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Setting

Tumors grown in vitro often exhibit “layered” structures:

Figure: Zhang et al. Integr. Biol., 2012, 4, 1072–1080. Scale bar 100µm = 0:1mm

A continuum model is introduced with the ansatz:

sharp interfaces are replaced by narrow transition layers arising due to adhesive forces

among the cell species: a diffuse interface separates tumor and healthy cell regions

proliferating tumor cells surrounded by (healthy) host cells, and a nutrient (e.g.

glucose).

We investigate the two-phase case: growth of a tumor in presence of a nutrient and

surrounded by host tissues.

E. Rocca (Università degli Studi di Pavia) Diffuse interface models of tumor growth UDINE, APRIL 10-12, 2019 4 / 37



Setting

Tumors grown in vitro often exhibit “layered” structures:

Figure: Zhang et al. Integr. Biol., 2012, 4, 1072–1080. Scale bar 100µm = 0:1mm

A continuum model is introduced with the ansatz:

sharp interfaces are replaced by narrow transition layers arising due to adhesive forces

among the cell species: a diffuse interface separates tumor and healthy cell regions

proliferating tumor cells surrounded by (healthy) host cells, and a nutrient (e.g.

glucose).

We investigate the two-phase case: growth of a tumor in presence of a nutrient and

surrounded by host tissues.
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Advantages of diffuse interfaces in tumor growth models

It eliminates the need to enforce complicated boundary conditions across the

tumor/host tissue and other species/species interfaces

It eliminates the need to explicitly track the position of interfaces, as is required in

the sharp interface framework

The mathematical description remains valid even when the tumor undergoes

toplogical changes (e.g. metastasis)

Regarding modeling of diffuse interface tumor growth we can quote, e.g.,

Ciarletta, Cristini, Frieboes, Garcke, Hawkins-Daarud, Hilhorst, Lam, Lowengrub,

Oden, van der Zee, Wise, also for their numerical simulations → complex changes in

tumor morphologies due to the interactions with nutrients or toxic agents and also

due to mechanical stresses

Frieboes, Jin, Chuang, Wise, Lowengrub, Cristini, Garcke, Lam, Nürnberg, Sitka, for

the interaction of multiple tumor cell species described by multiphase mixture models
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The free energy

u = tumor cell volume fraction u ∈ [0, 1]

n = nutrient-rich extracellular water volume fraction n ∈ [0, 1]

f (u) = Γu2(1− u)2: a double well

χ(u, n) = −χ0un: chemotaxis driving the tumor cells toward the oxygen supply
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The plot of the summand f (u) + χ(u, n)

The lowest energy state is when u = 1 and n = 1, when there is a full interaction

between the tumor species and the nutrient-rich extracellular water.
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The mass balance equations

ut = ∇ · (Mu∇µu) + γu, µu = ∂uE = f ′(u) + ∂uχ(u, n)− ε∆u

nt = ∇ · (Mn∇µn) + γn, µn = ∂nE = ∂nχ(u, n) +
1

δ
n

Question: how to define γu and γn?

We use the linear phenomenological laws (cf. [Lowengrub et al.] and [Garcke et al.])

γu = (γ1n − γ2)p(u), γn = −γ3np(u) + γ4(ns − n)

where

Here p(s) is an interpolation function such that p(0) = 0 and p(1) = 1, for example,

and

I p(u)γ1n - proliferation of tumor cells proportional to nutrient concentration
I p(u)γ2 - apoptosis of tumor cells
I p(u)γ3n - consumption of nutrient by the tumor cells

The constant ns denotes the nutrient concentration in a pre-existing vasculature,

and γ4(ns − n) models the supply of nutrient from the blood vessels if ns > n and

the transport of nutrient away from the domain Ω if ns < n.
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Other laws [HZO: A. Hawkins-Daarud, K.-G. van der Zee and J.-T. Oden (2011)]

Other choices are possible: e.g., in [HZO: A. Hawkins-Daarud, K.-G. van der Zee and J.-T.

Oden (2011)] they choose:

γu = P(u)(µn − µu), γn = −γu, where

P(u) =

δP0u if u ≥ 0

0 elsewhere

being δ a small positive constant and P0 ≥ 0. Then they get

γu = P0un + δP0u(∂nχ(u, n)− µu)

and so the dominant term is P0un.
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Simulations by HZO: the tumor starts growing increasingly more ellipsoidal at first and

eventually begins forming buds growing toward the higher levels of nutrient
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Simulations by HZO:

the influence of χ0 and δ

When the ratio χ0/Γ is

small, the tumor remains

circular u ∼ 0, 1

When χ0 ∼ Γ the tumor

goes into an ellipse

When χ0/Γ and χ0/ε are

big, u no longer takes on

values close to 0 and 1:

it begins moving quickly

toward the regions with

higher nutrients

Only when χ0 is large

the value of δ makes a

difference in simulations
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Our notation for the tumor phase parameter (u =)φ ∈ [−1, 1]
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Theoretical analysis: two-phase models

In terms of the theoretical analysis most of the recent literature is restricted to the

two-phase variant, i.e., to models that only account for the evolution of a tumor

surrounded by healthy tissue.

