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Weak solutions-Singular potential, degenerate mobility [6]

The nonlocal Cahn-Hilliard-Navier-Stokes system

A well-known model which describes the evolution of an incompressible isothermal mixture of two
iImmiscible fluids is the so-called model H (see [10,9]). This is a diffuse-interface model (cf. [1]) in which
the sharp interface separating the two fluids (e.g., oil and water) is replaced by a diffuse one by
introducing an order parameter . The dynamics of ¢, which represents the (relative) concentration of
one of the fluids (or the difference of the two concentrations), is governed by a Cahn-Hilliard type
equation with a transport term. This parameter influences the (average) fluid velocity u through a
capillarity force (called Korteweg force) proportional to £tV ¢, where p is the chemical potential (see,
e.g., [11,Appendix]). Note that this force is concentrated close to the diffuse interface.

Assuming constant density and viscosity, the model reduces to the following system in 2 x (0, o),
QCRYd=2,3

u;+ (U-V)Ju—vAu+ Vo = uVe +h
div(u) =0
pr+U- Vo =dv (m(e)Vpy)

p chemical potential, first variation of the (total Helmholtz) nonlocal free energy

m Nonlocal free energy (van der Waals) rigorously justified by Giacomin and Lebowitz (see [7,8]) as
macroscopic limit of microscopic phase segregation models

£6) = [ [ J0x =)o) — oly)2axdy + | F(p(x)dx

where J : R — R s.t. J(X) = J(—X)
Local free energy (having |, |V |? in place of the interaction integral) is an approximation of the
nonlocal one

m Nonlocal chemical potential
p=ap—dJx*p-+ F(p)
where

(x9)(0) = [ Jx—y)eW)dy a(x) = [ J(x - y)ay
F double-well potential: Helmholtz free energy density of uniform mixture

m Singular
0 0
F(s) = —?cs2 + 5((1 + s)log(1 + s) + (1 — s)log(1 — s))
foralls € (—1,1), with0 < 6 < 6,
m Regular

F(s)=(1—-5s°)? VseR

Weak solutions-Regular potentials, constant mobility [2]

Theorem 1 (Colli, F. & Grasselli ’11)
Assume that J € W 1(RY), a(x) > 0 and that h € L2 (R*; HY: (2)).

loc

Letup € L2, (Q)?, po € L?(Q) with F(ve) € L'(R2). Then, VT > 0 3 a weak solution [u, ] on [0, T]
S.1.

u € L=(0, T; L%, ()%) N L%(0, T; Hy, (2))
p € L=(0, T; LY(R)) N L*(0, T; H'(2))
p € L*(0, T; H(Q))

and which satisfies the energy inequality (identity if d = 2)

8(U(t),so(t))+/o @IVu()|? + V(7)) dT < 8(Uo,soo)+/0 (hyu(t))dr  Vt>0
where we have set

E(). () = Slu®IP + 5 [ [ Joc =y, 1) — oy, O)dxdy + [ Flo(t)

Theorem 1 stills holds if the double-well potential satisfies the following
More general assumptions

(A1) F € C?(R) and 3¢y > 0 s.t.
F’(s)+a(x) >cp VseR ae xe€
(A2)dec1 > 0,2 > 0and p > 2 s.t.
F'(s)+ a(x) > ci|s|P?—c, VSER ae. xeQ
(A3)des > 0,¢c5 >0and r € (1,2] s.t.
IF'(s)|" < c3|F(S)|+¢cs VseER

U € L4/d(oa T; H:Iiv(Q),)
pt € L*(0, T; H'(Q)')

Strong solutions in 2D-Regular potentials and constant mobility [5]

Theorem 2 (F., Grasselli & Krejci '13)
Leth € L2 _(R*; L2 (R2)?) and in addition J € W?1(R?). If
w € Hy,(2)* o € H(Q)
then, YT > 0 3 unique strong solution z := [u, ¢] s.t.
u e L>(0, T; H,;, ()% N L0, T; H*(Q)?) u; € L*(0, T; L2, (R)?)
@ € L>(0, T; H*(Q)) pt € L=(0, T; L*(R)) N L*(0, T; H'(RQ))

Moreover, the following continuous dependence estimate holds

t
Jua(t) — (DI + llea(t) = 1Dy + [ (IV0(r) = V(D) + llgalr) = er(n)]2) ar

< A(”Uoz — Uo1|? + [lpo2 — o ”?—I‘(Q)’ + ||z — hy ”iZ(O,T:Lﬁiv(Q)Z))

