
Diffuse and sharp interfaces in Biology and Mechanics

E. Rocca
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Plan of the Lecture

Diffuse interface models in Biology: tumor growth models

Sharp interfaces =⇒ narrow transition layers - differential adhesive forces among cell-species

The main advantages of the diffuse interface formulation are:

I it eliminates the need to enforce complicated boundary conditions across the tumor/host tissue and

other species/species interfaces;

I it eliminates the need to explicitly track the position of interfaces, as is required in the sharp

interface framework

Part 1. Multispecies model: Existence of solutions: [DFRSS] M. Dai, E. Feireisl, E.R., G. Schimperna, M.

Schonbek, preprint arXiv:1507.07683 (2015) =⇒ Existence of weak solutions for the PDE system

corresponding to the recent model by [CWSL: Y. Chen, S.M. Wise, V.B Shenoy, J.S. Lowengrub,

Int. J. Numer. Methods Biomed. Eng., 2014] coupled with suitable initial and boundary conditions

Part 2. Simplified One Species model: Sharp interface limit: [RS] E.R., R. Scala, preprint arXiv:1606.04663

(2016) =⇒ The sharp interface limit for a simplified model of Gradient Flow type

Possible relations with different diffuse interface models =⇒ Liquid Crystals

Ongoing projects and open problems
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Part 1 - Diffuse Interfaces in Biology - Multispecies Model
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DFRSS: The model

Typical structure of tumors grown in vitro:

Figure: Zhang et al. Integr. Biol., 2012, 4, 1072–1080. Scale bar 100µm = 0:1mm

A continuum thermodynamically consistent model is introduced with the ansatz:

sharp interfaces are replaced by narrow transition layers arising due to adhesive forces among

the cell species: a diffuse interface separates tumor and healthy cell regions

proliferating and dead tumor cells and healthy cells are present, along with a nutrient (e.g.

glucose or oxigene)
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DFRSS: The state variables

φi , i = 1, 2, 3: the volume fractions of the cells:

I φ1 = P: proliferating tumor cell fraction

I φ2 = φD : dead tumor cell fraction

I φ3 = φH : healthy cell fraction

The variables above are naturally constrained by the relation
∑3

i=1 φi = φH + Φ = 1

Φ = φD + P: the volume fraction of the tumor cells split into the sum of the dead tumor

cells and of the proliferating cells

n: the nutrient concentration

u:=ui , i = 1, 2, 3: the tissue velocity field. We treat the tumor and host cells as inertial-less

fluids and assume that the cells are tightly packed and they march together

Π: the cell-to-cell pressure
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DFRSS: Mass conservation and choice of the energy

The volume fractions obey the mass conservation (advection-reaction-diffusion) equations:

∂tφi + divx (uφi ) = −divxJi + ΦSi

We have assumed that the densities of the components are matched

The total energy adhesion has the form

E =

∫
Ω

(
F(Φ) +

1

2
|∇xΦ|2

)
dx

where F is a logarithmic type mixing potential

The fluxes JΦ and JH that account for mechanical interactions among the species are as follows:

JΦ = J1 + J2 := −∇x

(
δE

δΦ

)
= −∇x

(
F ′(Φ)−∆Φ

)
:= −∇xµ

JH = J3 := −∇x

(
δE

δφH

)
= ∇x

(
δE

δΦ

)
where we have used in the last equality the fact that φH = 1− Φ and where µ is the chemical

potential of the system
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DFRSS: The convective Cahn-Hilliard equation for the tumor cells fraction

For the source of mass in the host tissue, accounting for gains due to proliferation of cells and

loss due to cell death, we have the following relations:

ST = SD + SP := S2 + S1

ΦSH := ΦS3 := φHST = (1− Φ)ST

Assuming the mobility of the system to be constant, then the tumor volume fraction Φ and the

host tissue volume fraction φH obey the following mass conservation equations

∂tΦ + divx (uΦ) = −divxJΦ + Φ(S2 + S1)

∂tφH + divx (uφH) = −divxJH + ΦS3

Using now the fact that ST = S1 + S2 and recalling that φH + Φ = 1, JΦ = −∇xµ, we can forget

of the equation for φH and we recover the equation for Φ in the form

∂tΦ + divx (uΦ)− divx (∇xµ) = ΦST , µ = F ′(Φ)−∆Φ

Suppose the net source of tumor cells ST to be given by

ST = ST (n,P,Φ) = λMnP − λL(Φ− P)

where λM ≥ 0 is the mitotic rate and λL ≥ 0 is the lysing rate of dead cells
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DFRSS: The transport equation for the proliferating cells fraction

The volume fraction of dead tumor cells φD would satisfy an equation similar to the one of Φ.

