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E. Rocca (Università degli Studi di Pavia) Diffuse interface models of tumor growth July 4–6,2018 2 / 50



Outline

1 Phase field models for tumor growth

2 The optimal control problem

3 First order optimality conditions

4 Some simulations

5 A multispecies model with velocity

6 Our contribution: analysis of a multiphase model with different mobilities

7 Comparison with other models

8 Perspectives and Open problems
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Setting

Tumors grown in vitro often exhibit “layered” structures:

Figure: Zhang et al. Integr. Biol., 2012, 4, 1072–1080. Scale bar 100µm = 0:1mm

A continuum thermodynamically consistent model is introduced with the ansatz:

sharp interfaces are replaced by narrow transition layers arising due to adhesive forces

among the cell species: a diffuse interface separates tumor and healthy cell regions

proliferating tumor cells surrounded by (healthy) host cells, and a nutrient (e.g.

glucose)

E. Rocca (Università degli Studi di Pavia) Diffuse interface models of tumor growth July 4–6,2018 4 / 50



Setting

Tumors grown in vitro often exhibit “layered” structures:

Figure: Zhang et al. Integr. Biol., 2012, 4, 1072–1080. Scale bar 100µm = 0:1mm

A continuum thermodynamically consistent model is introduced with the ansatz:

sharp interfaces are replaced by narrow transition layers arising due to adhesive forces

among the cell species: a diffuse interface separates tumor and healthy cell regions

proliferating tumor cells surrounded by (healthy) host cells, and a nutrient (e.g.

glucose)
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Diffuse interfaces
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Advantages of diffuse interfaces in tumor growth models

It eliminates the need to enforce complicated boundary conditions across the

tumor/host tissue and other species/species interfaces

It eliminates the need to explicitly track the position of interfaces, as is required in

the sharp interface framework

The mathematical description remains valid even when the tumor undergoes

toplogical changes (e.g. metastasis)

Regarding modeling of diffuse interface tumor growth we can quote, e.g.,

Ciarletta, Cristini, Frieboes, Garcke, Hawkins, Hilhorst, Lam, Lowengrub, Oden,

Wise, also for their numerical simulations → complex changes in tumor

morphologies due to the interactions with nutrients or toxic agents and also due to

mechanical stresses

Frieboes, Jin, Chuang, Wise, Lowengrub, Cristini, Garcke, Lam, Nürnberg, Sitka, for

the interaction of multiple tumor cell species described by multiphase mixture models
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E. Rocca (Università degli Studi di Pavia) Diffuse interface models of tumor growth July 4–6,2018 6 / 50



Advantages of diffuse interfaces in tumor growth models

It eliminates the need to enforce complicated boundary conditions across the

tumor/host tissue and other species/species interfaces

It eliminates the need to explicitly track the position of interfaces, as is required in

the sharp interface framework

The mathematical description remains valid even when the tumor undergoes

toplogical changes (e.g. metastasis)

Regarding modeling of diffuse interface tumor growth we can quote, e.g.,

Ciarletta, Cristini, Frieboes, Garcke, Hawkins, Hilhorst, Lam, Lowengrub, Oden,

Wise, also for their numerical simulations → complex changes in tumor

morphologies due to the interactions with nutrients or toxic agents and also due to

mechanical stresses

Frieboes, Jin, Chuang, Wise, Lowengrub, Cristini, Garcke, Lam, Nürnberg, Sitka, for

the interaction of multiple tumor cell species described by multiphase mixture models
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Theoretical analysis: two-phase models

In terms of the theoretical analysis most of the recent literature is restricted to the

two-phase variant, i.e., to models that only account for the evolution of a tumor

surrounded by healthy tissue.

In this setting, there is no differentiation among the tumor cells that exhibit

heterogeneous growth behavior. Hence this kind of two-phase models are just able to

describe the growth of a young tumor before the onset of quiescence and necrosis.

Analytical results related to well-posedness, asymptotic limits and long-time
behavior, but also optimal control and sliding modes, have been established in a
number of papers of a number of authors which include: Agosti, Ciarletta, Colli,
Frigeri, Garcke, Gilardi, Grasselli, Hilhorst, Lam, Marinoschi, Melchionna, E.R.,
Scala, Sprekels Wu, etc...

I for tumor growth models based on the coupling of Cahn–Hilliard (for the tumor

density) and reaction–diffusion (for the nutrient) equations, and

I for models of Cahn–Hilliard–Darcy type.
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Optimization over the treatment time: H. Garcke, K.F. Lam, E. Rocca,

Applied Mathematics & Optimization, 2017

Common treatment for tumors are

Chemotheraphy

Radiation therapy

Surgery

For treatment involving drugs, the patient is given several doses of drugs over a few days,

followed by a rest period of 3 - 4 weeks, and the cycle is repeated. Goal is to shrink the

tumor into a more manageable size for which surgery can be applied.

Unfortunately, cytotoxic drugs also harms the healthy host tissues, and can accumulate in

the body. Furthermore, drug clearance may also cause damage to various vital organs

(e.g. kidneys and liver).

