Cahn-Hilliard-Navier-Stokes systems with nonlocal interactions

Sergio Frigeri¹

¹Dipartimento di Matematica "F. Enriques" Università degli Studi di Milano www.mat.unimi.it/users/frigeri

Nona Giornata di Studio Politecnico di Milano-Università di Pavia Equazioni Differenziali e Calcolo delle Variazioni Pavia, 23 maggio 2013

Supported by the FP7-IDEAS-ERC-StG Grant "EntroPhase"

ヘロト ヘ戸ト ヘヨト ヘヨト

Local model for multi-phase flow: a review

- Model H (Hohenberg and Halperin) Flow of viscous incompressible Newtonian macroscopically immiscible fluids (two phases A, B)
- Phase-field methods postulate the existence of a "diffuse interface" of partial mixing with thickness measured by *ε* > 0 (*diffusive interface model*)
- An order parameter φ (concentration of A-component) and a mixing energy E in terms of φ and its spatial gradient are introduced
- State variables
- $\varphi = \text{ order parameter}$
- u = velocity field

ヘロン 人間 とくほ とくほ とう

Local Cahn-Hilliard-Navier-Stokes systems

n
$$\Omega \times (0, \infty), \Omega \subset \mathbb{R}^d, d = 2, 3$$

 $\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} - \nu\Delta \mathbf{u} + \nabla\pi = \mu\nabla\varphi + \mathbf{h}$
 $\operatorname{div}(\mathbf{u}) = 0$
 $\varphi_t + \mathbf{u} \cdot \nabla\varphi = \operatorname{div}(m(\varphi)\nabla\mu)$
 $\mu = -\epsilon\Delta\varphi + \epsilon^{-1}F'(\varphi)$

 μ chemical potential, first variation of the (total Helmholtz) free energy

$$E(\varphi) = \int_{\Omega} \left(\frac{\epsilon}{2} |\nabla \varphi|^2 + \frac{1}{\epsilon} F(\varphi) \right) dx$$

Free energy of a nonuniform system introduced by J.W. Cahn & J.E. Hilliard (1958)

- Rigorous derivation by Gurtin, Polignone and Viñals '96
- $m(\varphi)$ non-constant mobility

イロト イポト イヨト イヨト

Local Cahn-Hilliard-Navier-Stokes systems

- (ϵ/2)|∇φ|² free energy increase due to presence of two components
- F double-well potential: Helmoltz free energy density of A-component
 - Regular

$$F(s) = (1 - s^2)^2 \qquad \forall s \in \mathbb{R}$$

• Singular (J.W. Cahn & J.E. Hilliard '58)

$$F(s) = -\frac{\theta_c}{2}s^2 + \frac{\theta}{2}((1+s)\log(1+s) + (1-s)\log(1-s))$$

for all $s \in (-1, 1)$, with $0 < \theta < \theta_c$

 Math. results by Starovoitov ('97), Boyer ('99), Abels '09, Abels & Feireisl '08 (∃ weak and strong sols, uniqueness and regularity) and by Abels '09, Gal & Grasselli '09, Zhao, Wu & Huang '09 (convergence to single equilibria), Abels '09, Gal & Grasselli '09, '10 and '11 (attractors)

Nonlocal model for binary fluid motion

 Nonlocal free energy (van der Waals) suggested by Giacomin and Lebowitz ('97 & '98) and rigorously justified as macroscopic limit of microscopic phase segregation models (lattice gas with long range Kac potentials: interaction en. between x, y ∈ Z^d is γ^dJ(γ(x - y)), γ → 0)

$$E(\varphi) = \frac{1}{4} \int_{\Omega} \int_{\Omega} J(x-y)(\varphi(x) - \varphi(y))^2 dx dy + \int_{\Omega} F(\varphi(x)) dx$$

 $J : \mathbb{R}^d \to \mathbb{R}$ is an interaction kernel s.t. J(x) = J(-x)(usually nonnegative and radial). E.g. $J(x) = j_3 |x|^{-1}$ in 3D, $J(x) = -j_2 \log |x|$ in 2D

Nonlocal chemical potential

$$\mu = \mathbf{a}\varphi - \mathbf{J} * \varphi + \mathbf{F}'(\varphi)$$

$$(J * \varphi)(x) := \int_{\Omega} J(x - y)\varphi(y)dy, \quad a(x) := \int_{\Omega} J(x - y)dy$$

Nonlocal Cahn-Hilliard-Navier-Stokes systems

Consider in $\Omega \times (0,\infty)$ ($\Omega \subset \mathbb{R}^d$ bounded, d = 2,3)

$$\begin{split} \varphi_t + \mathbf{u} \cdot \nabla \varphi &= \operatorname{div} \left(m(\varphi) \nabla \mu \right) \\ \mu &= \mathbf{a} \varphi - \mathbf{J} * \varphi + \mathbf{F}'(\varphi) \\ \mathbf{u}_t - \nu \Delta \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla \pi &= \mu \nabla \varphi + \mathbf{h} \\ \operatorname{div}(\mathbf{u}) &= \mathbf{0} \end{split}$$

subject to

$$egin{array}{ll} \displaystyle rac{\partial \mu}{\partial n} = 0 & \mathbf{u} = 0 & ext{on} & \partial \Omega imes (0,\infty) \ \mathbf{u}(0) = \mathbf{u}_0 & arphi(0) = arphi_0 & ext{in} & \Omega \end{array}$$

Mass is conserved

$$\overline{\varphi(t)} := |\Omega|^{-1} \int_{\Omega} \varphi(x, t) dx = \overline{\varphi}_0$$

(雪) (ヨ) (ヨ)

Some literature on nonlocal models

- Cahn-Hilliard equation: Giacomin & Lebowitz '97 and '98; Chen & Fife '00; Gajewski '02; Gajewski & Zacharias '03; Han '04; Bates & Han '05; Colli, Krejčí, Rocca & Sprekels '07; Londen & Petzeltová '11
- Navier-Stokes-Korteweg systems (liquid-vapour phase transitions): Rohde '05
- several other contributions on nonlocal Allen-Cahn equations and phase-field systems (notably by Bates et al. and Sprekels et al.)

