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Setting

Tumours grown in vitro often exhibit “layered” structures:

Figure: Zhang et al. Integr. Biol., 2012, 4, 1072–1080. Scale bar 100µm = 0:1mm

A continuum thermodynamically consistent model is introduced with the ansatz:

sharp interfaces are replaced by narrow transition layers of tickness ε arising due to

adhesive forces among the cell species: a diffuse interface separates tumor and

healthy cell regions

proliferating tumor cells surrounded by (healthy) host cells, and a nutrient (e.g.

glucose)
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Advantages of diffuse interfaces in tumor growth models

Sharp interfaces =⇒ narrow transition layers - differential adhesive forces among

cell-species

The main advantages of the diffuse interface formulation are:

it eliminates the need to enforce complicated boundary conditions across the

tumor/host tissue and other species/species interfaces;

it eliminates the need to explicitly track the position of interfaces, as is required in

the sharp interface framework;

sharp interface models are no longer valid when the tumor undergoes metastasis =⇒
the interface has a topological change
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Optimization over the treatment time: H. Garcke, K.F. Lam, E. Rocca,

Applied Mathematics & Optimization, 2017

Common treatment for tumours are

Chemotheraphy

Radiation therapy

Surgery

For treatment involving drugs, the patient is given several doses of drugs over a few days,

followed by a rest period of 3 - 4 weeks, and the cycle is repeated. Goal is to shrink the

tumor into a more manageable size for which surgery can be applied.

Unfortunately, cytotoxic drugs also harm the healthy host tissues, and can accumulate in

the body. Furthermore, drug clearance may also cause damage to various vital organs

(e.g. kidneys and liver).

Worst case scenario: Cytotoxins may have cancer-causing effects, and tumour cells can

mutate to become resistant to the drug.

Thus, aside from optimising the drug distribution, we should also consider optimising the

treatment time.
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Cahn–Hilliard + nutrient models with source terms

The simplest phase field model is a Cahn–Hilliard system with source terms for ϕ: the

difference in volume fractions (ϕ = 1: tumor phase, ϕ = −1: healthy tissue phase):

∂tϕ = ∆µ+M,

µ = Ψ′(ϕ)− ε2∆ϕ.

The source term M accounts for biological mechanisms related to proliferation and

death. Introduce a Reaction-diffusion equation for the nutrient proportion σ:

∂tσ = ∆σ − S,

where S models interaction with the tumour cells.

Linear kinetics [Chen, Wise, Shenoy, Lowengrub (2014)]

M = h(ϕ)(Pσ −A), S = h(ϕ)Cσ

Here h(s) is an interpolation function such that h(−1) = 0 and h(1) = 1, and
I h(ϕ)Pσ - proliferation of tumor cells proportional to nutrient concentration,
I h(ϕ)A - apoptosis of tumor cells,
I h(ϕ)Cσ - consumption of nutrient by the tumor cells

A regular double-well potential Ψ, e.g., Ψ(s) = 1/4(1− s2)2 (F in Colli’s slides)
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State equations

We consider the Cahn–Hilliard + nutrient model with linear kinetics and Neumann

boundary conditions:

∂tϕ = ∆µ+ h(ϕ)(Pσ −A− αu),

µ = Ψ′(ϕ)−∆ϕ,

∂tσ = ∆σ − Ch(ϕ)σ.

Here h(s) is an interpolation function such that h(−1) = 0 and h(1) = 1, and

h(ϕ)Pσ - proliferation of tumour cells proportional to nutrient concentration,

h(ϕ)A - apoptosis of tumour cells,

h(ϕ)Cσ - consumption of nutrient by the tumour cells,

h(ϕ)αu - elimination of tumour cells by cytotoxic drugs at a constant rate α,

u acts as a control here. In applications u : [0,T ]→ [0, 1] is spatially constant,

where u = 1 represents full dosage, u = 0 represents no dosage.
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The optimal control problem

The optimal control problem is

min
(ϕ,u,τ)

J(ϕ, u, τ)

subject to

τ ∈ (0,T ): unknown treatment time - to be optimized

u ∈ Uad = {f ∈ L∞(Ω× (0,T )) : 0 ≤ f ≤ 1}: concentration of cytotoxic drugs - to

be optimised

and where

ϕ is the first component of the solution (ϕ, µ, σ) = S(u) of the previous state

system corresponding to u

J is a suitable cost functional.
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Objective functional