Worst case scenario: Cytotoxins may have cancer-causing effects, and tumor cells can

mutate to become resistant to the drug.

Thus, aside from optimising the drug distribution, we should also consider optimising the

treatment time.
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Cahn–Hilliard + nutrient models with source terms

The simplest phase field model is a Cahn–Hilliard system with source terms for ϕ: the

difference in volume fractions (ϕ = 1: tumor phase, ϕ = −1: healthy tissue phase):

∂tϕ = ∆µ+M, µ = Ψ′(ϕ)−∆ϕ

The source term M accounts for biological mechanisms related to proliferation and

death. Introduce a Reaction-diffusion equation for the nutrient proportion σ:

∂tσ = ∆σ − S

where S models interaction with the tumor cells

In [Chen, Wise, Shenoy, Lowengrub (2014)], [Garcke, Lam, Sitka, Styles (2016)]:

M = h(ϕ)(Pσ −A), S = h(ϕ)Cσ

Here h(s) is an interpolation function such that h(−1) = 0 and h(1) = 1, and
I h(ϕ)Pσ - proliferation of tumor cells proportional to nutrient concentration
I h(ϕ)A - apoptosis of tumor cells
I h(ϕ)Cσ - consumption of nutrient by the tumor cells

A regular double-well potential Ψ, e.g., Ψ(s) = 1/4(1− s2)2
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State equations

We consider the Cahn–Hilliard + nutrient model with linear kinetics and Neumann

boundary conditions:

∂tϕ = ∆µ+ h(ϕ)(Pσ −A− αu)

µ = Ψ′(ϕ)−∆ϕ

∂tσ = ∆σ − Ch(ϕ)σ

Here h(s) is an interpolation function such that h(−1) = 0 and h(1) = 1, and

h(ϕ)Pσ - proliferation of tumor cells proportional to nutrient concentration

h(ϕ)A - apoptosis of tumor cells

h(ϕ)Cσ - consumption of nutrient by the tumor cells

h(ϕ)αu - elimination of tumor cells by cytotoxic drugs at a constant rate α,

u acts as a control here. In applications u : [0,T ]→ [0, 1] is spatially constant,

where u = 1 represents full dosage, u = 0 represents no dosage
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Objective functional

For positive βT , βu and non-negative βQ , βΩ, βS , we consider

J(ϕ, u, τ) :=

∫ τ

0

∫
Ω

βQ
2
|ϕ− ϕQ |2 +

∫
Ω

βΩ

2
|ϕ(τ)− ϕΩ|2

+

∫
Ω

βS
2

(1 + ϕ(τ)) +

∫ τ

0

∫
Ω

βu
2
|u|2 + βT τ

the variable τ denotes the unknown treatment time to be optimised,

ϕQ is a desired evolution of the tumor over the treatment,

ϕΩ is a desired final state of the tumor (stable equilibrium of the system),

the term 1+ϕ(τ)
2

measures the size of the tumor at the end of the treatment,

the constant βT penalizes long treatment times.

Expectation: An optimal control will be a pair (u∗, τ∗) and we will obtain two optimality

conditions.
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Regarding the terms appearing in the cost functional

J(ϕ, u, τ) :=

∫ τ

0

∫
Ω

βQ
2
|ϕ− ϕQ |2 +

∫
Ω

βΩ

2
|ϕ(τ)− ϕΩ|2

+

∫
Ω

βS
2

(1 + ϕ(τ)) +

∫ τ

0

∫
Ω

βu
2
|u|2 + βT τ

A large value of |ϕ− ϕQ |2 would mean that the patient suffers from the growth of

the tumor, and a large value of |u|2 would mean that the patient suffers from high

toxicity of the drug;

The function ϕΩ can be a stable configuration of the system, so that the tumor does

not grow again once the treatment is completed or a configuration which is suitable

for surgery;

The variable τ can be regarded as the treatment time of one cycle, i.e., the amount

of time the drug is applied to the patient before the period of rest, or the treatment

time before surgery;

It is possible to replace βT τ by a more general function f (τ) where f : R+ → R+ is

continuously differentiable and increasing.
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the tumor, and a large value of |u|2 would mean that the patient suffers from high

toxicity of the drug;

The function ϕΩ can be a stable configuration of the system, so that the tumor does

not grow again once the treatment is completed or a configuration which is suitable

for surgery;

The variable τ can be regarded as the treatment time of one cycle, i.e., the amount

of time the drug is applied to the patient before the period of rest, or the treatment

time before surgery;

It is possible to replace βT τ by a more general function f (τ) where f : R+ → R+ is

continuously differentiable and increasing.
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Relaxed objective functional

However, we will not study the functional

J(ϕ, u, τ) :=

∫ τ

0
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βQ
2
|ϕ− ϕQ |2 +

∫
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βΩ
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|ϕ(τ)− ϕΩ|2

+

∫
Ω

βS
2

(1 + ϕ(τ)) +

∫ τ

0

∫
Ω

βu
2
|u|2 + βT τ

but a relaxed version - in order to keep a control u just bounded without requiring more

regularity

Let r > 0 be fixed and let T ∈ (0,∞) denote a fixed maximal time in which the patient

is allowed to undergo a treatment, we define

Jr (ϕ, u, τ) :=

∫ τ

0

∫
Ω

βQ
2
|ϕ− ϕQ |2 +

1

r

∫ τ

τ−r

∫
Ω

βΩ

2
|ϕ− ϕΩ|2

+
1

r

∫ τ

τ−r

∫
Ω

βS
2

(1 + ϕ) +

∫ T

0

∫
Ω

βu
2
|u|2 + βT τ
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∫
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(1 + ϕ) +

∫ T
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∫
Ω

βu
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|u|2 + βT τ.

