Weierstrass Institute for
Applied Analysis and Stochastics

On a non-isothermal diffuse interface model for two phase flows of incompressible fluids

Elisabetta Rocca - joint work with M. Eleuteri (Milano) and G. Schimperna (Pavia)

Supported by the FP7-IDEAS-ERC-StG Grant "EntroPhase"

- The motivation
- The PDEs (equations and inequalities)
- The modelling
- The analytical results in 3D
- The expected improvements in 2D

■ Some open related problems

- A non-isothermal model for the flow of a mixture of two
- viscous
- incompressible
- Newtonian fluids
- of equal density
- A non-isothermal model for the flow of a mixture of two
\square viscous
- incompressible
- Newtonian fluids
- of equal density
- Avoid problems related to interface singularities
\Longrightarrow use a diffuse interface model
\Longrightarrow the classical sharp interface replaced by a thin interfacial region
- A partial mixing of the macroscopically immiscible fluids is allowed $\Longrightarrow \varphi$ is the order parameter, e.g. the concentration difference
- A non-isothermal model for the flow of a mixture of two
- viscous
- incompressible
- Newtonian fluids
- of equal density
- Avoid problems related to interface singularities
\Longrightarrow use a diffuse interface model
\Longrightarrow the classical sharp interface replaced by a thin interfacial region
- A partial mixing of the macroscopically immiscible fluids is allowed $\Longrightarrow \varphi$ is the order parameter, e.g. the concentration difference
- The original idea of diffuse interface model for fluids: Hohenberg and HALPERIN, '77
\Longrightarrow H-model
Later, Gurtin ET AL., '96: continuum mechanical derivation based on microforces
- Models of two-phase or two-component fluids are receiving growing attention (e.g., Abels, Boyer, Garcke, Grün, Grasselli, Lowengrub, Truskinovski, ...)

The main aim of our contribution [Eleuteri, R., Schimperna, in preparation]

- Including temperature dependence is a widely open issue

The main aim of our contribution [Eleuteri, R., Schimperna, in preparation]

- Including temperature dependence is a widely open issue

Difficulties: getting models which are at the same time thermodynamically consistent and mathematically tractable

- Including temperature dependence is a widely open issue

Difficulties: getting models which are at the same time thermodynamically consistent and mathematically tractable

- Our idea: a weak formulation of the system as a combination of total energy balance plus entropy production inequality \Longrightarrow "Entropic formulation"
- Including temperature dependence is a widely open issue

Difficulties: getting models which are at the same time thermodynamically consistent and mathematically tractable

- Our idea: a weak formulation of the system as a combination of total energy balance plus entropy production inequality \Longrightarrow "Entropic formulation"
- This method has been recently proposed by [BuLíček-MÁLEK-FEIREISL, '09] for the Navier-Stokes-Fourier system and has been proved to be effective to study e.g.

■ nonisothermal models for phase transitions ([FEIREISL-PETZELTOVÁ-R., '09]) and
■ the evolution of nematic liquid crystals ([Frémond, FeireisL, R., Schimperna, Zarnescu, '12,'13])

- We want to describe the behavior of a mixture of two incompressible fluids of the same density in terms of the following state variables

■ u: macroscopic velocity (Navier-Stokes),

- p: pressure (Navier-Stokes),
- φ : order parameter (Cahn-Hilliard),
- μ : chemical potential (Cahn-Hilliard),
- θ : absolute temperature (Entropic formulation).
- We want to describe the behavior of a mixture of two incompressible fluids of the same density in terms of the following state variables

■ u: macroscopic velocity (Navier-Stokes),

- p: pressure (Navier-Stokes),
- φ : order parameter (Cahn-Hilliard),
- μ : chemical potential (Cahn-Hilliard),
- θ : absolute temperature (Entropic formulation).
- We do not neglect convection and capillarity effects. We assume constant mobility and smooth configuration potential in Cahn-Hilliard. We take temperature dependent coefficients wherever possible. We assume the system being insulated from the exterior.

■ a weak form of the momentum balance

$$
\mathbf{u}_{t}+\mathbf{u} \cdot \nabla_{x} \mathbf{u}+\nabla_{x} p=\operatorname{div}(\nu(\theta) D \mathbf{u})-\operatorname{div}\left(\nabla_{x} \varphi \otimes \nabla_{x} \varphi\right), \quad \operatorname{div} \mathbf{u}=0
$$

- a weak form of the momentum balance

$$
\mathbf{u}_{t}+\mathbf{u} \cdot \nabla_{x} \mathbf{u}+\nabla_{x} p=\operatorname{div}(\nu(\theta) D \mathbf{u})-\operatorname{div}\left(\nabla_{x} \varphi \otimes \nabla_{x} \varphi\right), \quad \operatorname{div} \mathbf{u}=0
$$

- the Cahn-Hilliard system in $H^{1}(\Omega)^{\prime}$

$$
\varphi_{t}+\mathbf{u} \cdot \nabla_{x} \varphi=\Delta \mu, \quad \mu=-\varepsilon \Delta \varphi+\frac{1}{\varepsilon} F^{\prime}(\varphi)-\theta
$$

- a weak form of the momentum balance

$$
\mathbf{u}_{t}+\mathbf{u} \cdot \nabla_{x} \mathbf{u}+\nabla_{x} p=\operatorname{div}(\nu(\theta) D \mathbf{u})-\operatorname{div}\left(\nabla_{x} \varphi \otimes \nabla_{x} \varphi\right), \quad \operatorname{div} \mathbf{u}=0
$$

- the Cahn-Hilliard system in $H^{1}(\Omega)^{\prime}$

$$
\varphi_{t}+\mathbf{u} \cdot \nabla_{x} \varphi=\Delta \mu, \quad \mu=-\varepsilon \Delta \varphi+\frac{1}{\varepsilon} F^{\prime}(\varphi)-\theta
$$

■ a weak form of the total energy balance

$$
\begin{aligned}
& \partial_{t}\left(\frac{1}{2}|\mathbf{u}|^{2}+e\right)+\mathbf{u} \cdot \nabla_{x}\left(\frac{1}{2}|\mathbf{u}|^{2}+e\right)+\operatorname{div}(p \mathbf{u}+\mathbf{q}-\mathbb{S} \mathbf{u}) \\
& -\operatorname{div}\left(\varepsilon \varphi_{t} \nabla_{x} \varphi+\mu \nabla_{x} \mu\right)=0 \quad \text { where } \quad e=\frac{1}{\varepsilon} F(\varphi)+\frac{\varepsilon}{2}\left|\nabla_{x} \varphi\right|^{2}+\int_{1}^{\theta} c_{v}(s) \mathrm{d} s
\end{aligned}
$$

■ a weak form of the momentum balance

$$
\mathbf{u}_{t}+\mathbf{u} \cdot \nabla_{x} \mathbf{u}+\nabla_{x} p=\operatorname{div}(\nu(\theta) D \mathbf{u})-\operatorname{div}\left(\nabla_{x} \varphi \otimes \nabla_{x} \varphi\right), \quad \operatorname{div} \mathbf{u}=0
$$

- the Cahn-Hilliard system in $H^{1}(\Omega)^{\prime}$

$$
\varphi_{t}+\mathbf{u} \cdot \nabla_{x} \varphi=\Delta \mu, \quad \mu=-\varepsilon \Delta \varphi+\frac{1}{\varepsilon} F^{\prime}(\varphi)-\theta
$$

- a weak form of the total energy balance

$$
\begin{aligned}
& \partial_{t}\left(\frac{1}{2}|\mathbf{u}|^{2}+e\right)+\mathbf{u} \cdot \nabla_{x}\left(\frac{1}{2}|\mathbf{u}|^{2}+e\right)+\operatorname{div}(p \mathbf{u}+\mathbf{q}-\mathbb{S} \mathbf{u}) \\
& -\operatorname{div}\left(\varepsilon \varphi_{t} \nabla_{x} \varphi+\mu \nabla_{x} \mu\right)=0 \quad \text { where } \quad e=\frac{1}{\varepsilon} F(\varphi)+\frac{\varepsilon}{2}\left|\nabla_{x} \varphi\right|^{2}+\int_{1}^{\theta} c_{v}(s) \mathrm{d} s
\end{aligned}
$$

