On the long time behavior and optimal control of a tumor growth model

E. Rocca

Università degli Studi di Pavia

February 27, 2019, Bilbao BILBAO WORKSHOP ON THEORETICAL FLUID DYNAMICS

joint work with Cecilia Cavaterra (Milano), Hao Wu (Fudan)

Regione Lombardia UNIVERSITÀ DI PAVIA

イロト 不得下 イヨト イヨト

Outline

1 Phase field models for tumor growth

The model HZO by [A. Hawkins-Daarud, K.-G. van der Zee and J.-T. Oden (2011)]

Sontent of the joint work with C. Cavaterra and H. Wu, arXiv:1901.07500, 2019

Well-posedness

- 5 Long-term dynamics
- 6 The optimal control problem
- Open problems and Perspectives

イロト 不得下 イヨト イヨト

Outline

1 Phase field models for tumor growth

2 The model HZO by [A. Hawkins-Daarud, K.-G. van der Zee and J.-T. Oden (2011)]

Content of the joint work with C. Cavaterra and H. Wu, arXiv:1901.07500, 2019

Well-posedness

5 Long-term dynamics

6 The optimal control problem

Open problems and Perspectives

イロト イヨト イヨト イヨ

Setting

Tumors grown in vitro often exhibit "layered" structures:

Figure: Zhang et al. Integr. Biol., 2012, 4, 1072–1080. Scale bar $100\mu m = 0.1 mm$

Setting

Tumors grown in vitro often exhibit "layered" structures:

Figure: Zhang et al. Integr. Biol., 2012, 4, 1072–1080. Scale bar $100\mu m = 0.1mm$

A continuum model is introduced with the ansatz:

- sharp interfaces are replaced by narrow transition layers arising due to adhesive forces among the cell species: a diffuse interface separates tumor and healthy cell regions
- proliferating tumor cells surrounded by (healthy) host cells, and a nutrient (e.g. glucose).

イロト 不得下 イヨト イヨト

Setting

Tumors grown in vitro often exhibit "layered" structures:

Figure: Zhang et al. Integr. Biol., 2012, 4, 1072–1080. Scale bar $100\mu m = 0.1mm$

A continuum model is introduced with the ansatz:

- sharp interfaces are replaced by narrow transition layers arising due to adhesive forces among the cell species: a diffuse interface separates tumor and healthy cell regions
- proliferating tumor cells surrounded by (healthy) host cells, and a nutrient (e.g. glucose).

We investigate the two-phase case: growth of a tumor in presence of a nutrient and surrounded by host tissues.

E. Rocca (Università degli Studi di Pavia)

イロン イロン イヨン イヨン

- It eliminates the need to enforce complicated boundary conditions across the tumor/host tissue and other species/species interfaces
- It eliminates the need to explicitly track the position of interfaces, as is required in the sharp interface framework
- The mathematical description remains valid even when the tumor undergoes toplogical changes (e.g. metastasis)

- It eliminates the need to enforce complicated boundary conditions across the tumor/host tissue and other species/species interfaces
- It eliminates the need to explicitly track the position of interfaces, as is required in the sharp interface framework
- The mathematical description remains valid even when the tumor undergoes toplogical changes (e.g. metastasis)

Regarding modeling of diffuse interface tumor growth we can quote, e.g.,

 Ciarletta, Cristini, Frieboes, Garcke, Hawkins-Daarud, Hilhorst, Lam, Lowengrub, Oden, van der Zee, Wise, also for their numerical simulations → complex changes in tumor morphologies due to the interactions with nutrients or toxic agents and also due to mechanical stresses

- It eliminates the need to enforce complicated boundary conditions across the tumor/host tissue and other species/species interfaces
- It eliminates the need to explicitly track the position of interfaces, as is required in the sharp interface framework
- The mathematical description remains valid even when the tumor undergoes toplogical changes (e.g. metastasis)

Regarding modeling of diffuse interface tumor growth we can quote, e.g.,

- Ciarletta, Cristini, Frieboes, Garcke, Hawkins-Daarud, Hilhorst, Lam, Lowengrub, Oden, van der Zee, Wise, also for their numerical simulations → complex changes in tumor morphologies due to the interactions with nutrients or toxic agents and also due to mechanical stresses
- Frieboes, Jin, Chuang, Wise, Lowengrub, Cristini, Garcke, Lam, Nürnberg, Sitka, for the interaction of multiple tumor cell species described by *multiphase mixture models*

Outline

Phase field models for tumor growth

The model HZO by [A. Hawkins-Daarud, K.-G. van der Zee and J.-T. Oden (2011)]

Content of the joint work with C. Cavaterra and H. Wu, arXiv:1901.07500, 2019

Well-posedness

5 Long-term dynamics

6 The optimal control problem

Open problems and Perspectives

(ロ) (回) (三) (三)

HZO: the free energy

- u =tumor cell volume fraction $u \in [0, 1]$
- n = nutrient-rich extracellular water volume fraction $n \in [0, 1]$
- $f(u) = \Gamma u^2 (1-u)^2$: a double well
- $\chi(u, n) = -\chi_0 un$: chemotaxis driving the tumor cells toward the oxygen supply

$$E = \int_{\Omega} \left(f(u) + \frac{\epsilon^2}{2} |\nabla u|^2 + \chi(u, n) + \frac{1}{2\delta} n^2 \right) \mathrm{d}x. \tag{4}$$

Figure 1. Four-species model: illustration of the four-species mixture. The tumor and healthy cell populations are assumed to have a thin diffuse interface, whereas the nutrient-rich and nutrient-poor extracellular water are segregated by a wide smooth interface.

The plot of the summand $f(u) + \chi(u, n)$

The lowest energy state is when u = 1 and n = 1, when there is a full interaction between the tumor species and the nutrient-rich extracellular water.

Figure 2. Graph of homogeneous free energy: $f(u) + \chi(u, n)$. ($\Gamma = \chi_0 = 0.25$).

E. Rocca (Università degli Studi di Pavia)

イロン イロン イヨン イヨン

$$u_{t} = \nabla \cdot (M_{u} \nabla \mu_{u}) + \gamma_{u}, \quad \mu_{u} = \partial_{u} E = f'(u) + \partial_{u} \chi(u, n) - \epsilon \Delta u$$
$$n_{t} = \nabla \cdot (M_{n} \nabla \mu_{n}) + \gamma_{n}, \quad \mu_{n} = \partial_{n} E = \partial_{n} \chi(u, n) + \frac{1}{\delta} n$$

イロン イロン イヨン イヨン

$$u_{t} = \nabla \cdot (M_{u} \nabla \mu_{u}) + \gamma_{u}, \quad \mu_{u} = \partial_{u} E = f'(u) + \partial_{u} \chi(u, n) - \epsilon \Delta u$$
$$n_{t} = \nabla \cdot (M_{n} \nabla \mu_{n}) + \gamma_{n}, \quad \mu_{n} = \partial_{n} E = \partial_{n} \chi(u, n) + \frac{1}{\delta} n$$

Question: how to define γ_u and γ_n ?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

$$u_{t} = \nabla \cdot (M_{u} \nabla \mu_{u}) + \gamma_{u}, \quad \mu_{u} = \partial_{u} E = f'(u) + \partial_{u} \chi(u, n) - \epsilon \Delta u$$
$$n_{t} = \nabla \cdot (M_{n} \nabla \mu_{n}) + \gamma_{n}, \quad \mu_{n} = \partial_{n} E = \partial_{n} \chi(u, n) + \frac{1}{\delta} n$$

Question: how to define γ_u and γ_n ?

In HZO they use the condition $\sum_{i} \mu_i \gamma_i \leq 0$ needed for Thermodynamical consistency.

・ロト ・ 日 ト ・ 日 ト ・ 日

$$u_{t} = \nabla \cdot (M_{u} \nabla \mu_{u}) + \gamma_{u}, \quad \mu_{u} = \partial_{u} E = f'(u) + \partial_{u} \chi(u, n) - \epsilon \Delta u$$
$$n_{t} = \nabla \cdot (M_{n} \nabla \mu_{n}) + \gamma_{n}, \quad \mu_{n} = \partial_{n} E = \partial_{n} \chi(u, n) + \frac{1}{\delta} n$$

Question: how to define γ_u and γ_n ?

In HZO they use the condition $\sum_{i} \mu_i \gamma_i \leq 0$ needed for Thermodynamical consistency. More in particular, they choose:

$$\gamma_u = P(u)(\mu_n - \mu_u), \quad \gamma_n = -\gamma_u, \quad ext{where}$$
 $P(u) = egin{cases} \delta P_0 u & ext{if } u \geq 0 \ 0 & ext{elsewhere} \end{cases}$

being δ a small positive constant and $P_0 \ge 0$.

$$u_{t} = \nabla \cdot (M_{u} \nabla \mu_{u}) + \gamma_{u}, \quad \mu_{u} = \partial_{u} E = f'(u) + \partial_{u} \chi(u, n) - \epsilon \Delta u$$
$$n_{t} = \nabla \cdot (M_{n} \nabla \mu_{n}) + \gamma_{n}, \quad \mu_{n} = \partial_{n} E = \partial_{n} \chi(u, n) + \frac{1}{\delta} n$$

Question: how to define γ_u and γ_n ?

In HZO they use the condition $\sum_{i} \mu_i \gamma_i \leq 0$ needed for Thermodynamical consistency. More in particular, they choose:

$$\gamma_u = P(u)(\mu_n - \mu_u), \quad \gamma_n = -\gamma_u, \quad \text{where}$$
 $P(u) = egin{cases} \delta P_0 u & ext{if } u \geq 0 \ 0 & ext{elsewhere} \end{cases}$

being δ a small positive constant and $P_0 \ge 0$. Then we get

$$\gamma_{u} = P_{0}un + \delta P_{0}u(\partial_{n}\chi(u, n) - \mu_{u})$$

and so the dominant term is $P_0 un$.

$$u_{t} = \nabla \cdot (M_{u} \nabla \mu_{u}) + \gamma_{u}, \quad \mu_{u} = \partial_{u} E = f'(u) + \partial_{u} \chi(u, n) - \epsilon \Delta u$$
$$n_{t} = \nabla \cdot (M_{n} \nabla \mu_{n}) + \gamma_{n}, \quad \mu_{n} = \partial_{n} E = \partial_{n} \chi(u, n) + \frac{1}{\delta} n$$

Question: how to define γ_u and γ_n ?

In HZO they use the condition $\sum_{i} \mu_i \gamma_i \leq 0$ needed for Thermodynamical consistency. More in particular, they choose:

$$egin{aligned} & & \mu_u = P(u)(\mu_n - \mu_u), \quad \gamma_n = -\gamma_u, \quad ext{where} \ & \ P(u) = egin{cases} & \delta P_0 u & ext{if } u \geq 0 \ & 0 & ext{elsewhere} \ \end{aligned}$$

being δ a small positive constant and $P_0 \ge 0$. Then we get

7

$$\gamma_{u} = P_{0}un + \delta P_{0}u(\partial_{n}\chi(u, n) - \mu_{u})$$

and so the dominant term is $P_0 un$. Other coiches are possible (see Giulio's talk).

イロン イロン イヨン イヨン

Simulations by HZO: the tumor starts growing increasingly more ellipsoidal at first and eventually begins forming buds growing toward the higher levels of nutrient

Figure 7. Example simulation: snapshots are shown at t = 20, 40, 60, and 80 of a simulation with $\Gamma = 0.045, \epsilon = 0.005, \chi_0 = 0.05, \delta = 0.01, P_0 = 0.1, \hat{M} = 200$, and $\hat{D} = 1$.

Simulations by HZO: the influence of χ_0 and δ

- When the ratio χ_0/Γ is small, the tumor remains circular $u \sim 0, 1$
- When χ₀ ~ Γ the tumor goes into an ellipse
- When χ₀/Γ and χ₀/ε are big, u no longer takes on values close to 0 and 1: it begins moving quickly toward the regions with higher nutrients
- Only when χ₀ is large the value of δ makes a difference in simulations

Figure 10. Effects of parameter χ_0 : illustrated here are the effects of different values of χ_0 when I' = 0.045and $\epsilon = 0.005$ are held constant. In the first row, $\chi_0 = 0.05$; in the second row, $\chi_0 = 0.05$; and in the third row, $\chi_0 = 0.5$. In the first column, $\delta = 0.1$; and in the second column, $\delta = 0.01$.

