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Setting

Tumors grown in vitro often exhibit “layered” structures:

Figure: Zhang et al. Integr. Biol., 2012, 4, 1072–1080. Scale bar 100µm = 0:1mm

A continuum model is introduced with the ansatz:

sharp interfaces are replaced by narrow transition layers arising due to adhesive forces

among the cell species: a diffuse interface separates tumor and healthy cell regions

proliferating tumor cells surrounded by (healthy) host cells, and a nutrient (e.g.

glucose).

We investigate the two-phase case: growth of a tumor in presence of a nutrient and

surrounded by host tissues.
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Advantages of diffuse interfaces in tumor growth models

It eliminates the need to enforce complicated boundary conditions across the

tumor/host tissue and other species/species interfaces

It eliminates the need to explicitly track the position of interfaces, as is required in

the sharp interface framework

The mathematical description remains valid even when the tumor undergoes

toplogical changes (e.g. metastasis)

Regarding modeling of diffuse interface tumor growth we can quote, e.g.,

Ciarletta, Cristini, Frieboes, Garcke, Hawkins-Daarud, Hilhorst, Lam, Lowengrub,

Oden, van der Zee, Wise, also for their numerical simulations → complex changes in

tumor morphologies due to the interactions with nutrients or toxic agents and also

due to mechanical stresses

Frieboes, Jin, Chuang, Wise, Lowengrub, Cristini, Garcke, Lam, Nürnberg, Sitka, for

the interaction of multiple tumor cell species described by multiphase mixture models
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HZO: the free energy

u = tumor cell volume fraction u ∈ [0, 1]

n = nutrient-rich extracellular water volume fraction n ∈ [0, 1]

f (u) = Γu2(1− u)2: a double well

χ(u, n) = −χ0un: chemotaxis driving the tumor cells toward the oxygen supply
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The plot of the summand f (u) + χ(u, n)

The lowest energy state is when u = 1 and n = 1, when there is a full interaction

between the tumor species and the nutrient-rich extracellular water.
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The mass balance equations

ut = ∇ · (Mu∇µu) + γu, µu = ∂uE = f ′(u) + ∂uχ(u, n)− ε∆u

nt = ∇ · (Mn∇µn) + γn, µn = ∂nE = ∂nχ(u, n) +
1

δ
n

Question: how to define γu and γn?

In HZO they use the condition
∑

i µiγi ≤ 0 needed for Thermodynamical consistency.

More in particular, they choose:

γu = P(u)(µn − µu), γn = −γu, where

P(u) =

δP0u if u ≥ 0

0 elsewhere

being δ a small positive constant and P0 ≥ 0.

Then we get

γu = P0un + δP0u(∂nχ(u, n)− µu)

and so the dominant term is P0un. Other coiches are possible (see Giulio’s talk).
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Simulations by HZO: the tumor starts growing increasingly more ellipsoidal at first and

eventually begins forming buds growing toward the higher levels of nutrient
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Simulations by HZO:

the influence of χ0 and δ

When the ratio χ0/Γ is

small, the tumor remains

circular u ∼ 0, 1

When χ0 ∼ Γ the tumor

goes into an ellipse

When χ0/Γ and χ0/ε are

big, u no longer takes on

values close to 0 and 1:

it begins moving quickly

toward the regions with

higher nutrients

Only when χ0 is large

the value of δ makes a

difference in simulations
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Our notation for the tumor phase parameter (u =)φ ∈ [−1, 1]
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Theoretical analysis: two-phase models

In terms of the theoretical analysis most of the recent literature is restricted to the

two-phase variant, i.e., to models that only account for the evolution of a tumor

surrounded by healthy tissue.

In this setting, there is no differentiation among the tumor cells that exhibit

heterogeneous growth behavior. Hence this kind of two-phase models are just able to

describe the growth of a young tumor before the onset of quiescence and necrosis.

Analytical results related to well-posedness, asymptotic limits, but also optimal
control and long-time behavior of solution, have been established in a number of
papers of a number of authors which include: Agosti, Ciarletta, Colli, Frigeri,
Garcke, Gilardi, Grasselli, Hilhorst, Lam, Marinoschi, Melchionna, E.R., Scala,
Sprekels, Wu, etc...

I for tumor growth models based on the coupling of Cahn–Hilliard (for the tumor

density) and reaction–diffusion (for the nutrient) equations, and

I for models of Cahn-Hilliard-Darcy or Cahn-Hilliard-Brinkman type.

In this talk we concentrate on two recent results on optimal control and long-time

behavior of solution.
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E. Rocca (Università degli Studi di Pavia) Diffuse interface models of tumor growth February 27, 2019 14 / 46



Theoretical analysis: two-phase models

In terms of the theoretical analysis most of the recent literature is restricted to the

two-phase variant, i.e., to models that only account for the evolution of a tumor

surrounded by healthy tissue.

In this setting, there is no differentiation among the tumor cells that exhibit

heterogeneous growth behavior. Hence this kind of two-phase models are just able to

describe the growth of a young tumor before the onset of quiescence and necrosis.

Analytical results related to well-posedness, asymptotic limits, but also optimal
control and long-time behavior of solution, have been established in a number of
papers of a number of authors which include: Agosti, Ciarletta, Colli, Frigeri,
Garcke, Gilardi, Grasselli, Hilhorst, Lam, Marinoschi, Melchionna, E.R., Scala,
Sprekels, Wu, etc...

