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The motivation

B A non-isothermal model for the flow of a mixture of two
B viscous
B incompressible
B Newtonian fluids
B of equal density
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The motivation

B A non-isothermal model for the flow of a mixture of two
B viscous
B incompressible
B Newtonian fluids
B of equal density

B Avoid problems related to interface singularities
= use a diffuse interface model
— the classical sharp interface replaced by a thin interfacial region

B A partial mixing of the macroscopically immiscible fluids is allowed
— @ is the order parameter, e.g. the concentration difference
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The motivation

B A non-isothermal model for the flow of a mixture of two
B viscous
B incompressible
B Newtonian fluids
B of equal density

B Avoid problems related to interface singularities
= use a diffuse interface model
— the classical sharp interface replaced by a thin interfacial region

B A partial mixing of the macroscopically immiscible fluids is allowed
— @ is the order parameter, e.g. the concentration difference

B The original idea of diffuse interface model for fluids: HOHENBERG and HALPERIN, 77
= H-model
Later, GURTIN ET AL., '96: continuum mechanical derivation based on microforces

B Models of two-phase or two-component fluids are receiving growing attention (e.g.,
ABELS, BOYER, GARCKE, GRUN, GRASSELLI, LOWENGRUB, TRUSKINOVSKI, ...)

E. Rocca - ERC-Workshop on Energy/Entropy-Driven Systems and Applications, WIAS, October 11,
2013 - Page 3 (27)



The main aim of our contribution [Eleuteri, R., Schimperna, in preparation] 'Zﬁ@“‘é

e Including temperature dependence is a widely open issue
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The main aim of our contribution [Eleuteri, R., Schimperna, in preparation] 'Zﬁg’“é

e Including temperature dependence is a widely open issue
Difficulties: getting models which are at the same time thermodynamically consistent and
mathematically tractable

e Our idea: a weak formulation of the system as a combination of fotal energy balance plus
entropy production inequality =—> “Entropic formulation”

B This method has been recently proposed by [BULICEK-MALEK-FEIREISL, '09] for the
Navier-Stokes-Fourier system and has been proved to be effective to study e.g.

B nonisothermal models for phase transitions ([FEIREISL-PETZELTOVA-R., '09]) and

B the evolution of nematic liquid crystals ((FREMOND, FEIREISL, R., SCHIMPERNA,
ZARNESCU, '12;13])

E. Rocca - ERC-Workshop on Energy/Entropy-Driven Systems and Applications, WIAS, October 11, W
2013 - Page 4 (27) AS)



The state variables and physical asssumptions 'Zﬁf’g

B We want to describe the behavior of a mixture of two incompressible fluids of the same
density in terms of the following state variables

B u: macroscopic velocity (Navier-Stokes),
B p: pressure (Navier-Stokes),

B : order parameter (Cahn-Hilliard),

B ,.: chemical potential (Cahn-Hilliard),

B 0: absolute temperature (Entropic formulation).
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The state variables and physical asssumptions xﬁ’g

B We want to describe the behavior of a mixture of two incompressible fluids of the same
density in terms of the following state variables

B u: macroscopic velocity (Navier-Stokes),
B p: pressure (Navier-Stokes),
B : order parameter (Cahn-Hilliard),
B . chemical potential (Cahn-Hilliard),
B 0: absolute temperature (Entropic formulation).
B We do not neglect convection and capillarity effects. We assume constant mobility and

smooth configuration potential in Cahn-Hilliard. We take temperature dependent

coefficients wherever possible. We assume the system being insulated from the exterior.
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The PDEs (equations and inequalities)

Bl a weak form of the momentum balance

u; +u-Veou+ Vep =div(v(0)Du) — div(Vee ® Vap), divu = 0;
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The PDEs (equations and inequalities)

B a weak form of the momentum balance
u; +u-Veou+ Vep =div(v(0)Du) — div(Vee ® Vap), divu = 0;
B the Cahn-Hilliard system in F''(Q)’

1
prusVap = Ap, p=—clp+ —F'(p) = 0;
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The PDEs (equations and inequalities) 'Zﬁ@";

B a weak form of the momentum balance
u; +u-Veou+ Vep =div(v(0)Du) — div(Vee ® Vap), divu = 0;
B the Cahn-Hilliard system in F''(Q)’
prtu-Vop=Ap, p=—clp+ éF'(w) - 0;
B a weak form of the total energy balance

