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Plan of the Talk

I The objective of our modelling approach: include the temperature dependence in a
model describing the evolution of nematic liquid crystal flows

I Our mathematical results:

I The results: joint work with Eduard Feireisl (Institute of Mathematics, Czech
Academy of Sciences, Prague) and Giulio Schimperna (University of Pavia), accepted
for publication on Nonlinearity.

I Some future perspectives and open problems
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The motivation

Liquid crystals are a state of matter that have properties between those of a
conventional liquid and those of a solid crystal. A liquid crystal may flow like a
liquid, but its molecules may be oriented in a crystal-like way

Theoretical studies of these types of materials are motivated by real-world
applications: proper functioning of many practical devices relies on optical properties
of certain liquid crystalline substances in the presence or absence of an electric field

At the molecular level, what marks the difference between a liquid crystal and an
ordinary, isotropic fluid is that, while the centers of mass of LC molecules do not
exhibit any long-range correlation, molecular orientations do exhibit orientational
correlations

As a result, in the continuum description of a liquid crystal, at any point in space it
is possible to define a preferred direction along which LC molecules tend to be
aligned: the unit vector d associated with this direction is called the director, with
a term borrowed from optics
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The modelling literature

There have been numerous attempts to formulate continuum theories describing the
behavior of liquid crystals flows:

A static continuum model was proposed by Frank in the 50s of the past century: it
is a variational model that posits an elastic free-energy obeying suitable constraints.
The corresponding dynamical equations were laid down by Ericksen and Leslie a
decade later [Ericksen, Trans. Soc. Rheol., 1961] and [Leslie, Arch. Ration.
Mech. Anal., 1963]

An attempt to posit a set of dynamical equations for liquid crystals on a manifold
was made a few years ago by [Shkoller, Comm. Part. Diff. Eq., 2002]. He
employed the director model proposed by [Lin and Liu, Comm. Pure Appl. Math.,
1995], which implies a drastic simplification of the Ericksen-Leslie equations,
especially in the description of dissipation

Several textbooks have been devoted to the presentation of mathematical LC
models (cf., e.g., Chandrasekhar (1977), de Gennes (1974)). The survey articles
by Ericksen (1976) and Leslie (1978), which present in a very comprehensive
fashion the “classical” continuum theories used for static and flow problems
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The Mathematical literature

The survey paper by [Lin and Liu, J. Partial Differential Equations, 2001] provides a
detailed description of the state of the art of the mathematical research on LC models. In
recent years, the mathematical study of liquid crystal models has received a growing
interest among the scientific community. The literature regarding the mathematical
analysis of PDEs for nematic liquid crystals mainly deals with two types of models:

The first one was originally introduced by [Leslie, Arch. Rational Mech. Anal.,
1963] and [Ericksen, Arch. Rational Mech. Anal., 1991] and subsequently
studied in the isothermal case in [Sun and Liu, Disc. Conti. Dyna. Sys., 2009],
where well-posedness is proved in the 2D case or in 3D under the condition that the
viscosity coefficient is sufficiently large. The long-time behavior of that system is
analyzed in a recent preprint by [Wu, Xu, Liu, 2010].

The second model is a simplification of the Ericksen-Leslie model and has been
introduced in [Lin and Liu, Comm. Pure Appl. Math., 1995], where the authors
proved existence and uniqueness of global classical solutions in 2D as well as some
corresponding results in 3D (in the case of large viscosity).
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To the present state of knowledge, three main types of liq-
uid crystals are distinguished, termed smectic, nematic and
cholesteric

The smectic phase forms well-defined layers that can slide one over
another in a manner very similar to that of a soap

The nematic phase appears to be the most common, where the
molecules do not exhibit any positional order. They have long-range
orientational order, but no tendency to the formation of layers.
Their center of mass positions all point in the same direction (within
each specific domain)

Crystals in the cholesteric phase exhibit a twisting of the molecules
perpendicular to the director, with the molecular axis parallel to the
director. The main difference between the nematic and cholesteric
phases is that the former is invariant with respect to certain reflec-
tions while the latter is not
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Our main aim

We consider the range of temperatures typical for the nematic phase .

The nematic liquid crystals are composed of rod-like molecules, with the long axes
of neighboring molecules aligned =⇒ it may be described by means of a
dimensionless unit vector d, the director, that represents the direction of preferred
orientation of molecules in a neighborhood of any point of a reference domain.