I for tumor growth models based on the coupling of Cahn–Hilliard (for the tumor

density) and reaction–diffusion (for the nutrient) equations, and

I for models of Cahn-Hilliard-Darcy or Cahn-Hilliard-Brinkman type.

In this talk we concentrate on two recent results on optimal control and long-time

behavior of solution.
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Long-time dynamics and optimal control

The state system consists of a Cahn-Hilliard type equation for the tumor cell

fraction φ ∈ [−1, 1] and a reaction-diffusion equation for the nutrient (n =)σ ∈ [0, 1]

The possible medication that serves to eliminate tumor cells is in terms of drugs and

is introduced into the system through the nutrient

In this setting, the control variable acts as an external source in the nutrient equation

1 First, we consider the problem of “long-time treatment” under a suitable given

source and prove the convergence of any global solution to a single equilibrium as

t → +∞.

2 Then we consider the “finite-time treatment” of tumor, which corresponds to an

optimal control problem. Here we also allow the objective cost functional to depend

on a free time variable, which represents the unknown treatment time to be

optimized. We prove the existence of an optimal control and obtain first order

necessary optimality conditions for both the drug concentration and the treatment

time.

E. Rocca (Università degli Studi di Pavia) Diffuse interface models of tumor growth February 27, 2019 15 / 46



Long-time dynamics and optimal control

The state system consists of a Cahn-Hilliard type equation for the tumor cell

fraction φ ∈ [−1, 1] and a reaction-diffusion equation for the nutrient (n =)σ ∈ [0, 1]

The possible medication that serves to eliminate tumor cells is in terms of drugs and

is introduced into the system through the nutrient

In this setting, the control variable acts as an external source in the nutrient equation

1 First, we consider the problem of “long-time treatment” under a suitable given

source and prove the convergence of any global solution to a single equilibrium as

t → +∞.

2 Then we consider the “finite-time treatment” of tumor, which corresponds to an

optimal control problem. Here we also allow the objective cost functional to depend

on a free time variable, which represents the unknown treatment time to be

optimized. We prove the existence of an optimal control and obtain first order

necessary optimality conditions for both the drug concentration and the treatment

time.
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Our main idea

One of the main aim of the control problem is to realize in the best possible way a

desired final distribution of the tumor cell, which is expressed by the target

function φΩ

By establishing the Lyapunov stability of certain equilibria of the state system

(without external source), we see that φΩ can be taken as a stable configuration,

so that the tumor will not grow again once the finite-time treatment is completed
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The state system: Cahn–Hilliard + nutrient model with source terms

The PDE system is a particular case (χ0 ≡ 0, Γ = ε = δ = 1) of the model proposed in

[HZO: A. Hawkins-Daarud, K.-G. van der Zee and J.-T. Oden (2011)] in Q := Ω× (0,T ):

φt −∆µ = P(φ)(σ − µ), µ = −∆φ+ F ′(φ)

σt −∆σ = −P(φ)(σ − µ) + u

subject to initial and boundary conditions

φ|t=0 = φ0, σ|t=0 = σ0, in Ω , ∂νφ = ∂νµ = ∂νσ = 0, on ∂Ω× (0,T )

The state variables are:

I the tumor cell fraction φ: φ ' 1 (tumorous phase), φ ' −1 (healthy tissue phase)
I the nutrient concentration σ: σ ' 1 and σ ' 0 indicate a nutrient-rich or

nutrient-poor extracellular water phase

F is typically a double-well potential with equal minima at φ = ±1

P ≥ 0 denotes a suitable regular proliferation function

The choice of reactive terms is motivated by the linear phenomenological constitutive laws

for chemical reactions

The control variable u serves as an external source in the equation for σ and can be

interpreted as a medication
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Energy identity

The system turns out to be thermodynamically consistent. In particular, when u = 0 the

unknown pair (φ, σ) is a dissipative gradient flow for the total free energy:

E(φ, σ) =

∫
Ω

[
1

2
|∇φ|2 + F (φ)

]
dx +

1

2

∫
Ω

σ2 dx .

Moreover generally, under the presence of the external source u, we observe that any

smooth solution (φ, σ) to the problem satisfies the following energy identity:

d
dt
E(φ, σ) +

∫
Ω

[
|∇µ|2 + |∇σ|2 + P(φ)(µ− σ)2

]
dx =

∫
Ω

uσ dx ,

which motives the twofold aim of the present contribution.
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Our results

1. We prove that any global weak solution will converge to a single equilibrium as

t → +∞ and provide an estimate on the convergence rate.

Our result indicates that

after certain medication (or even without medication, i.e., u = 0), the tumor will

eventually grow to a steady state as time evolves. However, since the potential

function F is nonconvex (double-well), the problem may admit infinite many steady

states so that for the moment one cannot identify which exactly the unique

asymptotic limit as t → +∞ will be.

2. Denoting by T ∈ (0,+∞) a fixed maximal time in which the patient is allowed to

undergo a medical treatment, we derive necessary optimality conditions for

(CP) Minimize the cost functional

J (φ, σ, u, τ) =
βQ
2

∫ τ

0

∫
Ω

|φ− φQ |2 dx dt +
βΩ

2

∫
Ω

|φ(τ)− φΩ|2 dx

+
αQ

2

∫ τ

0

∫
Ω

|σ − σQ |2 dx dt +
βS
2

∫
Ω

(1 + φ(τ)) dx +
βu
2

∫ T

0

∫
Ω

|u|2 dx dt + βT τ

subject to the state system and the the control constraint

u ∈ Uad := {u ∈ L∞(Q) : umin ≤ u ≤ umax a. e. in Q}, τ ∈ (0,T )
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E. Rocca (Università degli Studi di Pavia) Diffuse interface models of tumor growth February 27, 2019 19 / 46



Our results

1. We prove that any global weak solution will converge to a single equilibrium as

t → +∞ and provide an estimate on the convergence rate. Our result indicates that

after certain medication (or even without medication, i.e., u = 0), the tumor will

eventually grow to a steady state as time evolves. However, since the potential

function F is nonconvex (double-well), the problem may admit infinite many steady

states so that for the moment one cannot identify which exactly the unique

asymptotic limit as t → +∞ will be.