In this setting, there is no differentiation among the tumor cells that exhibit

heterogeneous growth behavior. Hence this kind of two-phase models are just able to

describe the growth of a young tumor before the onset of quiescence and necrosis.

Analytical results related to well-posedness, asymptotic limits, but also optimal
control and long-time behavior of solution, have been established in a number of
papers of a number of authors which include: Agosti, Ciarletta, Colli, Frigeri,
Garcke, Gilardi, Grasselli, Hilhorst, Lam, Marinoschi, Melchionna, E.R., Scala,
Sprekels, Wu, etc...

I for tumor growth models based on the coupling of Cahn–Hilliard (for the tumor

density) and reaction–diffusion (for the nutrient) equations, and

I for models of Cahn-Hilliard-Darcy or Cahn-Hilliard-Brinkman type.

In this talk we concentrate on a recent result on sliding mode control.
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E. Rocca (Università degli Studi di Pavia) Diffuse interface models of tumor growth UDINE, APRIL 10-12, 2019 15 / 37



Theoretical analysis: two-phase models

In terms of the theoretical analysis most of the recent literature is restricted to the

two-phase variant, i.e., to models that only account for the evolution of a tumor

surrounded by healthy tissue.

In this setting, there is no differentiation among the tumor cells that exhibit

heterogeneous growth behavior. Hence this kind of two-phase models are just able to

describe the growth of a young tumor before the onset of quiescence and necrosis.

Analytical results related to well-posedness, asymptotic limits, but also optimal
control and long-time behavior of solution, have been established in a number of
papers of a number of authors which include: Agosti, Ciarletta, Colli, Frigeri,
Garcke, Gilardi, Grasselli, Hilhorst, Lam, Marinoschi, Melchionna, E.R., Scala,
Sprekels, Wu, etc...

I for tumor growth models based on the coupling of Cahn–Hilliard (for the tumor

density) and reaction–diffusion (for the nutrient) equations, and

I for models of Cahn-Hilliard-Darcy or Cahn-Hilliard-Brinkman type.

In this talk we concentrate on a recent result on sliding mode control.
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Ther sliding mode control

The design procedure of a SMC system is a two-stage process:

The first phase is to choose a set of sliding manifolds such that the original system

restricted to the intersection of them has a desired behavior. We choose to force the

tumor phase parameter φ to stay constant in time within finite time with the

obvious application in mind that the phase φ should become as close as possible to

the constant value φ = −1 corresponding to the case when no tumorous phase is

present anymore or to a configuration φ∗ which is suitable for surgery.

The second step is to design a SMC law that forces the system trajectories to stay

onto the sliding surface. To this end, we have added the term ρ sign(φ− φ∗) in the

Cahn–Hilliard evolution for φ in order to force φ to stay equal to a given desired

value φ∗ in a finite time.
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The state system:

viscous Cahn–Hilliard + nutrient model with source terms

φt −∆µ = (γ1σ − γ2)p(φ) in Q := Ω× (0,T )

µ = τφt −∆φ+ F ′(φ) + ρ sign(φ− φ∗) in Q

σt −∆σ = − γ3σp(φ) + γ4(σs − σ) + g in Q

Ω domain in which the evolution takes place, T final time;

variable φ denotes the difference in volume fraction, where φ = 1 represents the

tumor phase and φ = −1 represents the healthy tissue phase

variable µ represents the chemical potential

variable σ stands for the concentration of the nutrient (e.g., oxigen or glucose)

coefficients: τ positive viscosity paramenter,γi , i = 1, . . . , 4, positive constants

standing for proliferation rate, apoptosis (death of cells) rate, nutrient consumption

rate, nutrient supply rate, respectively.
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E. Rocca (Università degli Studi di Pavia) Diffuse interface models of tumor growth UDINE, APRIL 10-12, 2019 17 / 37



Sliding mode control

classic instrument for regulation of continuous or discrete systems in

finite-dimensional settings

one of the basic approaches to the design of robust controllers for nonlinear complex

dynamics that work under uncertainty

on the other hand, tumor growth dynamics is a main example of complex systems

in the case of an incipient tumor, i.e., before the development of quiescent cells

inclusion of the SMC law ρ sign(φ− φ∗), with ρ positive parameter that will be

chosen large enough

this term forces the system trajectories onto the sliding surface φ = φ∗ in finite time
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Sliding modes in ODEs

Consider the ODE system y ′(t) = f (t, y(t))

where f : [0,+∞)×Rn → Rn and y0 ∈ Rn given

y : [0,+∞)→ Rn unknown function

Sliding mode problem: look for

M := {y ∈ Rn : g(y) = 0} a manifold in Rn

y 7→ u(y) a feedback control law

such that the trajectory t 7→ y(t) starts from an arbitrary initial datum y0 and reaches

the manifold M in a finite time.