イロト イヨト イヨト イヨ

Outline

Phase field models for tumor growth

2 The model HZO by [A. Hawkins-Daarud, K.-G. van der Zee and J.-T. Oden (2011)]

Sontent of the joint work with C. Cavaterra and H. Wu, arXiv:1901.07500, 2019

Well-posedness

5 Long-term dynamics

6 The optimal control problem

Open problems and Perspectives

イロト 不得下 イヨト イヨト

Our notation for the tumor phase parameter $(u =) \phi \in [-1, 1]$

• In terms of the theoretical analysis most of the recent literature is restricted to the two-phase variant, i.e., to models that only account for the evolution of a tumor surrounded by healthy tissue.

イロト 不得下 イヨト イヨト

- In terms of the theoretical analysis most of the recent literature is restricted to the two-phase variant, i.e., to models that only account for the evolution of a tumor surrounded by healthy tissue.
- In this setting, there is no differentiation among the tumor cells that exhibit heterogeneous growth behavior. Hence this kind of two-phase models are just able to describe the growth of a young tumor before the onset of quiescence and necrosis.

イロト 不得下 イヨト イヨト

- In terms of the theoretical analysis most of the recent literature is restricted to the two-phase variant, i.e., to models that only account for the evolution of a tumor surrounded by healthy tissue.
- In this setting, there is no differentiation among the tumor cells that exhibit heterogeneous growth behavior. Hence this kind of two-phase models are just able to describe the growth of a young tumor before the onset of quiescence and necrosis.
- Analytical results related to well-posedness, asymptotic limits, but also optimal control and long-time behavior of solution, have been established in a number of papers of a number of authors which include: Agosti, Ciarletta, Colli, Frigeri, Garcke, Gilardi, Grasselli, Hilhorst, Lam, Marinoschi, Melchionna, E.R., Scala, Sprekels, Wu, etc...

- In terms of the theoretical analysis most of the recent literature is restricted to the two-phase variant, i.e., to models that only account for the evolution of a tumor surrounded by healthy tissue.
- In this setting, there is no differentiation among the tumor cells that exhibit heterogeneous growth behavior. Hence this kind of two-phase models are just able to describe the growth of a young tumor before the onset of quiescence and necrosis.
- Analytical results related to well-posedness, asymptotic limits, but also optimal control and long-time behavior of solution, have been established in a number of papers of a number of authors which include: Agosti, Ciarletta, Colli, Frigeri, Garcke, Gilardi, Grasselli, Hilhorst, Lam, Marinoschi, Melchionna, E.R., Scala, Sprekels, Wu, etc...
 - for tumor growth models based on the coupling of Cahn-Hilliard (for the tumor density) and reaction-diffusion (for the nutrient) equations, and
 - ▶ for models of Cahn-Hilliard-Darcy or Cahn-Hilliard-Brinkman type.

- In terms of the theoretical analysis most of the recent literature is restricted to the two-phase variant, i.e., to models that only account for the evolution of a tumor surrounded by healthy tissue.
- In this setting, there is no differentiation among the tumor cells that exhibit heterogeneous growth behavior. Hence this kind of two-phase models are just able to describe the growth of a young tumor before the onset of quiescence and necrosis.
- Analytical results related to well-posedness, asymptotic limits, but also optimal control and long-time behavior of solution, have been established in a number of papers of a number of authors which include: Agosti, Ciarletta, Colli, Frigeri, Garcke, Gilardi, Grasselli, Hilhorst, Lam, Marinoschi, Melchionna, E.R., Scala, Sprekels, Wu, etc...
 - for tumor growth models based on the coupling of Cahn-Hilliard (for the tumor density) and reaction-diffusion (for the nutrient) equations, and
 - ▶ for models of Cahn-Hilliard-Darcy or Cahn-Hilliard-Brinkman type.

In this talk we concentrate on two recent results on optimal control and long-time behavior of solution.

イロン イロン イヨン イヨン

 The state system consists of a Cahn-Hilliard type equation for the tumor cell fraction φ ∈ [-1, 1] and a reaction-diffusion equation for the nutrient (n =)σ ∈ [0, 1]

・ロト ・回ト ・ヨト ・ヨト

- The state system consists of a Cahn-Hilliard type equation for the tumor cell fraction φ ∈ [−1, 1] and a reaction-diffusion equation for the nutrient (n =)σ ∈ [0, 1]
- The possible medication that serves to eliminate tumor cells is in terms of drugs and is introduced into the system through the nutrient
- In this setting, the control variable acts as an external source in the nutrient equation

- The state system consists of a Cahn-Hilliard type equation for the tumor cell fraction φ ∈ [−1, 1] and a reaction-diffusion equation for the nutrient (n =)σ ∈ [0, 1]
- The possible medication that serves to eliminate tumor cells is in terms of drugs and is introduced into the system through the nutrient
- In this setting, the control variable acts as an external source in the nutrient equation
- 1 First, we consider the problem of "long-time treatment" under a suitable given source and prove the convergence of any global solution to a single equilibrium as $t \to +\infty$.

- The state system consists of a Cahn-Hilliard type equation for the tumor cell fraction φ ∈ [-1, 1] and a reaction-diffusion equation for the nutrient (n =)σ ∈ [0, 1]
- The possible medication that serves to eliminate tumor cells is in terms of drugs and is introduced into the system through the nutrient
- In this setting, the control variable acts as an external source in the nutrient equation
- 1 First, we consider the problem of "long-time treatment" under a suitable given source and prove the convergence of any global solution to a single equilibrium as $t \to +\infty$.
- 2 Then we consider the "finite-time treatment" of tumor, which corresponds to an optimal control problem. Here we also allow the objective cost functional to depend on a free time variable, which represents the unknown treatment time to be optimized.

<ロ> (日) (日) (日) (日) (日)

- The state system consists of a Cahn-Hilliard type equation for the tumor cell fraction φ ∈ [−1, 1] and a reaction-diffusion equation for the nutrient (n =)σ ∈ [0, 1]
- The possible medication that serves to eliminate tumor cells is in terms of drugs and is introduced into the system through the nutrient
- In this setting, the control variable acts as an external source in the nutrient equation
- 1 First, we consider the problem of "long-time treatment" under a suitable given source and prove the convergence of any global solution to a single equilibrium as $t \to +\infty$.
- 2 Then we consider the "finite-time treatment" of tumor, which corresponds to an optimal control problem. Here we also allow the objective cost functional to depend on a free time variable, which represents the unknown treatment time to be optimized. We prove the existence of an optimal control and obtain first order necessary optimality conditions for both the drug concentration and the treatment time.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

One of the main aim of the control problem is to realize in the best possible way a desired final distribution of the tumor cell, which is expressed by the target function ϕ_{Ω}
One of the main aim of the control problem is to realize in the best possible way a desired final distribution of the tumor cell, which is expressed by the target function ϕ_{Ω}

By establishing the Lyapunov stability of certain equilibria of the state system (without external source), we see that ϕ_{Ω} can be taken as a stable configuration, so that the tumor will not grow again once the finite-time treatment is completed

イロト 不得下 イヨト イヨト

イロン イロン イヨン イヨン

The PDE system is a particular case ($\chi_0 \equiv 0$, $\Gamma = \epsilon = \delta = 1$) of the model proposed in [HZO: A. Hawkins-Daarud, K.-G. van der Zee and J.-T. Oden (2011)] in $Q := \Omega \times (0, T)$:

$$\phi_t - \Delta \mu = P(\phi)(\sigma - \mu), \qquad \mu = -\Delta \phi + F'(\phi)$$

$$\sigma_t - \Delta \sigma = -P(\phi)(\sigma - \mu) + u$$

subject to initial and boundary conditions

 $\phi|_{t=0} = \phi_0, \quad \sigma|_{t=0} = \sigma_0, \quad \text{in } \Omega\,, \quad \partial_\nu \phi = \partial_\nu \mu = \partial_\nu \sigma = 0, \quad \text{on } \partial\Omega \times (0, T)$

イロト イポト イヨト イヨト

17 / 46

The PDE system is a particular case ($\chi_0 \equiv 0$, $\Gamma = \epsilon = \delta = 1$) of the model proposed in [HZO: A. Hawkins-Daarud, K.-G. van der Zee and J.-T. Oden (2011)] in $Q := \Omega \times (0, T)$:

$$\phi_t - \Delta \mu = P(\phi)(\sigma - \mu), \qquad \mu = -\Delta \phi + F'(\phi)$$

$$\sigma_t - \Delta \sigma = -P(\phi)(\sigma - \mu) + u$$

subject to initial and boundary conditions

 $\phi|_{t=0} = \phi_0, \quad \sigma|_{t=0} = \sigma_0, \quad \text{in } \Omega\,, \quad \partial_\nu \phi = \partial_\nu \mu = \partial_\nu \sigma = 0, \quad \text{on } \partial\Omega \times (0, T)$

- The state variables are:
 - the tumor cell fraction ϕ : $\phi \simeq 1$ (tumorous phase), $\phi \simeq -1$ (healthy tissue phase)
 - ▶ the nutrient concentration σ : $\sigma \simeq 1$ and $\sigma \simeq 0$ indicate a nutrient-rich or nutrient-poor extracellular water phase

The PDE system is a particular case ($\chi_0 \equiv 0$, $\Gamma = \epsilon = \delta = 1$) of the model proposed in [HZO: A. Hawkins-Daarud, K.-G. van der Zee and J.-T. Oden (2011)] in $Q := \Omega \times (0, T)$:

$$\phi_t - \Delta \mu = P(\phi)(\sigma - \mu), \qquad \mu = -\Delta \phi + F'(\phi)$$

$$\sigma_t - \Delta \sigma = -P(\phi)(\sigma - \mu) + u$$

subject to initial and boundary conditions

 $\phi|_{t=0} = \phi_0, \quad \sigma|_{t=0} = \sigma_0, \quad \text{in } \Omega\,, \quad \partial_\nu \phi = \partial_\nu \mu = \partial_\nu \sigma = 0, \quad \text{on } \partial\Omega \times (0, T)$

- The state variables are:
 - ▶ the tumor cell fraction ϕ : $\phi \simeq 1$ (tumorous phase), $\phi \simeq -1$ (healthy tissue phase)
 - ▶ the nutrient concentration σ : $\sigma \simeq 1$ and $\sigma \simeq 0$ indicate a nutrient-rich or nutrient-poor extracellular water phase
- F is typically a double-well potential with equal minima at $\phi = \pm 1$

<ロ> (日) (日) (日) (日) (日)

The PDE system is a particular case ($\chi_0 \equiv 0$, $\Gamma = \epsilon = \delta = 1$) of the model proposed in [HZO: A. Hawkins-Daarud, K.-G. van der Zee and J.-T. Oden (2011)] in $Q := \Omega \times (0, T)$:

$$\phi_t - \Delta \mu = P(\phi)(\sigma - \mu), \qquad \mu = -\Delta \phi + F'(\phi)$$

$$\sigma_t - \Delta \sigma = -P(\phi)(\sigma - \mu) + u$$

subject to initial and boundary conditions

 $\phi|_{t=0} = \phi_0, \quad \sigma|_{t=0} = \sigma_0, \quad \text{in } \Omega\,, \quad \partial_\nu \phi = \partial_\nu \mu = \partial_\nu \sigma = 0, \quad \text{on } \partial\Omega \times (0, T)$

- The state variables are:
 - ▶ the tumor cell fraction ϕ : $\phi \simeq 1$ (tumorous phase), $\phi \simeq -1$ (healthy tissue phase)
 - ▶ the nutrient concentration σ : $\sigma \simeq 1$ and $\sigma \simeq 0$ indicate a nutrient-rich or nutrient-poor extracellular water phase
- F is typically a double-well potential with equal minima at $\phi=\pm 1$
- $P \ge 0$ denotes a suitable regular proliferation function