The optimal control problem is

min
(ϕ,u,τ)

Jr (ϕ, u, τ)

subject to τ ∈ (0,T ), u ∈ Uad = {f ∈ L∞(Ω× (0,T )) : 0 ≤ f ≤ 1}, and

∂tϕ = ∆µ+ h(ϕ)(Pσ −A− αu) in Ω× (0,T ) = Q,

µ = Ψ′(ϕ)−∆ϕ in Q,

∂tσ = ∆σ − Ch(ϕ)σ in Q,

0 = ∂nϕ = ∂nσ = ∂nµ on ∂Ω× (0,T ),

ϕ(0) = ϕ0, σ(0) = σ0 in Ω.
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Well-posedness of state equations

Theorem

Let ϕ0 ∈ H3, σ0 ∈ H1 with 0 ≤ σ0 ≤ 1, h ∈ C 0,1(R) ∩ L∞(R) non-negative, and Ψ is a

quartic potential, then for every u ∈ Uad there exists a unique triplet

ϕ ∈ L∞(0,T ;H2) ∩ L2(0,T ;H3) ∩ H1(0,T ; L2) ∩ C 0(Q),

µ ∈ L2(0,T ;H2) ∩ L∞(0,T ; L2),

σ ∈ L∞(0,T ;H1) ∩ L2(0,T ;H2) ∩ H1(0,T ; L2), 0 ≤ σ ≤ 1 a.e. in Q

satisfying the state equations.

Key points:

Boundedness of σ comes from a weak comparison principle applied to

∂tσ = ∆σ − Ch(ϕ)σ

and it is an essential ingredient for the existence proof

Proof utilises a Schauder fixed point argument
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Existence of a minimiser

Using that ϕ ∈ L1(0,T ; L1), Jr is bounded from below:

Jr (ϕ, u, τ) :=

∫ τ

0

∫
Ω

βQ
2
|ϕ− ϕQ |2 +

1

r

∫ τ

τ−r

∫
Ω

βΩ

2
|ϕ− ϕΩ|2

+
1

r

∫ τ

τ−r

∫
Ω

βS
2

(1 + ϕ) +

∫ T

0

∫
Ω

βu
2
|u|2 + βT τ

≥ −βS
2r

∫ τ

τ−r

∫
Ω

|ϕ| ≥ −βS
2r
‖ϕ‖L1(0,T ;L1) ≥ −C .

Minimising sequence (un, τn) ∈ Uad × (0,T ), with corresponding state variables

(ϕn, µn, σn) such that

lim
n→∞

Jr (ϕn, un, τn) = inf
(φ,w,s)

Jr (φ,w , s).

We extract a convergent subsequence un ⇀
∗ u∗ ∈ L∞(Q) and limit functions

(ϕ∗, µ∗, σ∗) satisfying the state equations and

ϕn → ϕ∗ in C 0([0,T ]; L2) ∩ L2(Q).

As {τn}n∈N is a bounded sequence, we extract a convergent subsequence

τn → τ∗ ∈ [0,T ].
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Key point: All of the convergence are with respect to the interval [0,T ].

As {τn}n∈N is a bounded sequence, we extract a convergent subsequence
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E. Rocca (Università degli Studi di Pavia) Diffuse interface models of tumor growth July 4–6,2018 17 / 50



Existence of minimiser

To pass to the limit in:

Jr (ϕn, un, τn) :=

∫ τn

0

∫
Ω

βQ
2
|ϕn − ϕQ |2 +

1

r

∫ τn

τn−r

∫
Ω

βΩ

2
|ϕn − ϕΩ|2

+
1

r

∫ τn

τn−r

∫
Ω

βS
2

(1 + ϕn) +

∫ T

0

∫
Ω

βu
2
|un|2 + βT τn,

we make use of

χ[0,τn ](t)→ χ[0,τ∗](t), ϕn − ϕQ → ϕ∗ − ϕQ strongly in L2(Q)

to obtain

lim
n→∞

∫ τn

0

∫
Ω

|ϕn − ϕQ |2 = lim
n→∞

∫
Q

|ϕn − ϕQ |2 χ[0,τn ](t) =

∫ τ∗

0

∫
Ω

|ϕ∗ − ϕQ |2 .

Weak lower semi-continuity of the L2(Q) norm then yields

inf
(φ,w,s)

Jr (φ,w , s) ≥ lim inf
n→∞

Jr (ϕn, un, τn) ≥ Jr (ϕ∗, u∗, τ∗).

