Cahn-Hilliard-Navier-Stokes systems with nonlocal interactions

Sergio Frigeri ${ }^{1}$

${ }^{1}$ Dipartimento di Matematica "F. Enriques"
Università degli Studi di Milano www.mat.unimi.it/users/frigeri

Nona Giornata di Studio Politecnico di Milano-Università di Pavia Equazioni Differenziali e Calcolo delle Variazioni

Pavia, 23 maggio 2013
Supported by the FP7-IDEAS-ERC-StG Grant "EntroPhase"

Local model for multi-phase flow: a review

- Model H (Hohenberg and Halperin) Flow of viscous incompressible Newtonian macroscopically immiscible fluids (two phases A, B)
- Phase-field methods postulate the existence of a "diffuse interface" of partial mixing with thickness measured by
$\epsilon>0$ (diffusive interface model)
- An order parameter φ (concentration of A-component) and a mixing energy E in terms of φ and its spatial gradient are introduced
- State variables
$\varphi=$ order parameter
$\mathbf{u}=$ velocity field

Local Cahn-Hilliard-Navier-Stokes systems

In $\Omega \times(0, \infty), \Omega \subset \mathbb{R}^{d}, d=2,3$

$$
\begin{aligned}
& \mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}-\nu \Delta \mathbf{u}+\nabla \pi=\mu \nabla \varphi+\mathbf{h} \\
& \operatorname{div}(\mathbf{u})=0 \\
& \varphi_{t}+\mathbf{u} \cdot \nabla \varphi=\operatorname{div}(m(\varphi) \nabla \mu) \\
& \mu=-\epsilon \Delta \varphi+\epsilon^{-1} F^{\prime}(\varphi)
\end{aligned}
$$

μ chemical potential, first variation of the (total Helmholtz) free energy

$$
E(\varphi)=\int_{\Omega}\left(\frac{\epsilon}{2}|\nabla \varphi|^{2}+\frac{1}{\epsilon} F(\varphi)\right) d x
$$

Free energy of a nonuniform system introduced by J.W. Cahn \& J.E. Hilliard (1958)

- Rigorous derivation by Gurtin, Polignone and Viñals '96
- $m(\varphi)$ non-constant mobility

Local Cahn-Hilliard-Navier-Stokes systems

- $(\epsilon / 2)|\nabla \varphi|^{2}$ free energy increase due to presence of two components
- F double-well potential: Helmoltz free energy density of A-component
- Regular

$$
F(s)=\left(1-s^{2}\right)^{2} \quad \forall s \in \mathbb{R}
$$

- Singular (J.W. Cahn \& J.E. Hilliard '58)

$$
F(s)=-\frac{\theta_{c}}{2} s^{2}+\frac{\theta}{2}((1+s) \log (1+s)+(1-s) \log (1-s))
$$

for all $s \in(-1,1)$, with $0<\theta<\theta_{c}$

- Math. results by Starovoitov ('97), Boyer ('99), Abels '09, Abels \& Feireisl '08 (\exists weak and strong sols, uniqueness and regularity) and by Abels '09, Gal \& Grasselli '09 , Zhao, Wu \& Huang '09 (convergence to single equilibria), Abels '09, Gal \& Grasselli '09, '10 and '11 (attractors)

Nonlocal model for binary fluid motion

- Nonlocal free energy (van der Waals) suggested by Giacomin and Lebowitz ('97 \& '98) and rigorously justified as macroscopic limit of microscopic phase segregation models (lattice gas with long range Kac potentials: interaction en. between $x, y \in \mathbb{Z}^{d}$ is $\left.\gamma^{d} J(\gamma(x-y)), \gamma \rightarrow 0\right)$

$$
E(\varphi)=\frac{1}{4} \int_{\Omega} \int_{\Omega} J(x-y)(\varphi(x)-\varphi(y))^{2} d x d y+\int_{\Omega} F(\varphi(x)) d x
$$

$J: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is an interaction kernel s.t. $J(x)=J(-x)$ (usually nonnegative and radial). E.g. $J(x)=j_{3}|x|^{-1}$ in 3D, $J(x)=-j_{2} \log |x|$ in 2D

- Nonlocal chemical potential

$$
\begin{gathered}
\mu=a \varphi-J * \varphi+F^{\prime}(\varphi) \\
(J * \varphi)(x):=\int_{\Omega} J(x-y) \varphi(y) d y, \quad a(x):=\int_{\Omega} J(x-y) d y
\end{gathered}
$$

Nonlocal Cahn-Hilliard-Navier-Stokes systems

Consider in $\Omega \times(0, \infty)\left(\Omega \subset \mathbb{R}^{d}\right.$ bounded, $\left.d=2,3\right)$

$$
\begin{aligned}
& \varphi_{t}+\mathbf{u} \cdot \nabla \varphi=\operatorname{div}(m(\varphi) \nabla \mu) \\
& \mu=a \varphi-J * \varphi+F^{\prime}(\varphi) \\
& \mathbf{u}_{t}-\nu \Delta \mathbf{u}+(\mathbf{u} \cdot \nabla) \mathbf{u}+\nabla \pi=\mu \nabla \varphi+\mathbf{h} \\
& \operatorname{div}(\mathbf{u})=0
\end{aligned}
$$

subject to

$$
\begin{array}{lccc}
\frac{\partial \mu}{\partial n}=0 & \mathbf{u}=0 & \text { on } & \partial \Omega \times(0, \infty) \\
\mathbf{u}(0)=\mathbf{u}_{0} & \varphi(0)=\varphi_{0} & \text { in } \Omega
\end{array}
$$

- Mass is conserved

$$
\overline{\varphi(t)}:=|\Omega|^{-1} \int_{\Omega} \varphi(x, t) d x=\bar{\varphi}_{0}
$$

Some literature on nonlocal models

- Cahn-Hilliard equation: Giacomin \& Lebowitz '97 and '98; Chen \& Fife '00; Gajewski '02; Gajewski \& Zacharias '03; Han '04; Bates \& Han '05 ; Colli, Krejčí, Rocca \& Sprekels '07; Londen \& Petzeltová '11
- Navier-Stokes-Korteweg systems (liquid-vapour phase transitions): Rohde '05
- several other contributions on nonlocal Allen-Cahn equations and phase-field systems (notably by Bates et al. and Sprekels et al.)