< 回 > < 回 > < 回 >

First mathematical results on nonlocal CHNS

- Existence of dissipative global weak sols in 2D-3D with regular (polynomial growth of arbitrary order) potentials and constant mobility (Colli, F. & Grasselli, J. Math. Anal. Appl. '12)
- Asymptotic behavior of weak sols in 2D (global attractor for the associated generalized semiflow) and in 3D (trajectory attractor) with regular potential and constant mobility (F. & Grasselli, J. Dynam Differential Equations '12)
- Singular potentials: existence of weak sols in 2D-3D with constant mobility and asymptotic behavior, i.e., global attractor in 2D and trajectory attractor in 3D (F. & Grasselli, Dyn. Partial Differ. Equ. '12)

ヘロト ヘアト ヘビト ヘビト

∃ weak sols (regular potential, constant mobility)

Assumptions on kernel and external force

$$egin{aligned} &J\in W^{1,1}(\mathbb{R}^d) \qquad a(x)=\int_\Omega J(x-y)dy\geq 0 \ &\mathbf{h}\in L^2_{loc}(\mathbb{R}^+;H^1_{div}(\Omega)') \qquad \mathbb{R}^+:=[0,\infty) \end{aligned}$$

Notion of weak sol

Let $\mathbf{u}_0 \in L^2_{div}(\Omega)^d$, $\varphi_0 \in L^2(\Omega)$ with $F(\varphi_0) \in L^1(\Omega)$ and $0 < T < +\infty$ be given. Then a couple $[\mathbf{u}, \varphi]$ is a weak sol to the nonlocal CHNS system on [0, T] if

$$u ∈ L∞(0, T; L2div(Ω)d) ∩ L2(0, T; H1div(Ω)d)
ut ∈ L4/d(0, T; H1div(Ω)'),
φ ∈ L∞(0, T; L4(Ω)) ∩ L2(0, T; H1(Ω))
φt ∈ L2(0, T; H1(Ω)')
μ ∈ L2(0, T; H1(Ω))$$

▲御♪ ▲ほ♪ ▲ほ♪ … ほ

∃ weak sols (regular potential, constant mobility)

and for all $\psi \in H^1(\Omega)$, for all $\mathbf{v} \in H^1_{div}(\Omega)^d$ and for a.e. $t \in (0, T)$

$$\begin{aligned} \langle \varphi_t, \psi \rangle + (\nabla \mu, \nabla \psi) &= (\mathbf{u}, \varphi \nabla \psi) \\ \langle \mathbf{u}_t, \mathbf{v} \rangle + \nu (\nabla \mathbf{u}, \nabla \mathbf{v}) + b(\mathbf{u}, \mathbf{u}, \mathbf{v}) &= -(\mathbf{v}, \varphi \nabla \mu) + \langle \mathbf{h}, \mathbf{v} \rangle \end{aligned}$$

with

$$\mathbf{u}(\mathbf{0}) = \mathbf{u}_{\mathbf{0}}, \qquad arphi(\mathbf{0}) = arphi_{\mathbf{0}}$$

where

$$\mu = \mathbf{a}\varphi - \mathbf{J} * \varphi + \mathbf{F}'(\varphi)$$

and

$$b(\mathbf{u},\mathbf{v},\mathbf{w}):=\int_{\Omega}(\mathbf{u}\cdot
abla)\mathbf{v}\cdot\mathbf{w}\qquadorall\mathbf{u},\mathbf{v},\mathbf{w}\in H^1_{div}(\Omega)^d$$

(雪) (ヨ) (ヨ)

Theorem (Colli, F. & Grasselli '11)

Assume $\mathbf{u}_0 \in L^2_{div}(\Omega)^d$, $\varphi_0 \in L^2(\Omega)$ with $F(\varphi_0) \in L^1(\Omega)$. Then, for every $T > 0 \exists$ a weak sol $[\mathbf{u}, \varphi]$ on [0, T] which satisfies the energy inequality (identity if d = 2) for all t > 0

$$egin{aligned} \mathcal{E}(oldsymbol{u}(t),arphi(t)) &+ \int_0^t (
u \|
abla oldsymbol{u}(au)\|^2 + \|
abla \mu(au)\|^2) d au \ &\leq \mathcal{E}(oldsymbol{u}_0,arphi_0) + \int_0^t \langleoldsymbol{h},oldsymbol{u}(au)
angle d au \end{aligned}$$

where we have set

$$\begin{aligned} \mathcal{E}(\boldsymbol{u}(t),\varphi(t)) &= \frac{1}{2} \|\boldsymbol{u}(t)\|^2 \\ &+ \frac{1}{4} \int_{\Omega} \int_{\Omega} J(x-y) (\varphi(x,t) - \varphi(y,t))^2 dx dy + \int_{\Omega} F(\varphi(t)) \end{aligned}$$