That is, (u∗, τ∗) is a minimiser.
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Fréchet differentiability with respect to the control

We set S(u) = (ϕ, µ, σ) as the solution operator on the interval [0,T ], and introduce the

linearized state variables (Φw ,Ξw ,Σw ) corresponding to w as solutions to

∂tΦ = ∆Ξ + h(ϕ)(PΣ− αw) + h′(ϕ)Φ(Pσ −A− αu),

Ξ = Ψ′′(ϕ)Φ−∆Φ,

∂tΣ = ∆Σ− C(h(ϕ)Σ + h′(ϕ)Φσ),

with Neumann boundary conditions and zero initial conditions.

Expectation: The Fréchet derivative of S at u ∈ Uad in the direction w is

DuS(u)w = (Φw ,Ξw ,Σw ).

Consequence: For the reduced functional Jr (u, τ) := Jr (ϕ, u, τ),

DuJr (u∗, τ)[w ] = βQ

∫ τ

0

∫
Ω

(ϕ∗ − ϕQ)Φw +

∫
Q

βuu∗w

+
1

2r

∫ τ

τ−r

∫
Ω

(βΩ(ϕ∗ − ϕΩ)Φw + βSΦw ) .
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Fréchet differentiability with respect to time

For

Jr (ϕ, u, τ) =

∫ τ

0

∫
Ω

βQ
2
|ϕ− ϕQ |2 +

1

r

∫ τ

τ−r

∫
Ω

βΩ

2
|ϕ− ϕΩ|2

+
1

r

∫ τ

τ−r

∫
Ω

βS
2

(1 + ϕ) +

∫ T

0

∫
Ω

βu
2
|u|2 + βT τ,

we have

DτJr (u, τ∗) = βT +
βQ
2
‖ϕ(τ∗)− ϕQ(τ∗)‖2

L2

+
βΩ

2r

(
‖(ϕ− ϕΩ)(τ∗)‖2

L2 − ‖(ϕ− ϕΩ)(τ∗ − r)‖2
L2

)
+

∫
Ω

βS
2r

(ϕ(τ∗)− ϕ(τ∗ − r)).

Note that the control u does not appear explicitly.
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First order optimality conditions

Introducing the adjoint system

−∂tp = ∆q + Ψ′′(ϕ∗)q − Ch′(ϕ∗)σ∗r + h′(ϕ∗)(Pσ∗ −A− αu∗)p

+ βQ(ϕ∗ − ϕQ) +
1

2r
χ(τ∗−r,τ∗)(t)(2βΩ(ϕ∗ − ϕΩ) + βS),

q = ∆p,

−∂tr = ∆r − Ch(ϕ∗)r + Ph(ϕ∗)p

with Neumann boundary conditions and final time condition r(τ∗) = p(τ∗) = 0. We have

Theorem

The optimal control (u∗, τ∗) satisfy∫ T

0

∫
Ω

βuu∗(v − u∗)−
∫ τ∗

0

∫
Ω

h(ϕ∗)αp(v − u∗) ≥ 0 ∀v ∈ Uad,

and

βT +
βQ
2
‖(ϕ∗ − ϕQ)(τ∗)‖2

L2 +
βS
2r

∫
Ω

ϕ∗(τ∗)− ϕ(τ∗ − r) dx

+
βΩ

2r

(
‖(ϕ∗ − ϕΩ)(τ∗)‖2

L2 − ‖(ϕ− ϕΩ)(τ∗ − r)‖2
L2

)
= 0.
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Issues with the original functional

To deal with the original functional:

J(ϕ, u, τ) =

∫ τ

0

∫
Ω

βQ
2
|ϕ− ϕQ |2 +

∫
Ω

βΩ

2
|ϕ(τ)− ϕΩ|2 +

∫ τ

0

∫
Ω

βu
2
|u|2 + βT τ.

Then, the optimality condition for τ∗ is

0 = DτJ |(u∗,τ∗) =

∫
Ω

βQ
2
|(ϕ∗ − ϕQ)(τ∗)|2 +

βΩ

2
(ϕ∗(τ∗)− ϕΩ)∂tϕ∗(τ∗) +

βu
2
|u∗(τ∗)|2 dx

+ βT .

Issues: For the above expression to be well-defined, we need

∂ttϕ∗ ∈ L2(0,T ; L2), u∗ ∈ H1(0,T ; L2).

If we define Uad = {u ∈ H1(0,T ; L2) : 0 ≤ u ≤ 1, ‖∂tu‖L2(Q) ≤ K} for fixed K > 0, and

impose ϕ0 ∈ H5, σ0 ∈ H3, then we get ϕ ∈ H2(0,T ; L2) ∩W 1,∞(0,T ;H1).