The flow velocity u evidently disturbs the alignment of the molecules and also the
converse is true: a change in the alignment will produce a perturbation of the
velocity field u. Hence, both d and u are relevant in the dynamics, and also the
changes of the temperature ϑ (internal energy).

=⇒ We introduce a very simple non-isothermal model for nematic liquid crystals in
the spirit of the simplified version of the Leslie-Ericksen model proposed by Lin and
Liu in 1995.
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The state variables

the mean velocity field u

the director field d, representing preferred orientation of molecules in a
neighborhood of any point of a reference domain

the absolute temperature ϑ
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The evolution

• The time evolution of the velocity field is governed by the incompressible
Navier-Stokes system, with a non-isotropic stress tensor depending on the gradients
of the velocity and of the director field d, where the transport (viscosity) coefficients
vary with temperature

• The dynamics of d is described by means of a parabolic equation of
Ginzburg-Landau type, with a suitable penalization term to relax the constraint
|d| = 1

• The system is supplemented by a heat equation, where the heat flux is given by a
variant of Fourier’s law, depending also on the director field d

=⇒ The proposed model is shown compatible with First and Second laws of
thermodynamics, and the existence of global-in-time weak solutions for the
resulting PDE system is established, without any essential restriction on the size of
the data
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The main difficulties

The existence of weak solutions to the standard incompressible Navier-Stokes system
was established in the celebrated paper by [Leray, Acta Math., 1934]

One of the major open problems is to clarify whether or not the weak solutions
also satisfy the corresponding total energy balance, more precisely, if the kinetic
energy of the system dissipates at the rate given by the viscous stress

To avoid this apparent difficulty, we use the idea proposed in [Feireisl, J. Málek,
Differ. Equ. Nonlinear Mech., 2006] replacing the heat equation by the total
energy balance and an entropy inequality. Of course, the price to pay is the
explicit appearance of the pressure in the total energy balance that must be handled
by refined arguments

Apart from the fact that the resulting system is mathematically tractable, such an
approach seems much closer to the physical background of the problem, being an
exact formulation of the First and Second Laws of thermodynamics

Another difficulty: the proof of sufficiently strong estimates on the director field d
in order to pass to the limit in the approximate problem. In particular, the celebrated
Gagliardo-Nirenberg inequality is needed in order to control the strongly nonlinear
terms containing ∇xd in both the momentum equation and the internal energy
balance
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energy balance and an entropy inequality. Of course, the price to pay is the
explicit appearance of the pressure in the total energy balance that must be handled
by refined arguments

Apart from the fact that the resulting system is mathematically tractable, such an
approach seems much closer to the physical background of the problem, being an
exact formulation of the First and Second Laws of thermodynamics

Another difficulty: the proof of sufficiently strong estimates on the director field d
in order to pass to the limit in the approximate problem. In particular, the celebrated
Gagliardo-Nirenberg inequality is needed in order to control the strongly nonlinear
terms containing ∇xd in both the momentum equation and the internal energy
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The momentum balance

♦ The mass conservation reads

∂t%+ div(%u) = 0 .

♦ In the context of nematic liquid crystals, we have the incompressibility constraint

div u = 0 .

• By virtue of Newton’s second law, the balance of momentum reads

∂t(%u) + div(%u⊗ u) = div T + %f ,

where T is the Cauchy stress, and f is a given external force.

• Motivated by Lin and Liu, we consider the stress tensor in the form

T = S− %λ(ϑ) (∇xd�∇xd)− pI ,

where p denotes the pressure and ∇xd�∇xd :=
∑

k ∂idk∂jdk .