Remarks (regular potential, constant mobility)

- All results hold for more general double-well regular potentials *F*, i.e., for *F* with polynomial growth of arbitrary order
- Main difficulty: the nonlocal term implies that φ is not as regular as for the standard (local) CHNS system

 $\varphi \in L^2(H^1)$ (nonlocal), instead of $\varphi \in L^{\infty}(H^1)$ (local)

 Consequence: regularity results (higher order estimates in 2D and 3D) and uniqueness of weak sols in 2D difficult issues

イロト イポト イヨト イヨト 一日

Theorem (F. & Grasselli '12)

Let $\mathbf{u}_0 \in L^2_{div}(\Omega)^d$, $\varphi_0 \in L^{\infty}(\Omega)$ with $F(\varphi_0) \in L^1(\Omega)$. In addition, assume that $|\overline{\varphi_0}| < 1$. Then, for every $T > 0 \exists a$ weak sol $[\mathbf{u}, \varphi]$ on [0, T] corresponding to $[\mathbf{u}_0, \varphi_0]$ s.t. $\overline{\varphi}(t) = \overline{\varphi_0}$ for all $t \in [0, T]$ and

 $egin{aligned} &arphi\in L^\infty(oldsymbol{Q}), \quad |arphi(x,t)|<1 \quad a.e\,(x,t)\in oldsymbol{Q}:=\Omega imes(0,T) \ &arphi\in L^\infty(0,T;L^p(\Omega)) \end{aligned}$

where $p \le 6$ if d = 3 and $p < \infty$ if d = 2. Furthermore, the energy inequality holds and, if d = 2, every weak sol satisfies the energy identity

イロト イポト イヨト イヨト 一日

Idea of the proof

- Approximate problem with regular potential F_e
- Uniform (w.r.t. ϵ) estimates for the approximate sol $z_{\epsilon} = [\mathbf{u}_{\epsilon}, \varphi_{\epsilon}]$
- Use $|\overline{\varphi_0}| < 1$ to control the averages $\{\overline{\mu}_{\epsilon}\}$
- Pass to the limit $z_{\epsilon} \rightarrow z$
- Use $F'(s) \to \pm \infty$ as $s \to \pm 1$ to show that $|\varphi| < 1$ in $\Omega \times (0, T)$ and hence that $z = [\mathbf{u}, \varphi]$ is indeed a sol

Remarks

- All results hold for more general double-well singular potentials satisfying F'(s) → ±∞ as s → ±1
- No pure phases are admitted

ヘロト ヘアト ヘビト ヘビト

Asymptotic behavior in 2D

Regular or singular potentials (constant mobility): by relying on the energy identity

$$\frac{d}{dt}\mathcal{E}(z) + \nu \|\nabla \mathbf{u}\|^2 + \|\nabla \mu\|^2 = \langle \mathbf{h}, \mathbf{u} \rangle \qquad \forall t > 0$$

Corollary (Colli, F. & Grasselli '11)

If $\boldsymbol{h} \in L^2_{\textit{tb}}(\mathbb{R}^+; H^1_{\textit{div}}(\Omega)')$, i.e.

$$\|\boldsymbol{h}\|^2_{L^2_{tb}(\mathbb{R}^+;H^1_{div}(\Omega)')} := \sup_{t\geq 0} \int_t^{t+1} \|\boldsymbol{h}(\tau)\|^2_{H^1_{div}(\Omega)'} d\tau < \infty$$

then every weak sol $z = [\mathbf{u}, \varphi]$ satisfies the dissipative estimate

$$\mathcal{E}(z(t)) \leq \mathcal{E}(z_0)e^{-kt} + F(\bar{\varphi}_0)|\Omega| + K \qquad \forall t \geq 0$$

with $k, K \ge 0$ independent of $z_0 := [\boldsymbol{u}_0, \varphi_0]$

Generalized semiflows (Ball '97)

Definition

Let (\mathcal{X}, d) be metric space, a family of maps $z : [0, +\infty) \to \mathcal{X}$ is a generalized semiflow \mathcal{G} if

- existence: $\forall z_0 \in \mathcal{X}, \exists z \in \mathcal{G} \text{ s.t. } z(0) = z_0$
- translates of elements of ${\cal G}$ still belong to ${\cal G}$
- concatenation property holds
- upper semicontinuity w.r.t. initial data: if $z_j \in \mathcal{G}$ with $z_j(0) \to z_0$, then \exists subsequence z_{j_k} and $z \in \mathcal{G}$ s.t. $z(0) = z_0$ and $z_{j_k}(t) \to z(t)$ for all $t \ge 0$

$$T(t)\Theta = \{z(t) : z \in \mathcal{G}, z(0) \in \Theta\}, \quad \forall \Theta \subset \mathcal{X}$$

Definition

 $\mathcal{A} \subset \mathcal{X}$ is the global attractor for \mathcal{G} if it is compact, fully invariant and attracts all bounded subsets B of \mathcal{X} , i.e. dist $(T(t)B, \mathcal{A}) \to 0$

Asymptotic behavior in 2D

Existence of the global attractor (autonomous case)