2. Denoting by T ∈ (0,+∞) a fixed maximal time in which the patient is allowed to

undergo a medical treatment, we derive necessary optimality conditions for

(CP) Minimize the cost functional

J (φ, σ, u, τ) =
βQ
2

∫ τ

0

∫
Ω

|φ− φQ |2 dx dt +
βΩ

2

∫
Ω

|φ(τ)− φΩ|2 dx

+
αQ

2

∫ τ

0

∫
Ω

|σ − σQ |2 dx dt +
βS
2

∫
Ω

(1 + φ(τ)) dx +
βu
2

∫ T

0

∫
Ω

|u|2 dx dt + βT τ

subject to the state system and the the control constraint

u ∈ Uad := {u ∈ L∞(Q) : umin ≤ u ≤ umax a. e. in Q}, τ ∈ (0,T )
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Comments on the cost functional

J (φ, σ, u, τ) =
βQ
2

∫ τ

0

∫
Ω

|φ− φQ |2 dx dt +
βΩ

2

∫
Ω

|φ(τ)− φΩ|2 dx

+
αQ

2

∫ τ

0

∫
Ω

|σ − σQ |2 dx dt +
βS
2

∫
Ω

(1 + φ(τ)) dx +
βu
2

∫ T

0

∫
Ω

|u|2 dx dt + βT τ

τ ∈ (0,T ] represents the treatment time of one cycle, i.e., the amount of time the

drug is applied to the patient before the period of rest, or the treatment time before

surgery, φQ and σQ represent a desired evolution for the tumor cells and for the

nutrient, φΩ stands for desired final distribution of tumor cells

The first three terms of J are of standard tracking type and the fourth term of J
measures the size of the tumor at the end of the treatment

The fifth term penalizes large concentrations of the cytotoxic drugs, and the sixth

term of J penalizes long treatment times
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The choice of φΩ

After the treatment, the ideal situation will be either the tumor is ready for surgery or the

tumor will be stable for all time without further medication (i.e., u = 0) . This goal can

be realized by making different choices of the target function φΩ in the above optimal

control problem (CP).

For the former case, one can simply take φΩ to be a configuration that is suitable for

surgery.

While for the later case, which is of more interest to us, we want to choose φΩ as a

“stable” configuration of the system, so that the tumor does not grow again once

the treatment is complete.

For this purpose, we prove that any local minimizer of the total free energy E is Lyapunov

stable provided that u = 0.

As a consequence, these local energy minimizers serve as

possible candidates for the target function φΩ. Then after completing a successful

medication, the tumor will remain close to the chosen stable configuration for all time.
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The mathematical difficulties

The study of long-time behavior is nontrivial, since the nonconvexity of the free energy E
indicates that the set of steady states may have a rather complicated structure.

For the single Cahn-Hilliard equation this difficulty can be overcome by employing

the  Lojasiewicz-Simon approach: a key property that plays an important role in the

analysis of the Cahn-Hilliard equation is the conservation of mass, i.e.,∫
Ω

φ(t) dx =

∫
Ω

φ0 dx for t ≥ 0 .

However, for our coupled system this property no longer holds, which brings us new

difficulties in analysis.

Besides, quite different from the Cahn-Hilliard-Oono system considered in which the

mass
∫

Ω
φ(t) dx is not preserved due to possible reactions, here in our case it is not

obvious how to control the mass changing rate:

d
dt

∫
Ω

φ dx =

∫
Ω

P(φ)(σ − µ) dx .

Similar problem happens to the nutrient as well, that is

d
dt

∫
Ω

σ dx = −
∫

Ω

P(φ)(σ − µ) dx +

∫
Ω

u dx .
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difficulties in analysis.

Besides, quite different from the Cahn-Hilliard-Oono system considered in which the

mass
∫

Ω
φ(t) dx is not preserved due to possible reactions, here in our case it is not

obvious how to control the mass changing rate:

d
dt

∫
Ω

φ dx =

∫
Ω

P(φ)(σ − µ) dx .

Similar problem happens to the nutrient as well, that is

d
dt

∫
Ω

σ dx = −
∫

Ω

P(φ)(σ − µ) dx +

∫
Ω

u dx .
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The problem of mass conservation

The observation that the total mass can be determined by the initial data and the

external source:∫
Ω

(φ(t) + σ(t)) dx =

∫
Ω

(φ0 + σ0) dx +

∫ t

0

∫
Ω

u dx dτ, ∀ t ≥ 0

allows us to derive a suitable version of the  Lojasiewicz-Simon type inequality.

On the other hand, we can control the mass changing rates of φ and σ by using the

extra dissipation related to reactive terms in the basic energy law, i.e.,∫
Ω
P(φ)(µ− σ)2 dx .

Based on the above mentioned special structure of the system, by introducing a new

version of  Lojasiewicz-Simon inequality we are able to prove that every global weak

solution (φ, σ) of the problem will converge to a certain single equilibrium (φ∞, σ∞)

as t → +∞ and, moreover, we obtain a polynomial decay of the solution.