Instantaneous regularization of weak solutions
For n > 0 given, introduce
X,=L% (2°*xY, Y,={pcLl¥Q):F(p) € L'(Q), || <n} (phase space of weak sols)

X) = Hy (22 <Y, Y :={peH(Q):|p| <n} (phase space of strong sols)

If Zg = [uo, o] € X, then VT > 03s, € (0, 7] s.t. z(s;) € XJ. Starting from s, the weak solution

corresponding to zg becomes a (unique) strong solution z € C([s-, o0); X,;). The regularization is also
uniform w.r.t. bdd in &, sets of initial data

Convergence to equilibria of weak solutions

Set of stationary solutions

£y 1= {2 = [0, 00] ¢ 9 € L2(Q), F(p) € L'(Q), [Pl < 1,
AP — J * oo + F'(P) = Mooy Moo = F'(ps) a.e.in Q}

Theorem 3 (F., Grasselli & Krejci ’13)
Take zy € X, and letz € C(R™; X,)) be a corresponding weak solution. Then

0 #w(z) CE&,
and t* = t*(2zy) s.t. the trajectory Us>p{2Z(t)} is precompact in X,,. Moreover 3z, € &, s.t.

Z(t) — z in X, as t— oo
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Relevant situation: mobility m degenerates at 4+-1 and singular double-well potential F on (—1,1) (e.g.
logarithmic like). A po—dependent mobility appears in the original derivation of CH eq. (J.W. Cahn & J.E.
Hilliard, 1971). Thermodynamically reasonable choice

m(p) = k(1 — ¢°)

m Key assumption (cf. [Elliot & Garcke '96], [Gajewski & Zacharias ‘03], [Giacomin & Lebowitz '97,98])
mF" € C([-1,1])

We are not able to control V. in some LP space; hence we need to reformulate the definition of weak
solution in such a way that i does not appear any more.

Theorem 4 (F., Grasselli & Rocca '13)

Let M € C?(—1,1) s.t. m(s)M"(s) =1, M(0)= M’(0) = 0. Let

Up © LgiV(Q)da $o € Loo(Q)a F(QOO) S L (Q)7 M(SOO) S L (Q)
Then 3 a weak solution z := [u, ¢] on [0, T] s.t. p(t) = Yy and |p(x,1)| <1 a.e(x,t) € Q x (0, T)
In addition, z satisfies the energetic inequality (identity if d = 2
1 J t 1
S(lu(®11Z + lle(®)11?) +/ / (m(@)F" () + am(v))|Ve|* + V/ IVull* < S (lluoll® + [lwoll?)
2 0 Jo 0 2

+/0t/9(a<p—J*cp)u-Vgo+/0t/Qm(<p)(VJ*cp—goVa)-ch+/0t(h,u) vt > 0

The condition || < 1 not required (only less strict condition |y < 1). This is due to the different
weak solution formulation w.r.t. the case of constant mobillity.
Theorem 5 (F., Grasselli & Rocca '13)
Let po be such tha F'(po) € L?(R2). Then, 3 weak solution z = [u, ] that also satisfies

p e L®0, T; L3(Q)) Vu e L2(0, T; L2()%

As a consequence, Zz = |u, ] also satisfies the weak formulation and the energy inequality (identity for
d = 2) of the non degenerate mobility case.

Asymptotic behavior [6,3,4]

Nonlocal CHNS IN 2D-Singular potential, degenerate mobility
Let G,, be the set of all weak solutions corresponding to all initial data zg = [ug, o] € &, where

Xy = L5, (° <Y,  YVyi={p € L®(Q):|p| <1, F(p), M(¢) € L'(Q), [7] < n},
and n € [0, 1] is fixed. The metric on X, is
d(z1,22) = |lur — u2f| + [[¢1 — p2|| VzZi = [uj, pi] € Xy, 1=1,2

Theorem 6 (F., Grasselli & Rocca '13)

Leth € HY (). Then G, is a generalized semiflow on X,, which possesses the global attractor A,,.
Existence of the global attractor in 2D (autonomuous case) and of the trajectory attractor in 3D
(non-autonomous case) also for nonlocal CHNS system with regular or singular potentials and constant
mobility. In particular, for the case of regular potential and constant mobility we have