• For $m_0 \ge 0$ given, introduce the *phase space*

$$\mathcal{X}_{m_0} = L^2_{div}(\Omega)^2 imes \mathcal{Y}_{m_0}$$

where, for regular potential

$$\mathcal{Y}_{m_0} = \{ \varphi \in L^2(\Omega) : F(\varphi) \in L^1(\Omega), \ |\bar{\varphi}| \le m_0 \}$$

and for singular potential

 $\mathcal{Y}_{m_0} := \{ \varphi \in L^{\infty}(\Omega) : |\varphi| < 1, \ F(\varphi) \in L^1(\Omega), |\overline{\varphi}| \leq m_0 \}$

Let G_{m₀} be the set of all weak sols corresponding to all initial data z₀ = [u₀, φ₀] ∈ X_{m₀}

Theorem (F. & Grasselli '11, '12)

Let $\mathbf{h} \in H^1_{div}(\Omega)'$. Then \mathcal{G}_{m_0} is a generalized semiflow on \mathcal{X}_{m_0} which possesses the global attractor

Remark: true for other sing. pots. F, provided F bdd.on (-1, 1)

Sergio Frigeri

Cahn-Hilliard-Navier-Stokes systems with nonlocal interactions

Asymptotic behavior in 3D

Regular or singular potentials (constant mobility)

 the above dissipative estimate still holds for all weak sols satisfying the energy inequality between *s* and *t*, for *t* ≥ *s* (F. & Grasselli '11)

Trajectory attractor approach (Chepyzhov & Vishik)

- phase space is a space of trajectories K⁺_{H+}(h₀): all weak sols satisfying the energy inequality. On K⁺_{H+}(h₀) translation semigroup {*T*(*t*)} acts
- the attraction of the trajectory attractor A_{H+}(h₀) is w.r.t. a suitable weak topology Θ⁺_{loc} for the family of bounded (in a suitable norm or metric) subsets of K⁺_{H+}(h₀)

Theorem (F. & Grasselli '11, '12)

 $\{T(t)\}\$ acting on $\mathcal{K}^+_{\mathcal{H}_+(h_0)}$ possesses the uniform (w.r.t. $h \in \mathcal{H}_+(h_0)$) trajectory attractor $\mathcal{A}_{\mathcal{H}_+(h_0)}$. This set is strictly invariant, compact in Θ^+_{loc} . In addition, $\mathcal{K}^+_{\mathcal{H}_+(h_0)}$ is closed in Θ^+_{loc} , and $\mathcal{A}_{\mathcal{H}_+(h_0)} \subset \mathcal{K}^+_{\mathcal{H}_+(h_0)}$

Theorem (F., Grasselli & Krejčí '13)

Let $h \in L^2_{loc}(\mathbb{R}^+; L^2_{div}(\Omega)^2)$ and in addition $J \in W^{2,1}(\mathbb{R}^2)$. If

$$oldsymbol{u}_0\in H^1_{div}(\Omega)^2\qquad arphi_0\in H^2(\Omega)$$

then, for every given T > 0, \exists unique strong sol $z := [\mathbf{u}, \varphi]$ s.t.

$$u \in L^{\infty}(0, T; H^{1}_{div}(\Omega)^{2}) \cap L^{2}(0, T; H^{2}(\Omega)^{2})$$
$$u_{t} \in L^{2}(0, T; L^{2}_{div}(\Omega)^{2})$$
$$\varphi \in L^{\infty}(0, T; H^{2}(\Omega))$$
$$\varphi_{t} \in L^{\infty}(0, T; L^{2}(\Omega)) \cap L^{2}(0, T; H^{1}(\Omega))$$

Moreover, a continuous dependence estimate w.r.t. data u_0, φ_0, h in $L^2_{div}(\Omega)^2 \times H^1(\Omega)' \times L^2_{loc}(\mathbb{R}^+; L^2_{div}(\Omega)^2)$ holds

An idea of the proof

- 1) The fact that $\varphi \in L^{\infty}(\Omega \times (0, T))$ and NS regularity in 2D \Rightarrow regularity for **u**
- 2) (Nonlocal CH)× μ_t in $L^2(\Omega)$ and use the above regularity to get

$$\|\nabla \mu\|^2 + \int_0^t \|\varphi_t\|^2 d\tau \le \|\nabla \mu_0\|^2 + C + \int_0^t \alpha(\tau) \|\nabla \mu(\tau)\|^2 d\tau$$

where $\alpha \in L^1(0, T)$ and *C* depend on $\|\nabla \mathbf{u}_0\|$, $\|\varphi_0\|_{H^2}$, *T*. Hence

$$\varphi \in L^{\infty}(0, T; H^{1}(\Omega)) \qquad \varphi_{t} \in L^{2}(0, T; L^{2}(\Omega))$$

イロト 不得 とくほ とくほ とう

(Nonlocal CH)_t×μ_t in L²(Ω) and use regularity at point 1). By means of *some technical arguments* (Gagliardo-Nirenberg in 2D) we deduce

$$\frac{d}{dt}\int_{\Omega}(a+F''(\varphi))\varphi_t^2+\frac{1}{4}\|\nabla\mu_t\|^2\leq\beta(t)\|\varphi_t\|^2+C\|\varphi_t\|^4+\gamma(t)$$

with $\beta, \gamma \in L^1(0, T)$. Then, use a nonlinear Gronwall lemma

$$\left. \begin{array}{c} w'(t) \leq C_1 \left(1 + w^2(t) \right) \\ \int_0^T w(\tau) d\tau \leq C_2 \end{array} \right\} \Rightarrow w(t) \leq C_3 = C_3(w(0), C_1, C_2, T)$$

and the improved regularity at point 2) to get

$$\varphi_t \in L^{\infty}(0, T; L^2(\Omega)) \cap L^2(0, T; H^1(\Omega))$$

 By comparison in the nonlocal CH we get µ ∈ L[∞](0, T; H²(Ω)) and finally, using assumption J ∈ W^{2,1}(ℝ²), we get

$$\varphi \in L^{\infty}(0, T; H^2(\Omega))$$

イロト 不得 とくほ とくほ とうほ

• Regularization in finite time of weal sols

if $z_0 = [\mathbf{u}_0, \varphi_0] \in \mathcal{X}_{m_0}$, then for every $\tau > 0 \exists s_{\tau} \in (0, \tau]$ s.t. $z(s_{\tau}) \in \mathcal{X}_{m_0}^1$, where