Ot <%|u|2+e> +u-V, (%\uf—i—e) + div (pu—l—q—Su)

1 0
—div (eiVap + uVap) =0 where e = gF(go) + %|Vzgo|2 —|—/ co(s)ds;
1
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The PDEs (equations and inequalities) 'Zﬁf’g

B a weak form of the momentum balance
w +u-Veu+ Vep =div(w(0)Du) — div(Vep @ Vep), divu = 0;
B the Cahn-Hilliard system in F''(Q)’
prtu-Vop=Ap, p=—clp+ éF'(w) - 0;
B a weak form of the total energy balance
O <%|u|2 + e) +u-V, <%\u|2 + e) + div (pu +q- Su)

1 0
—div (eiVap + uVap) =0 where e = gF(go) + %|Vzga|2 —|—/ co(s)ds;
1

B the weak form of the entropy production inequality

0)V..0
(AB) + e +u- Va(A(D) +u- Vo — div (%)
4
2 %9)|Du|2 + %|le$|2 + %|Vﬁ|27 where A(0) = / CUT(S) ds.
1
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Modelling

B We start by specifying two functionals:

B the free energy U, related to the equilibrium state of the material, and

B the dissipation pseudo-potential ®, describing the processes leading to
dissipation of energy (i.e., transformation into heat)
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B the free energy U, related to the equilibrium state of the material, and

B the dissipation pseudo-potential ®, describing the processes leading to
dissipation of energy (i.e., transformation into heat)

B Then we impose the balances of momentum, configuration energy, and both of
internal energy and of entropy, in terms of these functionals
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Modelling 'Zﬁ@’g

B We start by specifying two functionals:

B the free energy U, related to the equilibrium state of the material, and

B the dissipation pseudo-potential ®, describing the processes leading to
dissipation of energy (i.e., transformation into heat)

B Then we impose the balances of momentum, configuration energy, and both of
internal energy and of entropy, in terms of these functionals

B The thermodynamical consistency of the model is then a direct consequence of the
solution notion
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Modelling: the free energy

The total free energy is given as a function of the state variables E = (6, ¢, V)

W(E) = [ (B)de, w(E) = £6) 8o+ IVl + (o)
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Modelling: the free energy 'Zﬁf“}

The total free energy is given as a function of the state variables E = (6, ¢, V)

W(E) = [ (B)de, w(E) = £6) 8o+ IVl + (o)

B f(0) is related to the specific heat c,, (0) = Q'(6) by Q(8) = f(0) — 6f'(6). In our
case we need ¢, () ~ ¢560° forsome § € (1/2,1)
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The total free energy is given as a function of the state variables E = (6, ¢, V)

W(E) = [ (B)de, w(E) = £6) 8o+ IVl + (o)

B f(0) is related to the specific heat c,, (0) = Q'(6) by Q(8) = f(0) — 6f'(6). In our
case we need ¢, () ~ ¢560° forsome § € (1/2,1)

B ¢ > (is related to the interfacial thickness
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Modelling: the free energy

The total free energy is given as a function of the state variables E = (6, ¢, V)

W(E) = [ (B)de, w(E) = £6) 8o+ IVl + (o)

B f(0) is related to the specific heat ¢, (0) = Q'(8) by Q(0) = f(8) — 6f'(6). In our
case we need ¢, () ~ ¢560° forsome § € (1/2,1)

B ¢ > (is related to the interfacial thickness

B we need F'(¢) to be the classical smooth double well potential F'(¢) ~ (¢ — 1)
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Modelling: the dissipation potential 'Zﬁ@"*é

The dissipation potential is taken as function of 0 E = (D, %, Vz0)and E

<1>(6E7E)=/¢(Du,vze)dx+<%,fl&>
Q

Dt Dt
0 . 0 Dy ||
= / <#|Du|2 + I{oy (divu) + %|Vzﬁ|2) dx + Hﬁf
Q Hy ()
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Modelling: the dissipation potential 'Zﬁf’g

The dissipation potential is taken as function of 0 E = (D, %, Vz0)and E

_ Dy . 1Dy
@(6E7E)—/52¢(Du,vze)dx+<—Dt,J T)t>

_ v(9) 2 . k(6) 5 Do ||?