イロン イヨン イヨン イヨン

The PDE system is a particular case ($\chi_0 \equiv 0$, $\Gamma = \epsilon = \delta = 1$) of the model proposed in [HZO: A. Hawkins-Daarud, K.-G. van der Zee and J.-T. Oden (2011)] in $Q := \Omega \times (0, T)$:

$$\phi_t - \Delta \mu = P(\phi)(\sigma - \mu), \qquad \mu = -\Delta \phi + F'(\phi)$$

$$\sigma_t - \Delta \sigma = -P(\phi)(\sigma - \mu) + u$$

subject to initial and boundary conditions

 $\phi|_{t=0} = \phi_0, \quad \sigma|_{t=0} = \sigma_0, \quad \text{in } \Omega\,, \quad \partial_\nu \phi = \partial_\nu \mu = \partial_\nu \sigma = 0, \quad \text{on } \partial\Omega \times (0, T)$

- The state variables are:
 - ▶ the tumor cell fraction ϕ : $\phi \simeq 1$ (tumorous phase), $\phi \simeq -1$ (healthy tissue phase)
 - ▶ the nutrient concentration σ : $\sigma \simeq 1$ and $\sigma \simeq 0$ indicate a nutrient-rich or nutrient-poor extracellular water phase
- F is typically a double-well potential with equal minima at $\phi=\pm 1$
- $P \ge 0$ denotes a suitable regular proliferation function
- The choice of reactive terms is motivated by the linear phenomenological constitutive laws for chemical reactions

イロン イロン イヨン イヨン 三日 二

The PDE system is a particular case ($\chi_0 \equiv 0$, $\Gamma = \epsilon = \delta = 1$) of the model proposed in [HZO: A. Hawkins-Daarud, K.-G. van der Zee and J.-T. Oden (2011)] in $Q := \Omega \times (0, T)$:

$$\phi_t - \Delta \mu = P(\phi)(\sigma - \mu), \qquad \mu = -\Delta \phi + F'(\phi)$$

$$\sigma_t - \Delta \sigma = -P(\phi)(\sigma - \mu) + u$$

subject to initial and boundary conditions

 $\phi|_{t=0} = \phi_0, \quad \sigma|_{t=0} = \sigma_0, \quad \text{in } \Omega\,, \quad \partial_\nu \phi = \partial_\nu \mu = \partial_\nu \sigma = 0, \quad \text{on } \partial\Omega \times (0, T)$

- The state variables are:
 - ▶ the tumor cell fraction ϕ : $\phi \simeq 1$ (tumorous phase), $\phi \simeq -1$ (healthy tissue phase)
 - ▶ the nutrient concentration σ : $\sigma \simeq 1$ and $\sigma \simeq 0$ indicate a nutrient-rich or nutrient-poor extracellular water phase
- F is typically a double-well potential with equal minima at $\phi = \pm 1$
- $P \ge 0$ denotes a suitable regular proliferation function
- The choice of reactive terms is motivated by the linear phenomenological constitutive laws for chemical reactions
- The control variable *u* serves as an external source in the equation for *σ* and can be interpreted as a medication

E. Rocca (Università degli Studi di Pavia)

Energy identity

The system turns out to be thermodynamically consistent. In particular, when u = 0 the unknown pair (ϕ, σ) is a dissipative gradient flow for the total free energy:

$$\mathcal{E}(\phi,\sigma) = \int_{\Omega} \left[\frac{1}{2} |\nabla \phi|^2 + F(\phi) \right] \, \mathrm{d}x + \frac{1}{2} \int_{\Omega} \sigma^2 \, \mathrm{d}x.$$

Moreover generally, under the presence of the external source u, we observe that any smooth solution (ϕ, σ) to the problem satisfies the following energy identity:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{E}(\phi,\sigma) + \int_{\Omega} \left[\left| \nabla \mu \right|^2 + \left| \nabla \sigma \right|^2 + \mathcal{P}(\phi)(\mu - \sigma)^2 \right] \mathrm{d}x = \int_{\Omega} u\sigma \, \mathrm{d}x,$$

which motives the twofold aim of the present contribution.

1. We prove that any global weak solution will converge to a single equilibrium as $t \to +\infty$ and provide an estimate on the convergence rate.

イロン イロン イヨン イヨン

1. We prove that any global weak solution will converge to a single equilibrium as $t \to +\infty$ and provide an estimate on the convergence rate. Our result indicates that after certain medication (or even without medication, i.e., u = 0), the tumor will eventually grow to a steady state as time evolves.

イロト 不得下 イヨト イヨト

1. We prove that any global weak solution will converge to a single equilibrium as $t \to +\infty$ and provide an estimate on the convergence rate. Our result indicates that after certain medication (or even without medication, i.e., u = 0), the tumor will eventually grow to a steady state as time evolves. However, since the potential function F is nonconvex (double-well), the problem may admit infinite many steady states so that for the moment one cannot identify which exactly the unique asymptotic limit as $t \to +\infty$ will be.

- 1. We prove that any global weak solution will converge to a single equilibrium as $t \to +\infty$ and provide an estimate on the convergence rate. Our result indicates that after certain medication (or even without medication, i.e., u = 0), the tumor will eventually grow to a steady state as time evolves. However, since the potential function F is nonconvex (double-well), the problem may admit infinite many steady states so that for the moment one cannot identify which exactly the unique asymptotic limit as $t \to +\infty$ will be.
- 2. Denoting by $T \in (0, +\infty)$ a fixed maximal time in which the patient is allowed to undergo a medical treatment, we derive necessary optimality conditions for

(CP) Minimize the cost functional

$$\mathcal{J}(\phi,\sigma,\boldsymbol{u},\tau) = \frac{\beta_{Q}}{2} \int_{0}^{\tau} \int_{\Omega} |\phi - \phi_{Q}|^{2} dx dt + \frac{\beta_{\Omega}}{2} \int_{\Omega} |\phi(\tau) - \phi_{\Omega}|^{2} dx + \frac{\alpha_{Q}}{2} \int_{0}^{\tau} \int_{\Omega} |\sigma - \sigma_{Q}|^{2} dx dt + \frac{\beta_{S}}{2} \int_{\Omega} (1 + \phi(\tau)) dx + \frac{\beta_{u}}{2} \int_{0}^{\tau} \int_{\Omega} |\boldsymbol{u}|^{2} dx dt + \beta_{T} \tau$$

subject to the state system and the the control constraint

$$u \in \mathcal{U}_{\mathrm{ad}} := \{ u \in L^{\infty}(Q) : u_{\min} \le u \le u_{\max} \text{ a.e. in } Q \}, \quad \tau \in (0, T)$$

$$\begin{aligned} \mathcal{J}(\phi,\sigma,u,\tau) &= \frac{\beta_Q}{2} \int_0^\tau \int_\Omega |\phi - \phi_Q|^2 \, \mathrm{d}x \, \mathrm{d}t + \frac{\beta_\Omega}{2} \int_\Omega |\phi(\tau) - \phi_\Omega|^2 \, \mathrm{d}x \\ &+ \frac{\alpha_Q}{2} \int_0^\tau \int_\Omega |\sigma - \sigma_Q|^2 \, \mathrm{d}x \, \mathrm{d}t + \frac{\beta_S}{2} \int_\Omega (1 + \phi(\tau)) \, \mathrm{d}x + \frac{\beta_u}{2} \int_0^\tau \int_\Omega |u|^2 \, \mathrm{d}x \, \mathrm{d}t + \beta_T \tau \end{aligned}$$

$$\mathcal{J}(\phi,\sigma,\boldsymbol{u},\tau) = \frac{\beta_Q}{2} \int_0^\tau \int_\Omega |\phi - \phi_Q|^2 \, \mathrm{d}x \, \mathrm{d}t + \frac{\beta_\Omega}{2} \int_\Omega |\phi(\tau) - \phi_\Omega|^2 \, \mathrm{d}x \\ + \frac{\alpha_Q}{2} \int_0^\tau \int_\Omega |\sigma - \sigma_Q|^2 \, \mathrm{d}x \, \mathrm{d}t + \frac{\beta_S}{2} \int_\Omega (1 + \phi(\tau)) \, \mathrm{d}x + \frac{\beta_u}{2} \int_0^\tau \int_\Omega |\boldsymbol{u}|^2 \, \mathrm{d}x \, \mathrm{d}t + \beta_T \tau$$

• $\tau \in (0, T]$ represents the treatment time of one cycle, i.e., the amount of time the drug is applied to the patient before the period of rest, or the treatment time before surgery, ϕ_Q and σ_Q represent a desired evolution for the tumor cells and for the nutrient, ϕ_Ω stands for desired final distribution of tumor cells

$$\mathcal{J}(\phi,\sigma,\boldsymbol{u},\tau) = \frac{\beta_Q}{2} \int_0^\tau \int_\Omega |\phi - \phi_Q|^2 \, \mathrm{d}x \, \mathrm{d}t + \frac{\beta_\Omega}{2} \int_\Omega |\phi(\tau) - \phi_\Omega|^2 \, \mathrm{d}x \\ + \frac{\alpha_Q}{2} \int_0^\tau \int_\Omega |\sigma - \sigma_Q|^2 \, \mathrm{d}x \, \mathrm{d}t + \frac{\beta_S}{2} \int_\Omega (1 + \phi(\tau)) \, \mathrm{d}x + \frac{\beta_u}{2} \int_0^\tau \int_\Omega |\boldsymbol{u}|^2 \, \mathrm{d}x \, \mathrm{d}t + \beta_T \tau$$

- $\tau \in (0, T]$ represents the treatment time of one cycle, i.e., the amount of time the drug is applied to the patient before the period of rest, or the treatment time before surgery, ϕ_Q and σ_Q represent a desired evolution for the tumor cells and for the nutrient, ϕ_Ω stands for desired final distribution of tumor cells
- The first three terms of $\mathcal J$ are of standard tracking type and the fourth term of $\mathcal J$ measures the size of the tumor at the end of the treatment

$$\mathcal{J}(\phi,\sigma,\boldsymbol{u},\tau) = \frac{\beta_Q}{2} \int_0^\tau \int_\Omega |\phi - \phi_Q|^2 \, \mathrm{d}x \, \mathrm{d}t + \frac{\beta_\Omega}{2} \int_\Omega |\phi(\tau) - \phi_\Omega|^2 \, \mathrm{d}x \\ + \frac{\alpha_Q}{2} \int_0^\tau \int_\Omega |\sigma - \sigma_Q|^2 \, \mathrm{d}x \, \mathrm{d}t + \frac{\beta_S}{2} \int_\Omega (1 + \phi(\tau)) \, \mathrm{d}x + \frac{\beta_u}{2} \int_0^\tau \int_\Omega |\boldsymbol{u}|^2 \, \mathrm{d}x \, \mathrm{d}t + \beta_T \tau$$

- $\tau \in (0, T]$ represents the treatment time of one cycle, i.e., the amount of time the drug is applied to the patient before the period of rest, or the treatment time before surgery, ϕ_Q and σ_Q represent a desired evolution for the tumor cells and for the nutrient, ϕ_Ω stands for desired final distribution of tumor cells
- The first three terms of $\mathcal J$ are of standard tracking type and the fourth term of $\mathcal J$ measures the size of the tumor at the end of the treatment
- The fifth term penalizes large concentrations of the cytotoxic drugs, and the sixth term of $\mathcal J$ penalizes long treatment times

The choice of ϕ_{Ω}

After the treatment, the ideal situation will be either the tumor is ready for surgery or the tumor will be stable for all time without further medication (i.e., u = 0). This goal can be realized by making different choices of the target function ϕ_{Ω} in the above optimal control problem (CP).

- For the former case, one can simply take φ_Ω to be a configuration that is suitable for surgery.
- While for the later case, which is of more interest to us, we want to choose ϕ_{Ω} as a "stable" configuration of the system, so that the tumor does not grow again once the treatment is complete.

For this purpose, we prove that any local minimizer of the total free energy \mathcal{E} is Lyapunov stable provided that u = 0.

イロン 不良と 不良と 不良と

The choice of ϕ_{Ω}

After the treatment, the ideal situation will be either the tumor is ready for surgery or the tumor will be stable for all time without further medication (i.e., u = 0). This goal can be realized by making different choices of the target function ϕ_{Ω} in the above optimal control problem (CP).