 $\mathcal{X}_{m_0}^1 := H^1_{div}(\Omega)^2 \times \mathcal{Y}_{m_0}^1 \qquad \mathcal{Y}_{m_0}^1 := \{ \psi \in H^2(\Omega) : |\overline{\psi}| \le m_0 \}$

Starting from s_{τ} the weak sol corresponding to z_0 becomes a (unique) strong sol $z \in C([s_{\tau}, \infty); \mathcal{X}^1_{m_0})$. The regularization is also uniform w.r.t. bdd in \mathcal{X}_{m_0} sets of initial data. Indeed

Theorem (F., Grasselli & Krejčí '13)

 $\exists \Lambda(m_0) > 0 \text{ s.t. for every } z_0 \in H^1_{div}(\Omega)^2 \times H^2(\Omega) \text{ with } |\overline{\varphi}_0| \leq m_0$ $\exists t^* = t^*(\mathcal{E}(z_0)) \text{ s.t. the strong sol corresponding to } z_0 \text{ satisfies}$

$$\|\nabla \boldsymbol{u}(t)\| + \|\varphi(t)\|_{H^2(\Omega)} + \int_t^{t+1} \|\boldsymbol{u}(s)\|_{H^2(\Omega)^2} \leq \Lambda(m_0) \qquad \forall t \geq t^*$$

Take $z_0 \in \mathcal{B}$ bdd subset of \mathcal{X}_{m_0} and $\tau = 1$. Then $\exists t^* = t^*(\mathcal{B})$ s.t. $z(t) \in B_{\mathcal{X}_{m_0}^1}(0, \Lambda(m_0))$ for all $t \ge t^*$

 \Rightarrow regularity of the global attractor

$$\mathcal{A}_{m_0} \subset B_{\mathcal{X}^1_{m_0}}(0, \Lambda(m_0))$$

Convergence to equilibria of weak sols

Theorem (F., Grasselli & Krejčí '13)

Take $z_0 \in \mathcal{X}_{m_0}$ and let $z \in C(\mathbb{R}^+; \mathcal{X}_{m_0})$ be a corresponding weak sol. Then

$$\emptyset \neq \omega(z) \subset \mathcal{E}_{m_0}$$

and $\exists t^* = t^*(z_0)$ s.t. the trajectory $\cup_{t \ge t^*} \{z(t)\}$ is precompact in \mathcal{X}_{m_0} . Moreover $\exists z_{\infty} \in \mathcal{E}_{m_0}$ s.t.

$$z(t) o z_{\infty}$$
 in \mathcal{X}_{m_0} as $t o \infty$

Set of sationary sols

$$\mathcal{E}_{m_0} := \left\{ z_{\infty} = [\mathbf{0}, \varphi_{\infty}] : \varphi_{\infty} \in L^2(\Omega), \quad F(\varphi_{\infty}) \in L^1(\Omega), \quad |\overline{\varphi}_{\infty}| \le m_0, \\ a\varphi_{\infty} - J * \varphi_{\infty} + F'(\varphi_{\infty}) = \mu_{\infty}, \ \mu_{\infty} = \overline{F'(\varphi_{\infty})} \quad \text{a.e. in } \Omega \right\}$$

- The result holds also for more general *analytic* potentials with polynomial growth of arbitrary order
- Main tool: generalized Łojasiewicz-Simon inequality: let
 [φ_∞, μ_∞] ∈ U × {const} satisfy DE(φ_∞) = μ_∞, where U is a
 neighbourhood of zero in L[∞](Ω) and

$$\mathsf{E}(arphi) := rac{1}{2} \|\sqrt{a}arphi\|^2 - rac{1}{2}(arphi, J st arphi) + \int_\Omega \mathsf{F}(arphi)$$

Then, $\exists \sigma, \lambda > 0, \theta \in (0, 1/2]$ s.t.

$$|E(\varphi) - E(\varphi_{\infty})|^{1-\theta} \le \lambda \inf\{\|DE(\varphi) - \mu\|, \ \mu = \text{ const }\}$$

 $\text{ for all } \varphi \in \textit{U} \text{ s.t. } \overline{\varphi} = \overline{\varphi}_{\infty} \text{ and } \|\varphi - \varphi_{\infty}\| < \sigma$

Non degenerate mobility, regular potential

Assumption:
$$m \in C^{0,1}_{loc}(\mathbb{R})$$
 and $\exists m_1, m_2 > 0$ s.t.
 $m_1 \leq m(s) \leq m_2 \quad \forall s \in \mathbb{R}$