—/Q< 5 |Du|” 4 Iy (divu) + 20 |V.0|° ) dz + D

HY(Q)

B Du= (V,u+ Viu)/2 the symmetric gradient

[ | % = ()¢ + u- V4 (-) the material derivative

m J: Hj(Q) — Hj(Q)' the Riesz isomorphism
(Ju,v) = ((u, v))H;(Q) = [, Vau- Vyvde,
Hy(Q) ={6e H'(Q) : £:= Q7! [,&dz =0}
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Modelling: the dissipation potential 'Zﬁf’g

The dissipation potential is taken as function of 0 E = (D, %, Vz0)and E

- Do ;1D
@(6E7E)_/52¢(Du,vze)dx+<Dt,J Dt>

_ v(0) 2 . r(0) 2 Dy
—/Q(T|Du| —I—I{O}(dlvu)-i-izg |V.0]" ) dz + Di

2

HY(Q)

B Du= (V,u+ Viu)/2 the symmetric gradient

[ | % = ()¢ + u- V4 (-) the material derivative

m J: Hj(Q) — Hj(Q)' the Riesz isomorphism
(Ju,v) = ((u, v))H;(Q) = [, Vau- Vyvde,
Hy(Q) ={6e H'(Q) : £:= Q7! [,&dz =0}

B v = v(0) > 0 the viscosity coefficient, kK = k(6) > 0 the heat conductivity
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Modelling: the dissipation potential 'Zﬁ@’g

The dissipation potential is taken as function of 0 E = (D, %, Vz0)and E

‘1>(5E7E)=/¢(Du,vze)dx+<%,rl@>
Q

Dt’" Dt
2
= [ (Y9 D + 10y (div) + "D )7,02) 4z + | 22
2 o 20 Dt
0 1Y @)

B Du= (V,u+ Viu)/2 the symmetric gradient

[ | % = ()¢ + u- V4 (-) the material derivative

m J: Hj(Q) — Hj(Q)' the Riesz isomorphism
(Ju,v) = ((u, v))H;(Q) = [, Vau- Vyvde,
Hu(Q)={£e H'(Q) : £:=1Q]" [,&dx =0}
B v = v(0) > 0 the viscosity coefficient, kK = k(6) > 0 the heat conductivity

B Incompressibility: I the indicator function of {0}: Io = 0 ifdivu = 0, +00
otherwise)
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Modelling: the contraints and the dissipation potential

B The dissipation potential was taken as

_ Do - Dy 1Dy
<I>_<1>(Du, Dt,vw) —A¢(DU,V10)dx+<Dt,J =

B If a time-dependent set of variables is given such that
B ae.in (0,7), U and P are finite
B uissuchthatu-n=0onT
B ¢ satisfies the mass conservation constraint (¢, ) = ©(0,x) = ¢o(z) a.e.
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Modelling: the contraints and the dissipation potential

B The dissipation potential was taken as

_ Do - Dy 1Dy
<I>_<1>(Du, Dt,vw) _L¢(Du,vze)dx+<Dt,J =

B If a time-dependent set of variables is given such that
B ae.in (0,7), U and P are finite
B uissuchthatu-n=0onT
B ¢ satisfies the mass conservation constraint (¢, ) = ©(0,x) = ¢o(z) a.e.

then u is divergence-free and we get

Dy
— = [ (pt+u-Vyp)dz =0
Q Dt Q
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Modelling: the contraints and the dissipation potential

B The dissipation potential was taken as

_ Do _ Dy 1Dy
=9 (Du, D ,vze) = /Qq&(Du,VZG) dx+< J D

B If a time-dependent set of variables is given such that

B ae.in (0,7), U and P are finite
B uissuchthatu-n=0onT

B ¢ satisfies the mass conservation constraint ¢(t,z) = ¢(0,x) = @o(z) a.e

then u is divergence-free and we get

D¢ /
o Dt Q !
B Thenwe canset iy 1= —J ' Dt , SO that =2 = —Juy = Apy and we get

®(SE,E) = /Qa(dE, E)dz, where $(6E,E) = ¢(6E, E) + %WW#F
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Modelling: Cahn-Hilliard

B [t is obtained (at least for no-flux b.c.’s) as the following gradient-flow problem
8Li(ﬂ),%¢ + aLZ#(Q)’w#‘l/ = 0

where L2#(Q) ={6c L) : £:=|Q|7 [(€dz =0}, pp =0 — B0
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Modelling: Cahn-Hilliard 'Zﬁ@’“é