First mathematical results on nonlocal CHNS

- Existence of dissipative global weak sols in 2D-3D with regular (polynomial growth of arbitrary order) potentials and constant mobility (Colli, F. \& Grasselli, J. Math. Anal. Appl. '12)
- Asymptotic behavior of weak sols in 2D (global attractor for the associated generalized semiflow) and in 3D (trajectory attractor) with regular potential and constant mobility (F. \& Grasselli, J. Dynam Differential Equations '12)
- Singular potentials: existence of weak sols in 2D-3D with constant mobility and asymptotic behavior, i.e., global attractor in 2D and trajectory attractor in 3D (F. \& Grasselli, Dyn. Partial Differ. Equ. '12)
- Assumptions on kernel and external force

$$
\begin{gathered}
J \in W^{1,1}\left(\mathbb{R}^{d}\right) \quad a(x)=\int_{\Omega} J(x-y) d y \geq 0 \\
\mathbf{h} \in L_{l o c}^{2}\left(\mathbb{R}^{+} ; H_{d i v}^{1}(\Omega)^{\prime}\right) \quad \mathbb{R}^{+}:=[0, \infty)
\end{gathered}
$$

- Notion of weak sol

Let $\mathbf{u}_{0} \in L_{\text {div }}^{2}(\Omega)^{d}, \varphi_{0} \in L^{2}(\Omega)$ with $F\left(\varphi_{0}\right) \in L^{1}(\Omega)$ and $0<T<+\infty$ be given. Then a couple [\mathbf{u}, φ] is a weak sol to the nonlocal CHNS system on $[0, T]$ if

$$
\begin{aligned}
& \mathbf{u} \in L^{\infty}\left(0, T ; L_{d i v}^{2}(\Omega)^{d}\right) \cap L^{2}\left(0, T ; H_{d i v}^{1}(\Omega)^{d}\right) \\
& \mathbf{u}_{t} \in L^{4 / d}\left(0, T ; H_{d i v}^{1}(\Omega)^{\prime}\right), \\
& \varphi \in L^{\infty}\left(0, T ; L^{4}(\Omega)\right) \cap L^{2}\left(0, T ; H^{1}(\Omega)\right) \\
& \varphi_{t} \in L^{2}\left(0, T ; H^{1}(\Omega)^{\prime}\right) \\
& \mu \in L^{2}\left(0, T ; H^{1}(\Omega)\right)
\end{aligned}
$$

\exists weak sols (regular potential, constant mobility)

and for all $\psi \in H^{1}(\Omega)$, for all $\mathbf{v} \in H_{d i v}^{1}(\Omega)^{d}$ and for a.e. $t \in(0, T)$

$$
\begin{aligned}
& \left\langle\varphi_{t}, \psi\right\rangle+(\nabla \mu, \nabla \psi)=(\mathbf{u}, \varphi \nabla \psi) \\
& \left\langle\mathbf{u}_{t}, \mathbf{v}\right\rangle+\nu(\nabla \mathbf{u}, \nabla \mathbf{v})+b(\mathbf{u}, \mathbf{u}, \mathbf{v})=-(\mathbf{v}, \varphi \nabla \mu)+\langle\mathbf{h}, \mathbf{v}\rangle
\end{aligned}
$$

with

$$
\mathbf{u}(0)=\mathbf{u}_{0}, \quad \varphi(0)=\varphi_{0}
$$

where

$$
\mu=a \varphi-J * \varphi+F^{\prime}(\varphi)
$$

and

$$
b(\mathbf{u}, \mathbf{v}, \mathbf{w}):=\int_{\Omega}(\mathbf{u} \cdot \nabla) \mathbf{v} \cdot \mathbf{w} \quad \forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in H_{d i v}^{1}(\Omega)^{d}
$$

\exists weak sols (regular potential, constant mobility)

Theorem (Colli, F. \& Grasselli '11)

Assume $\boldsymbol{u}_{0} \in L_{\text {div }}^{2}(\Omega)^{d}, \varphi_{0} \in L^{2}(\Omega)$ with $F\left(\varphi_{0}\right) \in L^{1}(\Omega)$. Then, for every $T>0 \exists$ a weak sol $[\boldsymbol{u}, \varphi]$ on $[0, T]$ which satisfies the energy inequality (identity if $d=2$) for all $t>0$

$$
\begin{aligned}
& \mathcal{E}(\boldsymbol{u}(t), \varphi(t))+\int_{0}^{t}\left(\nu\|\nabla \boldsymbol{u}(\tau)\|^{2}+\|\nabla \mu(\tau)\|^{2}\right) d \tau \\
& \leq \mathcal{E}\left(\boldsymbol{u}_{0}, \varphi_{0}\right)+\int_{0}^{t}\langle\boldsymbol{h}, \boldsymbol{u}(\tau)\rangle \boldsymbol{d} \tau
\end{aligned}
$$

where we have set

$$
\begin{aligned}
& \mathcal{E}(\boldsymbol{u}(t), \varphi(t))=\frac{1}{2}\|\boldsymbol{u}(t)\|^{2} \\
& +\frac{1}{4} \int_{\Omega} \int_{\Omega} J(x-y)(\varphi(x, t)-\varphi(y, t))^{2} d x d y+\int_{\Omega} F(\varphi(t))
\end{aligned}
$$

Remarks (regular potential, constant mobility)

- All results hold for more general double-well regular potentials F, i.e., for F with polynomial growth of arbitrary order
- Main difficulty: the nonlocal term implies that φ is not as regular as for the standard (local) CHNS system

$$
\varphi \in L^{2}\left(H^{1}\right) \text { (nonlocal), instead of } \varphi \in L^{\infty}\left(H^{1}\right) \text { (local) }
$$

- Consequence: regularity results (higher order estimates in 2D and 3D) and uniqueness of weak sols in 2D difficult issues

\exists weak sols (singular potential, constant mobility)