- For the former case, one can simply take φ_Ω to be a configuration that is suitable for surgery.
- While for the later case, which is of more interest to us, we want to choose ϕ_{Ω} as a "stable" configuration of the system, so that the tumor does not grow again once the treatment is complete.

For this purpose, we prove that any local minimizer of the total free energy \mathcal{E} is Lyapunov stable provided that u = 0. As a consequence, these local energy minimizers serve as possible candidates for the target function ϕ_{Ω} . Then after completing a successful medication, the tumor will remain close to the chosen stable configuration for all time.

The study of long-time behavior is nontrivial, since the nonconvexity of the free energy \mathcal{E} indicates that the set of steady states may have a rather complicated structure.

The study of long-time behavior is nontrivial, since the nonconvexity of the free energy \mathcal{E} indicates that the set of steady states may have a rather complicated structure.

• For the single Cahn-Hilliard equation this difficulty can be overcome by employing the Łojasiewicz-Simon approach: a key property that plays an important role in the analysis of the Cahn-Hilliard equation is the conservation of mass, i.e.,

$$\int_\Omega \phi(t)\,\mathrm{d} x = \int_\Omega \phi_0\,\mathrm{d} x \quad ext{for } t\geq 0\,.$$

The study of long-time behavior is nontrivial, since the nonconvexity of the free energy \mathcal{E} indicates that the set of steady states may have a rather complicated structure.

• For the single Cahn-Hilliard equation this difficulty can be overcome by employing the Łojasiewicz-Simon approach: a key property that plays an important role in the analysis of the Cahn-Hilliard equation is the conservation of mass, i.e.,

$$\int_\Omega \phi(t)\,\mathrm{d} x = \int_\Omega \phi_0\,\mathrm{d} x \quad ext{for } t\geq 0\,.$$

However, for our coupled system this property no longer holds, which brings us new difficulties in analysis.

The study of long-time behavior is nontrivial, since the nonconvexity of the free energy \mathcal{E} indicates that the set of steady states may have a rather complicated structure.

• For the single Cahn-Hilliard equation this difficulty can be overcome by employing the Łojasiewicz-Simon approach: a key property that plays an important role in the analysis of the Cahn-Hilliard equation is the conservation of mass, i.e.,

$$\int_\Omega \phi(t)\,\mathrm{d} x = \int_\Omega \phi_0\,\mathrm{d} x \quad ext{for } t\geq 0\,.$$

However, for our coupled system this property no longer holds, which brings us new difficulties in analysis.

 Besides, quite different from the Cahn-Hilliard-Oono system considered in which the mass ∫_Ω φ(t) dx is not preserved due to possible reactions, here in our case it is not obvious how to control the mass changing rate:

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\Omega}\phi\,\mathrm{d}x=\int_{\Omega}P(\phi)(\sigma-\mu)\,\mathrm{d}x.$$

Similar problem happens to the nutrient as well, that is

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\Omega}\sigma\,\mathrm{d}x=-\int_{\Omega}P(\phi)(\sigma-\mu)\,\mathrm{d}x+\int_{\Omega}u\,\mathrm{d}x.$$

◆□ > ◆□ > ◆臣 > ◆臣 >

• The observation that the total mass can be determined by the initial data and the external source:

$$\int_{\Omega} (\phi(t) + \sigma(t)) \, \mathrm{d} x = \int_{\Omega} (\phi_0 + \sigma_0) \, \mathrm{d} x + \int_0^t \int_{\Omega} u \, \mathrm{d} x \, \mathrm{d} \tau, \quad \forall t \ge 0$$

allows us to derive a suitable version of the Łojasiewicz-Simon type inequality.

• The observation that the total mass can be determined by the initial data and the external source:

$$\int_{\Omega} (\phi(t) + \sigma(t)) \, \mathrm{d}x = \int_{\Omega} (\phi_0 + \sigma_0) \, \mathrm{d}x + \int_0^t \int_{\Omega} u \, \mathrm{d}x \, \mathrm{d}\tau, \quad \forall t \ge 0$$

allows us to derive a suitable version of the Łojasiewicz-Simon type inequality.

• On the other hand, we can control the mass changing rates of ϕ and σ by using the extra dissipation related to reactive terms in the basic energy law, i.e., $\int_{\Omega} P(\phi)(\mu - \sigma)^2 dx.$

• The observation that the total mass can be determined by the initial data and the external source:

$$\int_{\Omega} (\phi(t) + \sigma(t)) \, \mathrm{d}x = \int_{\Omega} (\phi_0 + \sigma_0) \, \mathrm{d}x + \int_0^t \int_{\Omega} u \, \mathrm{d}x \, \mathrm{d}\tau, \quad \forall t \ge 0$$

allows us to derive a suitable version of the Łojasiewicz-Simon type inequality.

- On the other hand, we can control the mass changing rates of ϕ and σ by using the extra dissipation related to reactive terms in the basic energy law, i.e., $\int_{\Omega} P(\phi)(\mu - \sigma)^2 dx.$
- Based on the above mentioned special structure of the system, by introducing a new version of Łojasiewicz-Simon inequality we are able to prove that every global weak solution (φ, σ) of the problem will converge to a certain single equilibrium (φ_∞, σ_∞) as t → +∞ and, moreover, we obtain a polynomial decay of the solution.

• The observation that the total mass can be determined by the initial data and the external source:

$$\int_{\Omega} (\phi(t) + \sigma(t)) \, \mathrm{d}x = \int_{\Omega} (\phi_0 + \sigma_0) \, \mathrm{d}x + \int_0^t \int_{\Omega} u \, \mathrm{d}x \, \mathrm{d}\tau, \quad \forall t \ge 0$$

allows us to derive a suitable version of the Łojasiewicz-Simon type inequality.

- On the other hand, we can control the mass changing rates of ϕ and σ by using the extra dissipation related to reactive terms in the basic energy law, i.e., $\int_{\Omega} P(\phi)(\mu - \sigma)^2 dx.$
- Based on the above mentioned special structure of the system, by introducing a new version of Łojasiewicz-Simon inequality we are able to prove that every global weak solution (ϕ, σ) of the problem will converge to a certain single equilibrium $(\phi_{\infty}, \sigma_{\infty})$ as $t \to +\infty$ and, moreover, we obtain a polynomial decay of the solution.
- Besides, a nontrivial application of the Łojasiewicz-Simon approach further leads to the Lyapunov stability of local minimizers of the free energy \mathcal{E} (we only consider the case u = 0 for the sake of simplicity).

イロン イロン イヨン イヨン

- To the best of our knowledge, the only contribution in the study of long-time behavior for this problem is given in [FGR: Frigeri, Grasselli, R. (2015)] with u = 0, where, however, the main focus is the existence of a global attractor.
- Recently in [MRS: Miraville, R., Schimperna (2018)] we prove the existence of a global attractor for a different model (see Giulio's talk).

イロト 不得下 イヨト イヨト

- To the best of our knowledge, the only contribution in the study of long-time behavior for this problem is given in [FGR: Frigeri, Grasselli, R. (2015)] with u = 0, where, however, the main focus is the existence of a global attractor.
- Recently in [MRS: Miraville, R., Schimperna (2018)] we prove the existence of a global attractor for a different model (see Giulio's talk).
- In the context of PDE constraint optimal control for diffuse interface tumor models, in the literature we have basically two recent works:

- To the best of our knowledge, the only contribution in the study of long-time behavior for this problem is given in [FGR: Frigeri, Grasselli, R. (2015)] with u = 0, where, however, the main focus is the existence of a global attractor.
- Recently in [MRS: Miraville, R., Schimperna (2018)] we prove the existence of a global attractor for a different model (see Giulio's talk).
- In the context of PDE constraint optimal control for diffuse interface tumor models, in the literature we have basically two recent works:
 - 1 [CGRS: Colli, Gilardi, R., Sprekels (2017)] where the objective functional is with the special (simpler) choices $\beta_S = \beta_T = \alpha_Q = 0$, and the state system is exactly the same but no dependence on τ is studied.

- To the best of our knowledge, the only contribution in the study of long-time behavior for this problem is given in [FGR: Frigeri, Grasselli, R. (2015)] with u = 0, where, however, the main focus is the existence of a global attractor.
- Recently in [MRS: Miraville, R., Schimperna (2018)] we prove the existence of a global attractor for a different model (see Giulio's talk).
- In the context of PDE constraint optimal control for diffuse interface tumor models, in the literature we have basically two recent works:
 - 1 [CGRS: Colli, Gilardi, R., Sprekels (2017)] where the objective functional is with the special (simpler) choices $\beta_S = \beta_T = \alpha_Q = 0$, and the state system is exactly the same but no dependence on τ is studied.
 - 2 [GLR: Garcke, Lam, R. (2017)] where a different model is studied. There the distributed control appears in the ϕ equation, which is a Cahn-Hilliard type equation with a source of mass on the right hand side, but not depending on μ . Due to the presence of the control in the Cahn-Hilliard equation, in [GLR] only the case of a regularized objective cost functional can be analyzed for bounded controls.

- To the best of our knowledge, the only contribution in the study of long-time behavior for this problem is given in [FGR: Frigeri, Grasselli, R. (2015)] with u = 0, where, however, the main focus is the existence of a global attractor.
- Recently in [MRS: Miraville, R., Schimperna (2018)] we prove the existence of a global attractor for a different model (see Giulio's talk).
- In the context of PDE constraint optimal control for diffuse interface tumor models, in the literature we have basically two recent works:
 - 1 [CGRS: Colli, Gilardi, R., Sprekels (2017)] where the objective functional is with the special (simpler) choices $\beta_S = \beta_T = \alpha_Q = 0$, and the state system is exactly the same but no dependence on τ is studied.
 - 2 [GLR: Garcke, Lam, R. (2017)] where a different model is studied. There the distributed control appears in the ϕ equation, which is a Cahn-Hilliard type equation with a source of mass on the right hand side, but not depending on μ . Due to the presence of the control in the Cahn-Hilliard equation, in [GLR] only the case of a regularized objective cost functional can be analyzed for bounded controls.

Here we aim to provide a contribution to the theory of free terminal time optimal control where the control is applied in the nutrient equation.

Outline

Phase field models for tumor growth

2 The model HZO by [A. Hawkins-Daarud, K.-G. van der Zee and J.-T. Oden (2011)]

3) Content of the joint work with C. Cavaterra and H. Wu, arXiv:1901.07500, 2019

Well-posedness

5 Long-term dynamics

The optimal control problem

Open problems and Perspectives

Well-posedness (cf, [CGRS, Theorem 2.1])

・ロト ・回ト ・ヨト ・ヨト
Well-posedness (cf, [CGRS, Theorem 2.1])

Let $\phi_0 \in H^2_N(\Omega) \cap H^3(\Omega)$ and $\sigma_0 \in H^1(\Omega)$ and assume that

- (P1) $P \in C^2(\mathbb{R})$ is nonnegative. There exist $\alpha_1 > 0$ and some $q \in [1, 4]$ such that, for all $s \in \mathbb{R}$, $|P'(s)| \le \alpha_1(1 + |s|^{q-1})$
- (F1) $F = F_0 + F_1$, with $F_0, F_1 \in C^5(\mathbb{R})$. There exist $\alpha_i > 0$ and $r \in [2, 6)$ such that

 $|F_1''(\boldsymbol{s})| \leq \alpha_2, \quad \alpha_3(1+|\boldsymbol{s}|^{r-2}) \leq F_0''(\boldsymbol{s}) \leq \alpha_4(1+|\boldsymbol{s}|^{r-2}), \quad F(\boldsymbol{s}) \geq \alpha_5|\boldsymbol{s}| - \alpha_6 \quad \forall \boldsymbol{s} \in \mathbb{R}$

(U1) For any T > 0, $u \in L^2(0, T; L^2(\Omega))$.