However, to require the a-priori boundedness of ∂tu is difficult to verify in applications.
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Other control-type results

SMC. In [Colli, Gilardi, Marinoschi, E.R., Appl Math Optim, to appear] we introduce a

sliding mode control (SMC) law % sign(ϕ− ϕ∗) in the chemical potential which

forces the system to reach within finite time the sliding manifold (that we chose in

order that the tumor phase remains constant in time ϕ ≡ ϕ∗)

Different sources. In the phase field model we introduced

∂tϕ = ∆µ+M,

µ = Ψ′(ϕ)−∆ϕ

∂tσ = ∆σ − S + u,

we can choose different form of M and S: linear phenomenological laws for

chemical reactions cf. [Hawkins–Daarud, Prudhomme, van der Zee, Oden (2012)],

[Frigeri, Grasselli, E.R. (2015)]:

M = S = h(ϕ)(σ − µ)

In [Colli, Gilardi, E.R., Sprekels, Nonlinearity (2017)]: the optimal control with respect

to the drug distribution which acts as a control u in the nutrient equation
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Simulations: Garcke, Lam, Sitka, Styles, 2016
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FLRS: A multispecies model with velocities - with Frigeri, Lam, Schimperna

Typical structure of tumors grown in vitro:

Figure: Zhang et al. Integr. Biol., 2012, 4, 1072–1080. Scale bar 100µm = 0:1mm

A continuum thermodynamically consistent model is introduced with the ansatz:

sharp interfaces are replaced by narrow transition layers arising due to adhesive forces

among the cell species: a diffuse interface separates tumor and healthy cell regions

proliferating and dead tumor cells and healthy cells are present, along with a

nutrient (e.g. glucose or oxigene)

tumor cells are regarded as inertia-less fluids: include the velocity - satisfying a

Darcy type law with Korteveg term
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Theoretical analysis: multiphase models

Comparatively, there have been fewer analytical results for the multi-phase variants,

which distinguish between the proliferating and necrotic tumor cells:

in [DFRSS: M. Dai, Feireisl, E.R., G. Schimperna, M. Schonbek, Nonlinearity (2017)] we

study a simplification of the tumor model introduced in [CWSL: Y. Chen, S.M. Wise,

V.B. Shenoy, J.S. Lowengrub, Int. J. Numer. Meth. Biomed. Engng. (2014)]

the original model of [CWSL] consists of a Cahn–Hilliard–Darcy system with high

order source terms, and the natural energy identity of the model appears not to

provide sufficient a priori estimates

hence in [DFRSS] we analyzed the case of constant and identical mobilities for all

tumor species, which allows us to express the simplified model as a

Cahn–Hilliard–Darcy system coupled with a transport-type equation without the

high order source terms, and establish the existence of a weak solution

in [Garcke, Lam, Nürnberg, Sitka, M3AS (2018)], instead, a vectorial

Cahn–Hilliard–Darcy model has been proposed. A new feature is the use of a

volume-average velocity simplifying the equation for the mixture velocity. The

corresponding natural energy identity yields better a priori estimates for existence
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FLRS: S. Frigeri, K.-F. Lam, E.R., G. Schimperna, Comm. Math. Sci. (to appear)

The model is a variant of the one introduced in [Y. Chen, S.M. Wise, V.B. Shenoy and

J.S. Lowengrub, Int. J. Numer. Meth. Biomed. Engng. (2014)]:

ϕp, ϕd , ϕh ∈ [0, 1]: the volume fractions of the cells:

I ϕp : proliferating tumor cell fraction

I ϕd : dead tumor cell fraction

I ϕh: healthy cell fraction

The variables above are naturally constrained by the relation ϕp + ϕd + ϕh = 1

hence it suffices to track the evolution of ϕp and ϕd and the vector ϕ := (ϕp, ϕd)>

lies in the simplex ∆ := {y ∈ R2 : 0 ≤ y1, y2, y1 + y2 ≤ 1} ⊂ R2

n: the nutrient concentration (it was σ before)

u:=ui , i = 1, 2, 3: the tissue velocity field. We treat the tumor and host cells as

inertial-less fluids and assume that the cells are tightly packed and they march

together

q: the cell-to-cell pressure
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FLRS: the balance law

Letting Ji , i ∈ {p, d , h}, denote the mass fluxes for the cells, then the general balance

law for the volume fractions, for matched densities of the components, reads as

∂tϕi + div(ϕiu) = −divJi + Si for i ∈ {p, d , h}

where we set Sh = 0, whereas Sp, Sd may depend on n, ϕp and ϕd

Assume: the tumor growth process tends to evolve towards (local) minima of the free

energy functional of Ginzburg–Landau type:

E(ϕp, ϕd) :=

∫
Ω

F (ϕp, ϕd) +
1

2
|∇ϕp|2 +

1

2
|∇ϕd |2 dx

where F = F0 + F1 is a multi-well configuration potential, e.g.