Theorem (F. \& Grasselli '12)

Let $\boldsymbol{u}_{0} \in L_{\text {div }}^{2}(\Omega)^{d}, \varphi_{0} \in L^{\infty}(\Omega)$ with $F\left(\varphi_{0}\right) \in L^{1}(\Omega)$. In addition, assume that $\left|\overline{\varphi_{0}}\right|<1$. Then, for every $T>0 \exists$ a weak sol $[\boldsymbol{u}, \varphi]$ on $[0, T]$ corresponding to $\left[\boldsymbol{u}_{0}, \varphi_{0}\right]$ s.t. $\bar{\varphi}(t)=\overline{\varphi_{0}}$ for all $t \in[0, T]$ and

$$
\begin{aligned}
& \varphi \in L^{\infty}(Q), \quad|\varphi(x, t)|<1 \quad \text { a.e }(x, t) \in Q:=\Omega \times(0, T) \\
& \varphi \in L^{\infty}\left(0, T ; L^{p}(\Omega)\right)
\end{aligned}
$$

where $p \leq 6$ if $d=3$ and $p<\infty$ if $d=2$. Furthermore, the energy inequality holds and, if $d=2$, every weak sol satisfies the energy identity

- Idea of the proof
- Approximate problem with regular potential F_{ϵ}
- Uniform (w.r.t. ϵ) estimates for the approximate sol

$$
z_{\epsilon}=\left[\mathbf{u}_{\epsilon}, \varphi_{\epsilon}\right]
$$

- Use $\left|\bar{\varphi}_{0}\right|<1$ to control the averages $\left\{\bar{\mu}_{\epsilon}\right\}$
- Pass to the limit $z_{\epsilon} \rightarrow \boldsymbol{z}$
- Use $F^{\prime}(s) \rightarrow \pm \infty$ as $s \rightarrow \pm 1$ to show that $|\varphi|<1$ in $\Omega \times(0, T)$ and hence that $z=[\mathbf{u}, \varphi]$ is indeed a sol
- Remarks
- All results hold for more general double-well singular potentials satisfying $F^{\prime}(s) \rightarrow \pm \infty$ as $s \rightarrow \pm 1$
- No pure phases are admitted

Asymptotic behavior in 2D

Regular or singular potentials (constant mobility): by relying on the energy identity

$$
\frac{d}{d t} \mathcal{E}(z)+\nu\|\nabla \mathbf{u}\|^{2}+\|\nabla \mu\|^{2}=\langle\mathbf{h}, \mathbf{u}\rangle \quad \forall t>0
$$

Corollary (Colli, F. \& Grasselli '11)

If $\boldsymbol{h} \in L_{t b}^{2}\left(\mathbb{R}^{+} ; H_{d i v}^{1}(\Omega)^{\prime}\right)$, i.e.

$$
\|\boldsymbol{h}\|_{L_{t b}^{2}\left(\mathbb{R}^{+} ; H_{d i v}^{1}(\Omega)^{\prime}\right)}^{2}:=\sup _{t \geq 0} \int_{t}^{t+1}\|\boldsymbol{h}(\tau)\|_{H_{d i v}^{1}(\Omega)^{\prime}}^{2} d \tau<\infty
$$

then every weak sol $z=[\boldsymbol{u}, \varphi]$ satisfies the dissipative estimate

$$
\mathcal{E}(z(t)) \leq \mathcal{E}\left(z_{0}\right) e^{-k t}+F\left(\bar{\varphi}_{0}\right)|\Omega|+K \quad \forall t \geq 0
$$

with $k, K \geq 0$ independent of $z_{0}:=\left[\boldsymbol{u}_{0}, \varphi_{0}\right]$

Generalized semiflows (Ball '97)

Definition

Let (\mathcal{X}, d) be metric space, a family of maps $z:[0,+\infty) \rightarrow \mathcal{X}$ is a generalized semiflow \mathcal{G} if

- existence: $\forall z_{0} \in \mathcal{X}, \exists z \in \mathcal{G}$ s.t. $z(0)=z_{0}$
- translates of elements of \mathcal{G} still belong to \mathcal{G}
- concatenation property holds
- upper semicontinuity w.r.t. initial data: if $z_{j} \in \mathcal{G}$ with $z_{j}(0) \rightarrow z_{0}$, then \exists subsequence $z_{j_{k}}$ and $z \in \mathcal{G}$ s.t. $z(0)=z_{0}$ and $z_{j_{k}}(t) \rightarrow z(t)$ for all $t \geq 0$

$$
T(t) \Theta=\{z(t): z \in \mathcal{G}, z(0) \in \Theta\}, \quad \forall \Theta \subset \mathcal{X}
$$

Definition

$\mathcal{A} \subset \mathcal{X}$ is the global attractor for \mathcal{G} if it is compact, fully invariant and attracts all bounded subsets B of \mathcal{X}, i.e. dist $(T(t) B, \mathcal{A}) \rightarrow 0$

Asymptotic behavior in 2D

Existence of the global attractor (autonomous case)

- For $m_{0} \geq 0$ given, introduce the phase space

$$
\mathcal{X}_{m_{0}}=L_{d i v}^{2}(\Omega)^{2} \times \mathcal{Y}_{m_{0}}
$$

where, for regular potential

$$
\mathcal{Y}_{m_{0}}=\left\{\varphi \in L^{2}(\Omega): F(\varphi) \in L^{1}(\Omega),|\bar{\varphi}| \leq m_{0}\right\}
$$

and for singular potential

$$
\mathcal{Y}_{m_{0}}:=\left\{\varphi \in L^{\infty}(\Omega):|\varphi|<1, \quad F(\varphi) \in L^{1}(\Omega),|\bar{\varphi}| \leq m_{0}\right\}
$$

- Let $\mathcal{G}_{m_{0}}$ be the set of all weak sols corresponding to all initial data $z_{0}=\left[\mathbf{u}_{0}, \varphi_{0}\right] \in \mathcal{X}_{m_{0}}$

Theorem (F. \& Grasselli '11, '12)