However, we prefer to couple the equation for Φ with the one for P = Φ− φD which then reads

∂tP + divx (uP) = Φ(ST − SD)

where the source of dead cells is taken as

SD = SD(n,P,Φ) = (λA + λNH(nN − n))P − λL(Φ− P)

Here

λAP describes the death of cells due to apoptosis with rate λA ≥ 0 and the term

λNH(nN − n)P models the death of cells due to necrosis with rate λN ≥ 0

for mathematical reasons, we choose H to be a regular and nonnegative function of n

the term nN represents the necrotic limit, at which the tumor tissue dies due to lack of

nutrients
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DFRSS: The Darcy law for the velocity field

The tumor velocity field u (given by the mass-averaged velocity of all the components) is

assumed to fulfill Darcy’s law:

u = −∇xΠ + µ∇xΦ

where, for simplicity, the motility has been taken constant and equal to 1

Summing up the mass balance equations

∂tΦ + divx (uΦ) = −divxJΦ + ΦST

∂tφH + divx (uφH) = −divxJH + (1− Φ)ST

and using Φ + φH = 1 and JH = −JΦ, we end up with the following constraint for the velocity

field:

divxu = ST = λMnP − λL(Φ− P)
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DFRSS: The quasistatic reaction diffusion equation for the nutrient

Since the time scale for nutrient diffusion is much faster than the rate of cell proliferation, the

nutrient is assumed to evolve quasi-statically:

−∆n + νUnP = Tc (n,Φ)

where the nutrient capillarity term Tc is

Tc (n,Φ) = [ν1(1− Q(Φ)) + ν2Q(Φ)] (nc − n)

Here

νU represents the nutrient uptake rate by the viable tumor cells

ν1, ν2 denote the nutrient transfer rates for preexisting vascularization in the tumor and host

domains

nc is the nutrient level of capillaries

the function Q(Φ) is regular and satisfies ν1(1− Q(Φ)) + ν2Q(Φ) ≥ 0
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ν1, ν2 denote the nutrient transfer rates for preexisting vascularization in the tumor and host

domains

nc is the nutrient level of capillaries

the function Q(Φ) is regular and satisfies ν1(1− Q(Φ)) + ν2Q(Φ) ≥ 0
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DFRSS: The boundary conditions

We chose the b.c.s of [CWSL: Y. Chen, S.M. Wise, V.B Shenoy, J.S. Lowengrub, Int. J. Numer.

Methods Biomed. Eng., 2014] for µ, Π, n, and Φ (ν is the outer normal unit vector to ∂Ω):

µ = Π = 0, n = 1, ∇xΦ · ν = 0

On the other hand, under the homogeneous Neumann boundary conditions suggested in

[CWSL] for P, we could not show that the system had weak solutions. For this reason, we

chose the boundary conditions:

Pu · ν ≥ 0

They are natural in connection with the transport equation for P

∂tP + divx (uP) = Φ(ST − SD)

The proliferation function at the boundary has to be nonnegative on the set where the

velocity u satisfies u · ν > 0. By maximum principle, then P ≥ 0 in Ω

As P ≥ 0, the boundary condition Pu · ν ≥ 0 means P = 0 whenever u · ν < 0 i.e. on the

part of the inflow part of the boundary
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DFRSS: The PDEs

In summary, let Ω ⊂ R3 be a bounded domain and T > 0 the final time of the process. For

simplicity, choose λM = νU = 1, λA = λ1, λN = λ2, λL = λ3.