For positive βT , βu and non-negative βQ , βΩ, βS , we consider

J(ϕ, u, τ) :=

∫ τ

0

∫
Ω

βQ
2
|ϕ− ϕQ |2 +

∫
Ω

βΩ

2
|ϕ(τ)− ϕΩ|2

+

∫
Ω

βS
2

(1 + ϕ(τ)) +

∫ τ

0

∫
Ω

βu
2
|u|2 + βT τ

the term βT τ penalizes long treatment times

ϕQ is a desired evolution of the tumor over the treatment

ϕΩ is a desired final state of the tumor (stable equilibrium of the system)

the term 1+ϕ(τ)
2

measures the size of the tumor at the end of the treatment

Expectation: An optimal control will be a pair (u∗, τ∗) and we will obtain two optimality

conditions.
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Regarding the terms appearing in the cost functional

J(ϕ, u, τ) :=

∫ τ

0

∫
Ω

βQ
2
|ϕ− ϕQ |2 +

∫
Ω

βΩ

2
|ϕ(τ)− ϕΩ|2

+

∫
Ω

βS
2

(1 + ϕ(τ)) +

∫ τ

0

∫
Ω

βu
2
|u|2 + βT τ

A large value of |ϕ− ϕQ |2 would mean that the patient suffers from the growth of

the tumor, and a large value of |u|2 would mean that the patient suffers from high

toxicity of the drug;

The function ϕΩ can be a stable configuration of the system, so that the tumor does

not grow again once the treatment is completed or a configuration which is suitable

for surgery;

The variable τ can be regarded as the treatment time of one cycle, i.e., the amount

of time the drug is applied to the patient before the period of rest, or the treatment

time before surgery;

It is possible to replace βT τ by a more general function f (τ) where f : R+ → R+ is

continuously differentiable and increasing.
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Relaxed objective functional

However, we will not study the functional

J(ϕ, u, τ) :=

∫ τ

0

∫
Ω

βQ
2
|ϕ− ϕQ |2 +

∫
Ω

βΩ

2
|ϕ(τ)− ϕΩ|2

+

∫
Ω

βS
2

(1 + ϕ(τ)) +

∫ τ

0

∫
Ω

βu
2
|u|2 + βT τ

but a relaxed version - for mathematical reasons (explained later on)!

Let r > 0 be fixed and let T ∈ (0,∞) denote a fixed maximal time in which the patient

is allowed to undergo a treatment, we define

Jr (ϕ, u, τ) :=

∫ τ

0

∫
Ω

βQ
2
|ϕ− ϕQ |2 +

1

r

∫ τ

τ−r

∫
Ω

βΩ

2
|ϕ− ϕΩ|2

+
1

r

∫ τ

τ−r

∫
Ω

βS
2

(1 + ϕ) +

∫ T

0

∫
Ω

βu
2
|u|2 + βT τ
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+
1

r

∫ τ

τ−r

∫
Ω

βS
2

(1 + ϕ) +

∫ T

0

∫
Ω

βu
2
|u|2 + βT τ.

The optimal control problem is

min
(ϕ,u,τ)

Jr (ϕ, u, τ)

subject to τ ∈ (0,T ), u ∈ Uad = {f ∈ L∞(Ω× (0,T )) : 0 ≤ f ≤ 1}, and

∂tϕ = ∆µ+ h(ϕ)(Pσ −A− αu) in Ω× (0,T ) = Q,

µ = Ψ′(ϕ)−∆ϕ in Q,

∂tσ = ∆σ − Ch(ϕ)σ in Q,

0 = ∂νϕ = ∂νσ = ∂νµ on ∂Ω× (0,T ),

ϕ(0) = ϕ0, σ(0) = σ0 in Ω.
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Well-posedness of state equations

Theorem

Let ϕ0 ∈ H3, σ0 ∈ H1 with 0 ≤ σ0 ≤ 1, h ∈ C 0,1(R) ∩ L∞(R) non-negative, and Ψ is a

quartic potential, then for every u ∈ Uad there exists a unique triplet

ϕ ∈ L∞(0,T ;H2) ∩ L2(0,T ;H3) ∩ H1(0,T ; L2) ∩ C 0(Q),

µ ∈ L2(0,T ;H2) ∩ L∞(0,T ; L2),

σ ∈ L∞(0,T ;H1) ∩ L2(0,T ;H2) ∩ H1(0,T ; L2), 0 ≤ σ ≤ 1 a.e. in Q

satisfying the state equations.

Key points:

Boundedness of σ comes from a weak comparison principle applied to

∂tσ = ∆σ − Ch(ϕ)σ.