Let $\boldsymbol{h} \in H_{\text {div }}^{1}(\Omega)^{\prime}$. Then $\mathcal{G}_{m_{0}}$ is a generalized semiflow on $\mathcal{X}_{m_{0}}$ which possesses the global attractor

Remark: true for other sing. pots. F, provided F bdd.on $(-1,1)$

Asymptotic behavior in 3D

Regular or singular potentials (constant mobility)

- the above dissipative estimate still holds for all weak sols satisfying the energy inequality between s and t, for $t \geq s$ (F. \& Grasselli '11)
Trajectory attractor approach (Chepyzhov \& Vishik)
- phase space is a space of trajectories $\mathcal{K}_{\mathcal{H}_{+}\left(\mathbf{h}_{0}\right)}^{+}$: all weak sols satisfying the energy inequality. On $\mathcal{K}_{\mathcal{H}_{+}\left(\mathbf{h}_{0}\right)}^{+}$translation semigroup $\{T(t)\}$ acts
- the attraction of the trajectory attractor $\mathcal{A}_{\mathcal{H}_{+}\left(\mathrm{h}_{0}\right)}$ is w.r.t. a suitable weak topology $\Theta_{l o c}^{+}$for the family of bounded (in a suitable norm or metric) subsets of $\mathcal{K}_{\mathcal{H}_{+}\left(\mathbf{h}_{0}\right)}^{+}$

Theorem (F. \& Grasselli '11, '12)

$\{T(t)\}$ acting on $\mathcal{K}_{\mathcal{H}_{+}\left(h_{0}\right)}^{+}$possesses the uniform (w.r.t. $h \in \mathcal{H}_{+}\left(h_{0}\right)$) trajectory attractor $\mathcal{A}_{\mathcal{H}_{+}\left(h_{0}\right)}$. This set is strictly invariant, compact in $\Theta_{\text {loc }}^{+}$. In addition, $\mathcal{K}_{\mathcal{H}_{+}\left(h_{0}\right)}^{+}$is closed in $\Theta_{\text {loc }}^{+}$, and $\mathcal{A}_{\mathcal{H}_{+}\left(h_{0}\right)} \subset \mathcal{K}_{\mathcal{H}_{+}\left(h_{0}\right)}^{+}$

Strong sols in 2D (reg. pot., const. mob.)

Theorem (F., Grasselli \& Krejčí '13)

Let $\boldsymbol{h} \in L_{\text {loc }}^{2}\left(\mathbb{R}^{+} ; L_{\text {div }}^{2}(\Omega)^{2}\right)$ and in addition $J \in W^{2,1}\left(\mathbb{R}^{2}\right)$. If

$$
\boldsymbol{u}_{0} \in H_{d i v}^{1}(\Omega)^{2} \quad \varphi_{0} \in H^{2}(\Omega)
$$

then, for every given $T>0, \exists$ unique strong sol $z:=[\boldsymbol{u}, \varphi]$ s.t.

$$
\begin{aligned}
& \boldsymbol{u} \in L^{\infty}\left(0, T ; H_{d i v}^{1}(\Omega)^{2}\right) \cap L^{2}\left(0, T ; H^{2}(\Omega)^{2}\right) \\
& \boldsymbol{u}_{t} \in L^{2}\left(0, T ; L_{\text {div }}^{2}(\Omega)^{2}\right) \\
& \varphi \in L^{\infty}\left(0, T ; H^{2}(\Omega)\right) \\
& \varphi_{t} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; H^{1}(\Omega)\right)
\end{aligned}
$$

Moreover, a continuous dependence estimate w.r.t. data $\boldsymbol{u}_{0}, \varphi_{0}$, \boldsymbol{h} in $L_{\text {div }}^{2}(\Omega)^{2} \times H^{1}(\Omega)^{\prime} \times L_{\text {loc }}^{2}\left(\mathbb{R}^{+} ; L_{\text {div }}^{2}(\Omega)^{2}\right)$ holds

Strong sols in 2D (reg. pot., const. mob.)

An idea of the proof

1) The fact that $\varphi \in L^{\infty}(\Omega \times(0, T))$ and NS regularity in $2 \mathrm{D} \Rightarrow$ regularity for \mathbf{u}
2) (Nonlocal CH) $\times \mu_{t}$ in $L^{2}(\Omega)$ and use the above regularity to get
$\|\nabla \mu\|^{2}+\int_{0}^{t}\left\|\varphi_{t}\right\|^{2} d \tau \leq\left\|\nabla \mu_{0}\right\|^{2}+C+\int_{0}^{t} \alpha(\tau)\|\nabla \mu(\tau)\|^{2} d \tau$
where $\alpha \in L^{1}(0, T)$ and C depend on $\left\|\nabla \mathbf{u}_{0}\right\|,\left\|\varphi_{0}\right\|_{H^{2}}, T$. Hence

$$
\varphi \in L^{\infty}\left(0, T ; H^{1}(\Omega)\right) \quad \varphi_{t} \in L^{2}\left(0, T ; L^{2}(\Omega)\right)
$$

Strong sols in 2D (reg. pot., const. mob.)

3) (Nonlocal CH$)_{t} \times \mu_{t}$ in $L^{2}(\Omega)$ and use regularity at point 1). By means of some technical arguments (Gagliardo-Nirenberg in 2D) we deduce

$$
\frac{d}{d t} \int_{\Omega}\left(a+F^{\prime \prime}(\varphi)\right) \varphi_{t}^{2}+\frac{1}{4}\left\|\nabla \mu_{t}\right\|^{2} \leq \beta(t)\left\|\varphi_{t}\right\|^{2}+C\left\|\varphi_{t}\right\|^{4}+\gamma(t)
$$

with $\beta, \gamma \in L^{1}(0, T)$. Then, use a nonlinear Gronwall lemma

$$
\left.\begin{array}{r}
w^{\prime}(t) \leq C_{1}\left(1+w^{2}(t)\right) \\
\int_{0}^{T} w(\tau) d \tau \leq C_{2}
\end{array}\right\} \Rightarrow w(t) \leq C_{3}=C_{3}\left(w(0), C_{1}, C_{2}, T\right)
$$

and the improved regularity at point 2) to get

$$
\varphi_{t} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; H^{1}(\Omega)\right)
$$

4) By comparison in the nonlocal CH we get $\mu \in L^{\infty}\left(0, T ; H^{2}(\Omega)\right)$ and finally, using assumption $J \in W^{2,1}\left(\mathbb{R}^{2}\right)$, we get

$$
\varphi \in L^{\infty}\left(0, T ; H^{2}(\Omega)\right)
$$

Strong sols in 2D (reg. pot., const. mob.)