- the weak form of the entropy production inequality

$$
\begin{aligned}
& (\Lambda(\theta)+\varphi)_{t}+\mathbf{u} \cdot \nabla_{x}(\Lambda(\theta))+\mathbf{u} \cdot \nabla_{x} \varphi-\operatorname{div}\left(\frac{\kappa(\theta) \nabla_{x} \theta}{\theta}\right) \\
& \geq \frac{\nu(\theta)}{\theta}|D \mathbf{u}|^{2}+\frac{1}{\theta}\left|\nabla_{x} \mu\right|^{2}+\frac{\kappa(\theta)}{\theta^{2}}\left|\nabla_{x} \theta\right|^{2}, \quad \text { where } \quad \Lambda(\theta)=\int_{1}^{\theta} \frac{c_{v}(s)}{s} \mathrm{~d} s
\end{aligned}
$$

■ We start by specifying two functionals:

- the free energy Ψ, related to the equilibrium state of the material, and
- the dissipation pseudo-potential Φ, describing the processes leading to dissipation of energy (ie., transformation into heat)

■ We start by specifying two functionals:

- the free energy Ψ, related to the equilibrium state of the material, and
- the dissipation pseudo-potential Φ, describing the processes leading to dissipation of energy (i.e., transformation into heat)
- Then we impose the balances of momentum, configuration energy, and both of internal energy and of entropy, in terms of these functionals

■ We start by specifying two functionals:

- the free energy Ψ, related to the equilibrium state of the material, and
- the dissipation pseudo-potential Φ, describing the processes leading to dissipation of energy (i.e., transformation into heat)
- Then we impose the balances of momentum, configuration energy, and both of internal energy and of entropy, in terms of these functionals
- The thermodynamical consistency of the model is then a direct consequence of the solution notion

The total free energy is given as a function of the state variables $E=\left(\theta, \varphi, \nabla_{x} \varphi\right)$

$$
\Psi(E)=\int_{\Omega} \psi(E) \mathrm{d} x, \quad \psi(E)=f(\theta)-\theta \varphi+\frac{\varepsilon}{2}\left|\nabla_{x} \varphi\right|^{2}+\frac{1}{\varepsilon} F(\varphi)
$$

The total free energy is given as a function of the state variables $E=\left(\theta, \varphi, \nabla_{x} \varphi\right)$

$$
\Psi(E)=\int_{\Omega} \psi(E) \mathrm{d} x, \quad \psi(E)=f(\theta)-\theta \varphi+\frac{\varepsilon}{2}\left|\nabla_{x} \varphi\right|^{2}+\frac{1}{\varepsilon} F(\varphi)
$$

- $f(\theta)$ is related to the specific heat $c_{v}(\theta)=Q^{\prime}(\theta)$ by $Q(\theta)=f(\theta)-\theta f^{\prime}(\theta)$. In our case we need $c_{v}(\theta) \sim c_{\delta} \theta^{\delta}$ for some $\delta \in(1 / 2,1)$

The total free energy is given as a function of the state variables $E=\left(\theta, \varphi, \nabla_{x} \varphi\right)$

$$
\Psi(E)=\int_{\Omega} \psi(E) \mathrm{d} x, \quad \psi(E)=f(\theta)-\theta \varphi+\frac{\varepsilon}{2}\left|\nabla_{x} \varphi\right|^{2}+\frac{1}{\varepsilon} F(\varphi)
$$

- $f(\theta)$ is related to the specific heat $c_{v}(\theta)=Q^{\prime}(\theta)$ by $Q(\theta)=f(\theta)-\theta f^{\prime}(\theta)$. In our case we need $c_{v}(\theta) \sim c_{\delta} \theta^{\delta}$ for some $\delta \in(1 / 2,1)$

■ $\varepsilon>0$ is related to the interfacial thickness

The total free energy is given as a function of the state variables $E=\left(\theta, \varphi, \nabla_{x} \varphi\right)$

$$
\Psi(E)=\int_{\Omega} \psi(E) \mathrm{d} x, \quad \psi(E)=f(\theta)-\theta \varphi+\frac{\varepsilon}{2}\left|\nabla_{x} \varphi\right|^{2}+\frac{1}{\varepsilon} F(\varphi)
$$

- $f(\theta)$ is related to the specific heat $c_{v}(\theta)=Q^{\prime}(\theta)$ by $Q(\theta)=f(\theta)-\theta f^{\prime}(\theta)$. In our case we need $c_{v}(\theta) \sim c_{\delta} \theta^{\delta}$ for some $\delta \in(1 / 2,1)$

■ $\varepsilon>0$ is related to the interfacial thickness
■ we need $F(\varphi)$ to be the classical smooth double well potential $F(\varphi) \sim \frac{1}{4}\left(\varphi^{2}-1\right)^{2}$

The dissipation potential is taken as function of $\delta E=\left(D \mathbf{u}, \frac{D \varphi}{D t}, \nabla_{x} \theta\right)$ and E

$$
\begin{aligned}
\Phi(\delta E, E) & =\int_{\Omega} \phi\left(D \mathbf{u}, \nabla_{x} \theta\right) \mathrm{d} x+\left\langle\frac{D \varphi}{D t}, J^{-1} \frac{D \varphi}{D t}\right\rangle \\
& =\int_{\Omega}\left(\frac{\nu(\theta)}{2}|D \mathbf{u}|^{2}+I_{\{0\}}(\operatorname{div} \mathbf{u})+\frac{\kappa(\theta)}{2 \theta}\left|\nabla_{x} \theta\right|^{2}\right) \mathrm{d} x+\left\|\frac{D \varphi}{D t}\right\|_{H_{\#}^{1}(\Omega)^{\prime}}^{2}
\end{aligned}
$$

The dissipation potential is taken as function of $\delta E=\left(D \mathbf{u}, \frac{D \varphi}{D t}, \nabla_{x} \theta\right)$ and E

$$
\begin{aligned}
\Phi(\delta E, E) & =\int_{\Omega} \phi\left(D \mathbf{u}, \nabla_{x} \theta\right) \mathrm{d} x+\left\langle\frac{D \varphi}{D t}, J^{-1} \frac{D \varphi}{D t}\right\rangle \\
& =\int_{\Omega}\left(\frac{\nu(\theta)}{2}|D \mathbf{u}|^{2}+I_{\{0\}}(\operatorname{div} \mathbf{u})+\frac{\kappa(\theta)}{2 \theta}\left|\nabla_{x} \theta\right|^{2}\right) \mathrm{d} x+\left\|\frac{D \varphi}{D t}\right\|_{H_{\#}^{1}(\Omega)^{\prime}}^{2}
\end{aligned}
$$

■ $D \mathbf{u}=\left(\nabla_{x} \mathbf{u}+\nabla_{x}^{t} \mathbf{u}\right) / 2$ the symmetric gradient
■ $\frac{D(\cdot)}{D t}=(\cdot)_{t}+\mathbf{u} \cdot \nabla_{x}(\cdot)$ the material derivative
■ $J: H_{\#}^{1}(\Omega) \rightarrow H_{\#}^{1}(\Omega)^{\prime}$ the Riesz isomorphism

$$
\begin{aligned}
& \langle J u, v\rangle:=((u, v))_{H_{\#}^{1}(\Omega)}:=\int_{\Omega} \nabla_{x} u \cdot \nabla_{x} v \mathrm{~d} x \\
& H_{\#}^{1}(\Omega)=\left\{\xi \in H^{1}(\Omega): \bar{\xi}:=|\Omega|^{-1} \int_{\Omega} \xi \mathrm{d} x=0\right\}
\end{aligned}
$$

The dissipation potential is taken as function of $\delta E=\left(D \mathbf{u}, \frac{D \varphi}{D t}, \nabla_{x} \theta\right)$ and E

$$
\begin{aligned}
\Phi(\delta E, E) & =\int_{\Omega} \phi\left(D \mathbf{u}, \nabla_{x} \theta\right) \mathrm{d} x+\left\langle\frac{D \varphi}{D t}, J^{-1} \frac{D \varphi}{D t}\right\rangle \\
& =\int_{\Omega}\left(\frac{\nu(\theta)}{2}|D \mathbf{u}|^{2}+I_{\{0\}}(\operatorname{div} \mathbf{u})+\frac{\kappa(\theta)}{2 \theta}\left|\nabla_{x} \theta\right|^{2}\right) \mathrm{d} x+\left\|\frac{D \varphi}{D t}\right\|_{H_{\#}^{1}(\Omega)^{\prime}}^{2}
\end{aligned}
$$