Weak formulation: $[\mathbf{u}, \varphi]$ weak sol if \mathbf{u}, φ have the same regularity properties as for the const. mobility nonlocal CHNS

$$\begin{aligned} \langle \varphi_t, \psi \rangle + (m(\varphi) \nabla \mu, \nabla \psi) &= (\mathbf{u}\varphi, \nabla \psi) \quad \forall \psi \in H^1(\Omega) \\ \langle \mathbf{u}_t, \mathbf{v} \rangle + \nu(\nabla \mathbf{u}, \nabla \mathbf{v}) + b(\mathbf{u}, \mathbf{u}, \mathbf{v}) &= -(\varphi \nabla \mu, \mathbf{v}) + \langle \mathbf{h}, \mathbf{v} \rangle \quad \forall \mathbf{v} \in H^1_{div} \\ \mu &= a\varphi - J * \varphi + F'(\varphi) \in L^2(0, T; H^1(\Omega)) \quad \forall T > 0 \end{aligned}$$

Theorem (F., Grasselli & Rocca '13)

Let $\mathbf{u}_0 \in L^2_{div}(\Omega)^d$, $\varphi_0 \in L^2(\Omega)$ s.t. $F(\varphi_0) \in L^1(\Omega)$. Then, \exists weak sol $z = [\mathbf{u}, \varphi]$ corresponding to $z_0 = [\mathbf{u}_0, \varphi_0]$ and satisfying the energy inequality (equality if d = 2)

$$\mathcal{E}(\boldsymbol{z}(t)) + \int_0^t \left(\nu \|\nabla \boldsymbol{u}\|^2 + \|\sqrt{\boldsymbol{m}(\varphi)} \nabla \mu\|^2 \right) d\tau \leq \mathcal{E}(\boldsymbol{z}_0) + \int_0^t \langle \boldsymbol{h}, \boldsymbol{u} \rangle d\tau$$

Degenerate mobility, singular potential

Relevant case: mobility *m* degenerates at ± 1 and singular double-well potential *F* on (-1, 1) (e.g. logarithmic like).

 φ-dependent mobility in the original derivation of CH eq. (J.W. Cahn & J.E. Hilliard, 1971). Thermodynamically reasonable choice

$$m(\varphi) = k(1 - \varphi^2)$$

 Other mobilities and singular potentials can be considered. Key assumption (cf. [Elliot & Garcke '96], [Gajewski & Zacharias '03], [Giacomin & Lebowitz '97,'98])

$$mF'' \in C([-1,1])$$

ヘロン 人間 とくほ とくほ とう

Degenerate mobility, singular potential

Another example

$$m(\varphi) = k(\varphi)(1-\varphi^2)^n$$
 $F(\varphi) = -k_1\varphi^2 + F_1''(\varphi)$

where $k \in C([-1, 1])$ bdd and non degenerate, F_1 convex s.t. $F''_1(\varphi) = I(\varphi)(1 - \varphi^2)^{-n}$, $n \ge 1$, $I \in C^1([-1, 1])$

- Math. results on local/nonlocal CH/CHNS with variable mobility
 - local CH eq., non degenerate mobility: Barrett & Blowey '99 (∃ and uniqueness in 2D, ∃ in 3D), Liu, Qi & Yin '06 (regularity in 2D), Schimperna '07 (global attractor in 3D)
 - local CH eq., degenerate mobility: Elliot & Garcke '96 (∃), Schimperna & Zelik '13 (∃, asymptotic behavior, separation)
 - nonlocal CH eq., degenerate mobility: Giacomin & Lebowitz '97,'98, Gajewski & Zacharias '03 (∃ and uniqueness), Londen & Petzeltová '11, '11 (conv. to eq., separation)
 - local CHNS, degenerate mobility: Boyer '99 (∃), Abels, Depner & Garcke '13 (unmatched densities, ∃)

Nonlocal CHNS with degenerate mobility: ∃ weak sols

Notion of weak sol: we are not able to control $\nabla \mu$ in some L^{ρ} space; hence we reformulate the definition of weak sol in such a way that μ does not appear any more. Let $\mathbf{u}_0 \in L^2_{div}(\Omega)^d$, $\varphi_0 \in L^2(\Omega)$ with $F(\varphi_0) \in L^1(\Omega)$ and $0 < T < +\infty$ be given. A couple $[\mathbf{u}, \varphi]$ is a weak solution on [0, T] corresponding to $[\mathbf{u}_0, \varphi_0]$ if

• **u**, φ satisfy

$$\begin{aligned} \mathbf{u} &\in L^{\infty}(0, T; L^{2}_{div}(\Omega)^{d}) \cap L^{2}(0, T; H^{1}_{div}(\Omega)^{d}), \\ \mathbf{u}_{t} &\in L^{4/3}(0, T; H^{1}_{div}(\Omega)'), \quad \text{if} \quad d = 3, \\ \mathbf{u}_{t} &\in L^{2}(0, T; H^{1}_{div}(\Omega)'), \quad \text{if} \quad d = 2, \\ \varphi &\in L^{\infty}(0, T; L^{2}(\Omega)) \cap L^{2}(0, T; H^{1}(\Omega)), \\ \varphi_{t} &\in L^{2}(0, T; H^{1}(\Omega)') \end{aligned}$$

< 同 > < 臣 > < 臣 > …

Nonlocal CHNS with degenerate mobility: ∃ weak sols

and

$$arphi \in L^{\infty}(\mathcal{Q}_{\mathcal{T}}), \qquad |arphi(x,t)| \leq 1 \quad ext{a.e.} \ (x,t) \in \mathcal{Q}_{\mathcal{T}} := \Omega imes (0,\mathcal{T})$$