Then, in Ω× (0,T ), we have the following system of equations:

(Cahn−Hilliard) ∂tΦ + divx (uΦ)− divx (∇xµ) = ΦST , µ = −∆Φ + F ′(Φ)

(Darcy) u = −∇xΠ + µ∇xΦ, divxu = ST

(Transport) ∂tP + divx (uP) = Φ(ST − SD)

(Reac−Diff) −∆n + nP = Tc (n,Φ)

where

(Source− Tumor) ST (n,P,Φ) = nP − λ3(Φ− P)

(Source−Dead) SD(n,P,Φ) = (λ1 + λ2H(nN − n))P − λ3(Φ− P)

(Nutrient− Capill) Tc (n,Φ) = [ν1(1− Q(Φ)) + ν2Q(Φ)] (nc − n)

coupled with the boundary conditions on ∂Ω× (0,T ): µ = Π = 0, n = 1, ∇xΦ · ν = 0,

Pu · ν ≥ 0 and with the initial conditions Φ(0) = Φ0, P(0) = P0 in Ω
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DFRSS: Assumptions on the potential F

We suppose that the potential F supports the natural bounds

0 ≤ Φ(t, x) ≤ 1

To this end, we take F = C + B, where B ∈ C2(R) and

C : R 7→ [0,∞] convex, lower-semi continuous, C(Φ) =∞ for Φ < 0 or Φ > 1

Moreover, we ask that

C ∈ C1(0, 1), lim
Φ→0+

C′(Φ) = lim
Φ→1−

C′(Φ) =∞

A typical example of such C is the logarithmic potential

C(Φ) =


Φ log(Φ) + (1− Φ) log(1− Φ) for Φ ∈ [0, 1],

∞ otherwise
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DFRSS: Assumptions on the other data

Regarding the functions the constants in the definitions of ST and SD , we assume Q,H ∈ C1(R)

and

λi ≥ 0 for i = 1, 2, 3, H ≥ 0

[ν1(1− Q(Φ)) + ν2Q(Φ)] ≥ 0, 0 < nc < 1

Finally, we suppose Ω be a bounded domain with smooth boundary in R3 and impose the

following conditions on the initial data:

Φ0 ∈ H1(Ω), 0 ≤ Φ0 ≤ 1, C(Φ0) ∈ L1(Ω)

P0 ∈ L2(Ω), 0 ≤ P0 ≤ 1 a.e. in Ω
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DFRSS: Weak formulation
(Φ, u,P, n) is a weak solution to the problem in (0,T )× Ω if

(i) these functions belong to the regularity class:

Φ ∈ C 0([0,T ]; H1(Ω)) ∩ L2(0,T ; W 2,6(Ω))

C(Φ) ∈ L∞(0,T ; L1(Ω)), hence, in particular, 0 ≤ Φ ≤ 1 a.a. in (0,T )× Ω

u ∈ L2((0,T )× Ω; R3), div u ∈ L∞((0,T )× Ω)

Π ∈ L2(0,T ; W 1,2
0 (Ω)), µ ∈ L2(0,T ; W 1,2

0 (Ω))

P ∈ L∞((0,T )× Ω), 0 ≤ P ≤ 1 a.a. in (0,T )× Ω

n ∈ L2(0,T ; W 2,2(Ω)), 0 ≤ n ≤ 1 a.a. in (0,T )× Ω

(ii) the following integral relations hold:∫ T

0

∫
Ω

[Φ∂tϕ + Φu · ∇xϕ + µ∆ϕ + ΦSTϕ] dx dt = −
∫

Ω

Φ0ϕ(0, ·) dx

for any ϕ ∈ C∞c ([0,T )× Ω), where

µ = −∆Φ + F ′(Φ), u = −∇xΠ + µ∇xΦ

divxu = ST a.a. in (0,T )× Ω; ∇xΦ · ν|∂Ω = 0∫ T

0

∫
Ω

[P∂tϕ + Pu · ∇xϕ + Φ(ST − SD )ϕ] dx dt ≥ −
∫

Ω

P0ϕ(0, ·) dx

for any ϕ ∈ C∞c ([0,T )× Ω), ϕ|∂Ω ≥ 0

−∆n + nP = Tc (n,Φ) a.a. in (0,T )× Ω; n|∂Ω = 1
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DFRSS: Existence of weak solutions

Now, we are able to state the main result of [M. Dai, E. Feireisl, E.R., G. Schimperna, M.