Besides, a nontrivial application of the  Lojasiewicz-Simon approach further leads to

the Lyapunov stability of local minimizers of the free energy E (we only consider the

case u = 0 for the sake of simplicity).
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Comparison with other results in the literature

To the best of our knowledge, the only contribution in the study of long-time

behavior for this problem is given in [FGR: Frigeri, Grasselli, R. (2015)] with u = 0,

where, however, the main focus is the existence of a global attractor .

Recently in [MRS: Miraville, R., Schimperna (2018)] we prove the existenceof a

global attractor for a different model (see Giulio’s talk).

In the context of PDE constraint optimal control for diffuse interface tumor models,
in the literature we have basically two recent works:

1 [CGRS: Colli, Gilardi, R., Sprekels (2017)] where the objective functional is with the

special (simpler) choices βS = βT = αQ = 0, and the state system is exactly the same

but no dependence on τ is studied.

2 [GLR: Garcke, Lam, R. (2017)] where a different model is studied. There the

distributed control appears in the φ equation, which is a Cahn-Hilliard type equation

with a source of mass on the right hand side, but not depending on µ. Due to the

presence of the control in the Cahn-Hilliard equation, in [GLR] only the case of a

regularized objective cost functional can be analyzed for bounded controls.

Here we aim to provide a contribution to the theory of free terminal time optimal control

where the control is applied in the nutrient equation.
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Well-posedness (cf, [CGRS, Theorem 2.1])

Let φ0 ∈ H2
N(Ω) ∩ H3(Ω) and σ0 ∈ H1(Ω) and assume that

(P1) P ∈ C 2(R) is nonnegative. There exist α1 > 0 and some q ∈ [1, 4] such that, for all

s ∈ R, |P ′(s)| ≤ α1(1 + |s|q−1)

(F1) F = F0 + F1, with F0,F1 ∈ C 5(R). There exist αi > 0 and r ∈ [2, 6) such that

|F ′′1 (s)| ≤ α2, α3(1+|s|r−2) ≤ F ′′0 (s) ≤ α4(1+|s|r−2), F (s) ≥ α5|s|−α6 ∀s ∈ R

(U1) For any T > 0, u ∈ L2(0,T ; L2(Ω)). Then

Theorem (Strong solutions)

(1) For every T > 0, the state system admits a unique strong solution:

‖φ‖L∞(0,T ;H3(Ω))∩L2(0,T ;H4(Ω))∩H1(0,T ;H1(Ω)) + ‖µ‖L∞(0,T ;H1(Ω))∩L2(0,T ;H2(Ω))

+ ‖σ‖C([0,T ];H1(Ω))∩L2(0,T ;H2
N

(Ω))∩H1(0,T ;L2(Ω)) ≤ K1.

(2) Let (φi , σi ) be two strong solutions. Then there exists a constant K2 > 0, depending

on ‖ui‖L2(0,T ;L2), Ω, T , ‖φ0‖H3 and ‖σ0‖H1 , such that

‖φ1 − φ2‖L∞(0,T ;H1)∩L2(0,T ;H3)∩H1(0,T ;(H1)′) + ‖µ1 − µ2‖L2(0,T ;H1)

+ ‖σ1 − σ2‖C([0,T ];H1)∩L2(0,T ;H2)∩H1(0,T ;L2) ≤ K2‖u1 − u2‖L2(0,T ;L2).
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E. Rocca (Università degli Studi di Pavia) Diffuse interface models of tumor growth February 27, 2019 27 / 46



Long-term dynamics

We make the following additional assumptions:

(P2) P(s) > 0, for all s ∈ R

(F2) F (s) is real analytic on R

(U2) u ∈ L1(0,+∞; L2(Ω)) ∩ L2(0,+∞; L2(Ω)) and satisfies the decay condition

sup
t≥0

(1 + t)3+ρ‖u(t)‖L2(Ω) < +∞, for some ρ > 0.

Theorem (1. The stationary problem)

For any φ0 ∈ H1(Ω), σ0 ∈ L2(Ω), the state system admits a unique global weak solution

(φ, µ, σ): limt→+∞
(
‖φ(t)− φ∞‖H2(Ω) + ‖σ(t)− σ∞‖L2(Ω) + ‖µ(t)− µ∞‖L2(Ω)

)
= 0,

where (φ∞, µ∞, σ∞) satisfies the stationary problem
−∆φ∞ + F ′(φ∞) = µ∞, in Ω

∂νφ∞ = 0, on ∂Ω∫
Ω

(φ∞ + σ∞) dx =

∫
Ω

(φ0 + σ0) dx +

∫ +∞

0

∫
Ω

u dx dt

with µ∞ and σ∞ being two constants given by σ∞ = µ∞ = |Ω|−1
∫

Ω
F ′(φ∞)dx .
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The convergence rate

Theorem (2. Convergence rate)

Moreover, under the same assumptions, the following estimates on convergence rate hold

‖φ(t)− φ∞‖H1(Ω) + ‖σ(t)− σ∞‖L2(Ω) ≤ C(1 + t)−min{ θ
1−2θ

, ρ
2 }, ∀ t ≥ 0,

‖µ(t)− µ∞‖L2(Ω) ≤ C(1 + t)−
1
2

min{ θ
1−2θ

, ρ
2 }, ∀ t ≥ 0,

where C > 0 is a constant depending on ‖φ0‖H1(Ω), ‖σ0‖L2(Ω), ‖φ∞‖H1(Ω),

‖u‖L1(0,+∞;L2(Ω)), ‖u‖L2(0,+∞;L2(Ω)) and Ω; θ ∈ (0, 1
2
) is a constant depending on φ∞.
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An idea of the proof

The proof consists of several steps:

We first derive some uniform-in-time a priori estimates on the solution (φ, µ, σ)

Then we give a characterization on the ω-limit

ω(φ0, σ0) ={(φ∞, σ∞) ∈ (H2
N(Ω) ∩ H3(Ω))× H1(Ω) : ∃ {tn} ↗ +∞ such that

(φ(tn), σ(tn))→ (φ∞, σ∞) in H2(Ω)× L2(Ω)}.