• for every $\psi \in H^1(\Omega)$, every $\mathbf{v} \in H^1_{div}(\Omega)^d$ and for almost any $t \in (0, T)$ we have

$$\begin{aligned} \langle \varphi_t, \psi \rangle &+ \int_{\Omega} m(\varphi) F''(\varphi) \nabla \varphi \cdot \nabla \psi + \int_{\Omega} m(\varphi) a \nabla \varphi \cdot \nabla \psi \\ &+ \int_{\Omega} m(\varphi) (\varphi \nabla a - \nabla J * \varphi) \cdot \nabla \psi = (\mathbf{u}\varphi, \nabla \psi) \\ \langle \mathbf{u}_t, \mathbf{v} \rangle &+ \nu (\nabla \mathbf{u}, \nabla \mathbf{v}) + b(\mathbf{u}, \mathbf{u}, \mathbf{v}) = ((a\varphi - J * \varphi) \nabla \varphi, \mathbf{v}) + \langle \mathbf{h}, \mathbf{v} \rangle \\ \mathbf{u}(0) &= \mathbf{u}_0, \qquad \varphi(0) = \varphi_0 \end{aligned}$$

・過 と く ヨ と く ヨ と

Nonlocal CHNS with degenerate mobility: ∃ weak sols

Theorem (F., Grasselli & Rocca '13)

Let $M \in C^2(-1, 1)$ s.t. m(s)M''(s) = 1, M(0) = M'(0) = 0. Let

 $\boldsymbol{u}_0 \in L^2_{\textit{div}}(\Omega)^{\textit{d}}, \quad \varphi_0 \in L^\infty(\Omega) \quad \boldsymbol{F}(\varphi_0) \in L^1(\Omega) \quad \boldsymbol{M}(\varphi_0) \in L^1(\Omega).$

Then, for every $T > 0 \exists a$ weak sol $z := [\mathbf{u}, \varphi]$ on [0, T]corresponding to $[\mathbf{u}_0, \varphi_0]$ s.t. $\overline{\varphi}(t) = \overline{\varphi}_0$ for all $t \in [0, T]$ and $\varphi \in L^{\infty}(0, T; L^p(\Omega))$, with $p \leq 6$ for d = 3 and $2 \leq p < \infty$ for d = 2. In addition, z satisfies the energetic inequality (identity if d = 2)

$$\frac{1}{2} (\|\boldsymbol{u}(t)\|^{2} + \|\varphi(t)\|^{2}) + \int_{0}^{t} \int_{\Omega} m(\varphi) F''(\varphi) |\nabla\varphi|^{2} + \int_{0}^{t} \int_{\Omega} am(\varphi) |\nabla\varphi|^{2} + \nu \int_{0}^{t} \|\nabla\boldsymbol{u}\|^{2} \leq \frac{1}{2} (\|\boldsymbol{u}_{0}\|^{2} + \|\varphi_{0}\|^{2}) + \int_{0}^{t} \int_{\Omega} (a\varphi - J * \varphi) \boldsymbol{u} \cdot \nabla\varphi + \int_{0}^{t} \int_{\Omega} m(\varphi) (\nabla J * \varphi - \varphi \nabla a) \cdot \nabla\varphi + \int_{0}^{t} \langle \boldsymbol{h}, \boldsymbol{u} \rangle \quad \forall t > 0$$

Nonlocal CHNS with degenerate mobility: remarks

A comparision with the constant mobility case

- Condition |\(\varphi_0\)| < 1 not required (only less strict condition |\(\varphi_0\)| ≤ 1): this is due to the different weak sol formulation w.r.t. the case of constant mobility
- Therefore, if *F* is bounded (e.g. *F* is the log pot) and at *t* = 0 the fluid is in a pure phase, i.e. φ₀ = 1 a.e. in Ω, and furthermore **u**₀ = **u**(0) is given in L²(Ω)^d_{div}, then the couple

$$\mathbf{u} = \mathbf{u}(x, t)$$
 $\varphi = \varphi(x, t) = 1$ a.e. in Ω a.a. t ,

where ${\boldsymbol{\mathsf{u}}}$ is a sol of NS with non-slip b.c. explicitly satisfies the weak formulation

 This possibility is excluded in the model with constant mobility, since in such model the chemical potential μ (and hence F'(φ)) appears explicitly

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Nonlocal CHNS with degenerate mobility: remarks

The degenerate vs. the strongly degenerate mobility

- If m'(1) ≠ 0 and m'(-1) ≠ 0, then F and M are bdd in [-1, 1] ⇒ conditions F(φ₀) ∈ L¹(Ω) and M(φ₀) ∈ L¹(Ω) satisfied by every φ₀ s.t. |φ₀| ≤ 1 in Ω ⇒ existence of pure phases allowed
- If m'(1) = m'(-1) = 0 (strongly degenerate mobility), then conditions F(φ₀) ∈ L¹(Ω) and M(φ₀) ∈ L¹(Ω) imply that {x ∈ Ω : φ₀(x) = 1} and {x ∈ Ω : φ₀(x) = -1} have both measure zero (⇒ |φ₀| < 1). Furthermore, also {x ∈ Ω : φ(x, t) = 1} and {x ∈ Ω : φ(x, t) = -1} have both measure zero for a.a. t > 0 ⇒ existence of pure phases not allowed (even on subsets of Ω of positive measure)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