イロト イポト イヨト イヨト

Well-posedness (cf, [CGRS, Theorem 2.1])

Let $\phi_0 \in H^2_N(\Omega) \cap H^3(\Omega)$ and $\sigma_0 \in H^1(\Omega)$ and assume that

(P1) $P \in C^2(\mathbb{R})$ is nonnegative. There exist $\alpha_1 > 0$ and some $q \in [1, 4]$ such that, for all $s \in \mathbb{R}$, $|P'(s)| \le \alpha_1(1 + |s|^{q-1})$

(F1) $F = F_0 + F_1$, with $F_0, F_1 \in C^5(\mathbb{R})$. There exist $\alpha_i > 0$ and $r \in [2, 6)$ such that

 $|F_1''(\boldsymbol{s})| \leq \alpha_2, \quad \alpha_3(1+|\boldsymbol{s}|^{r-2}) \leq F_0''(\boldsymbol{s}) \leq \alpha_4(1+|\boldsymbol{s}|^{r-2}), \quad F(\boldsymbol{s}) \geq \alpha_5|\boldsymbol{s}| - \alpha_6 \quad \forall \boldsymbol{s} \in \mathbb{R}$

(U1) For any T > 0, $u \in L^2(0, T; L^2(\Omega))$. Then

Theorem (Strong solutions)

(1) For every T > 0, the state system admits a unique strong solution:

 $\|\phi\|_{L^{\infty}(0,T;H^{3}(\Omega))\cap L^{2}(0,T;H^{4}(\Omega))\cap H^{1}(0,T;H^{1}(\Omega))}+\|\mu\|_{L^{\infty}(0,T;H^{1}(\Omega))\cap L^{2}(0,T;H^{2}(\Omega))}$

+ $\|\sigma\|_{C([0,T];H^1(\Omega))\cap L^2(0,T;H^2_N(\Omega))\cap H^1(0,T;L^2(\Omega))} \le K_1.$

Well-posedness (cf, [CGRS, Theorem 2.1])

Let $\phi_0 \in H^2_N(\Omega) \cap H^3(\Omega)$ and $\sigma_0 \in H^1(\Omega)$ and assume that

(P1) $P \in C^2(\mathbb{R})$ is nonnegative. There exist $\alpha_1 > 0$ and some $q \in [1, 4]$ such that, for all $s \in \mathbb{R}$, $|P'(s)| \le \alpha_1(1 + |s|^{q-1})$

(F1) $F = F_0 + F_1$, with $F_0, F_1 \in C^5(\mathbb{R})$. There exist $\alpha_i > 0$ and $r \in [2, 6)$ such that

 $|F_1''(\boldsymbol{s})| \leq \alpha_2, \quad \alpha_3(1+|\boldsymbol{s}|^{r-2}) \leq F_0''(\boldsymbol{s}) \leq \alpha_4(1+|\boldsymbol{s}|^{r-2}), \quad F(\boldsymbol{s}) \geq \alpha_5|\boldsymbol{s}| - \alpha_6 \quad \forall \boldsymbol{s} \in \mathbb{R}$

(U1) For any T > 0, $u \in L^2(0, T; L^2(\Omega))$. Then

Theorem (Strong solutions)

(1) For every T > 0, the state system admits a unique strong solution:

$$\begin{split} \|\phi\|_{L^{\infty}(0,T;H^{3}(\Omega))\cap L^{2}(0,T;H^{4}(\Omega))\cap H^{1}(0,T;H^{1}(\Omega))} + \|\mu\|_{L^{\infty}(0,T;H^{1}(\Omega))\cap L^{2}(0,T;H^{2}(\Omega))} \\ &+ \|\sigma\|_{C([0,T];H^{1}(\Omega))\cap L^{2}(0,T;H^{2}_{N}(\Omega))\cap H^{1}(0,T;L^{2}(\Omega))} \leq K_{1}. \end{split}$$

(2) Let (ϕ_i, σ_i) be two strong solutions. Then there exists a constant $K_2 > 0$, depending on $\|u_i\|_{L^2(0,T;L^2)}$, Ω , T, $\|\phi_0\|_{H^3}$ and $\|\sigma_0\|_{H^1}$, such that

$$\begin{split} \|\phi_1 - \phi_2\|_{L^{\infty}(0,T;H^1) \cap L^2(0,T;H^3) \cap H^1(0,T;(H^1)')} + \|\mu_1 - \mu_2\|_{L^2(0,T;H^1)} \\ + \|\sigma_1 - \sigma_2\|_{C([0,T];H^1) \cap L^2(0,T;H^2) \cap H^1(0,T;L^2)} \le K_2 \|u_1 - u_2\|_{L^2(0,T;L^2)}. \end{split}$$

Outline

Phase field models for tumor growth

2 The model HZO by [A. Hawkins-Daarud, K.-G. van der Zee and J.-T. Oden (2011)]

3 Content of the joint work with C. Cavaterra and H. Wu, arXiv:1901.07500, 2019

Well-posedness

5 Long-term dynamics

6 The optimal control problem

Open problems and Perspectives

(ロ) (回) (三) (三)

Long-term dynamics

We make the following additional assumptions:

(P2) P(s) > 0, for all $s \in \mathbb{R}$

(F2) F(s) is real analytic on \mathbb{R}

(U2) $u \in L^1(0, +\infty; L^2(\Omega)) \cap L^2(0, +\infty; L^2(\Omega))$ and satisfies the decay condition

 $\sup_{t\geq 0} (1+t)^{3+\rho} \|u(t)\|_{L^2(\Omega)} < +\infty, \quad \text{for some } \rho > 0.$

イロン イヨン イヨン イヨン

Long-term dynamics

We make the following additional assumptions:

(P2) P(s) > 0, for all $s \in \mathbb{R}$ (F2) F(s) is real analytic on \mathbb{R} (U2) $u \in L^1(0, +\infty; L^2(\Omega)) \cap L^2(0, +\infty; L^2(\Omega))$ and satisfies the decay condition $\sup_{t>0} (1+t)^{3+\rho} ||u(t)||_{L^2(\Omega)} < +\infty$, for some $\rho > 0$.

Theorem (1. The stationary problem)

For any $\phi_0 \in H^1(\Omega)$, $\sigma_0 \in L^2(\Omega)$, the state system admits a unique global weak solution (ϕ, μ, σ) : $\lim_{t \to +\infty} (\|\phi(t) - \phi_\infty\|_{H^2(\Omega)} + \|\sigma(t) - \sigma_\infty\|_{L^2(\Omega)} + \|\mu(t) - \mu_\infty\|_{L^2(\Omega)}) = 0$, where $(\phi_\infty, \mu_\infty, \sigma_\infty)$ satisfies the stationary problem

$$\begin{cases} -\Delta \phi_{\infty} + F'(\phi_{\infty}) = \mu_{\infty}, & \text{in } \Omega\\ \partial_{\nu} \phi_{\infty} = 0, & \text{on } \partial \Omega\\ \int_{\Omega} (\phi_{\infty} + \sigma_{\infty}) \, \mathrm{d}x = \int_{\Omega} (\phi_0 + \sigma_0) \, \mathrm{d}x + \int_0^{+\infty} \int_{\Omega} u \, \mathrm{d}x \, \mathrm{d}t \end{cases}$$

with μ_{∞} and σ_{∞} being two constants given by $\sigma_{\infty} = \mu_{\infty} = |\Omega|^{-1} \int_{\Omega} F'(\phi_{\infty}) dx$.

Theorem (2. Convergence rate)

Moreover, under the same assumptions, the following estimates on convergence rate hold

$$\begin{split} \|\phi(t)-\phi_{\infty}\|_{H^{1}(\Omega)}+\|\sigma(t)-\sigma_{\infty}\|_{L^{2}(\Omega)} &\leq C(1+t)^{-\min\left\{\frac{\theta}{1-2\theta},\frac{\rho}{2}\right\}}, \quad \forall t \geq 0, \\ \|\mu(t)-\mu_{\infty}\|_{L^{2}(\Omega)} &\leq C(1+t)^{-\frac{1}{2}\min\left\{\frac{\theta}{1-2\theta},\frac{\rho}{2}\right\}}, \quad \forall t \geq 0, \end{split}$$

where C > 0 is a constant depending on $\|\phi_0\|_{H^1(\Omega)}$, $\|\sigma_0\|_{L^2(\Omega)}$, $\|\phi_\infty\|_{H^1(\Omega)}$, $\|u\|_{L^1(0,+\infty;L^2(\Omega))}$, $\|u\|_{L^2(0,+\infty;L^2(\Omega))}$ and Ω ; $\theta \in (0, \frac{1}{2})$ is a constant depending on ϕ_∞ .

イロト イヨト イヨト イヨト

An idea of the proof

イロト イヨト イヨト イヨト

An idea of the proof

The proof consists of several steps:

• We first derive some uniform-in-time a priori estimates on the solution (ϕ,μ,σ)

・ロト ・回ト ・ヨト ・ヨ

An idea of the proof

The proof consists of several steps:

- We first derive some uniform-in-time a priori estimates on the solution (ϕ,μ,σ)
- $\bullet\,$ Then we give a characterization on the $\omega\text{-limit}$

$$\begin{split} \omega(\phi_0,\sigma_0) = & \{(\phi_\infty,\sigma_\infty) \in (H^2_N(\Omega) \cap H^3(\Omega)) \times H^1(\Omega) : \exists \{t_n\} \nearrow +\infty \text{ such that} \\ & (\phi(t_n),\sigma(t_n)) \to (\phi_\infty,\sigma_\infty) \text{ in } H^2(\Omega) \times L^2(\Omega) \}. \end{split}$$

And we have the following result

Theorem (3. The ω -limit)

Assume (P1), (F1), (U2). For any initial datum $(\phi_0, \sigma_0) \in H^1(\Omega) \times L^2(\Omega)$, the associated ω -limit set $\omega(\phi_0, \sigma_0)$ is non-empty. For any element $(\phi_\infty, \sigma_\infty) \in \omega(\phi_0, \sigma_0)$, σ_∞ is a constant and $(\phi_\infty, \sigma_\infty)$ satisfies the stationary problem. Besides, μ_∞ is a constant given by $|\Omega|^{-1} \int_{\Omega} F'(\phi_\infty) dx$ and the following relation holds

$$P(\phi_{\infty})(\sigma_{\infty}-\mu_{\infty})=0,$$
 a.e. in Ω .

And the positivity of P entails immediately also $\sigma_{\infty} = \mu_{\infty}$.

イロト イポト イヨト イヨト

• Finally, we prove the convergence of the trajectories and polynomial decay by means of a proper Łojasiewicz–Simon inequality:

イロト イヨト イヨト イヨト

 Finally, we prove the convergence of the trajectories and polynomial decay by means of a proper Łojasiewicz–Simon inequality: Given any initial datum (φ₀, σ₀) ∈ H¹(Ω) × L²(Ω) and source term *u* satisfying (U2), we denote by

$$m_{\infty} := |\Omega|^{-1} \left(\int_{\Omega} (\phi_0 + \sigma_0) \, \mathrm{d}x + \int_0^{+\infty} \int_{\Omega} u \, \mathrm{d}x \, \mathrm{d}t \right)$$

the total mass at infinity time. Then we are able to derive the following

Theorem (Łojasiewicz–Simon Inequality)

Let (F1), (F2), (P1), (P2) and (U2) be satisfied. Suppose that $(\phi_{\infty}, \mu_{\infty}, \sigma_{\infty})$ is a solution to the elliptic stationary problem. Then there exist constants $\theta \in (0, \frac{1}{2})$ and $\beta > 0$, depending on ϕ_{∞} , m_{∞} and Ω , such that for any $(\phi, \sigma) \in H^2_N(\Omega) \times H^1(\Omega)$ satisfying

$$\|\phi - \phi_{\infty}\|_{H^{1}(\Omega)} < \beta,$$

$$\int_{\Omega} (\phi + \sigma) \, \mathrm{d}x + m_{u} |\Omega| = \int_{\Omega} (\phi_{\infty} + \sigma_{\infty}) \, \mathrm{d}x = m_{\infty} |\Omega|,$$

where m_u is a certain constant fulfiling $|m_u| \leq |\Omega|^{-\frac{1}{2}} ||u||_{L^1(0,+\infty;L^2(\Omega))}$, then we have

$$\begin{split} \|\mu - \overline{\mu}\|_{(H^1(\Omega))'} + C \|\nabla\sigma\|_{L^2(\Omega)} + C \|\sqrt{P(\phi)}(\mu - \sigma)\|_{L^2(\Omega)} + C |m_u|^{\frac{1}{2}} \\ \geq |\mathcal{E}(\phi, \sigma) - \mathcal{E}(\phi_{\infty}, \sigma_{\infty})|^{1-\theta}, \quad \text{where} \end{split}$$