■ $D \mathbf{u}=\left(\nabla_{x} \mathbf{u}+\nabla_{x}^{t} \mathbf{u}\right) / 2$ the symmetric gradient
■ $\frac{D(\cdot)}{D t}=(\cdot)_{t}+\mathbf{u} \cdot \nabla_{x}(\cdot)$ the material derivative
■ $J: H_{\#}^{1}(\Omega) \rightarrow H_{\#}^{1}(\Omega)^{\prime}$ the Riesz isomorphism
$\langle J u, v\rangle:=((u, v))_{H_{\#}^{1}(\Omega)}:=\int_{\Omega} \nabla_{x} u \cdot \nabla_{x} v \mathrm{~d} x$,
$H_{\#}^{1}(\Omega)=\left\{\xi \in H^{1}(\Omega): \bar{\xi}:=|\Omega|^{-1} \int_{\Omega} \xi \mathrm{d} x=0\right\}$
■ $\nu=\nu(\theta)>0$ the viscosity coefficient, $\kappa=\kappa(\theta)>0$ the heat conductivity

The dissipation potential is taken as function of $\delta E=\left(D \mathbf{u}, \frac{D \varphi}{D t}, \nabla_{x} \theta\right)$ and E

$$
\begin{aligned}
\Phi(\delta E, E) & =\int_{\Omega} \phi\left(D \mathbf{u}, \nabla_{x} \theta\right) \mathrm{d} x+\left\langle\frac{D \varphi}{D t}, J^{-1} \frac{D \varphi}{D t}\right\rangle \\
& =\int_{\Omega}\left(\frac{\nu(\theta)}{2}|D \mathbf{u}|^{2}+I_{\{0\}}(\operatorname{div} \mathbf{u})+\frac{\kappa(\theta)}{2 \theta}\left|\nabla_{x} \theta\right|^{2}\right) \mathrm{d} x+\left\|\frac{D \varphi}{D t}\right\|_{H_{\#}^{1}(\Omega)^{\prime}}^{2}
\end{aligned}
$$

■ $D \mathbf{u}=\left(\nabla_{x} \mathbf{u}+\nabla_{x}^{t} \mathbf{u}\right) / 2$ the symmetric gradient
■ $\frac{D(\cdot)}{D t}=(\cdot)_{t}+\mathbf{u} \cdot \nabla_{x}(\cdot)$ the material derivative
■ $J: H_{\#}^{1}(\Omega) \rightarrow H_{\#}^{1}(\Omega)^{\prime}$ the Riesz isomorphism
$\langle J u, v\rangle:=((u, v))_{H_{\#}^{1}(\Omega)}:=\int_{\Omega} \nabla_{x} u \cdot \nabla_{x} v \mathrm{~d} x$, $H_{\#}^{1}(\Omega)=\left\{\xi \in H^{1}(\Omega): \bar{\xi}:=|\Omega|^{-1} \int_{\Omega} \xi \mathrm{d} x=0\right\}$

■ $\nu=\nu(\theta)>0$ the viscosity coefficient, $\kappa=\kappa(\theta)>0$ the heat conductivity

- Incompressibility: I_{0} the indicator function of $\{0\}: I_{0}=0$ if $\operatorname{div} \mathbf{u}=0,+\infty$ otherwise)
- The dissipation potential was taken as

$$
\Phi=\Phi\left(D \mathbf{u}, \frac{D \varphi}{D t}, \nabla_{x} \theta\right)=\int_{\Omega} \phi\left(D \mathbf{u}, \nabla_{x} \theta\right) \mathrm{d} x+\left\langle\frac{D \varphi}{D t}, J^{-1} \frac{D \varphi}{D t}\right\rangle
$$

- If a time-dependent set of variables is given such that
- a.e. in $(0, T), \Psi$ and Φ are finite
$\square \mathbf{u}$ is such that $\mathbf{u} \cdot \mathbf{n}=0$ on Γ
- φ satisfies the mass conservation constraint $\varphi(t, x)=\varphi(0, x)=\varphi_{0}(x)$ a.e.
- The dissipation potential was taken as

$$
\Phi=\Phi\left(D \mathbf{u}, \frac{D \varphi}{D t}, \nabla_{x} \theta\right)=\int_{\Omega} \phi\left(D \mathbf{u}, \nabla_{x} \theta\right) \mathrm{d} x+\left\langle\frac{D \varphi}{D t}, J^{-1} \frac{D \varphi}{D t}\right\rangle
$$

- If a time-dependent set of variables is given such that
- ae. in $(0, T), \Psi$ and Φ are finite
$\square \mathbf{u}$ is such that $\mathbf{u} \cdot \mathbf{n}=0$ on Γ
- φ satisfies the mass conservation constraint $\varphi(t, x)=\varphi(0, x)=\varphi_{0}(x)$ ae.
then \mathbf{u} is divergence-free and we get

$$
\int_{\Omega} \frac{D \varphi}{D t}=\int_{\Omega}\left(\varphi_{t}+\mathbf{u} \cdot \nabla_{x} \varphi\right) \mathrm{d} x=0
$$

- The dissipation potential was taken as

$$
\Phi=\Phi\left(D \mathbf{u}, \frac{D \varphi}{D t}, \nabla_{x} \theta\right)=\int_{\Omega} \phi\left(D \mathbf{u}, \nabla_{x} \theta\right) \mathrm{d} x+\left\langle\frac{D \varphi}{D t}, J^{-1} \frac{D \varphi}{D t}\right\rangle
$$

- If a time-dependent set of variables is given such that
- a.e. in $(0, T), \Psi$ and Φ are finite

■ u is such that $\mathbf{u} \cdot \mathbf{n}=0$ on Γ
■ φ satisfies the mass conservation constraint $\varphi(t, x)=\varphi(0, x)=\varphi_{0}(x)$ a.e.
then \mathbf{u} is divergence-free and we get

$$
\int_{\Omega} \frac{D \varphi}{D t}=\int_{\Omega}\left(\varphi_{t}+\mathbf{u} \cdot \nabla_{x} \varphi\right) \mathrm{d} x=0
$$

■ Then we can set $\mu_{\#}:=-J^{-1} \frac{D \varphi}{D t}$, so that $\frac{D \varphi}{D t}=-J \mu_{\#}=\Delta \mu_{\#}$ and we get

$$
\Phi(\delta E, E)=\int_{\Omega} \widetilde{\phi}(\delta E, E) \mathrm{d} x, \quad \text { where } \tilde{\phi}(\delta E, E)=\phi(\delta E, E)+\frac{1}{2}\left|\nabla_{x} \mu_{\#}\right|^{2}
$$

- It is obtained (at least for no-flux b.c.'s) as the following gradient-flow problem

$$
\begin{gathered}
\partial_{L_{\#}^{2}(\Omega), \frac{D \varphi}{D t}} \Phi+\partial_{L_{\#}^{2}(\Omega), \varphi_{\#}} \Psi=0 \\
\text { where } L_{\#}^{2}(\Omega)=\left\{\xi \in L^{2}(\Omega): \bar{\xi}:=|\Omega|^{-1} \int_{\Omega} \xi \mathrm{d} x=0\right\}, \varphi_{\#}=\varphi-\overline{\varphi_{0}}
\end{gathered}
$$

- It is obtained (at least for no-flux b.c.'s) as the following gradient-flow problem

$$
\partial_{L_{\#}^{2}(\Omega), \frac{D \varphi}{D t}} \Phi+\partial_{L_{\#}^{2}(\Omega), \varphi_{\#}} \Psi=0
$$

where $L_{\#}^{2}(\Omega)=\left\{\xi \in L^{2}(\Omega): \bar{\xi}:=|\Omega|^{-1} \int_{\Omega} \xi \mathrm{d} x=0\right\}, \varphi_{\#}=\varphi-\overline{\varphi_{0}}$

- Combining the previous relations we then get

$$
J^{-1}\left(\frac{D \varphi}{D t}\right)=\varepsilon \Delta \varphi-\frac{1}{\varepsilon}\left(F^{\prime}(\varphi)-\overline{F^{\prime}(\varphi)}\right)+\theta-\bar{\theta}, \quad \frac{\partial \varphi}{\partial \mathbf{n}}=0 \text { on } \Gamma, \bar{\varphi}(t)=\overline{\varphi_{0}}
$$