Schonbek, Analysis of a diffuse interface model of multispecies tumor growth, preprint

arXiv:1507.07683 (2015)]

Theorem

Let T > 0 be given. Under the previous assumptions the variational formulation of our

initial-boundary value problem admits at least one solution on the time interval [0,T ]
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DFRSS: Idea of the proof

Approximation: regularize the equations

Perform uniform a priori estimates

Use compactness arguments in order to pass to the limit
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Comparison with some other models including velocities

Numerical simulations of diffuse-interface models for tumor growth have been carried out in

several papers (cf., e.g., [Cristini, Lowengrub, Cambridge Univ. Press, 2010] and more recently

[Garcke, Lam, Sitka, Styles, arXiv:1508.00437, 2015]). However, a rigorous mathematical analysis

of the resulting PDEs is still in its beginning and only for one species models with regular

potentials (cf. [Garcke, Lam, J. Appl. Math and arXiv:1604.00287, 2016])

To the best of our knowledge, the first related mathematical papers study simplified models:

I the so-called Cahn-Hilliard-Hele-Shaw system ([J. Lowengrub, E. Titi, K. Zhao, European J. Appl.

Math., 2013], [X. Wang, H. Wu, Asymptot. Anal., 2012], [X. Wang, Z. Zhang, Ann. Inst. H.

Poincaré Anal. Nonlinéaire, 2013]) in which the nutrient n, the source of tumor ST and the fraction

SD of the dead cells are neglected or

I [J. Jang, H. Wu, S. Zheng, J. Differential Equations, 2015] where ST is not 0 but it’s not depending

on the other variables but just on time and space
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Perspectives and Open problems

An ongoing project with S. Frigeri, K.-F. Lam, G. Schimperna: To study the multispecies
model introduced in [CWSL] including different mobilities and non-Dirichlet b.c.s on the
chemical potential =⇒ the main problems are:

I we have two different Cahn-Hilliard equations with different mobilities Mi :

∂tϕi = Mi∆µi − div(ϕiu) + Si and if we do not choose the Dirichlet b.c.s on µ then we need to

estimate the means of µi (containing a multiwell logarithmic type potential)

I we need the mean values of ϕi (the proliferating and dead cells phases) in the two Cahn-Hilliard

equations to be away from the potential bareers =⇒ ad hoc estimate based on ODEs technique

I the choice of the right boundary conditions for u and µi : apparently Mi∇µi · ν + φiu · ν = 0 on ∂Ω

works!

To study the sharp interface limit as ε↘ 0 in the coupled Cahn-Hilliard-Darcy system where

∂tΦ + divx (uΦ)− divx (∇xµ) = 0, µ = −ε2∆Φ + F ′(Φ)

I Very partial result in [DFRSS] assuming strict convexity of F and ST = SD = 0

I An ongoing project with S. Melchionna: Varifold solutions at the limit as ε↘ 0 in case we just

consider the Cahn-Hilliard-Darcy system coupling the Φ equation to the u equation (neglecting the

nutrient)
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Part 2 - From Diffuse to Sharp Interfaces in a simplified tumor model
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One Species Tumor Model

Figure: Zhang et al. Integr. Biol., 2012, 4, 1072–1080. Scale bar 100µm = 0:1mm

In [RS] E. Rocca, R. Scala: A rigorous sharp interface limit of a diffuse interface model related to tumor

growth, preprint arXiv:1606.04663 (2016) we study the case where there are only

proliferating tumor cells

surrounded by (healthy) host cells

and a nutrient (e.g. glucose) is present

and we neglect velocities
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RS: The Cahn-Hilliard-Reaction-Diffusion system
The coupled Cahn-Hilliard-Reaction-Diffusion system with sources is

ϕt −∆µ = R, µ =
1

ε
Ψ′(ϕ)− ε∆ϕ

σt −∆σ = −R, R = 2σ + ϕ− µ

The tumorous phase variable ϕ:

ϕ(x) ' 1⇒ tumor cell at x

ϕ(x) ' −1⇒ sane cell at x

The nutrient variable σ (it was n in Part 1): the concentration of nutrient (oxygen or glucose)

The source term R: accounts for biological mechanisms related to proliferation and death.

We choose this particular form in order to have a Gradient Flow structure!