• Moreover, S is the conventional Newtonian viscous stress tensor,

S(ϑ,∇xu) = µ(ϑ)
(
∇xu +∇t

xu
)
,

µ is the viscosity coefficient assumed always positive, while λ denotes the thermal
dilatation coefficient that is an increasing function of ϑ
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The director field dynamics

We assume that the driving force governing the dynamics of the director d is of
“gradient type” ∂dJ, where the potential J is given by

J(ϑ, %, d) = W (d) +
1

ϑ
G(ϑ, %)

Here G is a regular function of ϑ and %, and W penalizes the deviation of the
length |d| from the value 1. W may be a general function that can be written as a
sum of a convex (possibly non smooth) part, and a smooth, but possibly non-convex
one. A typical example is W (d) = (|d|2 − 1)2

Consequently, d satisfies the following equation

∂td + u · ∇xd + ∂dW (d) =
1

%
div (%∇xd) .
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The internal energy balance

In accordance with the First law of thermodynamics, the internal energy balance
reads

∂t(%eint) + div(%eintu) + div q = T : ∇xu ,

where eint denotes the internal energy density and q its flux

Following Ericksen’s model, the flux can be taken in the form

q = −κ(ϑ)∇xϑ− (κ|| − κ⊥)(ϑ)d(d · ∇xϑ),

where κ, κ|| − κ⊥ are positive functions of the temperature. Finally, we take
eint = cvϑ, where cv > 0 is the specific heat at constant volume
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The PDEs: assuming % = cv = 1, we get the following system:

div u = 0 , (INC)

∂tu + div(u⊗ u) +∇xp = div S− div (λ(ϑ) (∇xd�∇xd)) + f , (MOM)

∂tϑ+ div(ϑu) + div q = S : ∇xu− λ(ϑ)(∇xd�∇xd) : ∇xu , (INT)

∂td + u · ∇xd + ∂W (d) = div∇xd . (EQD)

The boundary conditions: in order to avoid the occurrence of boundary layers, we
suppose that the boundary is impermeable and perfectly smooth imposing the complete
slip boundary conditions:

u · n|∂Ω = 0, [Tn]× n|∂Ω = 0,

together with the no-flux boundary condition for the temperature

q · n|∂Ω = 0,

and the Neumann boundary condition for the director field

∇xdi · n|∂Ω = 0 for i = 1, 2, 3.

The last relation accounts for the fact that there is no contribution to the surface force
Tn from the director d. It is also suitable for implementation of a numerical scheme.
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The total energy balance

Multiplying momentum equation (MOM) by u and adding the resulting expression to
(INT) we deduce the total energy balance in the form

∂t

((1

2
|u|2 + ϑ

))
+ div

((1

2
|u|2 + ϑ

)
u
)

+ div(pu) + div q

= div(Su)− div
(
λ(ϑ) (∇xd�∇xd) u

)
+ f · u.

Moreover, using the boundary conditions and integrating the last equation over Ω we
obtain

∂t

∫
Ω

(
1

2
|u|2 + ϑ

)
=

∫
Ω

f · u,

in particular, the total energy is a constant of motion as soon as f ≡ 0.
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The entropy production

Let us denote by Λ(ϑ) a primitive of 1/λ(ϑ). Testing (INT) by 1/λ(ϑ) and (EQD) by
(div∇xd− ∂W (d)), integrating the sum over Ω, we get∫

Ω

(∂td + u · ∇xd) (div∇xd− ∂W (d)) + ∂t

∫
Ω

(Λ(ϑ)) +

∫
Ω

q · ∇xϑ
λ′(ϑ)

(λ(ϑ))2

=

∫
Ω

|div∇xd− %∂W (d)|2 +

∫
Ω

1

λ(ϑ)
S : ∇xu−

∫
Ω

(∇xd�∇xd) : ∇xu ,

and∫
Ω

(∂td+u·∇xd) (div∇xd− ∂W (d)) = ∂t

∫
Ω

(
−|∇xd|2

2
−W (d)

)
−
∫

Ω

(∇xd�∇xd) : ∇xu

Thus, finally, we arrive at

∂t

∫
Ω

(
Λ(ϑ)− |∇xd|2

2
−W (d)

)
=

∫
Ω

|div (%∇xd)− ∂W (d)|2

+

∫
Ω

1

λ(ϑ)
S : ∇xu−

∫
Ω

q · ∇xϑ
λ′(ϑ)

(λ(ϑ))2
,

where the entropy density of the system is S =
(
Λ(ϑ)− |∇xd|2/2−W (d)

)
and, if

λ′ ≥ 0, then the Second law of thermodynamics is satisfied.
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A weak solution is a triple (u, d, ϑ) satisfying:

the momentum equations (∀ϕ ∈ C∞0 ([0,T )× Ω; R3), ϕ · n|∂Ω = 0):