F0(ϕp, ϕd):= ϕp logϕp + ϕd logϕd + (1− ϕp − ϕd) log(1− ϕp − ϕd)

F1(ϕp, ϕd) :=
χ

2
(ϕd(1− ϕd) + ϕp(1− ϕp) + (1− ϕd − ϕp)(ϕd + ϕp))

The fluxes Ji are defined as follows (with different mobilities for each phase):

Ji = −Mi∇µi , µi :=
δE

δϕi
= −∆ϕi + F,ϕi for i = p, d
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FLRS: the velocity and nutrient evolutions

We set Jh = −Jp − Jd , then upon summing up the three mass balances for i = p, d , h,

using the fact that ϕp + ϕd + ϕh = 1 and Sh = 0, we deduce the following relation:

div u = Sp + Sd =: St

The velocity field u is assumed to fulfill Darcy’s law:

u = −∇q − ϕp∇µp − ϕd∇µd

where q denotes the cell-to-cell pressure and the subsequent two terms have the meaning

of Korteweg forces

Since the time scale of nutrient diffusion is much faster (minutes) than the rate of cell

proliferation (days), the nutrient is assumed to evolve quasi-statically:

0 = −∆n + ϕpn

where ϕpn models consumption by the proliferating tumor cells
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The goal and the main difficulties of FLRS

Goal: to study this multispecies model including different mobilities, singular potential

and non-Dirichlet b.c.s on the chemical potential. The main problems are:

we have two different Cahn-Hilliard equations with non-zero right hand sides:

∂tϕi − div(Mi∇µi −ϕiu) = Si and if we do not choose the Dirichlet b.c.s on µi then

we need to estimate the mean values of µi = −∆ϕi + F,ϕi containing a multiwell

logarithmic type potential F0

we need the mean values of ϕi (the proliferating and dead cells phases) to be away

from the potential bareers =⇒ ad hoc estimate based on ODEs technique

indeed, integrating the equations for ϕp and ϕd we obtain an evolution law for the

mean values yi := 1
|Ω|

∫
Ω
ϕi dx for i = p, d

such a relation does not involve directly the singular part F0. Hence, the evolution of

yp, yd are not automatically compatible with the physical constraint and this has to

be proved by assuming proper conditions on coefficients and making a careful choice

of the boundary conditions

the choice (Mi∇µi − ϕiu) · n = 0 seems essential
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FLRS: The weak notion of solution

Definition. (ϕp , ϕd , u, q, n) is a weak solution to the problem in (0,T )× Ω if the previous

equations hold, for a.e. t ∈ (0,T ) and for i = p, d , in the following weak sense:

〈∂tϕi , ζ〉+

∫
Ω
Mi∇µi · ∇ζ − ϕiu · ∇ζ dx =

∫
Ω
Siζ dx ∀ζ ∈ H1(Ω),∫

Ω
µiζ dx =

∫
Ω
∇ϕi · ∇ζ + ηiζ + F1,ϕi

(ϕp , ϕd )ζ dx ∀ζ ∈ H1(Ω),∫
Ω

u · ∇ξ dx = −
∫

Ω
(Sp + Sd )ξ dx ∀ξ ∈ H1

0 (Ω),∫
Ω

u · ζ dx =

∫
Ω
−∇q · ζ − ϕp∇µp · ζ − ϕd∇µd · ζ dx ∀ζ ∈ (L2(Ω))d ,

0 = −∆n + ϕpn a.e. in Ω,

ηi = F0,ϕi
(ϕp , ϕd ) a.e. in Ω,

Sp = Σp(n, ϕp , ϕd ) + mppϕp + mpdϕd a.e. in Ω,

Sd = Σd (n, ϕp , ϕd ) + mdpϕp + mddϕd a.e. in Ω.

Moreover, there hold the initial conditions

ϕp(x , 0) = ϕp,0(x), ϕd (x , 0) = ϕd,0(x) a.e. in Ω,

where 〈·, ·〉 denotes the duality pairing between H1(Ω) and its dual H1(Ω)′.
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FLRS: Assumptions on the mass sources and on the initial data

Set Σ(n, ϕp, ϕd) := (Σp,Σd) and M = (mij), i , j ∈ {p, d}, the matrix of the coefficients

of the mass souces in the Cahn-Hilliard equations: (Sp, Sd) = Σ + M(ϕp, ϕd)T

Assumption on the mass sources:

Σ is globally Lipschitz and

that there exist a closed and sufficiently regular subset ∆0 contained in the open

simplex ∆ and constants Kp,−,Kp,+,Kd,−,Kd,+ ∈ R, with Kp,− ≤ Kp,+ and

Kd,− ≤ Kd,+, such that Σ(R3) ⊂ [Kp,−,Kp,+]× [Kd,−,Kd,+]

for any x = (xp, xd) ∈ [Kp,−,Kp,+]× [Kd,−,Kd,+], there holds

(My + x) · n < 0 for all y ∈ ∂∆0,

where n denotes the outer unit normal vector to ∆0

Assumptions on the initial data :

ϕp,0, ϕd,0 ∈ H1(Ω) with 0 ≤ ϕp,0, 0 ≤ ϕd,0, ϕp,0 + ϕd,0 ≤ 1 a.e. in Ω,

the mean values satisfy ( 1
|Ω|

∫
Ω
ϕp,0(x) dx , 1

|Ω|

∫
Ω
ϕd,0(x) dx) ∈ int ∆0 and

F0(ϕp,0, ϕd,0) ∈ L1(Ω)
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FLRS: Examples of mass sources

Examples of mass sources in ∂tϕi − div(Mi∇µi − ϕiu) = Si for i ∈ {p, d} complying

with the assumptions in the “logarithmic” case are:

Sp = λMg(n)−λAϕp

Sd = λAϕp−λLϕd

for positive constants λM , λA, λL (with λM(λA + λL) < λAλL, λA < 2λL) and a bounded

positive function g such that 0 < g(s) ≤ 1, e.g., g(s) = max(nc ,min(s, 1)) for some

constant nc ∈ (0, 1).