- It is obtained (at least for no-flux b.c.'s) as the following gradient-flow problem

$$
\partial_{L_{\#}^{2}(\Omega), \frac{D \varphi}{D t}} \Phi+\partial_{L_{\#}^{2}(\Omega), \varphi_{\#}} \Psi=0
$$

where $L_{\#}^{2}(\Omega)=\left\{\xi \in L^{2}(\Omega): \bar{\xi}:=|\Omega|^{-1} \int_{\Omega} \xi \mathrm{d} x=0\right\}, \varphi_{\#}=\varphi-\overline{\varphi_{0}}$

- Combining the previous relations we then get

$$
J^{-1}\left(\frac{D \varphi}{D t}\right)=\varepsilon \Delta \varphi-\frac{1}{\varepsilon}\left(F^{\prime}(\varphi)-\overline{F^{\prime}(\varphi)}\right)+\theta-\bar{\theta}, \quad \frac{\partial \varphi}{\partial \mathbf{n}}=0 \text { on } \Gamma, \bar{\varphi}(t)=\overline{\varphi_{0}}
$$

- Applying the distributional Laplace operator to both hand sides and noting that $-\Delta J^{-1} v=v$ for any $v \in L_{\#}^{2}(\Omega)$, we then arrive at the Cahn-Hilliard system with Neumann hom. b.c. for μ and φ

$$
\begin{equation*}
\frac{D \varphi}{D t}=\Delta \mu, \quad \mu=-\varepsilon \Delta \varphi+\frac{1}{\varepsilon} F^{\prime}(\varphi)-\theta, \quad \frac{\partial \varphi}{\partial \mathbf{n}}=\frac{\partial \mu}{\partial \mathbf{n}}=0 \text { on } \Gamma \tag{CahnHill}
\end{equation*}
$$

where the auxiliary variable μ takes the name of chemical potential

The Navier-Stokes system is obtained as a momentum balance by setting

$$
\frac{D \mathbf{u}}{D t}=\mathbf{u}_{t}+\operatorname{div}(\mathbf{u} \otimes \mathbf{u})=\operatorname{div} \sigma
$$

The Navier-Stokes system is obtained as a momentum balance by setting

$$
\frac{D \mathbf{u}}{D t}=\mathbf{u}_{t}+\operatorname{div}(\mathbf{u} \otimes \mathbf{u})=\operatorname{div}\left(\sigma^{d}+\sigma^{n d}\right)
$$

where the stress σ is split into its
■ dissipative part

$$
\sigma^{d}:=\frac{\partial \phi}{\partial D \mathbf{u}}=\nu(\theta) D \mathbf{u}-p \mathbb{I}, \quad \operatorname{div} \mathbf{u}=0
$$

representing kinetic energy which dissipates (i.e. is transformed into heat) due to viscosity, and its

■ non-dissipative part $\sigma^{n d}$ to be determined later in agreement with Thermodynamics

The balance of internal energy takes the form

$$
\frac{D e}{D t}+\operatorname{div} \mathbf{q}=\nu(\theta)|D \mathbf{u}|^{2}+\sigma^{n d}: D \mathbf{u}+B \frac{D \varphi}{D t}+\frac{\partial \psi}{\partial \nabla_{x} \varphi} \cdot \nabla_{x} \frac{D \varphi}{D t}+N
$$

where $e=\psi-\theta \psi_{\theta}, B=B^{n d}+B^{d}$ and

$$
B^{n d}=\frac{\partial \psi}{\partial \varphi}=\frac{1}{\varepsilon} F^{\prime}(\varphi)-\theta, \quad B^{d}=\partial_{L_{\#}^{2}(\Omega), \frac{D \varphi}{D t}} \Phi=J^{-1}\left(\frac{D \varphi}{D t}\right)
$$

The balance of internal energy takes the form

$$
\frac{D e}{D t}+\operatorname{div} \mathbf{q}=\nu(\theta)|D \mathbf{u}|^{2}+\sigma^{n d}: D \mathbf{u}+B \frac{D \varphi}{D t}+\frac{\partial \psi}{\partial \nabla_{x} \varphi} \cdot \nabla_{x} \frac{D \varphi}{D t}+N
$$

where $e=\psi-\theta \psi_{\theta}, B=B^{n d}+B^{d}$ and

$$
B^{n d}=\frac{\partial \psi}{\partial \varphi}=\frac{1}{\varepsilon} F^{\prime}(\varphi)-\theta, \quad B^{d}=\partial_{L_{\#}^{2}(\Omega), \frac{D \varphi}{D t}} \Phi=J^{-1}\left(\frac{D \varphi}{D t}\right)
$$

On the right hand side there appears a new (with respect to the standard theory of [FRÉMOND, ,02]) term N balancing the nonlocal dependence of the last term in the pseudopotential of dissipation Φ

$$
\Phi=\Phi\left(D \mathbf{u}, \frac{D \varphi}{D t}\right)=\int_{\Omega} \phi \mathrm{d} x+\left\langle\frac{D \varphi}{D t}, J^{-1} \frac{D \varphi}{D t}\right\rangle
$$

The balance of internal energy takes the form

$$
\frac{D e}{D t}+\operatorname{div} \mathbf{q}=\nu(\theta)|D \mathbf{u}|^{2}+\sigma^{n d}: D \mathbf{u}+B \frac{D \varphi}{D t}+\frac{\partial \psi}{\partial \nabla_{x} \varphi} \cdot \nabla_{x} \frac{D \varphi}{D t}+N
$$

where $e=\psi-\theta \psi_{\theta}, B=B^{n d}+B^{d}$ and

$$
B^{n d}=\frac{\partial \psi}{\partial \varphi}=\frac{1}{\varepsilon} F^{\prime}(\varphi)-\theta, \quad B^{d}=\partial_{L_{\#}^{2}(\Omega), \frac{D \varphi}{D t}} \Phi=J^{-1}\left(\frac{D \varphi}{D t}\right)
$$

On the right hand side there appears a new (with respect to the standard theory of [FRÉMOND, ,02]) term N balancing the nonlocal dependence of the last term in the pseudopotential of dissipation Φ

$$
\Phi=\Phi\left(D \mathbf{u}, \frac{D \varphi}{D t}\right)=\int_{\Omega} \phi \mathrm{d} x+\left\langle\frac{D \varphi}{D t}, J^{-1} \frac{D \varphi}{D t}\right\rangle
$$

It will result from the Second Principle of Thermodynamics that $\int_{\Omega} N(x) \mathrm{d} x=0$, in agreement with natural expectations

To deduce the expressions for $\sigma^{n d}$ and N, we impose validity of the Clausius-Duhem inequality in the form

$$
\theta\left(\frac{D s}{D t}+\operatorname{div}\left(\frac{\mathbf{q}}{\theta}\right)\right) \geq 0
$$

where $e=\psi+\theta s$, being $s=-\psi_{\theta}$ the entropy density and we get

$$
\sigma^{n d}=-\varepsilon \nabla_{x} \varphi \otimes \nabla_{x} \varphi, \quad N=\frac{1}{2} \Delta(\mu-\bar{\mu})^{2}
$$

and the internal energy balance can be rewritten as

$$
(Q(\theta))_{t}+\mathbf{u} \cdot \nabla_{x} Q(\theta)+\theta \frac{D \varphi}{D t}-\operatorname{div}\left(\kappa(\theta) \nabla_{x} \theta\right)=\nu(\theta)|D \mathbf{u}|^{2}+\left|\nabla_{x} \mu\right|^{2}
$$

where $Q(\theta)=f(\theta)-\theta f^{\prime}(\theta)$ and $Q^{\prime}(\theta)=: c_{v}(\theta)$