- Regularization in finite time of weal sols
if $z_{0}=\left[\mathbf{u}_{0}, \varphi_{0}\right] \in \mathcal{X}_{m_{0}}$, then for every $\tau>0 \exists s_{\tau} \in(0, \tau]$ s.t. $z\left(s_{\tau}\right) \in \mathcal{X}_{m_{0}}^{1}$, where

$$
\mathcal{X}_{m_{0}}^{1}:=H_{d i v}^{1}(\Omega)^{2} \times \mathcal{Y}_{m_{0}}^{1} \quad \mathcal{Y}_{m_{0}}^{1}:=\left\{\psi \in H^{2}(\Omega):|\bar{\psi}| \leq m_{0}\right\}
$$

Starting from s_{τ} the weak sol corresponding to z_{0} becomes a (unique) strong sol $z \in C\left(\left[s_{\tau}, \infty\right) ; \mathcal{X}_{m_{0}}^{1}\right)$.
The regularization is also uniform w.r.t. bdd in $\mathcal{X}_{m_{0}}$ sets of initial data. Indeed

Theorem (F., Grasselli \& Krejčí '13)
$\exists \Lambda\left(m_{0}\right)>0$ s.t. for every $z_{0} \in H_{\text {div }}^{1}(\Omega)^{2} \times H^{2}(\Omega)$ with $\left|\bar{\varphi}_{0}\right| \leq m_{0}$ $\exists t^{*}=t^{*}\left(\mathcal{E}\left(z_{0}\right)\right)$ s.t. the strong sol corresponding to z_{0} satisfies

$$
\|\nabla \boldsymbol{u}(t)\|+\|\varphi(t)\|_{H^{2}(\Omega)}+\int_{t}^{t+1}\|\boldsymbol{u}(s)\|_{H^{2}(\Omega)^{2}} \leq \Lambda\left(m_{0}\right) \quad \forall t \geq t^{*}
$$

Strong sols in 2D (reg. pot., const. mob.)

Take $z_{0} \in \mathcal{B}$ bdd subset of $\mathcal{X}_{m_{0}}$ and $\tau=1$. Then $\exists t^{*}=t^{*}(\mathcal{B})$ s.t. $z(t) \in B_{\mathcal{X}_{m_{0}}^{1}}\left(0, \Lambda\left(m_{0}\right)\right)$ for all $t \geq t^{*}$
\Rightarrow regularity of the global attractor

$$
\mathcal{A}_{m_{0}} \subset B_{\mathcal{X}_{m_{0}}^{1}}\left(0, \Lambda\left(m_{0}\right)\right)
$$

- Convergence to equilibria of weak sols

Theorem (F., Grasselli \& Krejčí '13)

Take $z_{0} \in \mathcal{X}_{m_{0}}$ and let $z \in C\left(\mathbb{R}^{+} ; \mathcal{X}_{m_{0}}\right)$ be a corresponding weak sol. Then

$$
\emptyset \neq \omega(z) \subset \mathcal{E}_{m_{0}}
$$

and $\exists t^{*}=t^{*}\left(z_{0}\right)$ s.t. the trajectory $\cup_{t \geq t^{*}}\{z(t)\}$ is precompact in $\mathcal{X}_{m_{0}}$. Moreover $\exists z_{\infty} \in \mathcal{E}_{m_{0}}$ s.t.

$$
z(t) \rightarrow z_{\infty} \quad \text { in } \mathcal{X}_{m_{0}} \quad \text { as } t \rightarrow \infty
$$

Strong sols in 2D (reg. pot., const. mob.)

Set of sationary sols

$$
\begin{gathered}
\mathcal{E}_{m_{0}}:=\left\{z_{\infty}=\left[\mathbf{0}, \varphi_{\infty}\right]: \varphi_{\infty} \in L^{2}(\Omega), \quad F\left(\varphi_{\infty}\right) \in L^{1}(\Omega), \quad\left|\bar{\varphi}_{\infty}\right| \leq m_{0},\right. \\
\left.a \varphi_{\infty}-J * \varphi_{\infty}+F^{\prime}\left(\varphi_{\infty}\right)=\mu_{\infty}, \mu_{\infty}=\overline{F^{\prime}\left(\varphi_{\infty}\right)} \quad \text { a.e. in } \Omega\right\}
\end{gathered}
$$

- The result holds also for more general analytic potentials with polynomial growth of arbitrary order
- Main tool: generalized Łojasiewicz-Simon inequality: let $\left[\varphi_{\infty}, \mu_{\infty}\right] \in U \times\{$ const $\}$ satisfy $D E\left(\varphi_{\infty}\right)=\mu_{\infty}$, where U is a neighbourhood of zero in $L^{\infty}(\Omega)$ and

$$
E(\varphi):=\frac{1}{2}\|\sqrt{a} \varphi\|^{2}-\frac{1}{2}(\varphi, J * \varphi)+\int_{\Omega} F(\varphi)
$$

Then, $\exists \sigma, \lambda>0, \theta \in(0,1 / 2]$ s.t.

$$
\left|E(\varphi)-E\left(\varphi_{\infty}\right)\right|^{1-\theta} \leq \lambda \inf \{\|D E(\varphi)-\mu\|, \mu=\text { const }\}
$$

for all $\varphi \in U$ s.t. $\bar{\varphi}=\bar{\varphi}_{\infty}$ and $\left\|\varphi-\varphi_{\infty}\right\|<\sigma$

Non degenerate mobility, regular potential

Assumption: $m \in C_{l o c}^{0,1}(\mathbb{R})$ and $\exists m_{1}, m_{2}>0$ s.t.