The biological effects we want to model are:

the growth of the proliferating tumor cells due to nutrient consumption at a

constant rate λM

the death of proliferating tumor cells at a constant rate λA, which leads to a source

term for the necrotic cells

the lysing/disintegration of necrotic cells at a constant rate λL
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FLRS: Existence of weak solutions

The main result of S. Frigeri, K.-F. Lam, E. R., G. Schimperna, Comm. Math. Sci. (to

appear)

Theorem

For every T > 0 here exists at least one weak solution (ϕp, µp, ηp, ϕd , µd , ηd , u, q, n) to

the multi-species tumor model on [0,T ] with the regularity

ϕi ∈ H1(0,T ;H1(Ω)′) ∩ L∞(0,T ;H1(Ω)) ∩ L2(0,T ;H2(Ω)),

with 0 ≤ ϕi ≤ 1, ϕp + ϕd ≤ 1 a.e. in Q, for i = p, d ,

µi ∈ L2(0,T ;H1(Ω)), ηi ∈ L2(Q),

u ∈ L2(Q) with div u ∈ L2(Q), q ∈ L2(0,T ;H1
0 (Ω)),

n ∈ (1 + L2(0,T ;H2(Ω) ∩ H1
0 (Ω))), 0 ≤ n ≤ 1 a.e. in Q.

Notice that the boundary conditions:

(Mi∇µi − ϕiu) · n = 0, ∂nϕi = 0, q = 0, n = 1 on Γ

are incorporated in the definition of weak solutions
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FLRS: an idea of the proof

1 consider a regularized version of this problem by replacing the singular potential F0

by its Moreau–Yosida approximation Fε, and by introducing some suitable truncation

functions. The latter choice is due to the fact that Fε is no longer a singular

function, and consequently the uniform boundedness properties 0 ≤ ϕp, 0 ≤ ϕd ,

ϕp + ϕd ≤ 1 are not expected to hold in the approximation level.

2 to prove existence of a solution to the regularized system a further regularization and

a Schauder fixed point argument: only exploits elementary existence and uniqueness

results methods for PDEs

3 derive the bounds - independent of the regularization parameters - in order to pass

to the limit in the approximation scheme via compactness tools: the main problem is

to bound the mean values of ϕi away from the potential bareers
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The bound of the mean values

Denoting y(t) := ((ϕp)Ω(t), (ϕd)Ω(t)), (Σ)Ω = ((Σp)Ω, (Σd)Ω), then by testing by 1 the

mass balances

〈∂tϕi , ζ〉+

∫
Ω

Mi∇µi · ∇ζ − ϕiu · ∇ζ dx =

∫
Ω

Siζ dx ,

where (Sp, Sd) = (Σp,Σd) + M(ϕp, ϕd)T , leads to the following system of ODE’s:

d

dt
y(t) = (Σ)Ω(t) + My(t) ∀t ∈ [0,T ].

Using the assumption

(My + x) · n < 0 for all y ∈ ∂∆0

we infer that the vector y(t) = ((ϕp)Ω(t), (ϕd)Ω(t)) ∈ int ∆0 for all t ∈ [0,T ]. Indeed, at

the time t = 0, y(0) ∈ int ∆0 by assumption. Suppose that ∃ t∗ such that y(t∗) ∈ ∂∆0.

Taking t = t∗ in the ODE, multiplying with n, we get

d

dt
y(t∗) · n < 0.

Hence y(t) cannot leave ∆0 and so there exist positive constants 0 < c1 < c2 < 1:

c1 ≤ (ϕp)Ω(t), (ϕd)Ω(t) ≤ c2, c1 ≤ (ϕp + ϕd)Ω(t) ≤ c2 ∀t ∈ [0,T ].
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Comparison with the original Chen-model and with [DFRSS]

In [CWSL], the effect of a basement membrane on the growing tumor is also

considered → additional coupling with a Cahn–Hilliard equation transported by u.

The key distinction is that in our choice of a multi-well potential E we included

interfacial energy for the proliferating-necrotic tumor interface and also for the

tumor-host interfaces: in [CWLS] the free energy depends only on the total tumor

volume fraction ϕT = ϕp + ϕd , i.e., E(ϕT ) =
∫

Ω
f (ϕT ) + 1

2
|∇ϕT |2 dx for scalar

double-well potential f with minima at 0 and 1.