The chemical potential µ: is linked with the phase variable by the relation

µ :=
1

ε
Ψ′(ϕ)− ε∆ϕ

with ε a model parameter representing the width of the narrow transition layer and Ψ is a

double-well potential with zeros at {±1}

For ε ∼ 0 we will obtain a sharp interface model!

E. Rocca (Università degli Studi di Pavia) Diffuse and sharp interfaces in Biology and Mechanics September 14, 2016 22 / 31



RS: The Cahn-Hilliard-Reaction-Diffusion system
The coupled Cahn-Hilliard-Reaction-Diffusion system with sources is

ϕt −∆µ = R, µ =
1

ε
Ψ′(ϕ)− ε∆ϕ

σt −∆σ = −R, R = 2σ + ϕ− µ

The tumorous phase variable ϕ:

ϕ(x) ' 1⇒ tumor cell at x

ϕ(x) ' −1⇒ sane cell at x

The nutrient variable σ (it was n in Part 1): the concentration of nutrient (oxygen or glucose)

The source term R: accounts for biological mechanisms related to proliferation and death.

We choose this particular form in order to have a Gradient Flow structure!

The chemical potential µ: is linked with the phase variable by the relation

µ :=
1

ε
Ψ′(ϕ)− ε∆ϕ

with ε a model parameter representing the width of the narrow transition layer and Ψ is a

double-well potential with zeros at {±1}

For ε ∼ 0 we will obtain a sharp interface model!
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RS: The Gradient Flow system

We now want to write the system
ϕt −∆µ = 2σ + ϕ− µ

σt −∆σ = −2σ − ϕ+ µ

µ = 1
ε

Ψ′(ϕ)− ε∆ϕ

as a gradient flow.

With the change of variable ϕ = u − σ we arrive atut = ∆
(

1
ε

Ψ′(u − σ)− ε∆(u − σ)
)

+ ∆σ

σt = ∆σ + 1
ε

Ψ′(u − σ)− ε∆(u − σ)− σ − u

Then we recognize as a gradient flow of the energy

Eε(u, σ) :=
1

ε

∫
Ω

Ψ(u − σ)dx + ε

∫
Ω
|∇(u − σ)|2dx +

1

2
‖σ‖2

H1 +

∫
Ω
uσdx

with respect to the space V ′ × L2(Ω), where V ′ :=
{
ζ ∈ H1(Ω)′ : 1

|Ω| 〈ζ, 1〉 = 0
}
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Gamma convergence of gradient flows

Xε ⊂ Y Hilbert spaces, Eε C1-functionals on Xε, uε : [0,T ]→ Xε solutions of

uεt = −∇XεEε(uε) with energy balance Eε(uε(0))− Eε(uε(t)) =

∫ t

0
‖uεt ‖2

Xε
ds.

Assume that uε
S−→ u in some sense (to be specified from case to case) and

(i) (Gamma liminf) There exists a C1 functional F on a Hilbert space X ⊂ Y such that for all

sequences vε
S−→ v it holds

lim inf
ε→0

Eε(vε) ≥ F (v).

(ii) (Lower bound on the velocities) If uε(t)
S−→ u(t) for all t ∈ [0,T ] then

lim inf
ε→0

∫ s

0
‖uεt (t)‖2

Xε
dt ≥

∫ s

0
‖ut(t)‖2

Xdt.

(iii) (Lower bound on the slopes) If vε
S−→ v then lim infε→0 ‖∇XεEε(vε)‖Xε ≥ ‖∇XF (v)‖X .

(iv) The initial data are well prepared, in the sense that Eε(uε(0))→ F (u(0)).

Theorem (Sandier-Serfaty)

Then ut = −∇XF (u)
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RS: The sharp interface limit (i)

We aim to apply the Sandier-Serfaty technique introduced so far (with few modifications) to the

gradient flow of the energy

Eε(u, σ) :=
1

ε

∫
Ω

Ψ(u − σ)dx + ε

∫
Ω
|∇(u − σ)|2dx +

1

2
‖σ‖2

H1 +

∫
Ω
uσdx

First, we have by the well-known Modica-Mortola Theorem

Theorem

The functionals Eε Γ-converge in L1 × L1 to

E0(u, σ) = cΨH2(Γ) +
1

2
‖σ‖2

H1 +

∫
Ω
uσdx

when u − σ ∈ {±1} and where Γ denotes the interface between the two open sets Ω+ and Ω−

where ϕ takes values ±1, and cΨ =
∫ 1
−1 Ψ(s) ds

This implies condition (i) with F = E0 (Gamma liminf).