To deduce the expressions for $\sigma^{n d}$ and N, we impose validity of the Clausius-Duhem inequality in the form

$$
\theta\left(\frac{D s}{D t}+\operatorname{div}\left(\frac{\mathbf{q}}{\theta}\right)\right) \geq 0
$$

where $e=\psi+\theta s$, being $s=-\psi_{\theta}$ the entropy density and we get

$$
\sigma^{n d}=-\varepsilon \nabla_{x} \varphi \otimes \nabla_{x} \varphi, \quad N=\frac{1}{2} \Delta(\mu-\bar{\mu})^{2}
$$

and the internal energy balance can be rewritten as

$$
(Q(\theta))_{t}+\mathbf{u} \cdot \nabla_{x} Q(\theta)+\theta \frac{D \varphi}{D t}-\operatorname{div}\left(\kappa(\theta) \nabla_{x} \theta\right)=\nu(\theta)|D \mathbf{u}|^{2}+\left|\nabla_{x} \mu\right|^{2}
$$

where $Q(\theta)=f(\theta)-\theta f^{\prime}(\theta)$ and $Q^{\prime}(\theta)=: c_{v}(\theta)$
The dissipation terms on the right hand side are in perfect agreement with Φ

$$
\Phi=\int_{\Omega} \widetilde{\phi} \mathrm{d} x, \quad \text { where } \tilde{\phi}=\phi+\frac{1}{2}\left|\nabla_{x} \mu\right|^{2}
$$

Following [BULÍčEK, FEIREISL, \& MÁLEK], we replace the pointwise internal energy balance by the total energy balance

$$
\begin{aligned}
\left(\partial_{t}\right. & \left.+\mathbf{u} \cdot \nabla_{x}\right)\left(\frac{|\mathbf{u}|^{2}}{2}+e\right)+\operatorname{div}\left(p \mathbf{u}-\kappa(\theta) \nabla_{x} \theta-(\nu(\theta) D \mathbf{u}) \mathbf{u}\right) \\
& =\operatorname{div}\left(\varphi_{t} \nabla_{x} \varphi+\mu \nabla_{x} \mu\right)
\end{aligned}
$$

with the internal energy

$$
e=F(\varphi)+\frac{1}{2}\left|\nabla_{x} \varphi\right|^{2}+Q(\theta) \quad Q^{\prime}(\theta)=c_{v}(\theta)
$$

Following [BuLíček, Feireisl, \& MÁLEK], we replace the pointwise internal energy balance by the total energy balance

$$
\begin{aligned}
\left(\partial_{t}\right. & \left.+\mathbf{u} \cdot \nabla_{x}\right)\left(\frac{|\mathbf{u}|^{2}}{2}+e\right)+\operatorname{div}\left(p \mathbf{u}-\kappa(\theta) \nabla_{x} \theta-(\nu(\theta) D \mathbf{u}) \mathbf{u}\right) \\
& =\operatorname{div}\left(\varphi_{t} \nabla_{x} \varphi+\mu \nabla_{x} \mu\right)
\end{aligned}
$$

with the internal energy

$$
e=F(\varphi)+\frac{1}{2}\left|\nabla_{x} \varphi\right|^{2}+Q(\theta) \quad Q^{\prime}(\theta)=c_{v}(\theta)
$$

and the entropy inequality

$$
\begin{aligned}
& (\Lambda(\theta)+\varphi)_{t}+\mathbf{u} \cdot \nabla_{x}(\Lambda(\theta)+\varphi)-\operatorname{div}\left(\frac{\kappa(\theta) \nabla_{x} \theta}{\theta}\right) \\
& \geq \frac{\nu(\theta)}{\theta}|D \mathbf{u}|^{2}+\frac{1}{\theta}\left|\nabla_{x} \mu\right|^{2}+\frac{\kappa(\theta)}{\theta^{2}}\left|\nabla_{x} \theta\right|^{2}, \quad \text { where } \quad \Lambda(\theta)=\int_{1}^{\theta} \frac{c_{v}(s)}{s} \mathrm{~d} s \sim \theta^{\delta}
\end{aligned}
$$

- a weak form of the momentum balance (in distributional sense)

$$
\mathbf{u}_{t}+\mathbf{u} \cdot \nabla_{x} \mathbf{u}+\nabla_{x} p=\operatorname{div}(\nu(\theta) D \mathbf{u})-\operatorname{div}\left(\nabla_{x} \varphi \otimes \nabla_{x} \varphi\right), \quad \operatorname{div} \mathbf{u}=0
$$

- a weak form of the momentum balance (in distributional sense)

$$
\mathbf{u}_{t}+\mathbf{u} \cdot \nabla_{x} \mathbf{u}+\nabla_{x} p=\operatorname{div}(\nu(\theta) D \mathbf{u})-\operatorname{div}\left(\nabla_{x} \varphi \otimes \nabla_{x} \varphi\right), \quad \operatorname{div} \mathbf{u}=0
$$

- the Cahn-Hilliard system in $H^{1}(\Omega)^{\prime}$

$$
\varphi_{t}+\mathbf{u} \cdot \nabla_{x} \varphi=\Delta \mu, \quad \mu=-\Delta \varphi+F^{\prime}(\varphi)-\theta
$$

- a weak form of the momentum balance (in distributional sense)

$$
\mathbf{u}_{t}+\mathbf{u} \cdot \nabla_{x} \mathbf{u}+\nabla_{x} p=\operatorname{div}(\nu(\theta) D \mathbf{u})-\operatorname{div}\left(\nabla_{x} \varphi \otimes \nabla_{x} \varphi\right), \quad \operatorname{div} \mathbf{u}=0
$$

- the Cahn-Hilliard system in $H^{1}(\Omega)^{\prime}$

$$
\varphi_{t}+\mathbf{u} \cdot \nabla_{x} \varphi=\Delta \mu, \quad \mu=-\Delta \varphi+F^{\prime}(\varphi)-\theta ;
$$

- a weak form of the total energy balance (in distributional sense)

$$
\begin{aligned}
& \partial_{t}\left(\frac{1}{2}|\mathbf{u}|^{2}+e\right)+\mathbf{u} \cdot \nabla_{x}\left(\frac{1}{2}|\mathbf{u}|^{2}+e\right)+\operatorname{div}(p \mathbf{u}+\mathbf{q}-\mathbb{S} \mathbf{u}) \\
& -\operatorname{div}\left(\varphi_{t} \nabla_{x} \varphi+\mu \nabla_{x} \mu\right)=0 \quad \text { where } \quad e=F(\varphi)+\frac{1}{2}\left|\nabla_{x} \varphi\right|^{2}+\int_{1}^{\theta} c_{v}(s) \mathrm{d} s
\end{aligned}
$$

- a weak form of the momentum balance (in distributional sense)

$$
\mathbf{u}_{t}+\mathbf{u} \cdot \nabla_{x} \mathbf{u}+\nabla_{x} p=\operatorname{div}(\nu(\theta) D \mathbf{u})-\operatorname{div}\left(\nabla_{x} \varphi \otimes \nabla_{x} \varphi\right), \quad \operatorname{div} \mathbf{u}=0
$$

- the Cahn-Hilliard system in $H^{1}(\Omega)^{\prime}$

$$
\varphi_{t}+\mathbf{u} \cdot \nabla_{x} \varphi=\Delta \mu, \quad \mu=-\Delta \varphi+F^{\prime}(\varphi)-\theta ;
$$

- a weak form of the total energy balance (in distributional sense)

$$
\begin{aligned}
& \partial_{t}\left(\frac{1}{2}|\mathbf{u}|^{2}+e\right)+\mathbf{u} \cdot \nabla_{x}\left(\frac{1}{2}|\mathbf{u}|^{2}+e\right)+\operatorname{div}(p \mathbf{u}+\mathbf{q}-\mathbb{S} \mathbf{u}) \\
& -\operatorname{div}\left(\varphi_{t} \nabla_{x} \varphi+\mu \nabla_{x} \mu\right)=0 \quad \text { where } \quad e=F(\varphi)+\frac{1}{2}\left|\nabla_{x} \varphi\right|^{2}+\int_{1}^{\theta} c_{v}(s) \mathrm{d} s
\end{aligned}
$$

the weak form of the entropy production inequality

$$
\begin{aligned}
& (\Lambda(\theta)+\varphi)_{t}+\mathbf{u} \cdot \nabla_{x}(\Lambda(\theta))+\mathbf{u} \cdot \nabla_{x} \varphi-\operatorname{div}\left(\frac{\kappa(\theta) \nabla_{x} \theta}{\theta}\right) \\
& \geq \frac{\nu(\theta)}{\theta}|D \mathbf{u}|^{2}+\frac{1}{\theta}\left|\nabla_{x} \mu\right|^{2}+\frac{\kappa(\theta)}{\theta^{2}}\left|\nabla_{x} \theta\right|^{2}, \quad \text { where } \quad \Lambda(\theta)=\int_{1}^{\theta} \frac{c_{v}(s)}{s} \mathrm{~d} s
\end{aligned}
$$

