 and that h ∈ L2

loc(R+; H1
div(Ω)′).

Let u0 ∈ L2
div(Ω)d , ϕ0 ∈ L2(Ω) with F (ϕ0) ∈ L1(Ω). Then, ∀T > 0 ∃ a weak solution [u, ϕ] on [0, T ]

s.t.

u ∈ L∞(0, T ; L2
div(Ω)d) ∩ L2(0, T ; H1

div(Ω)d) ut ∈ L4/d(0, T ; H1
div(Ω)′)

ϕ ∈ L∞(0, T ; L4(Ω)) ∩ L2(0, T ; H1(Ω)) ϕt ∈ L2(0, T ; H1(Ω)′)

µ ∈ L2(0, T ; H1(Ω))

and which satisfies the energy inequality (identity if d = 2)

E(u(t), ϕ(t)) +

∫ t

0
(ν‖∇u(τ )‖2 + ‖∇µ(τ )‖2)dτ ≤ E(u0, ϕ0) +

∫ t

0
〈h, u(τ )〉dτ ∀t > 0

where we have set

E(u(t), ϕ(t)) =
1
2
‖u(t)‖2 +

1
4

∫
Ω

∫
Ω

J(x − y)(ϕ(x, t)− ϕ(y , t))2dxdy +

∫
Ω

F (ϕ(t))

Theorem 1 stills holds if the double-well potential satisfies the following
More general assumptions

(A1) F ∈ C2(R) and ∃c0 > 0 s.t.

F ′′(s) + a(x) ≥ c0 ∀s ∈ R a.e. x ∈ Ω

(A2) ∃c1 > 0, c2 > 0 and p > 2 s.t.

F ′′(s) + a(x) ≥ c1|s|p−2 − c2 ∀s ∈ R a.e. x ∈ Ω

(A3) ∃c3 > 0, c4 ≥ 0 and r ∈ (1, 2] s.t.

|F ′(s)|r ≤ c3|F (s)|+ c4 ∀s ∈ R

Strong solutions in 2D-Regular potentials and constant mobility [5]

Theorem 2 (F., Grasselli & Krejčı́ ’13)
Let h ∈ L2

loc(R+; L2
div(Ω)2) and in addition J ∈ W 2,1(R2). If

u0 ∈ H1
div(Ω)2 ϕ0 ∈ H2(Ω)

then, ∀T > 0 ∃ unique strong solution z := [u, ϕ] s.t.

u ∈ L∞(0, T ; H1
div(Ω)2) ∩ L2(0, T ; H2(Ω)2) ut ∈ L2(0, T ; L2

div(Ω)2)

ϕ ∈ L∞(0, T ; H2(Ω)) ϕt ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω))

Moreover, the following continuous dependence estimate holds

‖u2(t)− u1(t)‖2 + ‖ϕ2(t)− ϕ1(t)‖2
H1(Ω)′ +

∫ t

0

(
‖∇u2(τ )−∇u1(τ )‖2 + ‖ϕ2(τ )− ϕ1(τ )‖2

)
dτ

≤ Λ
(
‖u02 − u01‖2 + ‖ϕ02 − ϕ01‖2

H1(Ω)′ + ‖h2 − h1‖2
L2(0,T ;L2

div(Ω)2)

)
Instantaneous regularization of weak solutions
For η ≥ 0 given, introduce

Xη = L2
div(Ω)2 × Yη Yη = {ϕ ∈ L2(Ω) : F (ϕ) ∈ L1(Ω), |ϕ̄| ≤ η} (phase space of weak sols)

X 1
η := H1

div(Ω)2 × Y1
η Y1

η := {ψ ∈ H2(Ω) : |ψ| ≤ η} (phase space of strong sols)

If z0 = [u0, ϕ0] ∈ Xη, then ∀τ > 0 ∃sτ ∈ (0, τ ] s.t. z(sτ) ∈ X 1
η . Starting from sτ the weak solution

corresponding to z0 becomes a (unique) strong solution z ∈ C([sτ ,∞);X 1
η ). The regularization is also

uniform w.r.t. bdd in Xη sets of initial data
Convergence to equilibria of weak solutions
Set of stationary solutions

Eη :=
{

z∞ = [0, ϕ∞] : ϕ∞ ∈ L2(Ω), F (ϕ∞) ∈ L1(Ω), |ϕ∞| ≤ η,

aϕ∞ − J ∗ ϕ∞ + F ′(ϕ∞) = µ∞, µ∞ = F ′(ϕ∞) a.e. in Ω
}

Theorem 3 (F., Grasselli & Krejčı́ ’13)
Take z0 ∈ Xη and let z ∈ C(R+;Xη) be a corresponding weak solution. Then

∅ 6= ω(z) ⊂ Eη
and ∃t∗ = t∗(z0) s.t. the trajectory ∪t≥t∗{z(t)} is precompact in Xη. Moreover ∃z∞ ∈ Eη s.t.

z(t)→ z∞ in Xη as t →∞

Weak solutions-Singular potential, degenerate mobility [6]

Relevant situation: mobility m degenerates at ±1 and singular double-well potential F on (−1, 1) (e.g.
logarithmic like). A ϕ−dependent mobility appears in the original derivation of CH eq. (J.W. Cahn & J.E.
Hilliard, 1971). Thermodynamically reasonable choice

m(ϕ) = k(1− ϕ2)

Key assumption (cf. [Elliot & Garcke ’96], [Gajewski & Zacharias ’03], [Giacomin & Lebowitz ’97,’98])

mF ′′ ∈ C([−1, 1])