Ay C Bx1(0, A(n)),
where A(n) is a positive constant and X,,; IS the phase space of strong solutions

The convective nonlocal CH with degenerate mobility [6]
Givenu € L% (R*; HL. ()9 N L>(R)9), consider in Q x (0,00), 2 C R, d = 2,3

loc
pr+U- Vo = div(m(e)Vp)
p=ap—dJdxp+ F(p)
As by-product of the previous analysis we obtain
m 3 and uniqueness of a weak solution = we can define a semiflow S(t) on Y,, n € [0, 1]
m 3 of a connected global attractor (u independent of time)

Remark: uniqueness of solution and 3 of the global attractor for the local CH with degenerate mobility
are open issues

Uniqueness of weak solution and exponential attractors in 2D

Regular potentials, constant mobility
By redefining the pressure =, the Korteweg force 'V can be rewritten as

—(Va/2)p® — (J * ) Ve
This allows, by some technical arguments (Gagliardo-Nirenberg in 2D) to prove
Theorem 7 (F., Gal & Grasselli '13)
Letup € L%, (R)?, po € L2() with F(vo) € L'(R2). Then, the weak solution [u, ¢] corresponding to
[uo, o] is unique . Furthermore, a continuous dependence estimate in L;, x (H')’ also holds.
—> the nonlocal CHNS system generates a semigroup S(t) of closed operators on X,

z(t) := [u(t), p(t)] = S(t)2o := S(t)[uo, o]
Theorem 8 (F., Gal & Grasselli '13)
For every n > 0 the dynamical system (X, S(t)) possesses an exponential attractor M,,.
We recall that a set M C X, is an exponential attractor for the semigroup S(t) if M is compact,
positively invariant, with finite fractal dimension and such that 3J : Rt — R* increasing and > 0 s.t.,
VR > 0 and VB C X,, with sup,.zdx,(2,0) < R there holds dist(S(t)B, M) < J(R)e "
Remark: by similar arguments uniqueness of the weak sol in 2D holds for the nonlocal CHNS system
with constant mobility+singular potential and with degenerate mobility+singular potential

References

D.M. Anderson, G.B. McFadden, A.A. Wheeler, Diffuse-interface methods in fluid mechanics, Annu.
Rev. Fluid Mech. 30, Annual Reviews, Palo Alto, CA, 1998, 139-165.

P. Colli, S. Frigeri, M. Grasselli, Global existence of weak solutions to a nonlocal
Cahn-Hilliard-Navier-Stokes system, J. Math. Anal. Appl. 386 (2012), 428-444.

S. Frigeri, M. Grasselli, Global and trajectory attractors for a nonlocal Cahn-Hilliard-Navier-Stokes
system, J. Dynam Differential Equations 24 (2012), 827-856.

S. Frigeri, M. Grasselli, Nonlocal Cahn-Hilliard-Navier-Stokes systems with singular potentials, Dyn.
Partial Differ. Equ. 9 (2012), 273-304.

S. Frigeri, M. Grasselli, P. KrejCi, Strong solutions for two-dimensional nonlocal
Cahn-Hilliard-Navier-Stokes systems, J. Differential Equations 255 (2013), 2597-2614.

A S. Frigeri, M. Grasselli and E. Rocca, A diffuse interface model for two-phase incompressible flows
with nonlocal interactions and nonconstant mobility, preprint arXiv 1303.6446 (2013).

G. Giacomin, J.L. Lebowitz, Phase segregation dynamics in particle systems with long range
interactions. |. Macroscopic limits, J. Statist. Phys. 87 (1997), 37-61.

| G. Giacomin, J.L. Lebowitz, Phase segregation dynamics in particle systems with long range
interactions. Il. Phase motion, SIAM J. Appl. Math. 58 (1998), 1707-1729.

| M.E. Gurtin, D. Polignone, J. Vinals, Two-phase binary fluids and immiscible fluids described by an
order parameter, Math. Models Meth. Appl. Sci. 6 (1996), 8-15.

P.C. Hohenberg, B.l. Halperin, Theory of dynamical critical phenomena, Rev. Mod. Phys. 49 (1977),
435-479.

D. Jasnow, J. Vinals, Coarse-grained description of thermo-capillary flow, Phys. Fluids 8 (1996),