 $\mu = -\Delta \phi + F'(\phi) \text{ and } C > 0 \text{ depends on } \Omega, \ \phi_{\infty}, \ m_{\infty}, \ \|\phi\|_{H^2(\Omega)}, \ \|\sigma\|_{H^1(\Omega)}, \ \|u\|_{L^1(0,+\infty;L^2(\Omega))}.$

メロト メロト メヨト メヨト

Let us now assume u = 0. Then it follows that the total mass of the system is now conserved:

$$\int_{\Omega} (\phi(t) + \sigma(t)) \, \mathrm{d} x = \int_{\Omega} (\phi_0 + \sigma_0) \, \mathrm{d} x, \quad \forall \, t \ge 0.$$

イロン イロン イヨン イヨン

Let us now assume u = 0. Then it follows that the total mass of the system is now conserved:

$$\int_{\Omega} (\phi(t) + \sigma(t)) \, \mathrm{d} x = \int_{\Omega} (\phi_0 + \sigma_0) \, \mathrm{d} x, \quad \forall \, t \ge 0.$$

Let $m \in \mathbb{R}$ be an arbitrary given constant. Set

$$\mathcal{Z}_m = \Big\{ (\phi, \sigma) \in H^1(\Omega) imes L^2(\Omega) : \int_\Omega (\phi + \sigma) \, \mathrm{d}x = |\Omega| m \Big\}.$$

イロン イロン イヨン イヨン

Let us now assume u = 0. Then it follows that the total mass of the system is now conserved:

$$\int_{\Omega} (\phi(t) + \sigma(t)) \, \mathrm{d} x = \int_{\Omega} (\phi_0 + \sigma_0) \, \mathrm{d} x, \quad \forall \, t \ge 0.$$

Let $m \in \mathbb{R}$ be an arbitrary given constant. Set

$$\mathcal{Z}_m = \Big\{ (\phi, \sigma) \in H^1(\Omega) imes L^2(\Omega) : \int_{\Omega} (\phi + \sigma) \, \mathrm{d}x = |\Omega| m \Big\}.$$

Any $(\phi^*, \sigma^*) \in \mathcal{Z}_m$ is called

• a local energy minimizer of the total energy

$$\mathcal{E}(\phi,\sigma) = \int_{\Omega} \left[\frac{1}{2}|\nabla\phi|^2 + F(\phi)\right] \, \mathrm{d}x + \frac{1}{2} \int_{\Omega} \sigma^2 \, \mathrm{d}x$$

if there exists a constant $\chi > 0$ such that $\mathcal{E}(\phi^*, \sigma^*) \leq \mathcal{E}(\phi, \sigma)$, for all $(\phi, \sigma) \in \mathcal{Z}_m$ satisfying $\|(\phi - \phi^*, \sigma - \sigma^*)\|_{H^1(\Omega) \times L^2(\Omega)} < \chi$

• If $\chi = +\infty$, then (ϕ^*, σ^*) is called a *global energy minimizer* of $\mathcal{E}(\phi, \sigma)$ in \mathcal{Z}_m .

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

We first derive some properties for the critical points of $\mathcal{E}(\phi, \sigma)$ in \mathcal{Z}_m .

イロン イロン イヨン イヨン

$$\begin{aligned} & -\Delta\phi + F'(\phi) = \mu, & \text{in } \Omega, \\ & \partial_{\nu}\phi = 0, & \text{on } \partial\Omega, \\ & \int_{\Omega} (\phi + \sigma) \, \mathrm{d}x = |\Omega| m, \end{aligned}$$

where μ and σ are constants given by $\sigma = \mu = |\Omega|^{-1} \int_{\Omega} F'(\phi) \, dx$.

イロト イヨト イヨト イヨト

$$\begin{aligned} & -\Delta\phi + F'(\phi) = \mu, & \text{in } \Omega, \\ & \partial_{\nu}\phi = 0, & \text{on } \partial\Omega, \\ & \int_{\Omega} (\phi + \sigma) \, \mathrm{d}x = |\Omega| m, \end{aligned}$$

where μ and σ are constants given by $\sigma = \mu = |\Omega|^{-1} \int_{\Omega} F'(\phi) dx$.

Theorem (4. Critical points)

Let assumption (F1) be satisfied. Then we have:

$$\begin{aligned} & -\Delta\phi + F'(\phi) = \mu, & \text{in } \Omega, \\ & \partial_{\nu}\phi = 0, & \text{on } \partial\Omega, \\ & \int_{\Omega} (\phi + \sigma) \, \mathrm{d}x = |\Omega| m, \end{aligned}$$

where μ and σ are constants given by $\sigma = \mu = |\Omega|^{-1} \int_{\Omega} F'(\phi) dx$.

Theorem (4. Critical points)

Let assumption (F1) be satisfied. Then we have:

(1) If $(\phi^*, \sigma^*) \in H^2_N(\Omega) \times \mathbb{R}$ is a strong solution to the stationary problem above, then (ϕ^*, σ^*) is a critical point of $\mathcal{E}(\phi, \sigma)$ in \mathcal{Z}_m . Conversely, if (ϕ^*, σ^*) is a critical point of $\mathcal{E}(\phi, \sigma)$ in \mathcal{Z}_m , then $\phi^* \in H^2_N(\Omega)$, $\sigma^* \in \mathbb{R}$ satisfy the stationary problem above

$$\begin{aligned} & -\Delta\phi + F'(\phi) = \mu, & \text{in } \Omega, \\ & \partial_{\nu}\phi = 0, & \text{on } \partial\Omega, \\ & \int_{\Omega} (\phi + \sigma) \, \mathrm{d}x = |\Omega| m, \end{aligned}$$

where μ and σ are constants given by $\sigma = \mu = |\Omega|^{-1} \int_{\Omega} F'(\phi) dx$.

Theorem (4. Critical points)

Let assumption (F1) be satisfied. Then we have:

- (1) If $(\phi^*, \sigma^*) \in H^2_N(\Omega) \times \mathbb{R}$ is a strong solution to the stationary problem above, then (ϕ^*, σ^*) is a critical point of $\mathcal{E}(\phi, \sigma)$ in \mathcal{Z}_m . Conversely, if (ϕ^*, σ^*) is a critical point of $\mathcal{E}(\phi, \sigma)$ in \mathcal{Z}_m , then $\phi^* \in H^2_N(\Omega)$, $\sigma^* \in \mathbb{R}$ satisfy the stationary problem above
- (2) If (φ*, σ*) is a local energy minimizer of E(φ, σ) in Z_m, then (φ*, σ*) is a critical point of E(φ, σ).

$$\begin{aligned} & -\Delta\phi + F'(\phi) = \mu, & \text{in } \Omega, \\ & \partial_{\nu}\phi = 0, & \text{on } \partial\Omega, \\ & \int_{\Omega} (\phi + \sigma) \, \mathrm{d}x = |\Omega| m, \end{aligned}$$

where μ and σ are constants given by $\sigma = \mu = |\Omega|^{-1} \int_{\Omega} F'(\phi) dx$.

Theorem (4. Critical points)

Let assumption (F1) be satisfied. Then we have:

- (1) If $(\phi^*, \sigma^*) \in H^2_N(\Omega) \times \mathbb{R}$ is a strong solution to the stationary problem above, then (ϕ^*, σ^*) is a critical point of $\mathcal{E}(\phi, \sigma)$ in \mathcal{Z}_m . Conversely, if (ϕ^*, σ^*) is a critical point of $\mathcal{E}(\phi, \sigma)$ in \mathcal{Z}_m , then $\phi^* \in H^2_N(\Omega)$, $\sigma^* \in \mathbb{R}$ satisfy the stationary problem above
- (2) If (φ*, σ*) is a local energy minimizer of E(φ, σ) in Z_m, then (φ*, σ*) is a critical point of E(φ, σ).
- (3) The functional $\mathcal{E}(\phi, \sigma)$ has at least one minimizer $(\phi^*, \sigma^*) \in \mathcal{Z}_m$ such that

$$\mathcal{E}(\phi^*, \sigma^*) = \inf_{(\phi, \sigma) \in \mathcal{Z}_m} \mathcal{E}(\phi, \sigma)$$

イロン イロン イヨン イヨン

Then, we can get our main result on long-term dynamics:

イロン イロン イヨン イヨン

Then, we can get our main result on long-term dynamics:

Theorem (5. Lyapunov stability)

Assume that (F1), (F2), (P1), (P2) are satisfied and u = 0. Given $m \in \mathbb{R}$, let (ϕ^*, σ^*) be a local energy minimizer in \mathcal{Z}_m of

$$\mathcal{E}(\phi,\sigma) = \int_{\Omega} \left[\frac{1}{2} |\nabla \phi|^2 + F(\phi) \right] \, \mathrm{d}x + \frac{1}{2} \int_{\Omega} \sigma^2 \, \mathrm{d}x.$$

イロト イヨト イヨト イヨト

Then, we can get our main result on long-term dynamics:

Theorem (5. Lyapunov stability)

Assume that (F1), (F2), (P1), (P2) are satisfied and u = 0. Given $m \in \mathbb{R}$, let (ϕ^*, σ^*) be a local energy minimizer in \mathcal{Z}_m of

$$\mathcal{E}(\phi,\sigma) = \int_{\Omega} \left[\frac{1}{2} |\nabla \phi|^2 + F(\phi) \right] \, \mathrm{d}x + \frac{1}{2} \int_{\Omega} \sigma^2 \, \mathrm{d}x.$$

Then, for any $\epsilon > 0$, there exists a constant $\eta \in (0, 1)$ such that for arbitrary initial datum $(\phi_0, \sigma_0) \in (H^2_N(\Omega) \cap H^3(\Omega)) \times H^1(\Omega)$ satisfying $\int_{\Omega} (\phi_0 + \sigma_0) dx = |\Omega| m$ and $\|\phi_0 - \phi^*\|_{H^1(\Omega)} + \|\sigma_0 - \sigma^*\|_{L^2(\Omega)} \leq \eta$, the state system admits a unique global strong solution (ϕ, σ) such that

$$\|\phi(t)-\phi^*\|_{H^1(\Omega)}+\|\sigma(t)-\sigma^*\|_{L^2(\Omega)}\leq\epsilon,\quad \forall\,t\geq0.$$

Namely, any local energy minimizer of $\mathcal{E}(\phi, \sigma)$ in \mathcal{Z}_m is locally Lyapunov stable.