B It is obtained (at least for no-flux b.c.'s) as the following gradient-flow problem
8Li(ﬂ),%¢ + 8142#(9)’#7#‘1} = O
where Li&(Q) ={6c L) : £:=|Q|7 [(€dz =0}, pp =0 — B0
B Combining the previous relations we then get

-1 % — _1 / _ v ) 8790_ F(t) = oo
J (Dt)’EA“O E(F(w) F(w))+0 0, 5, =00l &(t) =%
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Modelling: Cahn-Hilliard 'Cff’g

B It is obtained (at least for no-flux b.c.'s) as the following gradient-flow problem
8Li(ﬂ),%¢. + 8L2#(Q),g;#‘l’ = O

where L;&(Q) ={6c L) : £:=|Q|7 [(€dz =0}, pp =0 — B0

B Combining the previous relations we then get

_1{ Dy 1 / — — 0y _ _
JHEZE) —en —7(F _F ) 0-8, 22 —0onT, B(t) =
(52) =sae- 1 (Fo)-F) +0-7. 32 o) = 75
B Applying the distributional Laplace operator to both hand sides and noting that

—AJ 'v =wvforany v € L%(12), we then arrive at the Cahn-Hilliard system with

Neumann hom. b.c. for ;. and

DQO_ _ 1 ’ . %_%_ .
Dt_A’u’ = sA(p—i-gF(cp) 0, 8n—an—00nf (CahnHill)

where the auxiliary variable p takes the name of chemical potential
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Modelling: momentum balance

The Navier-Stokes system is obtained as a momentum balance by setting

Du . .
Df = +div(u®u) =divo, (momentum)
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Modelling: momentum balance 'Zﬁ@";

The Navier-Stokes system is obtained as a momentum balance by setting

%l: =u, + div(u®u) = div (¢’ + "), (momentum)

where the stress o is split into its

B dissipative part

a._ 99 _ o
o= aDu—l/(O)Du pl, divu=0,

representing kinetic energy which dissipates (i.e. is transformed into heat) due to

viscosity, and its

nd

B non-dissipative part 0" to be determined later in agreement with Thermodynamics
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Nonlocal internal energy balance

The balance of internal energy takes the form

Dy @
—‘0+—w vat+

De 2 nd
ﬁ—l—dlvq—u( ) Du|*+0"": Du+ B V.o
where e = 1) — 01)s, B = B™ + B? and
oy 1 _1 [ Dy
nd _ YY¥ = d: _ 1 ¥
B T Oy EF( ?) =0, B aLie(Q)’%fq) J <Dt)
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Nonlocal internal energy balance

The balance of internal energy takes the form

0
Wy, D o 2 L IN]

(0)|Dul® + 0" Du+B— t ov.e

E—i—dlvq_l/
where e = 1) — 01)s, B = B™ + B? and
oy 1 _1 [ Dy
nd _ YY¥ - d: — 122
B = 9 EF (p)—6, B GLQ(Q)’%'@ J (Dt)

On the right hand side there appears a new (with respect to the standard theory of [FREMOND

02]) term balancing the nonlocal dependence of the last term in the pseudopotential

of dissipation ¢
Do ;o Dtp>

o= (00 22) = [ oter (26,25
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Nonlocal internal energy balance

The balance of internal energy takes the form

2 nd 61/)
ﬁ-f—leQ—I/( )| Dul® + o .Du—i—B——i—W Vx Dr —|—

where e = ¢ — O1py, B = B"® + B and
o 1 _1 [ Dy
nd _ YY¥ = d _ _ 1 e
B = % EF() 6, B —GLQ#(Q)Y%fé_J ( t)

On the right hand side there appears a new (with respect to the standard theory of [FREMOND,
’02]) term balancing the nonlocal dependence of the last term in the pseudopotential
of dissipation ¢

<I>:<I><Du —) /¢d +<D‘p J‘lll))f>

It will result from the Second Principle of Thermodynamics that fQ N(z)dz =0,in

agreement with natural expectations
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The Second Law of Thermodynamics 'Zﬁf’g