- In order to get a tractable system in 3D, we need to specify assumptions on coefficients in a careful way:
- In order to get a tractable system in 3D, we need to specify assumptions on coefficients in a careful way:

■ The viscosity $\nu(\theta)$ is assumed smooth and bounded

- The specific heat $c_{v}(\theta) \sim \theta^{\delta}, 1 / 2<\delta<1$

■ The heat conductivity $\kappa(\theta) \sim 1+\theta^{\beta}, \beta \geq 2$

- The potential $F(\varphi)=\frac{1}{4}\left(\varphi^{2}-1\right)^{2}$
- In order to get a tractable system in 3D, we need to specify assumptions on coefficients in a careful way:

■ The viscosity $\nu(\theta)$ is assumed smooth and bounded

- The specific heat $c_{v}(\theta) \sim \theta^{\delta}, 1 / 2<\delta<1$

■ The heat conductivity $\kappa(\theta) \sim 1+\theta^{\beta}, \beta \geq 2$

- The potential $F(\varphi)=\frac{1}{4}\left(\varphi^{2}-1\right)^{2}$
- Concerning B.C.'s, our results are proved for no-flux conditions for θ, φ, and μ and complete slip conditions for \mathbf{u}

$$
\begin{aligned}
& \mathbf{u} \cdot \mathbf{n}_{\left.\right|_{\Gamma}}=0 \quad \text { (the fluid cannot exit } \Omega, \text { it can move tangentially to } \Gamma \text {) } \\
& {[\operatorname{Sn}] \times \mathbf{n}_{\left.\right|_{\Gamma}}=0, \quad \text { where } \mathbb{S}=\nu(\theta) D \mathbf{u} \quad \text { (exclude friction effects with the boundary) }}
\end{aligned}
$$

They can be easily extended to the case of periodic B.C.'s for all unknowns

Theorem

We can prove existence of at least one global in time weak solution $(\mathbf{u}, \varphi, \mu, \theta)$

$$
\begin{aligned}
& \mathbf{u} \in L^{\infty}\left(0, T ; L^{2}\left(\Omega ; \mathbb{R}^{3}\right)\right) \cap L^{2}\left(0, T ; \mathbf{V}_{\mathbf{n}}\right) \\
& \varphi \in L^{\infty}\left(0, T ; H^{1}(\Omega)\right) \cap L^{2}\left(0, T ; H^{3}(\Omega)\right) \cap H^{1}\left(0, T ; H^{1}(\Omega)^{\prime}\right) \\
& \mu \in L^{2}\left(0, T ; H^{1}(\Omega)\right) \cap L^{\frac{14}{5}}((0, T) \times \Omega) \\
& \theta \in L^{\infty}\left(0, T ; L^{\delta+1}(\Omega)\right) \cap L^{\beta}\left(0, T ; L^{3 \beta}(\Omega)\right) \cap L^{2}\left(0, T ; H^{1}(\Omega)\right) \\
& \theta>0 \text { a.e. in }(0, T) \times \Omega, \quad \log \theta \in L^{2}\left(0, T ; H^{1}(\Omega)\right)
\end{aligned}
$$

to system given by (momentum), (CahnHill), (entropy) and (energy), in distributional sense and for finite-energy initial data

$$
\mathbf{u}_{0} \in L^{2}(\Omega), \operatorname{div} \mathbf{u}_{0}=0, \quad \varphi_{0} \in H^{1}(\Omega), \quad \theta_{0} \in L^{\delta+1}(\Omega), \quad \theta_{0}>0 \text { a.e. }
$$

- Existence proof based on a classical a-priori estimates - compactness scheme
- The basic information is contained in the energy and entropy relations
- Note that the power-like growth of the heat conductivity and of the specific heat is required in order to provide sufficient summability of the temperature
- Existence proof based on a classical a-priori estimates - compactness scheme
- The basic information is contained in the energy and entropy relations
- Note that the power-like growth of the heat conductivity and of the specific heat is required in order to provide sufficient summability of the temperature

Is this sufficient to pass to the limit?

- Existence proof based on a classical a-priori estimates - compactness scheme
- The basic information is contained in the energy and entropy relations
- Note that the power-like growth of the heat conductivity and of the specific heat is required in order to provide sufficient summability of the temperature

Is this sufficient to pass to the limit?

- The total energy balance contains some nasty extra terms $\varphi_{t} \nabla_{x} \varphi+\mu \nabla_{x} \mu$. In particular, φ_{t} lies only in some negative order space (cf. (CahnHill))

■ Using (CahnHill) and integrating by parts carefully the bad terms tranform into

$$
\begin{gathered}
-\Delta \mu^{2}+\operatorname{div}\left(\left(\mathbf{u} \cdot \nabla_{x} \varphi\right) \nabla_{x} \varphi\right) \\
+\operatorname{div}\left(\nabla_{x} \mu \cdot \nabla_{x} \nabla_{x} \varphi\right)-\operatorname{div} \operatorname{div}\left(\nabla_{x} \mu \otimes \nabla_{x} \varphi\right)
\end{gathered}
$$

■ The above terms can be controlled by getting some extra-integrability of φ and μ from (CahnHill). To this aim having a "smooth" potential F is crucial!

- Is it possible to say something more in the 2D-case?
- Is it possible to say something more in the 2D-case?

■ In particular, it would be interesting to see if one might deal with "strong" solutions. Moreover, we would like to drop some restriction on coefficients

- Is it possible to say something more in the 2D-case?
- In particular, it would be interesting to see if one might deal with "strong" solutions. Moreover, we would like to drop some restriction on coefficients
- Let us make one test: in 2D the "extra stress" $\operatorname{div}\left(\nabla_{x} \varphi \otimes \nabla_{x} \varphi\right)$ in (momentum)

$$
\mathbf{u}_{t}+\mathbf{u} \cdot \nabla_{x} \mathbf{u}+\nabla_{x} p=\operatorname{div}(D \mathbf{u})-\operatorname{div}\left(\nabla_{x} \varphi \otimes \nabla_{x} \varphi\right)
$$

lies in L^{2} as a consequence of the estimates

- Is it possible to say something more in the 2D-case?

■ In particular, it would be interesting to see if one might deal with "strong" solutions. Moreover, we would like to drop some restriction on coefficients

- Let us make one test: in 2D the "extra stress" $\operatorname{div}\left(\nabla_{x} \varphi \otimes \nabla_{x} \varphi\right)$ in (momentum)

$$
\mathbf{u}_{t}+\mathbf{u} \cdot \nabla_{x} \mathbf{u}+\nabla_{x} p=\operatorname{div}(D \mathbf{u})-\operatorname{div}\left(\nabla_{x} \varphi \otimes \nabla_{x} \varphi\right)
$$

lies in L^{2} as a consequence of the estimates

- Hence, there is hope to get extra-regularity for constant viscosity ν (i.e., independent of temperature)
- Is it possible to say something more in the 2D-case?
- In particular, it would be interesting to see if one might deal with "strong" solutions. Moreover, we would like to drop some restriction on coefficients
- Let us make one test: in 2D the "extra stress" $\operatorname{div}\left(\nabla_{x} \varphi \otimes \nabla_{x} \varphi\right)$ in (momentum)

$$
\mathbf{u}_{t}+\mathbf{u} \cdot \nabla_{x} \mathbf{u}+\nabla_{x} p=\operatorname{div}(D \mathbf{u})-\operatorname{div}\left(\nabla_{x} \varphi \otimes \nabla_{x} \varphi\right)
$$

lies in L^{2} as a consequence of the estimates

- Hence, there is hope to get extra-regularity for constant viscosity ν (i.e., independent of temperature)
- Indeed we get
$\mathbf{u}_{t} \in L^{2}\left(0, T ; L^{2}(\Omega)\right)$ and $\mathbf{u} \in L^{\infty}\left(0, T ; H^{1}(\Omega)\right) \cap L^{2}\left(0, T ; H^{2}(\Omega)\right)$

■ Constant viscosity $\nu=1$

- Constant specific heat $c_{v}=1$ (in other words, $f(\theta)=-\theta \log \theta$)
- Power-like conductivity (for simplicity $\kappa(\theta)=\theta^{2}$)
- Periodic boundary conditions