E. Rocca (Università degli Studi di Pavia) Diffuse and sharp interfaces in Biology and Mechanics September 14, 2016 25 / 31



RS: The sharp interface limit (i)

We aim to apply the Sandier-Serfaty technique introduced so far (with few modifications) to the

gradient flow of the energy

Eε(u, σ) :=
1

ε

∫
Ω

Ψ(u − σ)dx + ε

∫
Ω
|∇(u − σ)|2dx +

1

2
‖σ‖2

H1 +

∫
Ω
uσdx

First, we have by the well-known Modica-Mortola Theorem

Theorem

The functionals Eε Γ-converge in L1 × L1 to

E0(u, σ) = cΨH2(Γ) +
1

2
‖σ‖2

H1 +

∫
Ω
uσdx

when u − σ ∈ {±1} and where Γ denotes the interface between the two open sets Ω+ and Ω−

where ϕ takes values ±1, and cΨ =
∫ 1
−1 Ψ(s) ds

This implies condition (i) with F = E0 (Gamma liminf).
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RS: The sharp interface limit (iii)
It is easy to obtain the following a-priori estimates

‖uε‖H1(0,T ;V′)∩L∞(0,T ;L4(Ω)) ≤ M

‖σε‖H1(0,T ;L2(Ω))∩L∞(0,T ;H1(Ω)) ≤ M

‖µε‖L2(0,T ;H1(Ω)) ≤ M

‖σε‖L2(0,T ;H2(Ω)) ≤ M

‖ϕε‖L∞(0,T ;L4(Ω)) ≤ M

from which follows condition (iii) (Lower bound on the slope).

Lemma

For a subsequence, we have

ϕε ⇀ ϕ weakly in L4(Ω× [0,T ]).

Moreover, following [N.Q. Le, Calc. Var. (2008)], we have:

for all t ∈ [0,T ], ϕ(t) ∈ BV (Ω; {−1, 1}) and

ϕε(t) ⇀ ϕ(t) weakly in L4(Ω)

ϕε(t)→ ϕ(t) strongly in L1(Ω)

ϕε(t) ⇀ ϕ(t) weakly* in BV (Ω).
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E. Rocca (Università degli Studi di Pavia) Diffuse and sharp interfaces in Biology and Mechanics September 14, 2016 26 / 31



The sharp interface limit (ii)

If we assume that the limit interface Γ is smooth (at least C3), then we have:

Lemma

Let ∪t∈[0,T ]Γ(t)× {t} ⊂ Ω× [0,T ] be a C3 hypersurface with Γ(t) closed for all t ∈ [0,T ]. Let

ϕ(t) := χΩ+(t) − χΩ−(t) for all t ∈ [0,T ], and assume ϕ ∈ L∞(0,T ; L2(Ω)) ∩ H1(0,T ;V ′) and

σ ∈ L∞(0,T ;H1(Ω)) ∩ L2(0,T ;H2(Ω)) ∩ H1(0,T ; L2(Ω)). Then for all t ∈ [0,T ]

d

dt
E0(ϕ(t) + σ(t), σ(t)) =− 2cΨ〈V (t), k(t)〉L2(Γ) + 2〈V (t), σ(t)〉L2(Γ)

+ 〈σt(t),−∆σ(t) + ϕ(t) + 3σ(t)〉,

where V (t) is the normal velocity of the surface Γ(t), and k(t) is its mean curvature.

We are now ready to prove the lower bound on the velocities, (ii):

For all t ∈ [0,T ] there holds

lim inf
ε→0

∫ t

0
‖uεt (s)‖

H−1
n (Ω)

ds ≥
∫ t

0
‖2∂tΓ(s) + σt(s)‖

H−1
n (Ω)

ds.