To deduce the expressions for o™ and N, we impose validity of the Clausius-Duhem

o5 v (3))0

where e = i + s, being s = —1)p the entropy density and we get

inequality in the form

0" = —Vap© Vo, N= Ay
and the internal energy balance can be rewritten as
Dy . _ 2 2
(QUO)): + - V. Q0) + 017 — div(x(0)V.6) = v(0)| Duf* + Vs

where Q(0) = f(0) — 0f'(0) and Q'(0) =: c,(0)
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The Second Law of Thermodynamics

nd

To deduce the expressions for ¢ and N, we impose validity of the Clausius-Duhem

9(%; + div (%))zo

where e = i + s, being s = —1)p the entropy density and we get

inequality in the form

n _ 1 _
0" = Ve @ Vap, N = A(-p)?

and the internal energy balance can be rewritten as
Dy . 2 2
(QUO)): + - V. Q0) + 017 — div(x(0)V.6) = v(0)| Duf* + Vs
where Q(0) = f(0) — 0f'(6) and Q'(6) =: ¢, (6)

The dissipation terms on the right hand side are in perfect agreement with ®

<I>:/$d:c, where $:¢+%|V1u|2
Q
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Entropic solutions: Total Energy balance and Entropy inequality

Following [BULICEK, FEIREISL, & MALEK], we replace the pointwise internal energy balance by
the total energy balance

2
(0 +u-Vy) (% + e) + div (pu — £(0) V26 — (v(0) Du)u)
= div (p¢tVap + uVap) (energy)

with the internal energy

e = F(p) + 5Vo0l +Q0) Q'(0) = cu(0)
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Entropic solutions: Total Energy balance and Entropy inequality

Following [BULICEK, FEIREISL, & MALEK], we replace the pointwise internal energy balance by

the total energy balance

2
(0 +u-Vy) (% + e) + div (pu — £(0) V26 — (v(0) Du)u)
= div (p¢tVap + uVap) (energy)

with the internal energy
1
e=F(p) + §\Vz¢|2 +Q(0) Q'(0) =cu(9)
and the entropy inequality

(A(O) + ©)e +u- Vi (AO) + @) — div (W) (entropy)
k(0)

02

7
IV.0[%, where A(e):/ I

I/(a) 2 1 2
> —==\|D — |V
g |Dul” + 0|V wul” + s
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The PDEs (equations and inequalities) 'Zﬁ@"*é

B a weak form of the momentum balance (in distributional sense)

w +u-Veu+ Vep =div(v(0)Du) — div(Vep @ Vap), divu = 0;
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The PDEs (equations and inequalities)

B a weak form of the momentum balance (in distributional sense)
w +u-Veu+ Vep =div(v(0)Du) — div(Vep @ Vap), divu = 0;
B the Cahn-Hilliard system in /' (Q)’

etu-Vep=Ap, p=-Ap+F(p)—0;
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The PDEs (equations and inequalities) 'Zﬁ@";

B a weak form of the momentum balance (in distributional sense)
u; +u-Veu+ Vep = div(v(8)Du) — div(Vaep ® Vee), divu = 0;
B the Cahn-Hilliard system in /' (Q)’
pr+u-Vap =Ap, p=—Ap+F(p)—0;

B a weak form of the total energy balance (in distributional sense)

O <%|u\2 +e) +u-V,; (%|u|2 +e> + div (pu—|—q—Su)

1 0
—div (¢t Vap 4+ uVap) =0 where e = F(p) + §|Vm<p|2 —|—/ cu(s)ds;
1

E. Rocca - ERC-Workshop on Energy/Entropy-Driven Systems and Applications, WIAS, October 11, W
2013 - Page 16 (27) AS



The PDEs (equations and inequalities) 'Zﬁf’g

B a weak form of the momentum balance (in distributional sense)
w +u-Veu+ Vep =div(v(0)Du) — div(Vep @ Vap), divu = 0;
B the Cahn-Hilliard system in /' (Q)’
pr+u-Vap =Ap, p=—Ap+F(p)—0;

B a weak form of the total energy balance (in distributional sense)

1
O <§|u\2 —I—e) +u- (f|u| +e) + div (pu—|—q—Su)

1 0
—div (¢t Vap 4+ uVap) =0 where e = F(p) + §|Vm<p|2 —|—/ co(s)ds;
1

B the weak form of the entropy production inequality

(AB) + e +u- Vo(A(D)) +u- Vap — div (@)
- %'Dlﬂ |Vzﬂ|2 + He(f) |Vg;9|27 where A(9) = /19 CUT(S) ds.
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Assumptions on the data and boundary conditions