And we have the following result

Theorem (3. The ω-limit)

Assume (P1), (F1), (U2). For any initial datum (φ0, σ0) ∈ H1(Ω)× L2(Ω), the associated

ω-limit set ω(φ0, σ0) is non-empty. For any element (φ∞, σ∞) ∈ ω(φ0, σ0), σ∞ is a

constant and (φ∞, σ∞) satisfies the stationary problem. Besides, µ∞ is a constant given

by |Ω|−1
∫

Ω
F ′(φ∞)dx and the following relation holds

P(φ∞)(σ∞ − µ∞) = 0, a.e. in Ω.

And the positivity of P entails immediately also σ∞ = µ∞.
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Finally, we prove the convergence of the trajectories and polynomial decay by means

of a proper  Lojasiewicz–Simon inequality:

Given any initial datum

(φ0, σ0) ∈ H1(Ω)× L2(Ω) and source term u satisfying (U2), we denote by

m∞ := |Ω|−1

(∫
Ω

(φ0 + σ0) dx +

∫ +∞

0

∫
Ω

u dx dt
)

the total mass at infinity time. Then we are able to derive the following

Theorem ( Lojasiewicz–Simon Inequality)

Let (F1), (F2), (P1), (P2) and (U2) be satisfied. Suppose that (φ∞, µ∞, σ∞) is a solution to

the elliptic stationary problem. Then there exist constants θ ∈ (0, 1
2

) and β > 0, depending on

φ∞, m∞ and Ω, such that for any (φ, σ) ∈ H2
N(Ω)× H1(Ω) satisfying

‖φ− φ∞‖H1(Ω) < β,∫
Ω

(φ+ σ) dx + mu |Ω| =

∫
Ω

(φ∞ + σ∞) dx = m∞|Ω|,

where mu is a certain constant fulfiling |mu | ≤ |Ω|−
1
2 ‖u‖L1(0,+∞;L2(Ω)), then we have

‖µ− µ‖(H1(Ω))′ + C‖∇σ‖L2(Ω) + C‖
√

P(φ)(µ− σ)‖L2(Ω) + C |mu |
1
2

≥ |E(φ, σ)− E(φ∞, σ∞)|1−θ, where

µ = −∆φ+ F ′(φ) and C > 0 depends on Ω, φ∞, m∞, ‖φ‖H2(Ω), ‖σ‖H1(Ω), ‖u‖L1(0,+∞;L2(Ω)).
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Energy minimizers with u = 0

Let us now assume u = 0. Then it follows that the total mass of the system is now

conserved: ∫
Ω

(φ(t) + σ(t)) dx =

∫
Ω

(φ0 + σ0) dx , ∀ t ≥ 0.

Let m ∈ R be an arbitrary given constant. Set

Zm =
{

(φ, σ) ∈ H1(Ω)× L2(Ω) :

∫
Ω

(φ+ σ) dx = |Ω|m
}
.

Any (φ∗, σ∗) ∈ Zm is called

a local energy minimizer of the total energy

E(φ, σ) =

∫
Ω

[
1

2
|∇φ|2 + F (φ)

]
dx +

1

2

∫
Ω

σ2 dx

if there exists a constant χ > 0 such that E(φ∗, σ∗) ≤ E(φ, σ), for all (φ, σ) ∈ Zm

satisfying ‖(φ− φ∗, σ − σ∗)‖H1(Ω)×L2(Ω) < χ

If χ = +∞, then (φ∗, σ∗) is called a global energy minimizer of E(φ, σ) in Zm.
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We first derive some properties for the critical points of E(φ, σ) in Zm.

For any given

m ∈ R, we consider the following stationary problem for (φ, µ, σ)
−∆φ+ F ′(φ) = µ, in Ω,

∂νφ = 0, on ∂Ω,∫
Ω

(φ+ σ) dx = |Ω|m,

where µ and σ are constants given by σ = µ = |Ω|−1
∫

Ω
F ′(φ) dx .

Theorem (4. Critical points)

Let assumption ( F1) be satisfied. Then we have:

(1) If (φ∗, σ∗) ∈ H2
N(Ω)× R is a strong solution to the stationary problem above, then

(φ∗, σ∗) is a critical point of E(φ, σ) in Zm. Conversely, if (φ∗, σ∗) is a critical point

of E(φ, σ) in Zm, then φ∗ ∈ H2
N(Ω), σ∗ ∈ R satisfy the stationary problem above

(2) If (φ∗, σ∗) is a local energy minimizer of E(φ, σ) in Zm, then (φ∗, σ∗) is a critical

point of E(φ, σ).