∫
Ω

u(t, ·) · ∇xψ = 0 for a.a. t ∈ (0,T ) ∀ψ ∈ C∞(Ω),∫ T

0

∫
Ω

(
u · ∂tϕ+ u⊗ u : ∇xϕ

)
=

∫ T

0

∫
Ω

T : ∇xϕ−
∫

Ω

u0 · ϕ(0, ·);

the equation for d holding in the strong sense:

∂td + u · ∇xd + ∂W (d) = ∆d a.e. in (0,T )× Ω, ∇xdi · n|∂Ω = 0 , i = 1, 2, 3 ;

the total energy balance (for any ϕ ∈ C∞0 ([0,T )× Ω)):∫ T

0

∫
Ω

((
1

2
|u|2 + ϑ

)
∂tϕ+

(
1

2
|u|2 + ϑ

)
u · ∇xϕ+ q · ∇xϕ

)
=

∫ T

0

∫
Ω

(S− λ(ϑ) (∇xd�∇xd)− pI) u · ∇xϕ−
∫

Ω

(
1

2
|u0|2 + ϑ0

)
ϕ(0, ·) ;

the entropy production inequality (in the sense of distributions):

∂t

(
Λ(ϑ)− |∇xd|2

2
−W (d)

)
≥ − div

(
uΛ(ϑ) +

q

λ(ϑ)
+ u · (∇xd�∇xd)− uW (d)

)
+ |∆d− ∂W (d)|2 +

1

λ(ϑ)
S : ∇xu− q · ∇xϑ

λ′(ϑ)

(λ(ϑ))2
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The assumptions

We assume that

W ∈ C 2(R3), W ≥ 0, ∂W (d) · d ≥ 0 for all |d| ≥ D0 for a certain D0 > 0

The transport coefficients are continuously differentiable functions of the absolute
temperature satisfying

0 < µ ≤ µ(ϑ) ≤ µ, 0 < κ ≤ κ(ϑ), (κ|| − κ⊥)(ϑ) ≤ κ for all ϑ ≥ 0

for suitable constants κ, κ, µ, µ

λ ∈ C 1([0,+∞)) be such that

λ′(ϑ) ≥ 0, λ′(0) > 0, λ(0) = 0, λ(ϑ) ≤ λ for all ϑ ≥ 0

for a certain λ > 0.
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The existence theorem

Let Ω ⊂ R3 be a bounded domain of class C 2+ν for some ν > 0. Assume that the
previous hypotheses are satisfied. Finally, let the initial data be such that

u0 ∈ L2(Ω; R3), div u0 = 0, d0 ∈ L∞ ∩W 1,2(Ω; R3),

ϑ0 ∈ L1(Ω), ess infΩ ϑ0 > 0.

Then our problem possesses a weak solution (u, d, ϑ) in (0,T )× Ω belonging to the
class

u ∈ L∞(0,T ; L2(Ω; R3)) ∩ L2(0,T ; W 1,2(Ω)),

d ∈ L∞((0,T )× Ω; R3) ∩ L∞(0,T ; W 1,2(Ω; R3)) ∩ L2(0,T ; W 2,2(Ω; R3)),

ϑ ∈ L∞(0,T ; L1(Ω)) ∩ Lp(0,T ; W 1,p(Ω)), 1 ≤ p < 5/4, ϑ > 0 a.e. in (0,T )× Ω,

with the pressure p,
p ∈ L5/3((0,T )× Ω).
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An idea of the proof

We perform suitable a-priori estimates which coincide with the regularity class
stated in the Theorem

It can be shown that the solution set of our problem is weakly stable (compact)
with respect to these bounds, namely, any sequence of (weak) solutions that
complies with the uniform bounds established above has a subsequence that
converges to some limit

Hence, we construct a suitable family of approximate problems (via
Faedo-Galerkin scheme + regularizing terms in the momentum equation)
whose solutions weakly converge (up to subsequences) to limit functions which solve
the problem in the weak sense
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Total dissipation balance

Combining the energy balance (multiplied by a positive constant K > 0) with the entropy
inequality we obtain the total dissipation balance in the form∫

Ω

(
K

2
|u|2 + (Kϑ− Λ(ϑ)) +

|∇xd|2

2
+ W (d)

)
(τ, ·)

+

∫ τ

0

∫
Ω

(
|∆d− ∂W (d)|2 +

1

λ(ϑ)
S : ∇xu− q · ∇xϑ

λ′(ϑ)

λ2(ϑ)

)
≤
∫

Ω

(
K

2
|u0|2 + (Kϑ0 − Λ(ϑ0)) +

|∇xd0|2

2
+ W (d0)

)
.