Then, it remains on M, i.e., it slides on M.

For that reason, M is called the sliding manifold.

Advantage: althogh the dynamics is modified, the complexity is reduced since M is

lower-dimentional
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Very popular in the engeneering world (automatic control)

Books

Itkis, Wiley, 1976

Utkin, Springer, 1992

Edwards, Spurgeon, Taylor & Francis, 1999

Utkin, Guldner, Shi, 2nd Edition, CRC Press, 2009

State-of-the-art monographs

Young, Özgüner (eds.), Springer-Verlag, 1999

Edwards, Fossas Colet, Fridman (eds.), Springer, 2006

Bartolini, Fridman, Pisano, Usai (eds.), Springer, 2008

Fridman, Moreno, Iriarte (eds.), Springer, 2011
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On PDEs (less popular)

On semilinear PDE systems:

Cheng, Radisavljevic, Su, Automatica J. IFAC, 2011

Levaggi, Discrete Contin. Dyn. Syst., 2013

H. Xing, D. Li, C. Gao, Y. Kao, J. Franklin Inst., 2013

On phase field systems of Caginalp type:

Barbu, Colli, Gilardi, Marinoschi, E. R., SIAM J. Control Optim., 2017

Colturato, Appl. Math., 2016, and App. Math. Optim., 2017
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Still on the system of equations

φt −∆µ = (γ1σ − γ2)p(φ) in Q := Ω× (0,T )

µ = τφt −∆φ+ F ′(φ) + ρ sign(φ− φ∗) in Q

σt −∆σ = − γ3σp(φ) + γ4(σs − σ) + g in Q

data: the constant σs denotes the nutrient concentration in a pre-existing vasculature,

the function g is a source term which may represent the supply of a nutrient or a drug in

a chemotherapy;

the term γ1p(φ)σ models the proliferation of tumor cells which is proportional to the

concentration of the nutrient

the term − γ2p(φ) models the apoptosis of tumor cells

the term − γ3p(φ)σ models the consumption of the nutrient only by the tumor cells

the term γ4(σs − σ) models the supply of nutrient from the blood vessels if σs > σ and

the transport of nutrient away from the domain Ω if σs < σ
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About the potentials

φt −∆µ = (γ1σ − γ2)p(φ) in Q := Ω× (0,T )

µ = τφt −∆φ+ F ′(φ) + ρ sign(φ− φ∗) in Q

σt −∆σ = − γ3σp(φ) + γ4(σs − σ) + g in Q

p is a smooth nonnegative and bounded proliferation function;

F ′ stands for the derivative of a double-well potential F

→ typical examples of potentials are

Freg (r) =
1

4
(r 2 − 1)2 , r ∈ R

Flog (r) = (1 + r) ln(1 + r) + (1− r) ln(1− r)− c0 r
2 , r ∈ (−1, 1)

Fobs(r) = I (r) + c1 (1− r 2) , r ∈ R

where c0 > 1 in order to produce a double-well, c1 arbitrary positive number and the

function I is the indicator function of [−1, 1], i.e., it takes the values 0 or +∞ according

to whether or not r belongs to [−1, 1].
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Initial and boundary conditions

System complemented by the initial conditions φ(0) = φ0 and σ(0) = σ0 and suitable

boundary conditions: usual homogeneous Neumann conditions for φ and σ, that is,

∂nφ = 0 and ∂nσ = 0 on Σ := Γ× (0,T )

where Γ is the boundary of Ω and ∂n is the (say, outward) normal derivative.