B In order to get a tractable system in 3D, we need to specify assumptions on coefficients in

a careful way:
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Assumptions on the data and boundary conditions 'Zﬁ@"*é

B In order to get a tractable system in 3D, we need to specify assumptions on coefficients in
a careful way:
B The viscosity v/(6) is assumed smooth and bounded
B The specific heat ¢, () ~ 0°,1/2 < § < 1
B The heat conductivity x(0) ~ 1+ 6°, 5 > 2

B The potential F(¢) = %(@2 _ 1)2
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Assumptions on the data and boundary conditions 'Zﬁ@’g

B In order to get a tractable system in 3D, we need to specify assumptions on coefficients in
a careful way:
B The viscosity v/(6) is assumed smooth and bounded
B The specific heat ¢, (0) ~ 0°,1/2 < § < 1
B The heat conductivity x(0) ~ 1+ 6°, 5 > 2

B The potential F(¢) = %(302 _ 1)2

B Concerning B.C's, our results are proved for no-flux conditions for 6, ¢, and 1 and
complete slip conditions for u

u-n|, =0 (the fluid cannot exit £2, it can move tangentially to I")

[Sn] x n;, =0, whereS =wv(f)Du (exclude friction effects with the boundary)

They can be easily extended to the case of periodic B.C.s for all unknowns
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Existence of global in time solutions . ’Cff’g

We can prove existence of at least one global in time weak solution (u, ¢, u, 0)

ue L®(0,T; L*(;R?) N L*(0,T; Vy)

© e L™(0,T; H(Q)) N L*(0,T; H*(Q)) N H'(0,T; H' ()")
pe L0, T; H'(Q) N LS ((0,T) x Q)

0 € L>=(0,T; LT (Q)) n LP(0, T; L**(Q)) n L*(0, T; H' (Q))
0>0 aein(0,T)xQ, loghe L*(0,T;H"())

to system given by (momentum), (CahnHill), (entropy) and (energy), in distributional sense and
for finite-energy initial data

w € L*(Q), divug =0, ¢o€ H(Q), 6 L°THQ), 6 >0 ae
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A priori bounds

B Existence proof based on a classical a-priori estimates — compactness scheme
B The basic information is contained in the energy and entropy relations

B Note that the power-like growth of the heat conductivity and of the specific heat is
required in order to provide sufficient summability of the temperature
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A priori bounds

B Existence proof based on a classical a-priori estimates — compactness scheme
B The basic information is contained in the energy and entropy relations

B Note that the power-like growth of the heat conductivity and of the specific heat is
required in order to provide sufficient summability of the temperature

Is this sufficient to pass to the limit?
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A priori bounds

B Existence proof based on a classical a-priori estimates — compactness scheme
B The basic information is contained in the energy and entropy relations

B Note that the power-like growth of the heat conductivity and of the specific heat is
required in order to provide sufficient summability of the temperature

Is this sufficient to pass to the limit?

H The total energy balance contains some nasty extra terms ¢V, + uVap. In
particular, ¢ lies only in some negative order space (cf. (CahnHill))

B Using (CahnHill) and integrating by parts carefully the bad terms tranform into
— Ap® +div ((u- Vo) Vap)

+div(Vap - VeVap) — divdiv(Vep @ Vap)

B The above terms can be controlled by getting some extra-integrability of ¢ and  from
(CahnHill). To this aim having a “smooth” potential F' is crucial!
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What'’s better in 2D?
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What'’s better in 2D?

B Is it possible to say something more in the 2D-case?
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What'’s better in 2D?

B Is it possible to say something more in the 2D-case?

B In particular, it would be interesting to see if one might deal with “strong” solutions.
Moreover, we would like to drop some restriction on coefficients
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What'’s better in 2D?

B Is it possible to say something more in the 2D-case?

B In particular, it would be interesting to see if one might deal with “strong” solutions.
Moreover, we would like to drop some restriction on coefficients

B Let us make one test: in 2D the “extra stress” div(V,p @ V) in (momentum)
w +u-Veu+ Vep =div(Du) — div (Ve @ Vi)

liesin L? asa consequence of the estimates
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What'’s better in 2D?

B Is it possible to say something more in the 2D-case?