For K sufficiently large, the terms on the left hand side turn out to be non-negative, and
the integral on the right-hand side is bounded; hence we deduce the a priori bounds

u ∈ L∞(0,T ; L2(Ω; R3)) ∩ L2(0,T ; W 1,2(Ω; R3)) ∩ L10/3((0,T )× Ω; R3),

ϑ, log(ϑ) ∈ L∞(0,T ; L1(Ω)),

d ∈ L∞(0,T ; W 1,2(Ω; R3)).

Moreover, we also get

Λ(ϑ) ∈ L∞(0,T ; L1(Ω)), (Λ(ϑ))+ ∈ L2(0,T ; W 1,2(Ω)).
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Director field estimate

Take the scalar product of the d-equation equation with d yielding

∂t |d|2 + u · ∇x |d|2 + 2∂W (d) · d = ∆|d|2 − 2|∇xd|2.

By means of our assumptions on W , we may apply the standard maximum principle to
|d|2 obtaining

d ∈ L∞((0,T )× Ω; R3)

and so also
d ∈ L2(0,T ; W 2,2(Ω; R3)),

which, together with Gagliardo-Nirenberg interpolation inequality

‖∇xd‖L4(Ω) ≤ c1‖∆d‖1/2

L2(Ω)
‖d‖1/2

L∞(Ω) + c2‖d‖L∞(Ω) ,

gives rise to
∇xd ∈ L4((0,T )× Ω).

This estimate turns out to be “crucial” in order to obtain a bound for the pressure and,
in general, for the proof of existence of solutions.
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Pressure estimate

Thanks to our choice of the slip boundary conditions for the velocity, the pressure p can
be “computed” directly from our equations as the unique solution of the elliptic
problem

∆p = div div
(
S− λ(ϑ)∇xd�∇xd− u⊗ u

)
,

supplemented with the boundary condition

∂np = (div (S− λ(ϑ)∇xd�∇xd− u⊗ u)) · n on ∂Ω .

To be precise, the last two relations have to be interpreted in a “very weak” sense.
Namely, the pressure p is determined through a family of integral identities∫

Ω

p∆ϕ =

∫
Ω

(
S− λ(ϑ)∇xd�∇xd− u⊗ u

)
: ∇2

xϕ

for any test function ϕ ∈ C∞(Ω), ∇xϕ · n|∂Ω = 0. Consequently, the bounds already
established may be used, together with the standard elliptic regularity results, to conclude
that

p ∈ L5/3((0,T )× Ω).
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Entropy estimate

Multiplying the ϑ-equation by H ′(ϑ) (for a generic H ∈ C 2([0,+∞))) we deduce its
“renormalized” form

∂tH(ϑ) + div(H(ϑ)u) + div(H ′(ϑ)q)

+H ′′(ϑ)
(
κ(ϑ)|∇xϑ|2 + (κ|| − κ⊥)(ϑ)|d · ∇xϑ|2

)
= H ′(ϑ)

(
S− λ(ϑ)∇xd�∇xd

)
: ∇xu in D′((0,T )× Ω).

The choice H(ϑ) = (1 + ϑ)η, η ∈ (0, 1), together with the uniform bounds obtained
before, yield

∇x(1 + ϑ)ν ∈ L2((0,T )× Ω; R3) for any 0 < ν <
1

2
.

Now, we apply an interpolation argument between ϑ ∈ L∞(0,T ; L1(Ω)) and
ϑν ∈ L1(0,T ; L3(Ω)), for ν ∈ (0, 1], getting

ϑ ∈ Lq((0,T )× Ω) for any 1 ≤ q < 5/3 .