(3) The functional E(φ, σ) has at least one minimizer (φ∗, σ∗) ∈ Zm such that

E(φ∗, σ∗) = inf
(φ,σ)∈Zm

E(φ, σ)
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E. Rocca (Università degli Studi di Pavia) Diffuse interface models of tumor growth February 27, 2019 33 / 46



We first derive some properties for the critical points of E(φ, σ) in Zm. For any given

m ∈ R, we consider the following stationary problem for (φ, µ, σ)
−∆φ+ F ′(φ) = µ, in Ω,

∂νφ = 0, on ∂Ω,∫
Ω

(φ+ σ) dx = |Ω|m,

where µ and σ are constants given by σ = µ = |Ω|−1
∫

Ω
F ′(φ) dx .

Theorem (4. Critical points)

Let assumption ( F1) be satisfied. Then we have:

(1) If (φ∗, σ∗) ∈ H2
N(Ω)× R is a strong solution to the stationary problem above, then

(φ∗, σ∗) is a critical point of E(φ, σ) in Zm. Conversely, if (φ∗, σ∗) is a critical point

of E(φ, σ) in Zm, then φ∗ ∈ H2
N(Ω), σ∗ ∈ R satisfy the stationary problem above

(2) If (φ∗, σ∗) is a local energy minimizer of E(φ, σ) in Zm, then (φ∗, σ∗) is a critical

point of E(φ, σ).

(3) The functional E(φ, σ) has at least one minimizer (φ∗, σ∗) ∈ Zm such that

E(φ∗, σ∗) = inf
(φ,σ)∈Zm

E(φ, σ)
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Lyapunov Stability with u = 0

Then, we can get our main result on long-term dynamics:

Theorem (5. Lyapunov stability)

Assume that (F1), (F2), (P1), (P2) are satisfied and u = 0. Given m ∈ R, let (φ∗, σ∗)

be a local energy minimizer in Zm of

E(φ, σ) =

∫
Ω

[
1

2
|∇φ|2 + F (φ)

]
dx +

1

2

∫
Ω

σ2 dx .

Then, for any ε > 0, there exists a constant η ∈ (0, 1) such that for arbitrary initial

datum (φ0, σ0) ∈ (H2
N(Ω) ∩ H3(Ω))× H1(Ω) satisfying

∫
Ω

(φ0 + σ0) dx = |Ω|m and

‖φ0 − φ∗‖H1(Ω) + ‖σ0 − σ∗‖L2(Ω) ≤ η, the state system admits a unique global strong

solution (φ, σ) such that

‖φ(t)− φ∗‖H1(Ω) + ‖σ(t)− σ∗‖L2(Ω) ≤ ε, ∀ t ≥ 0.

Namely, any local energy minimizer of E(φ, σ) in Zm is locally Lyapunov stable.
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Assume that (F1), (F2), (P1), (P2) are satisfied and u = 0. Given m ∈ R, let (φ∗, σ∗)

be a local energy minimizer in Zm of

E(φ, σ) =

∫
Ω

[
1

2
|∇φ|2 + F (φ)

]
dx +

1

2

∫
Ω

σ2 dx .

Then, for any ε > 0, there exists a constant η ∈ (0, 1) such that for arbitrary initial

datum (φ0, σ0) ∈ (H2
N(Ω) ∩ H3(Ω))× H1(Ω) satisfying

∫
Ω

(φ0 + σ0) dx = |Ω|m and

‖φ0 − φ∗‖H1(Ω) + ‖σ0 − σ∗‖L2(Ω) ≤ η, the state system admits a unique global strong

solution (φ, σ) such that

‖φ(t)− φ∗‖H1(Ω) + ‖σ(t)− σ∗‖L2(Ω) ≤ ε, ∀ t ≥ 0.
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Conclusions on long-term dynamics

The result on long-time behavior derived in Theorem 1 and 2 can be applied to the

global strong solution obtained in Theorem 5

Although it is still not obvious to identify the asymptotic limit (φ∞, σ∞), we are

able to conclude that (φ∞, σ∞) also satisfies

‖φ∞ − φ∗‖H1(Ω) + ‖σ∞ − σ∗‖L2(Ω) ≤ ε

In particular, if (φ∗, σ∗) is an isolated local energy minimizer then it is locally

asymptotic stable
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Assumptions for the optimal control problem

In this section we study the optimal control problem

(CP) Minimize the cost functional

J (φ, σ,u, τ) =
βQ
2

∫ τ

0

∫
Ω

|φ− φQ |2 dx dt +
βΩ

2

∫
Ω

|φ(τ)− φΩ|2 dx

+
αQ

2

∫ τ

0

∫
Ω

|σ − σQ |2 dx dt +
βS
2

∫
Ω

(1 + φ(τ)) dx +
βu
2

∫ T

0

∫
Ω

|u|2 dx dt + βT τ

subject to the state system and the the control constraint

u ∈ Uad := {u ∈ L∞(Q) : umin ≤ u ≤ umax a. e. in Q}, τ ∈ (0,T ) ,

where T ∈ (0,+∞) is a fixed maximal time. We assume:

(C1) βQ , βΩ, βS , βu, βT , αQ are nonnegative constants but not all zero.

(C2) φQ , σQ ∈ L2(Q), φΩ, σΩ ∈ L2(Ω), umin, umax ∈ L∞(Q), and umin ≤ umax, a.e. in Q.