Theorem

We can prove existence of at least one "strong" solution to system given by

$$
\begin{align*}
& \mathbf{u}_{t}+\mathbf{u} \cdot \nabla_{x} \mathbf{u}+\nabla_{x} p=\operatorname{div}(D \mathbf{u})-\operatorname{div}\left(\nabla_{x} \varphi \otimes \nabla_{x} \varphi\right) \tag{mom}\\
& \varphi_{t}+\mathbf{u} \cdot \nabla_{x} \varphi=\Delta \mu \tag{CH1}\\
& \mu=-\Delta \varphi+F^{\prime}(\varphi)-\theta \tag{CH2}\\
& \theta_{t}+\mathbf{u} \cdot \nabla_{x} \theta+\theta\left(\varphi_{t}+\mathbf{u} \cdot \nabla_{x} \varphi\right)-\Delta \theta^{3}=|D \mathbf{u}|^{2}+\left|\nabla_{x} \mu\right|^{2} \tag{heat}
\end{align*}
$$

for finite-energy initial data, namely

$$
\begin{aligned}
& \mathbf{u}_{0} \in H_{\mathrm{per}}^{1}(\Omega), \operatorname{div} \mathbf{u}_{0}=0 \\
& \varphi_{0} \in H_{\mathrm{per}}^{3}(\Omega) \\
& \theta_{0} \in H_{\mathrm{per}}^{1}(\Omega), \quad \theta_{0}>0 \text { a.e., } \log \theta_{0} \in L^{1}(\Omega)
\end{aligned}
$$

■ Is the proof just a standard regularity argument?

- Is the proof just a standard regularity argument? NO!
- The main issue is the estimation of $\left|\nabla_{x} \mu\right|^{2}$ in (heat). From the previous a-priori estimate, this is only in L^{1}
- Is the proof just a standard regularity argument? NO!
- The main issue is the estimation of $\left|\nabla_{x} \mu\right|^{2}$ in (heat). From the previous a-priori estimate, this is only in L^{1}
- If one differentiates the Cahn-Hilliard system:
- $(\mathrm{CH} 1)_{t} \times(-\Delta)^{-1} \varphi_{t}$

$$
\varphi_{t t}+\mathbf{u}_{t} \cdot \nabla_{x} \varphi+\mathbf{u} \cdot \nabla_{x} \varphi_{t}=\Delta \mu_{t} \quad \times(-\Delta)^{-1} \varphi_{t}
$$

- plus $(\mathrm{CH} 2)_{t} \times \varphi_{t}$

$$
\mu_{t}=-\Delta \varphi_{t}+F^{\prime \prime}(\varphi) \varphi_{t}-\theta_{t} \quad \boxed{\times \varphi_{t}}
$$

then one faces the term $\theta_{t} \varphi_{t}$ and no estimate is available for θ_{t}

- Is the proof just a standard regularity argument? NO!
- The main issue is the estimation of $\left|\nabla_{x} \mu\right|^{2}$ in (heat). From the previous a-priori estimate, this is only in L^{1}
- If one differentiates the Cahn-Hilliard system:
- $(\mathrm{CH} 1)_{t} \times(-\Delta)^{-1} \varphi_{t}$

$$
\varphi_{t t}+\mathbf{u}_{t} \cdot \nabla_{x} \varphi+\mathbf{u} \cdot \nabla_{x} \varphi_{t}=\Delta \mu_{t} \quad \times(-\Delta)^{-1} \varphi_{t}
$$

■ plus $(\mathrm{CH} 2)_{t} \times \varphi_{t}$

$$
\mu_{t}=-\Delta \varphi_{t}+F^{\prime \prime}(\varphi) \varphi_{t}-\theta_{t} \quad \times \varphi_{t}
$$

then one faces the term $\theta_{t} \varphi_{t}$ and no estimate is available for θ_{t}
■ Only possibility, to test (heat) by φ_{t}

$$
\theta_{t}+\mathbf{u} \cdot \nabla_{x} \theta+\theta\left(\varphi_{t}+\mathbf{u} \cdot \nabla_{x} \varphi\right)-\Delta \theta^{3}=|D \mathbf{u}|^{2}+\left|\nabla_{x} \mu\right|^{2} \quad \times \varphi_{t}
$$

to let it disappear

- Try $(\mathrm{CH} 1)_{t} \times(-\Delta)^{-1} \varphi_{t}$

$$
\varphi_{t t}+\mathbf{u}_{t} \cdot \nabla_{x} \varphi+\mathbf{u} \cdot \nabla_{x} \varphi_{t}=\Delta \mu_{t} \quad \times(-\Delta)^{-1} \varphi_{t}
$$

- $\operatorname{Try}(\mathrm{CH} 1)_{t} \times(-\Delta)^{-1} \varphi_{t}$

$$
\varphi_{t t}+\mathbf{u}_{t} \cdot \nabla_{x} \varphi+\mathbf{u} \cdot \nabla_{x} \varphi_{t}=\Delta \mu_{t} \quad \times(-\Delta)^{-1} \varphi_{t}
$$

plus $(\mathrm{CH} 2)_{t} \times \varphi_{t}$

$$
\mu_{t}=-\Delta \varphi_{t}+F^{\prime \prime}(\varphi) \varphi_{t}-\theta_{t} \quad \times \varphi_{t}
$$

- $\operatorname{Try}(\mathrm{CH} 1)_{t} \times(-\Delta)^{-1} \varphi_{t}$

$$
\varphi_{t t}+\mathbf{u}_{t} \cdot \nabla_{x} \varphi+\mathbf{u} \cdot \nabla_{x} \varphi_{t}=\Delta \mu_{t} \quad \times(-\Delta)^{-1} \varphi_{t}
$$

plus $(\mathrm{CH} 2)_{t} \times \varphi_{t}$

$$
\mu_{t}=-\Delta \varphi_{t}+F^{\prime \prime}(\varphi) \varphi_{t}-\theta_{t} \quad \times \varphi_{t}
$$

- plus (heat) $\times\left(\theta^{3}+\varphi_{t}\right)$

$$
\theta_{t}+\mathbf{u} \cdot \nabla_{x} \theta+\theta\left(\varphi_{t}+\mathbf{u} \cdot \nabla_{x} \varphi\right)-\Delta \theta^{3}=|D \mathbf{u}|^{2}+\left|\nabla_{x} \mu\right|^{2} \quad \times\left(\theta^{3}+\varphi_{t}\right)
$$

- $\operatorname{Try}(\mathrm{CH} 1)_{t} \times(-\Delta)^{-1} \varphi_{t}$

$$
\varphi_{t t}+\mathbf{u}_{t} \cdot \nabla_{x} \varphi+\mathbf{u} \cdot \nabla_{x} \varphi_{t}=\Delta \mu_{t} \quad \times(-\Delta)^{-1} \varphi_{t}
$$

- plus $(\mathrm{CH} 2)_{t} \times \varphi_{t}$

$$
\mu_{t}=-\Delta \varphi_{t}+F^{\prime \prime}(\varphi) \varphi_{t}-\theta_{t} \quad \times \varphi_{t}
$$

- plus (heat) $\times\left(\theta^{3}+\varphi_{t}\right)$

$$
\theta_{t}+\mathbf{u} \cdot \nabla_{x} \theta+\theta\left(\varphi_{t}+\mathbf{u} \cdot \nabla_{x} \varphi\right)-\Delta \theta^{3}=|D \mathbf{u}|^{2}+\left|\nabla_{x} \mu\right|^{2} \quad \times\left(\theta^{3}+\varphi_{t}\right)
$$

- getting

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\left\|\nabla_{x} \mu\right\|_{L^{2}}^{2}+\|\theta\|_{L^{4}}^{4}\right)+\left\|\varphi_{t}\right\|_{H^{1}}^{2}+\left\|\theta^{3}\right\|_{H^{1}}^{2} \leq c \int_{\Omega}\left|\nabla_{x} \mu\right|^{2}\left|\varphi_{t}+\theta^{3}\right| \mathrm{d} x+\text { I.o.t. }
$$

where I.o.t. can be easily handled

Almost to the right idea...