B In particular, it would be interesting to see if one might deal with “strong” solutions.
Moreover, we would like to drop some restriction on coefficients

B Let us make one test: in 2D the “extra stress” div(V,p @ V) in (momentum)
w +u-Veu+ Vep =div(Du) — div (Ve @ Vo)
liesin L? asa consequence of the estimates

B Hence, there is hope to get extra-regularity for constant viscosity v (i.e., independent of
temperature)
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What'’s better in 2D?

B Is it possible to say something more in the 2D-case?

B In particular, it would be interesting to see if one might deal with “strong” solutions.
Moreover, we would like to drop some restriction on coefficients

B Let us make one test: in 2D the “extra stress” div(V,p @ V) in (momentum)
w +u-Veu+ Vep =div(Du) — div (Ve @ Vi)
liesin L? asa consequence of the estimates

B Hence, there is hope to get extra-regularity for constant viscosity v (i.e., independent of
temperature)

B Indeed we get
u, € L2(0,T; L3(Q)) andu € L=(0,T; H(Q)) N L?(0,T; H*(Q))
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Assumptions in 2D

B Constant viscosity v = 1
B Constant specific heat ¢, = 1 (in other words, f(0) = —6log 6)
B Power-like conductivity (for simplicity x(8) = 6?)

B Periodic boundary conditions

E. Rocca - ERC-Workshop on Energy/Entropy-Driven Systems and Applications, WIAS, October 11, W
2013 - Page 21 (27) AS



Main result in 2D

We can prove existence of at least one “strong” solution fo system given by
u +u-Vyu+ Vep =div(Du) — div (Vae ® Vi)
pr+u-Vep =Ap
p=—Ap+ F'(p) -0
0 +u- V04 0(p¢ + u- Vup) — AG® = |Dul? 4 |Vl

for finite-energy initial data, namely

ug € per(Q), divup = 0,
("200] S Hper(Q)
0o € Hper(Q), 60 >0 ae, loghy € L'(Q)

Lot

(mom)

(CH1)

(CH2)

(heat)
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2D: Troubles

B Is the proof just a standard regularity argument?

E. Rocca - ERC-Workshop on Energy/Entropy-Driven Systems and Applications, WIAS, October 11, W
2013 - Page 23 (27) AS



2D: Troubles 'Zﬁ@"*é

B Is the proof just a standard regularity argument? NO!

B The main issue is the estimation of \Vmu,\Q in (heat). From the previous a-priori estimate,
this is only in L*
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2D: Troubles

B Is the proof just a standard regularity argument? NO!

B The main issue is the estimation of \Vm/z,\Q in (heat). From the previous a-priori estimate,

this is only in L*
B [f one differentiates the Cahn-Hilliard system:

B (CH1); x(—A) "'y,
Wi+ Ve +u-Vepr = Ay | x(—A) oy
B plus (CH2); Xy
e = —Aps + F"(0)pr — 00 | X

then one faces the term 6;+ and no estimate is available for 6
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2D: Troubles

B Is the proof just a standard regularity argument? NO!

B The main issue is the estimation of \Vm/z,\Q in (heat). From the previous a-priori estimate,

this is only in L*
B [f one differentiates the Cahn-Hilliard system:

B (CH1) x(—A) 'y
Ot Vop+u-Vapr = Ay | xX(—A) "y
B plus (CH2); Xy
e = —Aps + F"(0)pr — 00 | X
then one faces the term 6;+ and no estimate is available for 6
B Only possibility, to test (heat) by ¢
Or +u- Vi +0(pr +u-Vaep) — A0° = |Dul® + |[V.ul” | xe:

to let it disappear
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The main estimate
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The main estimate

B Try (CH1): x(—=A) "ty

O+ Vap +u-Vopr = Ape % (—A) '

E. Rocca - ERC-Workshop on Energy/Entropy-Driven Systems and Applications, WIAS, October 11, W
2013 - Page 24 (27) AS



The main estimate

B Try (CH1); x(—A) "ty

O+ Vap +u-Vopr = Ape % (—A) '

B plus (CH2); Xy
e = —Dpe + F'(0)pr — 0 % 1
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The main estimate

B Try (CH1); x(—A) "ty

O+ Vap +u-Vopr = Ape % (—A) '

B plus (CH2); Xy
e = —Dpe + F'(0)pr — 0 % 1

B plus (heat)x (8% + ;)

O +u- Vil +0(pr +u-Vaep) — AG® = [Dul> + |[Vopu”  x (0° + ¢1)
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The main estimate 'Zﬁ@"*é