Further, observing that, for all p ∈ [1, 5/4) and ν > 0,∫
(0,T )×Ω

|∇xϑ|p ≤

(∫
(0,T )×Ω

|∇xϑ|2ϑν−1

) p
2
(∫

(0,T )×Ω

ϑ
(1−ν) p

2−p

) 2−p
2

,

we conclude that

∇xϑ ∈ Lp((0,T )× Ω; R3), ∇x(Λ(ϑ)) ∈ Lp((0,T )× Ω; R3) for any 1 ≤ p < 5/4.
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The passage to the limit

On the approximated problem, we get(
|u|2

2
+ p

)
u bounded in Lι((0,T )× Ω; R3) for some ι > 1 ,

ϑu, Λ(ϑ)u bounded in Lq((0,T )× Ω; R3)) for any q ∈ [1, 10/9) ,

Su, λ(ϑ)(∇xd�∇xd)u bounded in L5/4(0,T ; L5/4(Ω; R3)) ,

q

λ(ϑ)
bounded in Ls((0,T )× Ω; R3) for any s ∈ [1, 5/4) .

We pass to the limit in the total energy balance and to the lim sup in the entropy
inequality (thanks also to the positivity and convexity of some terms)∫ T

0

∫
Ω

((
1

2
|u|2 + ϑ

)
∂tϕ+

(
1

2
|u|2 + ϑ

)
u · ∇xϕ+ q · ∇xϕ

)

=

∫ T

0

∫
Ω

(S− λ(ϑ) (∇xd�∇xd)− pI) u · ∇xϕ−
∫

Ω

(
1

2
|u0|2 + ϑ0

)
ϕ(0, ·) ;

∂t

(
Λ(ϑ)− |∇xd|2

2
−W (d)

)
≥ − div

(
uΛ(ϑ) +

q

λ(ϑ)
+ u · (∇xd�∇xd)− uW (d)

)
+ |∆d− ∂W (d)|2 +

1

λ(ϑ)
S : ∇xu− q · ∇xϑ

λ′(ϑ)

(λ(ϑ))2
.
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Remarks on the modelling approach

• Similarly to the simplified models proposed by Lin and Liu, we ignore the
stretching of the director field induced by straining of the fluid producing an
extra term −∇xu · d in the d-equation. Such a situation was treated by Coutand
and Shkoller (2001) where local well-posedness is established for the model without
thermal effects for the PDE system

ut − div(u⊗ u)− ν∆u = div S,
S = −pI− L(∇d�∇d)− δ(L∆d− f(d))⊗ d,

div u = 0,

dt + u · ∇d− δd · ∇u− L∆d + f(d) = 0,

where we have set

f(d) :=
(
ψ(|d|2)− 1

)
d =

1

2
∂d

(
ψ̂(|d|2)− |d|2

)
and the coefficient ν, L, δ satisfy ν, L > 0 and δ ≥ 0

• In [Sun and Liu, Disc. Conti. Dyna. Sys., 2009] global well-posedness is proved
in the 2D case or in 3D under the condition that the viscosity coefficient is
sufficiently large. To the best of our knowledge, global-in-time existence for this
3D model is entirely open, even within the class of weak solutions. The case of
Dirichlet boundary conditions both for u and d are under study in a recent joint
work with C. Cavaterra
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Dirichlet boundary conditions both for u and d are under study in a recent joint
work with C. Cavaterra
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Open problems and perspectives

• The study of the long-time behaviour of solutions: there are papers on the
non-isothermal simplified model or for the full model in 2D or for large viscosity (cf.
[Wu, Xu, Liu, 2010]).The complete isothermal 3D model is the subject of a joint
work with E. Feiresl, G. Schimperna and H. Petzeltová where we characterize the
ω-limit set as a singleton under a number of different conditions (e.g. in case ψ is
analytic)

• The study of non-isothermal models for other phases of liquid crystals: in 1888, a
botanical physiologist Friedrich Reinitzer (at the Charles University in Prague)
examined the physico-chemical properties of various derivatives of cholesterol,
known as cholesteric liquid crystals. He found that cholesteryl benzoate has two
melting points. At 145.5◦C (293.9 ◦F) it melts into a cloudy liquid, and at 178.5◦C
it melts again and the cloudy liquid becomes clear

• The study the singular limit of our system with Wε(d) = 1
ε2 (|d|2 − 1)2, where the

physically meaningful condition |d| = 1 is obtained: non convex problem (cf. [Chen,
Math. Z. (1989)] for nematic liquid crystals]).
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