<ロ> (日) (日) (日) (日) (日)

Conclusions on long-term dynamics

- The result on long-time behavior derived in Theorem 1 and 2 can be applied to the global strong solution obtained in Theorem 5
- Although it is still not obvious to identify the asymptotic limit $(\phi_{\infty}, \sigma_{\infty})$, we are able to conclude that $(\phi_{\infty}, \sigma_{\infty})$ also satisfies

$$\|\phi_{\infty} - \phi^*\|_{H^1(\Omega)} + \|\sigma_{\infty} - \sigma^*\|_{L^2(\Omega)} \le \epsilon$$

• In particular, if (ϕ^*, σ^*) is an isolated local energy minimizer then it is locally asymptotic stable

イロト イポト イヨト イヨト

Outline

Phase field models for tumor growth

2 The model HZO by [A. Hawkins-Daarud, K.-G. van der Zee and J.-T. Oden (2011)]

3 Content of the joint work with C. Cavaterra and H. Wu, arXiv:1901.07500, 2019

Well-posedness

5 Long-term dynamics

6 The optimal control problem

Open problems and Perspectives

(ロ) (回) (三) (三)

Assumptions for the optimal control problem

In this section we study the optimal control problem

(CP) Minimize the cost functional

$$\begin{aligned} \mathcal{J}(\phi,\sigma,u,\tau) &= \frac{\beta_Q}{2} \int_0^\tau \int_\Omega |\phi - \phi_Q|^2 \, \mathrm{d}x \, \mathrm{d}t \, + \, \frac{\beta_\Omega}{2} \int_\Omega |\phi(\tau) - \phi_\Omega|^2 \, \mathrm{d}x \\ &+ \frac{\alpha_Q}{2} \int_0^\tau \int_\Omega |\sigma - \sigma_Q|^2 \, \mathrm{d}x \, \mathrm{d}t + \frac{\beta_S}{2} \int_\Omega (1 + \phi(\tau)) \, \mathrm{d}x + \, \frac{\beta_u}{2} \int_0^\tau \int_\Omega |u|^2 \, \mathrm{d}x \, \mathrm{d}t + \beta_T \tau \end{aligned}$$

subject to the state system and the the control constraint

$$u \in \mathcal{U}_{\mathrm{ad}} := \{ u \in L^{\infty}(Q) : u_{\min} \leq u \leq u_{\max} \text{ a.e. in } Q \}, \quad \tau \in (0, T),$$

イロト イポト イヨト イヨ

Assumptions for the optimal control problem

In this section we study the optimal control problem

(CP) Minimize the cost functional

$$\begin{aligned} \mathcal{J}(\phi,\sigma,u,\tau) &= \frac{\beta_Q}{2} \int_0^\tau \int_\Omega |\phi - \phi_Q|^2 \, \mathrm{d}x \, \mathrm{d}t \, + \, \frac{\beta_\Omega}{2} \int_\Omega |\phi(\tau) - \phi_\Omega|^2 \, \mathrm{d}x \\ &+ \frac{\alpha_Q}{2} \int_0^\tau \int_\Omega |\sigma - \sigma_Q|^2 \, \mathrm{d}x \, \mathrm{d}t + \frac{\beta_S}{2} \int_\Omega (1 + \phi(\tau)) \, \mathrm{d}x + \, \frac{\beta_u}{2} \int_0^\tau \int_\Omega |u|^2 \, \mathrm{d}x \, \mathrm{d}t + \beta_T \tau \end{aligned}$$

subject to the state system and the the control constraint

$$u \in \mathcal{U}_{\mathrm{ad}} := \{ u \in L^{\infty}(Q) : u_{\min} \leq u \leq u_{\max} \text{ a.e. in } Q \}, \quad \tau \in (0, T),$$

where $T \in (0, +\infty)$ is a fixed maximal time. We assume:

イロト イヨト イヨト イヨト

Assumptions for the optimal control problem

In this section we study the optimal control problem

(CP) Minimize the cost functional

$$\begin{aligned} \mathcal{J}(\phi,\sigma,u,\tau) &= \frac{\beta_Q}{2} \int_0^\tau \int_\Omega |\phi - \phi_Q|^2 \, \mathrm{d}x \, \mathrm{d}t \, + \, \frac{\beta_\Omega}{2} \int_\Omega |\phi(\tau) - \phi_\Omega|^2 \, \mathrm{d}x \\ &+ \frac{\alpha_Q}{2} \int_0^\tau \int_\Omega |\sigma - \sigma_Q|^2 \, \mathrm{d}x \, \mathrm{d}t + \frac{\beta_S}{2} \int_\Omega (1 + \phi(\tau)) \, \mathrm{d}x + \, \frac{\beta_u}{2} \int_0^\tau \int_\Omega |u|^2 \, \mathrm{d}x \, \mathrm{d}t + \beta_T \tau \end{aligned}$$

subject to the state system and the the control constraint

$$u \in \mathcal{U}_{\mathrm{ad}} := \{ u \in L^{\infty}(Q) : u_{\mathrm{min}} \leq u \leq u_{\mathrm{max}} \text{ a.e. in } Q \}, \quad \tau \in (0, T),$$

where $T \in (0, +\infty)$ is a fixed maximal time. We assume:

(C1) $\beta_Q, \beta_\Omega, \beta_S, \beta_u, \beta_T, \alpha_Q$ are nonnegative constants but not all zero.

(C2)
$$\phi_Q, \sigma_Q \in L^2(Q), \phi_\Omega, \sigma_\Omega \in L^2(\Omega), u_{\min}, u_{\max} \in L^\infty(Q)$$
, and $u_{\min} \leq u_{\max}$, a.e. in Q .

(C3) Let \mathcal{U}_R be an open set in $L^2(Q)$: $\mathcal{U}_{ad} \subset \mathcal{U}_R$ and $\|u\|_{L^2(Q)} \leq R$, for all $u \in \mathcal{U}_R$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

From the well-posedness results it follows that the *control-to-state operator* ${\cal S}$

$$u\mapsto \mathcal{S}(u):=(\phi,\mu,\sigma)$$

is well-defined and Lipschitz continuous as a mapping from $\mathcal{U}_R \subset L^2(Q)$ into the following space

 $(L^{\infty}(0, T; (H^{1}(\Omega))') \cap L^{2}(0, T; H^{1}(\Omega))) \times L^{2}(0, T; (H^{1}(\Omega))') \times (L^{\infty}(0, T; (H^{1}(\Omega))') \cap L^{2}(Q)).$

イロト イポト イヨト イヨ

From the well-posedness results it follows that the *control-to-state operator* $\mathcal S$

$$u\mapsto \mathcal{S}(u):=(\phi,\mu,\sigma)$$

is well-defined and Lipschitz continuous as a mapping from $\mathcal{U}_R \subset L^2(Q)$ into the following space

 $(L^{\infty}(0, T; (H^{1}(\Omega))') \cap L^{2}(0, T; H^{1}(\Omega))) \times L^{2}(0, T; (H^{1}(\Omega))') \times (L^{\infty}(0, T; (H^{1}(\Omega))') \cap L^{2}(Q)).$ The triplet (ϕ, μ, σ) is the unique weak solution to the state system with data $(\phi_{0}, \sigma_{0}, u)$ over the time interval [0, T]. For convenience, we use the notations $\phi = S_{1}(u)$ and $\sigma = S_{3}(u)$ for the first and third component of S(u).

イロト イポト イヨト イヨト

From the well-posedness results it follows that the *control-to-state operator* S

$$u\mapsto \mathcal{S}(u):=(\phi,\mu,\sigma)$$

is well-defined and Lipschitz continuous as a mapping from $\mathcal{U}_R \subset L^2(Q)$ into the following space

 $(L^{\infty}(0, T; (H^{1}(\Omega))') \cap L^{2}(0, T; H^{1}(\Omega))) \times L^{2}(0, T; (H^{1}(\Omega))') \times (L^{\infty}(0, T; (H^{1}(\Omega))') \cap L^{2}(Q)).$ The triplet (ϕ, μ, σ) is the unique weak solution to the state system with data $(\phi_{0}, \sigma_{0}, u)$ over the time interval [0, T]. For convenience, we use the notations $\phi = S_{1}(u)$ and $\sigma = S_{3}(u)$ for the first and third component of S(u). Then we prove the following result that implies the existence of a solution to problem (CP).

Theorem (Existence of the optimal control)

Assume that (P1), (F1), (U1) and (C1)–(C3) are satisfied. Let $\phi_0 \in H^2_N(\Omega) \cap H^3(\Omega)$ and $\sigma_0 \in H^1(\Omega)$. Then there exists at least one minimizer $(\phi_*, \sigma_*, u_*, \tau_*)$ to problem (CP). Namely, $\phi_* = S_1(u_*)$, $\sigma_* = S_3(u_*)$ satisfy

$$\mathcal{J}(\phi_*, \sigma_*, u_*, \tau_*) = \inf_{\substack{(w,s) \in \mathcal{U}_{ad} \times [0,T] \\ \text{s.t. } \phi = S_1(w), \sigma = S_3(w)}} \mathcal{J}(\phi, \sigma, w, s).$$

Differentiability of the control-to-state map

We establish then the Fréchet differentiability of the solution operator S with respect to the control u.

-

・ロト ・回ト ・ヨト ・
We establish then the Fréchet differentiability of the solution operator S with respect to the control u. For $u_* \in U_R$, let $(\phi_*, \mu_*, \sigma_*) = S(u_*)$. We consider for any $h \in L^2(Q)$ the linearized system

$$\begin{aligned} \partial_t \xi - \Delta \eta &= P'(\phi_*)(\sigma_* - \mu_*)\xi + P(\phi_*)(\rho - \eta), \qquad \eta &= -\Delta \xi + F''(\phi_*)\xi, \\ \partial_t \rho - \Delta \rho &= -P'(\phi_*)(\sigma_* - \mu_*)\xi - P(\phi_*)(\rho - \eta) + h \\ \partial_n \xi &= \partial_n \eta = \partial_n \rho = 0, \qquad \xi(0) = \rho(0) = 0. \end{aligned}$$

イロト イヨト イヨト イヨト

We establish then the Fréchet differentiability of the solution operator S with respect to the control u. For $u_* \in U_R$, let $(\phi_*, \mu_*, \sigma_*) = S(u_*)$. We consider for any $h \in L^2(Q)$ the linearized system

$$\begin{aligned} \partial_t \xi - \Delta \eta &= P'(\phi_*)(\sigma_* - \mu_*)\xi + P(\phi_*)(\rho - \eta), \qquad \eta &= -\Delta \xi + F''(\phi_*)\xi, \\ \partial_t \rho - \Delta \rho &= -P'(\phi_*)(\sigma_* - \mu_*)\xi - P(\phi_*)(\rho - \eta) + h \\ \partial_n \xi &= \partial_n \eta = \partial_n \rho = 0, \qquad \xi(0) = \rho(0) = 0. \end{aligned}$$

We can apply [Theorems 3.1, 3.2, CGRS] for the well-posedness of the linearized system and the Fréchet differentiability of the control-to-state operator S with respect to u.

イロト 不得下 イヨト イヨト

39 / 46

We establish then the Fréchet differentiability of the solution operator S with respect to the control u. For $u_* \in U_R$, let $(\phi_*, \mu_*, \sigma_*) = S(u_*)$. We consider for any $h \in L^2(Q)$ the linearized system

$$\begin{aligned} \partial_t \xi - \Delta \eta &= P'(\phi_*)(\sigma_* - \mu_*)\xi + P(\phi_*)(\rho - \eta), \qquad \eta &= -\Delta \xi + F''(\phi_*)\xi, \\ \partial_t \rho - \Delta \rho &= -P'(\phi_*)(\sigma_* - \mu_*)\xi - P(\phi_*)(\rho - \eta) + h \\ \partial_n \xi &= \partial_n \eta = \partial_n \rho = 0, \qquad \xi(0) = \rho(0) = 0. \end{aligned}$$

We can apply [Theorems 3.1, 3.2, CGRS] for the well-posedness of the linearized system and the Fréchet differentiability of the control-to-state operator S with respect to u. Assume (P1), (F1), (U1), (C1)–(C3), let $\phi_0 \in H^2_N(\Omega) \cap H^3(\Omega)$ and $\sigma_0 \in H^1(\Omega)$. Then the control-to-state operator S is Fréchet differentiable in \mathcal{U}_R as a mapping from $L^2(Q)$ into

$$\begin{aligned} \mathcal{Y} &:= \left(H^1(0, T; (H^2_N(\Omega))') \cap L^{\infty}(0, T; L^2(\Omega)) \cap L^2(0, T; H^2_N(\Omega)) \right) \times L^2(Q) \\ &\times \left(H^1(0, T; L^2(\Omega)) \cap L^2(0, T; H^2(\Omega)) \right). \end{aligned}$$

イロト 不得下 イヨト イヨト

We establish then the Fréchet differentiability of the solution operator S with respect to the control u. For $u_* \in U_R$, let $(\phi_*, \mu_*, \sigma_*) = S(u_*)$. We consider for any $h \in L^2(Q)$ the linearized system

$$\begin{aligned} \partial_t \xi - \Delta \eta &= P'(\phi_*)(\sigma_* - \mu_*)\xi + P(\phi_*)(\rho - \eta), \qquad \eta &= -\Delta \xi + F''(\phi_*)\xi, \\ \partial_t \rho - \Delta \rho &= -P'(\phi_*)(\sigma_* - \mu_*)\xi - P(\phi_*)(\rho - \eta) + h \\ \partial_n \xi &= \partial_n \eta = \partial_n \rho = 0, \qquad \xi(0) = \rho(0) = 0. \end{aligned}$$

We can apply [Theorems 3.1, 3.2, CGRS] for the well-posedness of the linearized system and the Fréchet differentiability of the control-to-state operator S with respect to u. Assume (P1), (F1), (U1), (C1)–(C3), let $\phi_0 \in H^2_N(\Omega) \cap H^3(\Omega)$ and $\sigma_0 \in H^1(\Omega)$. Then the control-to-state operator S is Fréchet differentiable in U_R as a mapping from $L^2(Q)$ into

$$\begin{aligned} \mathcal{Y} := & \left(H^1(0, \, T; (H^2_N(\Omega))') \cap L^\infty(0, \, T; \, L^2(\Omega)) \cap L^2(0, \, T; \, H^2_N(\Omega)) \right) \times L^2(Q) \\ & \times \left(H^1(0, \, T; \, L^2(\Omega)) \cap L^2(0, \, T; \, H^2(\Omega)) \right). \end{aligned}$$

For any $u_* \in \mathcal{U}_R$, the Fréchet derivative $DS(u_*) \in \mathcal{L}(L^2(Q), \mathcal{Y})$ is defined as follows: for any $h \in L^2(Q)$, $DS(u_*)h = (\xi^h, \eta^h, \rho^h)$, where (ξ^h, η^h, ρ^h) is the unique solution to the linearized system associated with h.