B Try (CH1); x(—A) "ty

e+ u - Voo +u-Vapr = Ape x (—A) 'y

B plus (CH2); Xy
e = —Dpe + F'(0)pr — 0 % 1

B plus (heat)x (8% + ;)
O +u- Vil +0(pr +u-Vaep) — AG® = [Dul> + |[Vopu”  x (0° + ¢1)
W getting
S5 (9ol + 101L0) + loulln + 16°1s < [ (920l + 6% do -+ 108

where l.o.t. can be easily handled
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Almost to the right idea... 'Zﬁ@"*é

Having the inequality

d .
Em (IVepllZz + 1611z4) + leellz + 16%7n < C/ Voul*lpe + 67| dz + 1ot
Q
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Almost to the right idea... 'Zﬁ@"*é

Having the inequality

d .
n (IVepllZz + 1611z4) + leellz + 16%7n < C/ Voul*lpe + 67| dz + 1ot
Q

B one has now to deal with |V, 1| |¢; + 0|
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Almost to the right idea...

Having the inequality

d .
n (IVepllZz + 1611z4) + leellz + 16%7n < C/ Voul*lpe + 67| dz + 1ot
Q

B one has now to deal with |V, 1| |¢; + 0|

B The only way to control it seems the following one:

[ 10+ 0Tl < llge+ 6% [V 1,
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Almost to the right idea...

Having the inequality

d ' .
5 (IVenlzz +116124) + lleellzn + 6% < C/ Vaul®|oe +0°| dz + Lot
Q

B one has now to deal with |V jz||; + 67

B The only way to control it seems the following one:

[ 10+ 0Tl < llge+ 6% [V 1,

B In2D we have that L” C (H") forall p > 1. But, then, one goes on with

< ellor +6°I7n + cel|Vapl 2
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Almost to the right idea...

Having the inequality

d ' .
5 (IVenlzz +116124) + lleellzn + 6% < C/ Vaul®|oe +0°| dz + Lot
Q

B one has now to deal with |V jz||; + 67

B The only way to control it seems the following one:

[ 10+ 0Tl < llge+ 6% [V 1,

B In2D we have that L” C (H") forall p > 1. But, then, one goes on with
< elle + 0|7 + cel|Vapl 720

which is bad!
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The main idea: a dual Yudovich trick and a regularity estimate
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The main idea: a dual Yudovich trick and a regularity estimate

B We know, however, that

lvllra < cqg"/?|[vl|l forallv e HY(R),q < oo
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The main idea: a dual Yudovich trick and a regularity estimate

B We know, however, that
lvllra < cqg"/?|[vl|l forallv e HY(R),q < oo
B Passing to the dual inequality, we infer

||£H(H1)* < Cq1/2||£HLP for all &- € LP(Q),]) > 1, q= p*
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The main idea: a dual Yudovich trick and a regularity estimate

B We know, however, that
lvllra < cqg"/?|[vl|l forallv e HY(R),q < oo
B Passing to the dual inequality, we infer
I€llrye < cq?|i€llLe forallé € LP(Q),p > 1,4 =p°
B Interpolating and optimizing w.r.t. g, we arrive at

€l rrrys < clléllze (1+ log'/? [€]lp2) forallé € L7 ()
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The main idea: a dual Yudovich trick and a regularity estimate 'Zﬁ@";

B We know, however, that
lvllra < cqg"/?|[vl|l forallv e HY(R),q < oo
B Passing to the dual inequality, we infer
I€llrye < cq?|i€llLe forallé € LP(Q),p > 1,4 =p°
B Interpolating and optimizing w.r.t. g, we arrive at

€l rrny < elléllze (1 + log'/? [€]L2) forallé € L7(Q)
Applying the above to & = |V, |2, we get a differential inequality of the form

d
X (IVapllZz +1611za) + ez + 16°13n < el Vorl o (IVaplZ2 log [ Vapllzz) + -

Hence, we get a global estimate thanks to a (generalized) Gronwall lemma
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Work in progress and further developments

WORK NPROGRESS

B Uniqueness in 2D

WORK N PROGRESS.

B Convergence to equilibria in 2D. Existence of attractors
B Allen-Cahn-type models E
B Singular potentials in Cahn-Hilliard (or Allen-Cahn) E

B Non-isothermal nonlocal models E
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