We are not able to control∇µ in some Lp space; hence we need to reformulate the definition of weak
solution in such a way that µ does not appear any more.
Theorem 4 (F., Grasselli & Rocca ’13)
Let M ∈ C2(−1, 1) s.t. m(s)M ′′(s) = 1, M(0)= M ′(0) = 0. Let

u0 ∈ L2
div(Ω)d, ϕ0 ∈ L∞(Ω), F (ϕ0) ∈ L1(Ω), M(ϕ0) ∈ L1(Ω)

Then ∃ a weak solution z := [u, ϕ] on [0, T ] s.t. ϕ(t) = ϕ0 and |ϕ(x, t)| ≤ 1 a.e (x, t) ∈ Ω× (0, T )
In addition, z satisfies the energetic inequality (identity if d = 2)

1
2
(
‖u(t)‖2 + ‖ϕ(t)‖2)+

∫ t

0

∫
Ω

(
m(ϕ)F ′′(ϕ) + am(ϕ)

)
|∇ϕ|2 + ν

∫ t

0
‖∇u‖2 ≤

1
2
(
‖u0‖2 + ‖ϕ0‖2)

+

∫ t

0

∫
Ω

(aϕ− J ∗ ϕ)u · ∇ϕ +

∫ t

0

∫
Ω

m(ϕ)(∇J ∗ ϕ− ϕ∇a) · ∇ϕ +

∫ t

0
〈h, u〉 ∀t > 0

The condition |ϕ0| < 1 not required (only less strict condition |ϕ0| ≤ 1). This is due to the different
weak solution formulation w.r.t. the case of constant mobility.
Theorem 5 (F., Grasselli & Rocca ’13)
Let ϕ0 be such tha F ′(ϕ0) ∈ L2(Ω). Then, ∃ weak solution z = [u, ϕ] that also satisfies

µ ∈ L∞(0, T ; L2(Ω)) ∇µ ∈ L2(0, T ; L2(Ω)d)

As a consequence, z = [u, ϕ] also satisfies the weak formulation and the energy inequality (identity for
d = 2) of the non degenerate mobility case.

Asymptotic behavior [6,3,4]

Nonlocal CHNS IN 2D-Singular potential, degenerate mobility
Let Gη be the set of all weak solutions corresponding to all initial data z0 = [u0, ϕ0] ∈ Xη, where

Xη = L2
div(Ω)2 × Yη Yη := {ϕ ∈ L∞(Ω) : |ϕ| ≤ 1, F (ϕ),M(ϕ) ∈ L1(Ω), |ϕ| ≤ η},

and η ∈ [0, 1] is fixed. The metric on Xη is

d(z1, z2) = ‖u1 − u2‖+ ‖ϕ1 − ϕ2‖ ∀zi = [ui, ϕi] ∈ Xη, i = 1, 2

Theorem 6 (F., Grasselli & Rocca ’13)
Let h ∈ H1

div(Ω)′. Then Gη is a generalized semiflow on Xη which possesses the global attractor Aη.
Existence of the global attractor in 2D (autonomuous case) and of the trajectory attractor in 3D
(non-autonomous case) also for nonlocal CHNS system with regular or singular potentials and constant
mobility. In particular, for the case of regular potential and constant mobility we have

Aη ⊂ BX 1
η
(0,Λ(η)),

where Λ(η) is a positive constant and X 1
η is the phase space of strong solutions

The convective nonlocal CH with degenerate mobility [6]

Given u ∈ L2
loc(R+; H1

div(Ω)d ∩ L∞(Ω)d), consider in Ω× (0,∞), Ω ⊂ Rd , d = 2, 3

ϕt + u · ∇ϕ = div (m(ϕ)∇µ)

µ = aϕ− J ∗ ϕ + F ′(ϕ)

As by-product of the previous analysis we obtain
∃ and uniqueness of a weak solution =⇒ we can define a semiflow S(t) on Yη, η ∈ [0, 1]

∃ of a connected global attractor (u independent of time)
Remark: uniqueness of solution and ∃ of the global attractor for the local CH with degenerate mobility
are open issues

Uniqueness of weak solution and exponential attractors in 2D

Regular potentials, constant mobility
By redefining the pressure π, the Korteweg force µ∇ϕ can be rewritten as

− (∇a/2)ϕ2 − (J ∗ ϕ)∇ϕ
This allows, by some technical arguments (Gagliardo-Nirenberg in 2D) to prove
Theorem 7 (F., Gal & Grasselli ’13)
Let u0 ∈ L2

div(Ω)2, ϕ0 ∈ L2(Ω) with F (ϕ0) ∈ L1(Ω). Then, the weak solution [u, ϕ] corresponding to
[u0, ϕ0] is unique . Furthermore, a continuous dependence estimate in L2

div × (H1)′ also holds.
=⇒ the nonlocal CHNS system generates a semigroup S(t) of closed operators on Xη

z(t) := [u(t), ϕ(t)] = S(t)z0 := S(t)[u0, ϕ0]

Theorem 8 (F., Gal & Grasselli ’13)
For every η ≥ 0 the dynamical system

(
Xη,S(t)

)
possesses an exponential attractorMη.

We recall that a setM⊂ Xη is an exponential attractor for the semigroup S(t) ifM is compact,
positively invariant, with finite fractal dimension and such that ∃J : R+ → R+ increasing and κ > 0 s.t.,
∀R > 0 and ∀B ⊂ Xη with supz∈B dXη(z, 0) ≤ R there holds dist(S(t)B,M) ≤ J(R)e−κt

Remark: by similar arguments uniqueness of the weak sol in 2D holds for the nonlocal CHNS system
with constant mobility+singular potential and with degenerate mobility+singular potential
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11 D. Jasnow, J. Viñals, Coarse-grained description of thermo-capillary flow, Phys. Fluids 8 (1996),
660-669.email: sergio.frigeri@unimi.it