Proof utilises a Schauder fixed point argument.
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First order optimality conditions

Introducing the adjoint system

−∂tp = ∆q + Ψ′′(ϕ∗)q − Ch′(ϕ∗)σ∗r + h′(ϕ∗)(Pσ∗ −A− αu∗)p

+ βQ(ϕ∗ − ϕQ) +
1

2r
χ(τ∗−r,τ∗)(t)(2βΩ(ϕ∗ − ϕΩ) + βS),

q = ∆p,

−∂tr = ∆r − Ch(ϕ∗)r + Ph(ϕ∗)p

with Neumann boundary conditions and final time condition r(τ∗) = p(τ∗) = 0. We have

Theorem

The optimal control (u∗, τ∗) satisfy∫ T

0

∫
Ω

βuu∗(v − u∗)−
∫ τ∗

0

∫
Ω

h(ϕ∗)αp(v − u∗) ≥ 0 ∀v ∈ Uad,

and

βT +
βQ
2
‖(ϕ∗ − ϕQ)(τ∗)‖2

L2 +
βS
2r

∫
Ω

ϕ∗(τ∗)− ϕ(τ∗ − r) dx

+
βΩ

2r

(
‖(ϕ∗ − ϕΩ)(τ∗)‖2

L2 − ‖(ϕ− ϕΩ)(τ∗ − r)‖2
L2

)
= 0.
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Summary

1 We introduced an optimal control problem for optimising treatment time of a cancer

therapy involving cytotoxic drugs:

∂tϕ = ∆µ+ h(ϕ)(Pσ −A− αu), µ = Ψ′(ϕ)−∆ϕ,

∂tσ = ∆σ − Ch(ϕ)σ.

2 The (relaxed) objective functional penalises long treatment times, and contains

various tracking-type objectives:

Jr :=

∫ τ

0

∫
Ω

βQ
2
|ϕ− ϕQ |2 +

1

2r

∫ τ

τ−r

∫
Ω

(
βΩ |ϕ− ϕΩ|2 + βS(1 + ϕ)

)
+

∫
Q

βu
2
|u|2 + βT τ .

3 Existence of an pair (u∗, τ∗) for the optimal drug distribution and treatment time is

shown.

4 Two first order optimality conditions are derived.
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Open related problems

1. To deal with the original functional:

J(ϕ, u, τ) =

∫ τ

0

∫
Ω

βQ

2
|ϕ− ϕQ |2 +

∫
Ω

βΩ

2
|ϕ(τ)− ϕΩ|2 +

∫ τ

0

∫
Ω

βu

2
|u|2 + βT τ.

Then, the optimality condition for τ∗ is

0 = DτJ |(u∗,τ∗) =

∫
Ω

βQ

2
|(ϕ∗ − ϕQ)(τ∗)|2 +

βΩ

2
(ϕ∗(τ∗)− ϕΩ)∂tϕ∗(τ∗) +

βu

2
|u∗(τ∗)|2 dx

+ βT .

Issues: For the above expression to be well-defined and to apply the lemma, we need

∂ttϕ∗ ∈ L2(0,T ; L2), u∗ ∈ H1(0,T ; L2).

If we define Uad = {u ∈ H1(0,T ; L2) : 0 ≤ u ≤ 1, ‖∂tu‖L2(Q) ≤ K} for fixed K > 0, and

impose ϕ0 ∈ H5, σ0 ∈ H3, then it is possible to obtain ϕ ∈ H2(0,T ; L2) ∩W 1,∞(0,T ;H1).

However, to require the a-priori boundedness of ∂tu is difficult to verify in applications.

2. To prove the convergence to stationary solutions by means of suitable Simon-Lojasiewicz

techniques: the function ϕΩ is a stable configuration of the system, so that the tumor does

not grow again once the treatment is completed (joint project with C. Cavaterra and H.

Wu).
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Comparison with some other models

In the phase field model we introduced

∂tϕ = ∆µ+M

µ =
Ψ′(ϕ)

ε
− ε∆ϕ

∂tσ = ∆σ − S + u

we could choose different form of M and S:

(cf. the talk by P. Colli) Linear phenomenological laws for chemical reactions

[Hawkins–Daarud, Prudhomme, van der Zee, Oden], [Frigeri, Grasselli, E.R.], [Colli, Gilardi,

E.R., Sprekels, Nonlinearity (2017): optimal control without time dependence and with the

control u in the nutrient equation]:

M = S = P(ϕ)(σ − µ)

Simplified law for chemical reaction leading to a Gradient-Flow structure [E.R., R.