$$
m_{1} \leq m(s) \leq m_{2} \quad \forall s \in \mathbb{R}
$$

Weak formulation: $[\mathbf{u}, \varphi$] weak sol if \mathbf{u}, φ have the same regularity properties as for the const. mobility nonlocal CHNS

$$
\begin{aligned}
& \left\langle\varphi_{t}, \psi\right\rangle+(m(\varphi) \nabla \mu, \nabla \psi)=(\mathbf{u} \varphi, \nabla \psi) \quad \forall \psi \in H^{1}(\Omega) \\
& \left\langle\mathbf{u}_{t}, \mathbf{v}\right\rangle+\nu(\nabla \mathbf{u}, \nabla \mathbf{v})+b(\mathbf{u}, \mathbf{u}, \mathbf{v})=-(\varphi \nabla \mu, \mathbf{v})+\langle\mathbf{h}, \mathbf{v}\rangle \quad \forall \mathbf{v} \in H_{d i v}^{1} \\
& \mu=a \varphi-J * \varphi+{F^{\prime}}^{\prime}(\varphi) \in L^{2}\left(0, T ; H^{1}(\Omega)\right) \quad \forall T>0
\end{aligned}
$$

Theorem (F., Grasselli \& Rocca '13)

Let $u_{0} \in L_{\text {div }}^{2}(\Omega)^{d}, \varphi_{0} \in L^{2}(\Omega)$ s.t. $F\left(\varphi_{0}\right) \in L^{1}(\Omega)$. Then, \exists weak sol $z=[\boldsymbol{u}, \varphi]$ corresponding to $z_{0}=\left[\boldsymbol{u}_{0}, \varphi_{0}\right]$ and satisfying the energy inequality (equality if $d=2$)

$$
\mathcal{E}(z(t))+\int_{0}^{t}\left(\nu\|\nabla \boldsymbol{u}\|^{2}+\|\sqrt{m(\varphi)} \nabla \mu\|^{2}\right) d \tau \leq \mathcal{E}\left(z_{0}\right)+\int_{0}^{t}\langle\boldsymbol{h}, \boldsymbol{u}\rangle d \tau
$$

Degenerate mobility, singular potential

Relevant case: mobility m degenerates at ± 1 and singular double-well potential F on $(-1,1)$ (e.g. logarithmic like).

- φ-dependent mobility in the original derivation of CH eq. (J.W. Cahn \& J.E. Hilliard, 1971). Thermodynamically reasonable choice

$$
m(\varphi)=k\left(1-\varphi^{2}\right)
$$

- Other mobilities and singular potentials can be considered. Key assumption (cf. [Elliot \& Garcke '96], [Gajewski \& Zacharias '03], [Giacomin \& Lebowitz '97,'98])

$$
m F^{\prime \prime} \in C([-1,1])
$$

Degenerate mobility, singular potential

- Another example

$$
m(\varphi)=k(\varphi)\left(1-\varphi^{2}\right)^{n} \quad F(\varphi)=-k_{1} \varphi^{2}+F_{1}^{\prime \prime}(\varphi)
$$

where $k \in C([-1,1])$ bdd and non degenerate, F_{1} convex s.t. $F_{1}^{\prime \prime}(\varphi)=I(\varphi)\left(1-\varphi^{2}\right)^{-n}, n \geq 1, I \in C^{1}([-1,1])$

- Math. results on local/nonlocal $\mathrm{CH} / \mathrm{CHNS}$ with variable mobility
- local CH eq., non degenerate mobility: Barrett \& Blowey '99 (\exists and uniqueness in 2D, \exists in 3D), Liu, Qi \& Yin '06 (regularity in 2D), Schimperna '07 (global attractor in 3D)
- local CH eq., degenerate mobility: Elliot \& Garcke '96 (\exists), Schimperna \& Zelik '13 (\exists, asymptotic behavior, separation)
- nonlocal CH eq., degenerate mobility: Giacomin \& Lebowitz '97,'98, Gajewski \& Zacharias '03 (\exists and uniqueness), Londen \& Petzeltová '11, '11 (conv. to eq., separation)
- local CHNS, degenerate mobility: Boyer '99 (\exists), Abels, Depner \& Garcke '13 (unmatched densities, \exists)

Nonlocal CHNS with degenerate mobility: \exists weak sols

Notion of weak sol: we are not able to control $\nabla \mu$ in some L^{p} space; hence we reformulate the definition of weak sol in such a way that μ does not appear any more.
Let $\mathbf{u}_{0} \in L_{\text {div }}^{2}(\Omega)^{d}, \varphi_{0} \in L^{2}(\Omega)$ with $F\left(\varphi_{0}\right) \in L^{1}(\Omega)$ and $0<T<+\infty$ be given. A couple [\mathbf{u}, φ] is a weak solution on $[0, T]$ corresponding to $\left[\mathbf{u}_{0}, \varphi_{0}\right]$ if

- u, φ satisfy

$$
\begin{aligned}
& \mathbf{u} \in L^{\infty}\left(0, T ; L_{d i v}^{2}(\Omega)^{d}\right) \cap L^{2}\left(0, T ; H_{d i v}^{1}(\Omega)^{d}\right), \\
& \mathbf{u}_{t} \in L^{4 / 3}\left(0, T ; H_{d i v}^{1}(\Omega)^{\prime}\right), \quad \text { if } d=3, \\
& \mathbf{u}_{t} \in L^{2}\left(0, T ; H_{d i v}^{1 d}(\Omega)^{\prime}\right), \quad \text { if } d=2, \\
& \varphi \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; H^{1}(\Omega)\right), \\
& \varphi_{t} \in L^{2}\left(0, T ; H^{1}(\Omega)^{\prime}\right)
\end{aligned}
$$

Nonlocal CHNS with degenerate mobility: \exists weak sols

and

$$
\varphi \in L^{\infty}\left(Q_{T}\right), \quad|\varphi(x, t)| \leq 1 \quad \text { a.e. }(x, t) \in Q_{T}:=\Omega \times(0, T)
$$