This follows from the fact that uεt = ϕεt + σεt and from the Gradient Flow structure of the

problem
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RS: The main result

Finally we need the following lemma:

Lemma (Equipartition of Energy)

The functions µε ⇀ µ weakly in L2(0,T ;H1(Ω)) and µ satisfies for a.e. t ∈ [0,T ]

µ(t) = −cΨk(t) on Γ(t),

where k(t) ∈ H1/2(Γ(t)) is the mean curvature of the smooth surface Γ(t) at time t.

We then obtain the following statements:

Theorem

If the initial data are well prepared, i.e., Eε(ϕε(0), σε(0))→ E(ϕ(0), σ(0)), then it holds

−∆µ = u + σ − µ on Ω+ ∪ Ω−

σt = −∆σ + µ− u − σ on Ω

µ = −cΨk and

[
∂µ

∂n

]
= −2V a.e. on Γ

almost everywhere on [0,T ].
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Remarks and Open Problems

We tacitly made some hypotheses:

One is on the regularity of the limit interface. As a consequence there will be a death time

T∗ until the evolution is regular. After the death time the evolution is undetermined!

Behind the lemma on the Equipartition of Energy there is a technical hypothesis on the

convergence of the measures

ε

2
|∇uε|2 +

W (uε)

ε
⇀ 2cΨdH2xΓ

This is unknown in general, but is proved under higher regularity of the chemical potential

µε in [M. Roger, Y. Tonegawa, Calc. Var. Partial Differ. Equat. (2008)] and then conjectured by

Tonegawa to hold in the general case

To obtain higher regularity it is possible regularize the gradient flow by introduce a suitable

s-power of the Laplacian replacing ∆ both in the φ and the σ equations. Unfortunately in

such a case it is nontrivial (and out of reach) to prove the analogous of the interface

property [ ∂µ
∂n

] = −2V unless s = 2
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Diffuse Interface models in other applications: Liquid Crystals

Consider the following 2D hydrodynamical model for the flow of nematic liquid crystals (cf. [F.-H.

Lin, Nonlinear theory of defects in nematic liquid crystals: Phase transitions and flow phenomena, Comm. Pure

Appl. Math. (1989)]):

∂tv + v · ∇v − ν∆v +∇P = −λ∇ · (∇d�∇d)

∇ · v = 0

∂td + v · ∇d = ∆d−
1

ε2
(|d|2 − 1)d

where v is the velocity field of the flow and d represents the averaged macroscopic/continuum

molecular orientations.

Possible applications of the results we have seen in the biological models and a big open issue is:

The sharp interface limit as ε↘ 0: the potential F (d) = 1
4ε2 (|d|2 − 1)2 was introduced to

relax the nonlinear constraint |d| = 1 on molecule length. Can the Gamma-Convergence

technique be applied at least for the d-equation without velocities? This is - up to my

knowledge - a very open problem!

Only very recently in [Fei et al., SIMA, 2015] the sharp interface dynamic for a tensorial

model of LCs has been obtained by means of matched asymptotic expansion method, but a

rigorous analysis is still missing
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Diffuse Interface models in other applications: Liquid Crystals

Consider the following 2D hydrodynamical model for the flow of nematic liquid crystals (cf. [F.-H.

Lin, Nonlinear theory of defects in nematic liquid crystals: Phase transitions and flow phenomena, Comm. Pure

Appl. Math. (1989)]):

∂tv + v · ∇v − ν∆v +∇P = −λ∇ · (∇d�∇d)

∇ · v = 0

∂td + v · ∇d = ∆d−
1

ε2
(|d|2 − 1)d

where v is the velocity field of the flow and d represents the averaged macroscopic/continuum

molecular orientations.

Possible applications of the results we have seen in the biological models and a big open issue is:

The sharp interface limit as ε↘ 0: the potential F (d) = 1
4ε2 (|d|2 − 1)2 was introduced to

relax the nonlinear constraint |d| = 1 on molecule length. Can the Gamma-Convergence

technique be applied at least for the d-equation without velocities? This is - up to my

knowledge - a very open problem!

Only very recently in [Fei et al., SIMA, 2015] the sharp interface dynamic for a tensorial

model of LCs has been obtained by means of matched asymptotic expansion method, but a

rigorous analysis is still missing
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Many thanks to all of you for the attention!

http://matematica.unipv.it/rocca/
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