Scala, A rigorous sharp interface limit of a diffuse interface model related to tumor growth,

J. Nonlinear Sci. (2017)]: let ε↘ 0 when

M = S = 2σ + ϕ− µ
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A multispecies model with velocities (cf. the talk by M. Grasselli)

Typical structure of tumors grown in vitro:

Figure: Zhang et al. Integr. Biol., 2012, 4, 1072–1080. Scale bar 100µm = 0:1mm

A continuum thermodynamically consistent model is introduced with the ansatz:

sharp interfaces are replaced by narrow transition layers arising due to adhesive forces

among the cell species: a diffuse interface separates tumor and healthy cell regions

proliferating and dead tumor cells and healthy cells are present, along with a

nutrient (e.g. glucose or oxigene)

tumor cells are regarded as inertia-less fluids: include the velocity - satisfying a

Darcy type law with Korteveg term
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M. Dai, E. Feireisl, E.R., G. Schimperna, M. Schonbek, Nonlinearity, 2017

We study here a model proposed in [Y. Chen, S.M. Wise, V.B. Shenoy, J.S. Lowengrub,

Int. J. Numer. Methods Biomed. Eng. (2014)]:

φi , i = 1, 2, 3: the volume fractions of the cells:

I φ1 = P: proliferating tumor cell fraction

I φ2 = φD : dead tumor cell fraction

I φ3 = φH : healthy cell fraction

The variables above are naturally constrained by the relation
∑3

i=1 φi = φH + Φ = 1

Φ = φD + P: the volume fraction of the tumor cells split into the sum of the dead

tumor cells and of the proliferating cells

n: the nutrient concentration (it was σ before)

u:=ui , i = 1, 2, 3: the tissue velocity field. We treat the tumor and host cells as

inertial-less fluids and assume that the cells are tightly packed and they march

together

Π: the cell-to-cell pressure
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DFRSS: The PDEs

In summary, let Ω ⊂ R3 be a bounded domain and T > 0 the final time of the process.

Then, in Ω× (0,T ), we have the following system of equations:

(Cahn− Hilliard) ∂tΦ + divx(uΦ)− divx(∇xµ) = ΦST , µ = −∆Φ + F ′(Φ)

(Darcy) u = −∇xΠ + µ∇xΦ, divxu = ST

(Transport) ∂tP + divx(uP) = Φ(ST − SD)

(Reac− Diff) −∆n + nP = Tc(n,Φ)

where

(Source− Tumor) ST (n,P,Φ) = nP − λ3(Φ− P)

(Source− Dead) SD(n,P,Φ) = (λ1 + λ2H(nN − n))P − λ3(Φ− P)

(Nutrient− Capill) Tc(n,Φ) = [ν1(1− Q(Φ)) + ν2Q(Φ)] (nc − n)

coupled with the boundary conditions on ∂Ω× (0,T ): µ = Π = 0, n = 1, ∇xΦ · ν = 0,

Pu · ν ≥ 0 and with the initial conditions Φ(0) = Φ0, P(0) = P0 in Ω

Note: P = 0 in the inflow part of the boundary u · ν < 0.
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DFRSS: Assumptions on the potential F

We suppose that the potential F supports the natural bounds

0 ≤ Φ(t, x) ≤ 1

To this end, we take F = C + B, where B ∈ C 2(R) and

C : R 7→ [0,∞] convex, lower-semi continuous, C(Φ) =∞ for Φ < 0 or Φ > 1

Moreover, we ask that

C ∈ C 1(0, 1), lim
Φ→0+

C′(Φ) = lim
Φ→1−

C′(Φ) =∞

A typical example of such C is the logarithmic potential

C(Φ) =


Φ log(Φ) + (1− Φ) log(1− Φ) for Φ ∈ [0, 1],

∞ otherwise
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DFRSS: Assumptions on the other data

Regarding the functions the constants in the definitions of ST and SD

(Source− Tumor) ST (n,P,Φ) = nP − λ3(Φ− P)

(Source− Dead) SD(n,P,Φ) = (λ1 + λ2H(nN − n))P − λ3(Φ− P)

(Nutrient− Capill) Tc(n,Φ) = [ν1(1− Q(Φ)) + ν2Q(Φ)] (nc − n)

we assume Q,H ∈ C 1(R) and

λi ≥ 0 for i = 1, 2, 3, H ≥ 0

[ν1(1− Q(Φ)) + ν2Q(Φ)] ≥ 0, 0 < nc < 1

Finally, we suppose Ω be a bounded domain with smooth boundary in R3 and impose the

following conditions on the initial data:

Φ0 ∈ H1(Ω), 0 ≤ Φ0 ≤ 1, C(Φ0) ∈ L1(Ω)

P0 ∈ L2(Ω), 0 ≤ P0 ≤ 1 a.e. in Ω
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DFRSS: Weak formulation
(Φ, u,P, n) is a weak solution to the problem in (0,T )× Ω if

(i) these functions belong to the regularity class:

Φ ∈ C0([0,T ];H1(Ω)) ∩ L2(0,T ;W 2,6(Ω))

C(Φ) ∈ L∞(0,T ; L1(Ω)), hence, in particular, 0 ≤ Φ ≤ 1 a.a. in (0,T )× Ω

u ∈ L2((0,T )× Ω;R3), div u ∈ L∞((0,T )× Ω)

Π ∈ L2(0,T ;W 1,2
0 (Ω)), µ ∈ L2(0,T ;W 1,2

0 (Ω))

P ∈ L∞((0,T )× Ω), 0 ≤ P ≤ 1 a.a. in (0,T )× Ω

n ∈ L2(0,T ;W 2,2(Ω)), 0 ≤ n ≤ 1 a.a. in (0,T )× Ω

(ii) the following integral relations hold:∫ T

0

∫
Ω

[Φ∂tϕ+ Φu · ∇xϕ+ µ∆ϕ+ ΦSTϕ] dx dt = −
∫

Ω
Φ0ϕ(0, ·) dx

for any ϕ ∈ C∞c ([0,T )× Ω), where

µ = −∆Φ + F ′(Φ), u = −∇xΠ + µ∇xΦ

divxu = ST a.a. in (0,T )× Ω; ∇xΦ · ν|∂Ω = 0∫ T

0

∫
Ω

[P∂tϕ+ Pu · ∇xϕ+ Φ(ST − SD)ϕ] dx dt ≥ −
∫

Ω
P0ϕ(0, ·) dx

for any ϕ ∈ C∞c ([0,T )× Ω), ϕ|∂Ω ≥ 0

−∆n + nP = Tc (n,Φ) a.a. in (0,T )× Ω; n|∂Ω = 1
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DFRSS: Existence of weak solutions

The main result of [M. Dai, E. Feireisl, E.R., G. Schimperna, M. Schonbek, Analysis of a

diffuse interface model of multispecies tumor growth, Nonlinearity, 2017]

Theorem

Let T > 0 be given. Under the previous assumptions the variational formulation of our

initial-boundary value problem admits at least one solution on the time interval [0,T ]
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Comparison with some other models including velocities

Numerical simulations of diffuse-interface models for tumor growth have been

carried out in several papers (cf., e.g., [Cristini, Lowengrub, 2010] and more recently

[Dedè, Garcke, Lam, 2017]).

However, a rigorous mathematical analysis of the resulting PDEs is still in its

beginning and only for one species models with regular potentials (cf. [Garcke, Lam,

Sitka, Styles, 2016]) and only very recently on multiphase models (cf. [Garcke, Lam,

Nuernberg, Sitka, 2017])

To the best of our knowledge, the related mathematical papers study simplified
models:

I the so-called Cahn-Hilliard-Hele-Shaw system in which the nutrient n, the source of

tumor ST and the fraction SD of the dead cells are neglected, cf. [Lowengrub, Titi,

Zhao, 2013], [Wang, Wu, 2012], [Wang, Zhang, Ann., 2013] with regular potential and

[Giorgini, Grasselli, Wu, 2017] with singular potential: well-posedness, separation

property, long-time behavior or

I [Jang, Wu, Zheng, 2015] where ST is not 0 but it’s not depending on the other

variables but just on time and space
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Perspectives and Open problems - multispecies

An ongoing project with S. Frigeri, K.-F. Lam, G. Schimperna: To study the multispecies

model introduced in [CWSL] including different mobilities and non-Dirichlet b.c.s on the

chemical potential =⇒ the main problems are:

we have two different Cahn-Hilliard equations with different mobilities Mi :

∂tϕi = Mi∆µi − div(ϕiu) + Si and if we do not choose the Dirichlet b.c.s on µ then

we need to estimate the means of µi (containing a multiwell logarithmic type

potential)

we need the mean values of ϕi (the proliferating and dead cells phases) in the two

Cahn-Hilliard equations to be away from the potential bareers =⇒ ad hoc estimate

based on ODEs technique

the choice of the right boundary conditions for u and µi : apparently

Mi∇µi · ν + φiu · ν = 0 on ∂Ω works!
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Many thanks to all of you for the attention!

http://matematica.unipv.it/rocca/
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