More regular chemical potential

Theorem (F., Grasselli & Rocca '13)

Assume that

$$\sup_{x\in\Omega}\int_{\Omega}|\nabla J(x-y)|^{\kappa}dy<\infty$$

where $\kappa = 6/5$ if d = 3 and $\kappa > 1$ if d = 2. Let φ_0 be s.t.

$$F'(\varphi_0) \in L^2(\Omega)$$

Then, \exists weak sol $z = [\mathbf{u}, \varphi]$ that also satisfies

 $\mu \in L^{\infty}(0, T; L^{2}(\Omega)), \qquad \nabla \mu \in L^{2}(0, T; L^{2}(\Omega)^{d})$

As a consequence, $z = [\mathbf{u}, \varphi]$ also satisfies the weak formulation and the energy inequality (identity for d = 2) of the non degenerate mobility case.

Nonlocal CHNS with deg. mob.: global attractor in 2D

Let G_{m₀} be the set of all weak sols corresponding to all initial data z₀ = [**u**₀, φ₀] ∈ X_{m₀}, where, for m₀ ∈ [0, 1]

$$\mathcal{X}_{m_0} = L^2_{\textit{div}}(\Omega)^{\textit{d}} imes \mathcal{Y}_{m_0}$$

 $\mathcal{Y}_{m_0} := \{ \varphi \in L^{\infty}(\Omega) : |\varphi| \leq 1, F(\varphi), M(\varphi) \in L^1(\Omega), |\overline{\varphi}| \leq m_0 \}$ The metric on \mathcal{X}_{m_0} is

$$\mathbf{d}(z_1, z_2) = \|\mathbf{u}_1 - \mathbf{u}_2\| + \|\varphi_1 - \varphi_2\| \quad \forall z_i = [\mathbf{u}_i, \varphi_i] \in \mathcal{X}_{m_0}, i = 1, 2$$

Theorem (F., Grasselli & Rocca '13)

Let $\mathbf{h} \in H^1_{div}(\Omega)'$. Then \mathcal{G}_{m_0} is a generalized semiflow on \mathcal{X}_{m_0} which possesses the global attractor

Remark: existence of the global attractor established without the restriction $|\overline{\varphi}| < 1$ on the generalized semiflow. In particular this result does not require the separation property.

The convective nonlocal CH with degenerate mobility

Consider in $\Omega \times (0,\infty)$ ($\Omega \subset \mathbb{R}^d$ bounded, d = 2,3)

$$\varphi_t + \mathbf{u} \cdot \nabla \varphi = \operatorname{div} (m(\varphi) \nabla \mu)$$
$$\mu = a\varphi - J * \varphi + F'(\varphi)$$

Theorem (F., Grasselli & Rocca '13)

Let $\mathbf{u} \in L^2_{loc}(\mathbb{R}^+; H^1_{div}(\Omega)^d \cap L^{\infty}(\Omega)^d)$ be given and let $\varphi_0 \in L^{\infty}(\Omega)$ s.t. $F(\varphi_0), M(\varphi_0) \in L^1(\Omega)$. Then, \exists weak sol φ s.t. $\overline{\varphi}(t) = \overline{\varphi}_0$. Furthermore $\varphi \in L^{\infty}(\mathbb{R}^+; L^p(\Omega))$, with $p \leq 6$ for d = 3 and $2 \leq p < \infty$ for d = 2. In addition, the following energy identity holds

$$\frac{1}{2}\frac{d}{dt}\|\varphi\|^{2} + \int_{\Omega} m(\varphi)F''(\varphi)|\nabla\varphi|^{2} + \int_{\Omega} am(\varphi)|\nabla\varphi|^{2} + \int_{\Omega} m(\varphi)(\varphi\nabla a - \nabla J * \varphi) \cdot \nabla\varphi = 0$$

Theorem (F., Grasselli & Rocca '13)

The weak sol is unique

Hence, we can define a semiflow S(t) on \mathcal{Y}_{m_0} , $m_0 \in [0, 1]$, endowed with the metric induced by the L^2 -norm and the arguments used in the proofs of the previous results can be adapted. In particular

Theorem (F., Grasselli & Rocca '13)

Assume $\mathbf{u} \in L^{\infty}(\Omega)^d$ is given independent of time. Then, the dynamical system $(\mathcal{Y}_{m_0}, S(t))$ possesses a connected global attractor

Remark: uniqueness of sol and existence of the global attractor for the local CH with degenerate mobility are open issues

・ロト ・ 同ト ・ ヨト ・ ヨト

Some developments and open issues

In progress

- uniqueness of the weak sol in 2D, regular potentials, constant mobility and viscosity; strong-weak uniqueness with variable viscosity in 2D and exp. attractors in 2D (with Grasselli and Gal)
- deep quench limit as θ → 0: the sol z_θ → sol of nonlocal CHNS with degenerate mobility and double-obstacle potential (θ = 0)

$$F(s) = \left\{ egin{array}{cc} -(heta_c/2)s^2 & ext{if } |s| \leq 1 \ \infty & ext{otherwise} \end{array}
ight.$$

Local vs. nonlocal CH/CHNS: nonlocal CH/CHNS physically more realistic and more satisfactory results then local CH/CHNS \Rightarrow nonlocal CH/CHNS maybe "a better" phenomenological model to describe two-phase fluids??

Open issues

- unmatched densities
- non-isothermal nonlocal CH-NS model
- compressible models

くロト (過) (目) (日)