(C3) Let UR be an open set in L2(Q): Uad ⊂ UR and ‖u‖L2(Q) ≤ R, for all u ∈ UR .
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Existence of an optimal control

From the well-posedness results it follows that the control-to-state operator S

u 7→ S(u) := (φ, µ, σ)

is well-defined and Lipschitz continuous as a mapping from UR ⊂ L2(Q) into the

following space

(L∞(0,T ; (H1(Ω))′)∩L2(0,T ;H1(Ω)))×L2(0,T ; (H1(Ω))′)×(L∞(0,T ; (H1(Ω))′)∩L2(Q)).

The triplet (φ, µ, σ) is the unique weak solution to the state system with data (φ0, σ0, u)

over the time interval [0,T ]. For convenience, we use the notations φ = S1(u) and

σ = S3(u) for the first and third component of S(u). Then we prove the following result

that implies the existence of a solution to problem (CP).

Theorem (Existence of the optimal control)

Assume that (P1), (F1), (U1) and (C1)–(C3) are satisfied. Let φ0 ∈ H2
N(Ω) ∩H3(Ω) and

σ0 ∈ H1(Ω). Then there exists at least one minimizer (φ∗, σ∗, u∗, τ∗) to problem (CP).

Namely, φ∗ = S1(u∗), σ∗ = S3(u∗) satisfy

J (φ∗, σ∗, u∗, τ∗) = inf
(w,s) ∈ Uad×[0,T ]

s.t. φ = S1(w), σ = S3(w)

J (φ, σ,w , s).
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E. Rocca (Università degli Studi di Pavia) Diffuse interface models of tumor growth February 27, 2019 38 / 46



Existence of an optimal control

From the well-posedness results it follows that the control-to-state operator S

u 7→ S(u) := (φ, µ, σ)

is well-defined and Lipschitz continuous as a mapping from UR ⊂ L2(Q) into the

following space

(L∞(0,T ; (H1(Ω))′)∩L2(0,T ;H1(Ω)))×L2(0,T ; (H1(Ω))′)×(L∞(0,T ; (H1(Ω))′)∩L2(Q)).

The triplet (φ, µ, σ) is the unique weak solution to the state system with data (φ0, σ0, u)

over the time interval [0,T ]. For convenience, we use the notations φ = S1(u) and

σ = S3(u) for the first and third component of S(u).

Then we prove the following result

that implies the existence of a solution to problem (CP).

Theorem (Existence of the optimal control)

Assume that (P1), (F1), (U1) and (C1)–(C3) are satisfied. Let φ0 ∈ H2
N(Ω) ∩H3(Ω) and

σ0 ∈ H1(Ω). Then there exists at least one minimizer (φ∗, σ∗, u∗, τ∗) to problem (CP).

Namely, φ∗ = S1(u∗), σ∗ = S3(u∗) satisfy

J (φ∗, σ∗, u∗, τ∗) = inf
(w,s) ∈ Uad×[0,T ]

s.t. φ = S1(w), σ = S3(w)

J (φ, σ,w , s).
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Differentiability of the control-to-state map

We establish then the Fréchet differentiability of the solution operator S with respect to

the control u.

For u∗ ∈ UR , let (φ∗, µ∗, σ∗) = S(u∗). We consider for any h ∈ L2(Q) the

linearized system

∂tξ −∆η = P ′(φ∗)(σ∗ − µ∗) ξ + P(φ∗)(ρ− η), η = −∆ξ + F ′′(φ∗) ξ,

∂tρ−∆ρ = −P ′(φ∗)(σ∗ − µ∗) ξ − P(φ∗)(ρ− η) + h

∂nξ = ∂nη = ∂nρ = 0, ξ(0) = ρ(0) = 0.

We can apply [Theorems 3.1, 3.2, CGRS] for the well-posedness of the linearized system

and the Fréchet differentiability of the control-to-state operator S with respect to u.

Assume (P1), (F1), (U1) , (C1)–(C3), let φ0 ∈ H2
N(Ω) ∩ H3(Ω) and σ0 ∈ H1(Ω). Then the

control-to-state operator S is Fréchet differentiable in UR as a mapping from L2(Q) into

Y :=
(
H1(0,T ; (H2

N(Ω))′) ∩ L∞(0,T ; L2(Ω)) ∩ L2(0,T ;H2
N(Ω))

)
× L2(Q)

×
(
H1(0,T ; L2(Ω)) ∩ L2(0,T ;H2(Ω))

)
.

For any u∗ ∈ UR , the Fréchet derivative DS(u∗) ∈ L(L2(Q),Y) is defined as follows: for

any h ∈ L2(Q), DS(u∗)h = (ξh, ηh, ρh), where (ξh, ηh, ρh) is the unique solution to the

linearized system associated with h.
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E. Rocca (Università degli Studi di Pavia) Diffuse interface models of tumor growth February 27, 2019 39 / 46



Differentiability of the control-to-state map
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First order optimality conditions

Define a reduced functional

J̃ (u, τ) := J (S1(u),S3(u), u, τ).

Since the control-to-state mapping S is also Fréchet differentiable into C 0([0,T ]; L2(Ω))

with respect to u, then the reduced cost functional J̃ is Fréchet differentiable in UR .