- for every $\psi \in H^{1}(\Omega)$, every $\mathbf{v} \in H_{d i v}^{1}(\Omega)^{d}$ and for almost any $t \in(0, T)$ we have

$$
\begin{aligned}
& \left\langle\varphi_{t}, \psi\right\rangle+\int_{\Omega} m(\varphi) F^{\prime \prime}(\varphi) \nabla \varphi \cdot \nabla \psi+\int_{\Omega} m(\varphi) a \nabla \varphi \cdot \nabla \psi \\
& +\int_{\Omega} m(\varphi)(\varphi \nabla a-\nabla J * \varphi) \cdot \nabla \psi=(\mathbf{u} \varphi, \nabla \psi) \\
& \left\langle\mathbf{u}_{t}, \mathbf{v}\right\rangle+\nu(\nabla \mathbf{u}, \nabla \mathbf{v})+b(\mathbf{u}, \mathbf{u}, \mathbf{v})=((a \varphi-J * \varphi) \nabla \varphi, \mathbf{v})+\langle\mathbf{h}, \mathbf{v}\rangle \\
& \mathbf{u}(0)=\mathbf{u}_{0}, \quad \varphi(0)=\varphi_{0}
\end{aligned}
$$

Nonlocal CHNS with degenerate mobility: \exists weak sols

Theorem (F., Grasselli \& Rocca '13)
Let $M \in C^{2}(-1,1)$ s.t. $m(s) M^{\prime \prime}(s)=1, M(0)=M^{\prime}(0)=0$. Let

$$
\boldsymbol{u}_{0} \in L_{\text {div }}^{2}(\Omega)^{d}, \quad \varphi_{0} \in L^{\infty}(\Omega) \quad F\left(\varphi_{0}\right) \in L^{1}(\Omega) \quad M\left(\varphi_{0}\right) \in L^{1}(\Omega) .
$$

Then, for every $T>0 \exists$ a weak sol $z:=[\mathbf{u}, \varphi]$ on $[0, T]$ corresponding to $\left[\boldsymbol{u}_{0}, \varphi_{0}\right]$ s.t. $\bar{\varphi}(t)=\bar{\varphi}_{0}$ for all $t \in[0, T]$ and $\varphi \in L^{\infty}\left(0, T ; L^{p}(\Omega)\right)$, with $p \leq 6$ for $d=3$ and $2 \leq p<\infty$ for $d=2$. In addition, z satisfies the energetic inequality (identity if $d=2$)

$$
\begin{aligned}
& \frac{1}{2}\left(\|\boldsymbol{u}(t)\|^{2}+\|\varphi(t)\|^{2}\right)+\int_{0}^{t} \int_{\Omega} m(\varphi) F^{\prime \prime}(\varphi)|\nabla \varphi|^{2}+\int_{0}^{t} \int_{\Omega} a m(\varphi)|\nabla \varphi|^{2} \\
& +\nu \int_{0}^{t}\|\nabla \boldsymbol{u}\|^{2} \leq \frac{1}{2}\left(\left\|\boldsymbol{u}_{0}\right\|^{2}+\left\|\varphi_{0}\right\|^{2}\right)+\int_{0}^{t} \int_{\Omega}(a \varphi-J * \varphi) \boldsymbol{u} \cdot \nabla \varphi \\
& +\int_{0}^{t} \int_{\Omega} m(\varphi)(\nabla J * \varphi-\varphi \nabla a) \cdot \nabla \varphi+\int_{0}^{t}\langle\boldsymbol{h}, \boldsymbol{u}\rangle \quad \forall t>0
\end{aligned}
$$

Nonlocal CHNS with degenerate mobility: remarks

A comparision with the constant mobility case

- Condition $\left|\bar{\varphi}_{0}\right|<1$ not required (only less strict condition $\left.\left|\bar{\varphi}_{0}\right| \leq 1\right)$: this is due to the different weak sol formulation w.r.t. the case of constant mobility
- Therefore, if F is bounded (e.g. F is the log pot) and at $t=0$ the fluid is in a pure phase, i.e. $\varphi_{0}=1$ a.e. in Ω, and furthermore $\mathbf{u}_{0}=\mathbf{u}(0)$ is given in $L^{2}(\Omega)_{\text {div }}^{d}$, then the couple

$$
\mathbf{u}=\mathbf{u}(x, t) \quad \varphi=\varphi(x, t)=1 \quad \text { a.e. in } \Omega \quad \text { a.a. } t
$$

where \mathbf{u} is a sol of NS with non-slip b.c. explicitly satisfies the weak formulation

- This possibility is excluded in the model with constant mobility, since in such model the chemical potential μ (and hence $F^{\prime}(\varphi)$) appears explicitly

Nonlocal CHNS with degenerate mobility: remarks

The degenerate vs. the strongly degenerate mobility

- If $m^{\prime}(1) \neq 0$ and $m^{\prime}(-1) \neq 0$, then F and M are bdd in
$[-1,1] \Rightarrow$ conditions $F\left(\varphi_{0}\right) \in L^{1}(\Omega)$ and $M\left(\varphi_{0}\right) \in L^{1}(\Omega)$ satisfied by every φ_{0} s.t. $\left|\varphi_{0}\right| \leq 1$ in $\Omega \Rightarrow$ existence of pure phases allowed
- If $m^{\prime}(1)=m^{\prime}(-1)=0$ (strongly degenerate mobility), then conditions $F\left(\varphi_{0}\right) \in L^{1}(\Omega)$ and $M\left(\varphi_{0}\right) \in L^{1}(\Omega)$ imply that $\left\{x \in \Omega: \varphi_{0}(x)=1\right\}$ and $\left\{x \in \Omega: \varphi_{0}(x)=-1\right\}$ have both measure zero ($\Rightarrow\left|\bar{\varphi}_{0}\right|<1$). Furthermore, also $\{x \in \Omega: \varphi(x, t)=1\}$ and $\{x \in \Omega: \varphi(x, t)=-1\}$ have both measure zero for a.a. $t>0 \Rightarrow$ existence of pure phases not allowed (even on subsets of Ω of positive measure)

More regular chemical potential

Theorem (F., Grasselli \& Rocca '13)

Assume that

$$
\sup _{x \in \Omega} \int_{\Omega}|\nabla J(x-y)|^{\kappa} d y<\infty
$$

where $\kappa=6 / 5$ if $d=3$ and $\kappa>1$ if $d=2$. Let φ_{0} be s.t.

$$
F^{\prime}\left(\varphi_{0}\right) \in L^{2}(\Omega)
$$

Then, \exists weak sol $z=[\boldsymbol{u}, \varphi]$ that also satisfies

$$
\mu \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right), \quad \nabla \mu \in L^{2}\left(0, T ; L^{2}(\Omega)^{d}\right)
$$

As a consequence, $z=[\boldsymbol{u}, \varphi]$ also satisfies the weak formulation and the energy inequality (identity for $d=2$) of the non degenerate mobility case.