Different boundary conditions with respect to [CWSL] and [DFRSS], where a zero

Dirichlet boundary datum was taken for the chemical potentials. Here we consider

(Mi∇µi − ϕiu) · n = 0 (more reasonable from the modeling point of view). The

(easier) case of Dirichlet or Robin boundary conditions for µi could also be treated,

while the case of no-flux conditions for µi (which would also be meaningful) seems

not easy to be treated mathematically.

We can have here different mobility coefficients, which would have given rise to a

number of mathematical complications in the case of [DFRSS].
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Perspectives and Open problems

1. To study the long-time behavior of solutions in terms of attractors and/or

trajectories: in case of two-phase models: we have three projects going on: with C.

Cavaterra and H. Wu (on a model by Oden et al.), with A. Miranville and G.

Schimperna (on a model proposed by H. Garcke et. al.), with A. Giorgini, K.-F.

Lam, and G. Schimperna (on the reduction of this model to the two-phase variant).

2. To add the mechanics in Lagrangean coordinates in the problem: for example

considering the tumor sample as a porous media (ongoing project with P. Krejč́ı and

J. Sprekels).

3. The study of optimal control: we are studying an optimal control problem for a

prostate model introduced by H. Gomez et al. and proposed to us by G. Lorenzo

and A. Reali (ongoing project with P. Colli and G. Marinoschi).

4. Include a stochastic term in phase-field models for tumor growth representing for

example uncertainty of a therapy or random oscillations of the tumor phase (ongoing

project with C. Orrieri and L. Scarpa).
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Many thanks to all of you for the attention!

http://matematica.unipv.it/rocca/
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Simulations: Garcke, Lam, Sitka, Styles, 2016
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Issues with the well-posedness

The state equations

∂tϕ = ∆µ+ h(ϕ)(Pσ −A− αu),

µ = Ψ′(ϕ)−∆ϕ,

∂tσ = ∆σ − Ch(ϕ)σ.

satisfies the energy identity

d
dt

∫
Ω

(
Ψ(ϕ) +

1

2
|∇ϕ|2 +

1

2
|σ|2
)

︸ ︷︷ ︸
=:E

+

∫
Ω

(
|∇µ|2 + |∇σ|2 + h(ϕ)C |σ|2

)

=

∫
Ω

h(ϕ) (Pσ −A− αu)µ.

We can estimate the right-hand side as

δ‖µ‖2
L2 +

C

δ
(P2‖σ‖2

L2 + . . . ) for some δ > 0,

leading to

E(t) +

∫ t

0

∫
Ω

(
|∇µ|2 + |∇σ|2

)
≤ E(0) +

∫ t

0

∫
Ω

(
δ |µ|2 + other terms...

)
.

To apply Poincaré inequality to the ‖µ‖L2(L2) on the RHS, we need to estimate the square

of the mean of µ using

µ = Ψ′(ϕ)−∆ϕ.

If |Ψ′(s)| ≤ C(1 + |s|p) for some p, then we have∥∥∥∥ 1

|Ω|

∫
Ω

µ

∥∥∥∥2

L2(L2)

≤ C(1 + ‖ϕ‖2p

L2p(L2p)
) + other terms ...

But, to control ‖ϕ‖2p

L2p(L2p)
in the absence of any a priori estimate, we need p = 1! I.e., Ψ

can only be a quadratic potential [Garcke, L.].
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Issues with the well-posedness

If σ is bounded in Q, then∣∣∣∣∫
Ω

h(ϕ)(Pσ −A− αu)µ

∣∣∣∣ ≤ C‖µ‖L1

and by the Poincaré inequality, we have

‖µ‖L1 ≤ C‖∇µ‖L1 + C

∣∣∣∣ 1

|Ω|

∫
Ω

µ

∣∣∣∣ .

Then one obtains

E(t) +

∫ t

0

∫
Ω

(
|∇µ|2 + |∇σ|2

)
≤ E(0) + C

∫ t

0

(
δ‖∇µ‖L1 + ‖Ψ′(ϕ)‖L1 + other terms...

)
.

With an assumption like ∣∣Ψ′(s)
∣∣ ≤ C1Ψ(s) + C2,

we obtain a priori estimates for potentials with higher polynomial growth.
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E. Rocca (Università degli Studi di Pavia) Diffuse interface models of tumor growth July 4–6,2018 49 / 50



The Schauder argument

Given φ ∈ L2(Q), consider the mapping

M1 : L2(Q)→ L∞(0,T ;H1) ∩ L2(0,T ;H2) ∩ H1(0,T ; L2) ∩ L∞(Q),

φ 7→ σ,

where σ solves

∂tσ = ∆σ − Ch(φ)σ.

Then define the mapping

M2 : L2(Q)→ L∞(0,T ;H2) ∩ L2(0,T ;H3) ∩ H1(0,T ; L2),

φ 7→ ϕ,

where ϕ solves

∂tϕ = ∆µ− h(ϕ)(PM1(φ)−A− αu), µ = Ψ′(ϕ)−∆ϕ.

The solution to the fixed point problem

z = M2(z)

yields a triplet (ϕ, µ, σ) which solves the state equations.
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