Having the inequality

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\left\|\nabla_{x} \mu\right\|_{L^{2}}^{2}+\|\theta\|_{L^{4}}^{4}\right)+\left\|\varphi_{t}\right\|_{H^{1}}^{2}+\left\|\theta^{3}\right\|_{H^{1}}^{2} \leq c \int_{\Omega}\left|\nabla_{x} \mu\right|^{2}\left|\varphi_{t}+\theta^{3}\right| \mathrm{d} x+\text { I.o.t. }
$$

Having the inequality

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\left\|\nabla_{x} \mu\right\|_{L^{2}}^{2}+\|\theta\|_{L^{4}}^{4}\right)+\left\|\varphi_{t}\right\|_{H^{1}}^{2}+\left\|\theta^{3}\right\|_{H^{1}}^{2} \leq c \int_{\Omega}\left|\nabla_{x} \mu\right|^{2}\left|\varphi_{t}+\theta^{3}\right| \mathrm{d} x+\text { I.o.t. }
$$

■ one has now to deal with $\left|\nabla_{x} \mu\right|^{2}\left|\varphi_{t}+\theta^{3}\right|$

Having the inequality

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\left\|\nabla_{x} \mu\right\|_{L^{2}}^{2}+\|\theta\|_{L^{4}}^{4}\right)+\left\|\varphi_{t}\right\|_{H^{1}}^{2}+\left\|\theta^{3}\right\|_{H^{1}}^{2} \leq c \int_{\Omega}\left|\nabla_{x} \mu\right|^{2}\left|\varphi_{t}+\theta^{3}\right| \mathrm{d} x+\text { I.o.t. }
$$

■ one has now to deal with $\left|\nabla_{x} \mu\right|^{2}\left|\varphi_{t}+\theta^{3}\right|$

- The only way to control it seems the following one:

$$
\int_{\Omega}\left|\varphi_{t}+\theta^{3}\right|\left|\nabla_{x} \mu\right|^{2} \leq\left\|\varphi_{t}+\theta^{3}\right\|_{H^{1}}\left\|\left|\nabla_{x} \mu\right|^{2}\right\|_{\left(H^{1}\right)^{\prime}}
$$

Having the inequality

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\left\|\nabla_{x} \mu\right\|_{L^{2}}^{2}+\|\theta\|_{L^{4}}^{4}\right)+\left\|\varphi_{t}\right\|_{H^{1}}^{2}+\left\|\theta^{3}\right\|_{H^{1}}^{2} \leq c \int_{\Omega}\left|\nabla_{x} \mu\right|^{2}\left|\varphi_{t}+\theta^{3}\right| \mathrm{d} x+\text { I.o.t. }
$$

■ one has now to deal with $\left|\nabla_{x} \mu\right|^{2}\left|\varphi_{t}+\theta^{3}\right|$

- The only way to control it seems the following one:

$$
\int_{\Omega}\left|\varphi_{t}+\theta^{3}\right|\left|\nabla_{x} \mu\right|^{2} \leq\left\|\varphi_{t}+\theta^{3}\right\|_{H^{1}}\left\|\left|\nabla_{x} \mu\right|^{2}\right\|_{\left(H^{1}\right)^{\prime}}
$$

- In 2D we have that $L^{p} \subset\left(H^{1}\right)^{\prime}$ for all $p>1$. But, then, one goes on with

$$
\leq \epsilon\left\|\varphi_{t}+\theta^{3}\right\|_{H^{1}}^{2}+c_{\epsilon}\left\|\nabla_{x} \mu\right\|_{L^{2 p}}^{4}
$$

Having the inequality

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\left\|\nabla_{x} \mu\right\|_{L^{2}}^{2}+\|\theta\|_{L^{4}}^{4}\right)+\left\|\varphi_{t}\right\|_{H^{1}}^{2}+\left\|\theta^{3}\right\|_{H^{1}}^{2} \leq c \int_{\Omega}\left|\nabla_{x} \mu\right|^{2}\left|\varphi_{t}+\theta^{3}\right| \mathrm{d} x+\text { I.o.t. }
$$

■ one has now to deal with $\left|\nabla_{x} \mu\right|^{2}\left|\varphi_{t}+\theta^{3}\right|$

- The only way to control it seems the following one:

$$
\int_{\Omega}\left|\varphi_{t}+\theta^{3}\right|\left|\nabla_{x} \mu\right|^{2} \leq\left\|\varphi_{t}+\theta^{3}\right\|_{H^{1}}\left\|\left|\nabla_{x} \mu\right|^{2}\right\|_{\left(H^{1}\right)^{\prime}}
$$

- In 2D we have that $L^{p} \subset\left(H^{1}\right)^{\prime}$ for all $p>1$. But, then, one goes on with

$$
\leq \epsilon\left\|\varphi_{t}+\theta^{3}\right\|_{H^{1}}^{2}+c_{\epsilon}\left\|\nabla_{x} \mu\right\|_{L^{2 p}}^{4}
$$

which is bad!

The main idea: a dual Yudovich trick and a regularity estimate

- We know, however, that

$$
\|v\|_{L^{q}} \leq c q^{1 / 2}\|v\|_{H^{1}} \quad \text { for all } v \in H^{1}(\Omega), q<\infty
$$

The main idea: a dual Yudovich trick and a regularity estimate

- We know, however, that

$$
\|v\|_{L^{q}} \leq c q^{1 / 2}\|v\|_{H^{1}} \quad \text { for all } v \in H^{1}(\Omega), q<\infty
$$

- Passing to the dual inequality, we infer

$$
\|\xi\|_{\left(H^{1}\right)^{*}} \leq c q^{1 / 2}\|\xi\|_{L^{p}} \quad \text { for all } \xi \in L^{p}(\Omega), p>1, q=p^{*}
$$

The main idea: a dual Yudovich trick and a regularity estimate

- We know, however, that

$$
\|v\|_{L^{q}} \leq c q^{1 / 2}\|v\|_{H^{1}} \quad \text { for all } v \in H^{1}(\Omega), q<\infty
$$

- Passing to the dual inequality, we infer

$$
\|\xi\|_{\left(H^{1}\right)^{*}} \leq c q^{1 / 2}\|\xi\|_{L^{p}} \quad \text { for all } \xi \in L^{p}(\Omega), p>1, q=p^{*}
$$

- Interpolating and optimizing w.r.t. q, we arrive at

$$
\|\xi\|_{\left(H^{1}\right)^{*}} \leq c\|\xi\|_{L^{1}}\left(1+\log ^{1 / 2}\|\xi\|_{L^{2}}\right) \quad \text { for all } \xi \in L^{2}(\Omega)
$$

- We know, however, that

$$
\|v\|_{L^{q}} \leq c q^{1 / 2}\|v\|_{H^{1}} \quad \text { for all } v \in H^{1}(\Omega), q<\infty
$$

- Passing to the dual inequality, we infer

$$
\|\xi\|_{\left(H^{1}\right)^{*}} \leq c q^{1 / 2}\|\xi\|_{L^{p}} \quad \text { for all } \xi \in L^{p}(\Omega), p>1, q=p^{*}
$$

- Interpolating and optimizing w.r.t. q, we arrive at

$$
\|\xi\|_{\left(H^{1}\right)^{*}} \leq c\|\xi\|_{L^{1}}\left(1+\log ^{1 / 2}\|\xi\|_{L^{2}}\right) \quad \text { for all } \xi \in L^{2}(\Omega)
$$

Applying the above to $\xi=\left|\nabla_{x} \mu\right|^{2}$, we get a differential inequality of the form $\frac{\mathrm{d}}{\mathrm{d} t}\left(\left\|\nabla_{x} \mu\right\|_{L^{2}}^{2}+\|\theta\|_{L^{4}}^{4}\right)+\left\|\varphi_{t}\right\|_{H^{1}}^{2}+\left\|\theta^{3}\right\|_{H^{1}}^{2} \leq c\left\|\nabla_{x} \mu\right\|_{L^{2}}^{2}\left(\left\|\nabla_{x} \mu\right\|_{L^{2}}^{2} \log \left\|\nabla_{x} \mu\right\|_{L^{2}}^{2}\right)+\ldots$

Hence, we get a global estimate thanks to a (generalized) Gronwall lemma

- Uniqueness in 2D

- Convergence to equilibria in 2D. Existence of attractors

- Allen-Cahn-type models

- Singular potentials in Cahn-Hilliard (or Allen-Cahn)

- Non-isothermal nonlocal models