Nonlocal CHNS with deg. mob.: global attractor in 2D

- Let $\mathcal{G}_{m_{0}}$ be the set of all weak sols corresponding to all initial data $z_{0}=\left[\mathbf{u}_{0}, \varphi_{0}\right] \in \mathcal{X}_{m_{0}}$, where, for $m_{0} \in[0,1]$

$$
\mathcal{X}_{m_{0}}=L_{\operatorname{div}}^{2}(\Omega)^{d} \times \mathcal{Y}_{m_{0}}
$$

$\mathcal{Y}_{m_{0}}:=\left\{\varphi \in L^{\infty}(\Omega):|\varphi| \leq 1, F(\varphi), M(\varphi) \in L^{1}(\Omega),|\bar{\varphi}| \leq m_{0}\right\}$
The metric on $\mathcal{X}_{m_{0}}$ is

$$
\mathbf{d}\left(z_{1}, z_{2}\right)=\left\|\mathbf{u}_{1}-\mathbf{u}_{2}\right\|+\left\|\varphi_{1}-\varphi_{2}\right\| \quad \forall z_{i}=\left[\mathbf{u}_{i}, \varphi_{i}\right] \in \mathcal{X}_{m_{0}}, i=1,2
$$

Theorem (F., Grasselli \& Rocca '13)

Let $\boldsymbol{h} \in H_{d i v}^{1}(\Omega)^{\prime}$. Then $\mathcal{G}_{m_{0}}$ is a generalized semiflow on $\mathcal{X}_{m_{0}}$ which possesses the global attractor

Remark: existence of the global attractor established without the restriction $|\bar{\varphi}|<1$ on the generalized semiflow. In particular this result does not require the separation property

The convective nonlocal CH with degenerate mobility

Consider in $\Omega \times(0, \infty)\left(\Omega \subset \mathbb{R}^{d}\right.$ bounded, $\left.d=2,3\right)$

$$
\begin{aligned}
& \varphi_{t}+\mathbf{u} \cdot \nabla \varphi=\operatorname{div}(m(\varphi) \nabla \mu) \\
& \mu=\boldsymbol{a} \varphi-J * \varphi+F^{\prime}(\varphi)
\end{aligned}
$$

Theorem (F., Grasselli \& Rocca '13)

Let $\boldsymbol{u} \in L_{\text {loc }}^{2}\left(\mathbb{R}^{+} ; H_{\text {div }}^{1}(\Omega)^{d} \cap L^{\infty}(\Omega)^{d}\right)$ be given and let $\varphi_{0} \in L^{\infty}(\Omega)$ s.t. $F\left(\varphi_{0}\right), M\left(\varphi_{0}\right) \in L^{1}(\Omega)$. Then, \exists weak sol φ s.t. $\bar{\varphi}(t)=\bar{\varphi}_{0}$. Furthermore $\varphi \in L^{\infty}\left(\mathbb{R}^{+} ; L^{p}(\Omega)\right)$, with $p \leq 6$ for $d=3$ and $2 \leq p<\infty$ for $d=2$. In addition, the following energy identity holds

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\|\varphi\|^{2}+\int_{\Omega} m(\varphi) F^{\prime \prime}(\varphi)|\nabla \varphi|^{2}+\int_{\Omega} a m(\varphi)|\nabla \varphi|^{2} \\
& +\int_{\Omega} m(\varphi)(\varphi \nabla a-\nabla J * \varphi) \cdot \nabla \varphi=0
\end{aligned}
$$

The convective nonlocal CH with degenerate mobility

Theorem (F., Grasselli \& Rocca '13)

The weak sol is unique
Hence, we can define a semiflow $S(t)$ on $\mathcal{Y}_{m_{0}}, m_{0} \in[0,1]$, endowed with the metric induced by the L^{2}-norm and the arguments used in the proofs of the previous results can be adapted. In particular

Theorem (F., Grasselli \& Rocca '13)

Assume $\boldsymbol{u} \in L^{\infty}(\Omega)^{d}$ is given independent of time. Then, the dynamical system $\left(\mathcal{Y}_{m_{0}}, S(t)\right)$ possesses a connected global attractor

Remark: uniqueness of sol and existence of the global attractor for the local CH with degenerate mobility are open issues

Some developments and open issues

In progress

- uniqueness of the weak sol in 2D, regular potentials, constant mobility and viscosity; strong-weak uniqueness with variable viscosity in 2D and exp. attractors in 2D (with Grasselli and Gal)
- deep quench limit as $\theta \rightarrow 0$: the sol $z_{\theta} \rightarrow$ sol of nonlocal CHNS with degenerate mobility and double-obstacle potential $(\theta=0)$

$$
F(s)=\left\{\begin{aligned}
-\left(\theta_{c} / 2\right) s^{2} & \text { if }|s| \leq 1 \\
\infty & \text { otherwise }
\end{aligned}\right.
$$

Local vs. nonlocal CH/CHNS: nonlocal CH/CHNS physically more realistic and more satisfactory results then local $\mathrm{CH} / \mathrm{CHNS}$
\Rightarrow nonlocal CH/CHNS maybe "a better" phenomenological model to describe two-phase fluids??

Open issues

- unmatched densities
- non-isothermal nonlocal CH-NS model
- compressible models