Theorem (Existence of solutions to the adjoint system)

Assume (P1), (F1), (U1), (C1)–(C3), φ0 ∈ H2
N(Ω) ∩ H3(Ω), and σ0 ∈ H1(Ω). Then the

adjoint system

− ∂tp + ∆q − F ′′(φ∗) q + P ′(φ∗)(σ∗ − µ∗)(r − p) = βQ (φ∗ − φQ)

q −∆p + P(φ∗)(p − r) = 0, −∂tr −∆r + P(φ∗)(r − p) = αQ(σ∗ − σQ)

∂np = ∂nq = ∂nr = 0, r(τ∗) = 0, p(τ∗) = βΩ (φ∗(τ∗)− φΩ) +
βS
2

has a unique weak solution (p, q, r) on [0, τ∗]:

p ∈ H1(0, τ∗; (H2
N(Ω))′) ∩ C 0([0, τ∗]; L

2(Ω)) ∩ L2(0, τ∗;H
2
N(Ω)),

q ∈ L2(Ω× (0, τ∗)), r ∈ H1(0, τ∗; L
2(Ω)) ∩ C 0([0, τ∗];H

1(Ω)) ∩ L2(0, τ∗;H
2
N(Ω)).
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Necessary optimality conditions

Theorem (Necessary optimality conditions)

Let (u∗, τ∗) ∈ Uad × [0,T ] denote a minimizer to the optimal control problem (CP) with

corresponding state variables (φ∗, µ∗, σ∗) = S(u∗) and associated adjoint variables

(p, q, r), then it holds:

βu

∫ T

0

∫
Ω

u∗(u − u∗) dx dt +

∫ τ∗

0

∫
Ω

r(u − u∗) dx dt ≥ 0, ∀ u ∈ Uad.

Besides, setting

L(φ∗, σ∗, τ∗) =
βQ
2

∫
Ω

|φ∗(τ∗)− φQ(τ∗)|2 dx + βΩ

∫
Ω

(φ∗(τ∗)− φΩ) ∂tφ∗(τ∗) dx

+
αQ

2

∫
Ω

|σ∗(τ∗)− σQ(τ∗)|2 dx +
βS
2

∫
Ω

∂tφ∗(τ∗) dx + βT

we have

L(φ∗, σ∗, τ∗)


≥ 0, if τ∗ = 0,

= 0, if τ∗ ∈ (0,T ),

≤ 0, if τ∗ = T .
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Necessary optimality conditions
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βu

∫ T

0

∫
Ω

u∗(u − u∗) dx dt +

∫ τ∗

0

∫
Ω

r(u − u∗) dx dt ≥ 0, ∀ u ∈ Uad.

Besides, setting

L(φ∗, σ∗, τ∗) =
βQ
2

∫
Ω

|φ∗(τ∗)− φQ(τ∗)|2 dx + βΩ

∫
Ω

(φ∗(τ∗)− φΩ) ∂tφ∗(τ∗) dx

+
αQ

2

∫
Ω

|σ∗(τ∗)− σQ(τ∗)|2 dx +
βS
2

∫
Ω

∂tφ∗(τ∗) dx + βT

we have

L(φ∗, σ∗, τ∗)


≥ 0, if τ∗ = 0,

= 0, if τ∗ ∈ (0,T ),

≤ 0, if τ∗ = T .
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Interpretation of the first condition

Besides, if we extend r by zero to (τ∗,T ], then we can express the variational inequality

βu

∫ T

0

∫
Ω

u∗(u − u∗) dx dt +

∫ τ∗

0

∫
Ω

r(u − u∗) dx dt ≥ 0, ∀ u ∈ Uad.

as ∫ T

0

∫
Ω

(βuu∗ + r)(u − u∗) dx dt ≥ 0, ∀ u ∈ Uad,

which allows the interpretation that the optimal control u∗ is the L2(Q)-projection of

−β−1
u r onto the set Uad (provided that βu > 0).
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Open problems and Perspectives

O1. In practice it would be safer for the patient (and thus more desirable) to

approximate the target functions in the L∞-sense rather than in the L2-sense or to

include a pointwise state constraint on φ: |φ(x , τ)− φΩ| ≤ ε for a.e. x ∈ Ω. This

leads to a more involved adjoint system.

O2. Include chemotaxis χ0 and the evolution of average velocities in the model.

P1. To study the existence of attractors for different models:
I with A. Miranville and G. Schimperna for a model proposed by Garcke at al. (cf.

Giulio’s talk),
I with A. Giorgini, K.-F. Lam, and G. Schimperna for a model proposed by Lowengrub

et al. including velocities.

P2. The study of optimal control: for a prostate model introduced by H. Gomez et al.

and proposed to us by G. Lorenzo and A. Reali (with P. Colli and G. Marinoschi).

P3. To add the mechanics in Lagrangean coordinates in a multiphase model: for example

considering the tumor sample as a porous media (with P. Krejč́ı and J. Sprekels).

P4. Include a stochastic term in phase-field models for tumor growth representing for

example uncertainty of a therapy or random oscillations of the tumor phase (with C.

Orrieri and L. Scarpa).
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P4. Include a stochastic term in phase-field models for tumor growth representing for

example uncertainty of a therapy or random oscillations of the tumor phase (with C.

Orrieri and L. Scarpa).
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Many thanks to all of you for the attention!
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Preliminaries

Def. B0 is an absorbing set for a semigroup S(t) on a metric space (X , dX ) iff
I B0 is bdd
I ∀B ⊂ X bdd ∃TB ≥ 0 s.t. S(t)B ⊂ B0 ∀t ≥ TB .

Theorem. Let S(t) be a strongly continuous semigroup on a c.m.s. (X , dX ).
Moreover, if

I S(t) admits an absorbing set B0;
I ∀B ⊂ X bdd ∃ tB > 0 s.t.

⋃
t≥tB

S(t)B is compact in X ,

then S(t) admits a universal attractor A that is

A =
⋂
τ≥0

⋃
t≥τ

S(t)B0.
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