E. Rocca (Università degli Studi di Pavia)

First order optimality conditions

Define a reduced functional

$$\widetilde{\mathcal{J}}(u,\tau) := \mathcal{J}(S_1(u), S_3(u), u, \tau).$$

Since the control-to-state mapping S is also Fréchet differentiable into $C^0([0, T]; L^2(\Omega))$ with respect to u, then the reduced cost functional $\tilde{\mathcal{J}}$ is Fréchet differentiable in \mathcal{U}_R .

イロト イポト イヨト イヨ

First order optimality conditions

Define a reduced functional

$$\widetilde{\mathcal{J}}(u,\tau) := \mathcal{J}(S_1(u), S_3(u), u, \tau).$$

Since the control-to-state mapping S is also Fréchet differentiable into $C^0([0, T]; L^2(\Omega))$ with respect to u, then the reduced cost functional $\tilde{\mathcal{J}}$ is Fréchet differentiable in \mathcal{U}_R .

Theorem (Existence of solutions to the adjoint system)

Assume (P1), (F1), (U1), (C1)–(C3), $\phi_0 \in H^2_N(\Omega) \cap H^3(\Omega)$, and $\sigma_0 \in H^1(\Omega)$. Then the adjoint system

$$\begin{aligned} &-\partial_t p + \Delta q - F''(\phi_*) q + P'(\phi_*)(\sigma_* - \mu_*)(r - p) = \beta_Q (\phi_* - \phi_Q) \\ &q - \Delta p + P(\phi_*)(p - r) = 0, \qquad -\partial_t r - \Delta r + P(\phi_*)(r - p) = \alpha_Q (\sigma_* - \sigma_Q) \\ &\partial_n p = \partial_n q = \partial_n r = 0, \qquad r(\tau_*) = 0, \quad p(\tau_*) = \beta_\Omega (\phi_*(\tau_*) - \phi_\Omega) + \frac{\beta_S}{2} \end{aligned}$$

has a unique weak solution (p, q, r) on $[0, \tau_*]$:

$$\begin{split} p &\in H^1(0,\tau_*;(H^2_N(\Omega))') \cap C^0([0,\tau_*];L^2(\Omega)) \cap L^2(0,\tau_*;H^2_N(\Omega)), \\ q &\in L^2(\Omega \times (0,\tau_*)), \qquad r \in H^1(0,\tau_*;L^2(\Omega)) \cap C^0([0,\tau_*];H^1(\Omega)) \cap L^2(0,\tau_*;H^2_N(\Omega)). \end{split}$$

Necessary optimality conditions

イロン イロン イヨン イヨン

Necessary optimality conditions

Theorem (Necessary optimality conditions)

Let $(u_*, \tau_*) \in U_{ad} \times [0, T]$ denote a minimizer to the optimal control problem (CP) with corresponding state variables $(\phi_*, \mu_*, \sigma_*) = S(u_*)$ and associated adjoint variables (p, q, r), then it holds:

$$\beta_u \int_0^T \int_{\Omega} u_*(u-u_*) \,\mathrm{d}x \,\mathrm{d}t + \int_0^{\tau_*} \int_{\Omega} r(u-u_*) \,\mathrm{d}x \,\mathrm{d}t \ge 0, \quad \forall \, u \in \mathcal{U}_{\mathrm{ad}}.$$

Besides, setting

$$\begin{aligned} \mathcal{L}(\phi_*,\sigma_*,\tau_*) &= \frac{\beta_Q}{2} \int_{\Omega} |\phi_*(\tau_*) - \phi_Q(\tau_*)|^2 \, \mathrm{d}x + \beta_\Omega \int_{\Omega} (\phi_*(\tau_*) - \phi_\Omega) \, \partial_t \phi_*(\tau_*) \, \mathrm{d}x \\ &+ \frac{\alpha_Q}{2} \int_{\Omega} |\sigma_*(\tau_*) - \sigma_Q(\tau_*)|^2 \, \mathrm{d}x + \frac{\beta_S}{2} \int_{\Omega} \partial_t \phi_*(\tau_*) \, \mathrm{d}x + \beta_T \end{aligned}$$

we have

$$\mathcal{L}(\phi_*, \sigma_*, \tau_*) \quad \begin{cases} \geq 0, & \text{if } \tau_* = 0, \\ = 0, & \text{if } \tau_* \in (0, T), \\ \leq 0, & \text{if } \tau_* = T. \end{cases}$$

Interpretation of the first condition

Besides, if we extend r by zero to $(au_*, T]$, then we can express the variational inequality

$$\beta_u \int_0^T \int_\Omega u_*(u-u_*) \,\mathrm{d}x \,\mathrm{d}t + \int_0^{\tau_*} \int_\Omega r(u-u_*) \,\mathrm{d}x \,\mathrm{d}t \ge 0, \quad \forall \, u \in \mathcal{U}_{\mathrm{ad}}.$$

as

$$\int_0^T\!\!\int_\Omega (\beta_u u_* + r)(u - u_*) \,\mathrm{d}x \,\mathrm{d}t \ge 0, \quad \forall \, u \in \mathcal{U}_{\mathrm{ad}},$$

which allows the interpretation that the optimal control u_* is the $L^2(Q)$ -projection of $-\beta_u^{-1}r$ onto the set \mathcal{U}_{ad} (provided that $\beta_u > 0$).

イロン イロン イヨン イヨン

Outline

Phase field models for tumor growth

2 The model HZO by [A. Hawkins-Daarud, K.-G. van der Zee and J.-T. Oden (2011)]

3 Content of the joint work with C. Cavaterra and H. Wu, arXiv:1901.07500, 2019

Well-posedness

5 Long-term dynamics

6 The optimal control problem

Open problems and Perspectives

(ロ) (回) (三) (三)

O1. In practice it would be safer for the patient (and thus more desirable) to approximate the target functions in the L[∞]-sense rather than in the L²-sense or to include a pointwise state constraint on φ: |φ(x, τ) - φ_Ω| ≤ ε for a.e. x ∈ Ω. This leads to a more involved adjoint system.

イロト 不得下 イヨト イヨト

- O1. In practice it would be safer for the patient (and thus more desirable) to approximate the target functions in the L[∞]-sense rather than in the L²-sense or to include a pointwise state constraint on φ: |φ(x, τ) φ_Ω| ≤ ε for a.e. x ∈ Ω. This leads to a more involved adjoint system.
- O2. Include chemotaxis χ_0 and the evolution of average velocities in the model.

イロト イポト イヨト イヨト

- O1. In practice it would be safer for the patient (and thus more desirable) to approximate the target functions in the L[∞]-sense rather than in the L²-sense or to include a pointwise state constraint on φ: |φ(x, τ) φ_Ω| ≤ ε for a.e. x ∈ Ω. This leads to a more involved adjoint system.
- O2. Include chemotaxis χ_0 and the evolution of average velocities in the model.
- P1. To study the existence of attractors for different models:
 - with A. Miranville and G. Schimperna for a model proposed by Garcke at al. (cf. Giulio's talk),
 - with A. Giorgini, K.-F. Lam, and G. Schimperna for a model proposed by Lowengrub et al. including velocities.

イロト イポト イヨト イヨト

- O1. In practice it would be safer for the patient (and thus more desirable) to approximate the target functions in the L[∞]-sense rather than in the L²-sense or to include a pointwise state constraint on φ: |φ(x, τ) φ_Ω| ≤ ε for a.e. x ∈ Ω. This leads to a more involved adjoint system.
- O2. Include chemotaxis χ_0 and the evolution of average velocities in the model.
- P1. To study the existence of attractors for different models:
 - with A. Miranville and G. Schimperna for a model proposed by Garcke at al. (cf. Giulio's talk),
 - with A. Giorgini, K.-F. Lam, and G. Schimperna for a model proposed by Lowengrub et al. including velocities.
- P2. The study of optimal control: for a prostate model introduced by H. Gomez et al. and proposed to us by G. Lorenzo and A. Reali (with P. Colli and G. Marinoschi).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- O1. In practice it would be safer for the patient (and thus more desirable) to approximate the target functions in the L[∞]-sense rather than in the L²-sense or to include a pointwise state constraint on φ: |φ(x, τ) φ_Ω| ≤ ε for a.e. x ∈ Ω. This leads to a more involved adjoint system.
- O2. Include chemotaxis χ_0 and the evolution of average velocities in the model.
- P1. To study the existence of attractors for different models:
 - with A. Miranville and G. Schimperna for a model proposed by Garcke at al. (cf. Giulio's talk),
 - with A. Giorgini, K.-F. Lam, and G. Schimperna for a model proposed by Lowengrub et al. including velocities.
- P2. The study of optimal control: for a prostate model introduced by H. Gomez et al. and proposed to us by G. Lorenzo and A. Reali (with P. Colli and G. Marinoschi).
- P3. To add the mechanics in Lagrangean coordinates in a multiphase model: for example considering the tumor sample as a porous media (with P. Krejčí and J. Sprekels).

イロト イヨト イヨト イヨト

- O1. In practice it would be safer for the patient (and thus more desirable) to approximate the target functions in the L[∞]-sense rather than in the L²-sense or to include a pointwise state constraint on φ: |φ(x, τ) φ_Ω| ≤ ε for a.e. x ∈ Ω. This leads to a more involved adjoint system.
- O2. Include chemotaxis χ_0 and the evolution of average velocities in the model.
- P1. To study the existence of attractors for different models:
 - with A. Miranville and G. Schimperna for a model proposed by Garcke at al. (cf. Giulio's talk),
 - with A. Giorgini, K.-F. Lam, and G. Schimperna for a model proposed by Lowengrub et al. including velocities.
- P2. The study of optimal control: for a prostate model introduced by H. Gomez et al. and proposed to us by G. Lorenzo and A. Reali (with P. Colli and G. Marinoschi).
- P3. To add the mechanics in Lagrangean coordinates in a multiphase model: for example considering the tumor sample as a porous media (with P. Krejčí and J. Sprekels).
- P4. Include a stochastic term in phase-field models for tumor growth representing for example uncertainty of a therapy or random oscillations of the tumor phase (with C. Orrieri and L. Scarpa).

Many thanks to all of you for the attention!

イロト イロト イヨト イヨ

Preliminaries

- <u>Def.</u> \mathcal{B}_0 is an absorbing set for a semigroup S(t) on a metric space (X, d_X) iff
 - \mathcal{B}_0 is bdd
 - ▶ $\forall B \subset X \text{ bdd } \exists T_B \ge 0 \text{ s.t. } S(t)B \subset B_0 \quad \forall t \ge T_B.$
- <u>Theorem.</u> Let S(t) be a strongly continuous semigroup on a c.m.s. (X, d_X) . Moreover, if
 - S(t) admits an absorbing set B₀;
 - ▶ $\forall B \subset X \text{ bdd } \exists t_B > 0 \text{ s.t. } \bigcup_{t > t_B} S(t)B \text{ is compact in } X,$

then S(t) admits a *universal attractor* A that is

$$\mathcal{A} = igcap_{ au \geq 0} \overline{igcup_{t \geq au} S(t) \mathcal{B}_0}.$$

<ロ> (日) (日) (日) (日) (日)