Dirichlet boundary condition for the chemical potential, i.e.,

µ = µΓ on Σ

where µΓ is a given smooth function. This choice is twofold:

from one side it looks reasonable from the modelling point of view since, in case

µΓ = 0, it allows for the free flow of cells across the outer boundary;

on the other hand, this Dirichlet condition is important for the analysis.
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SMC approach

• is well known for its robustness against variations of dynamics, disturbances,

time-delays and nonlinearities

• the design procedure of a SMC system is a two-stage process: first step is to choose

a set of sliding manifolds such that the original system restricted to the intersection

of them has a desired behavior

• the tumor phase parameter should stay constant in time (within finite time) −→ the

phase variable φ as close as possible to the constant value φ = −1, corresponding to

the case when no tumorous phase is present anymore, or to a configuration φ∗

which is suitable for surgery

• the second step is to design a SMC law that pushes the system trajectories to stay

onto the sliding surface ... then, we have added the term ρ sign(φ− φ∗) in the

Cahn–Hilliard evolution for φ in order to force φ to stay equal to φ∗ in a finite time
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Assumptions and structure

Let F = B̂ + π̂

γi ∈ [0,+∞) for i = 1, 2, 3, γ4, τ ∈ (0,+∞) and σs ∈ R
B̂ : R→ [0,+∞] is convex, proper and l.s.c. with B̂(0) = 0

π̂ : R→ R is a C 1 function and π̂ ′ is Lipschitz continuous

p : R→ [0,+∞) is a bounded and Lipschitz continuous function

β := ∂B̂, π := π̂ ′, Lπ = the Lipschitz constant of π

Denote by D(β) and D(B̂) the effective domains of β and B̂, respectively.

H := L2(Ω), V := H1(Ω), V0 := H1
0 (Ω)

W :=
{
v ∈ H2(Ω) : ∂nv = 0

}
and W0 := H2(Ω) ∩ H1

0 (Ω)

Let Csh be a constant realizing the inequalities

‖v‖∞ ≤ Csh |Ω|1/6 ‖∆v‖H for every v ∈W0

‖v‖∞ ≤ Csh

(
|Ω|−1/2 ‖v‖H + |Ω|1/6 ‖∆v‖H

)
for every v ∈W
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State system with the state-feedback control law

Operator sign : R→ 2R defined by

sign r :=
r

|r | if r 6= 0 and sign 0 := [−1, 1]

sign is the subdifferential of the real function r 7→ |r |
Dirichlet boundary condition µ = µΓ reduced to the homogeneous one by introducing the

harmonic extension µH of µΓ defined as: for a.a. t ∈ (0,T ), µH(t) is the unique solution

to the problem

µH(t) ∈ H1(Ω), −∆µH(t) = 0 in D′(Q), µH(t)|Γ = µΓ(t) .

Take µ− µH as new unknown and still term µ the above difference.

Thus, we are given the functions g , µΓ, φ∗ and the initial data φ0, σ0 with

g ∈ L∞(Q), µΓ ∈ H1(0,T ; L2(Γ)) ∩ L∞(0,T ;H3/2(Γ))

φ∗ ∈W and inf D(β) < inf φ∗ ≤ supφ∗ < supD(β)

φ0 ∈W , β◦(φ0) ∈ H and σ0 ∈ V ∩ L∞(Ω)

where β◦ denotes the minimal section of β.
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Solution to the state system

a quintuplet (φ, µ, σ, ξ, ζ) satisfying the regularity requirements

φ ∈W 1,∞(0,T ;H) ∩ H1(0,T ;V ) ∩ L∞(0,T ;W )

µ ∈ L∞(0,T ;W0)

σ ∈ H1(0,T ;H) ∩ L∞(0,T ;V ) ∩ L2(0,T ;W )

ξ ∈ L∞(0,T ;H), ζ ∈ L∞(0,T ;H)

and solving

dtφ−∆µ = (γ1σ − γ2) p(φ) a.e. in Q

µ = τ dtφ−∆φ+ ξ + π(φ) + ρ ζ − µH a.e. in Q

dtσ −∆σ = −γ3σ p(φ) + γ4(σs − σ) + g a.e. in Q

ξ ∈ β(φ) and ζ ∈ sign(φ− φ∗) a.e. in Q

φ(0) = φ0 and σ(0) = σ0

where ρ is a positive parameter.
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Well-posedness

Theorem (Estimates)

For every ρ > 0, there exists at least one quintuplet (φ, µ, σ, ξ, ζ) solving our problem and

satisfying the estimates

‖µ‖∞ ≤ Csh
2|Ω|2/3

τ
ρ+ Ĉ

|σ| ≤ σ∗ := max{
∥∥∥σs + γ−1

4 g
∥∥∥
∞
, ‖σ0‖∞} a.e. in Q

where Csh is the same as in the Sobolev inequality and the constant Ĉ depends only on

Ω, T and the quantities involved in assumptions. In particular, Ĉ does not depend on ρ.

Moreover, the components φ and σ of the solution are uniquely determined.

The above result is quite general. In particular, the potentials Flog and Fobs are certainly

allowed.
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Sliding mode

• For the problem of sliding mode, we prove a result that only involves the component

φ of the solution.

• However, we can ensure the existence of a sliding mode at least for ρ large enough

only under the following condition

Csys := Csh
2|Ω|2/3

τ
< 1

where Csh is the constant that appears in the Sobolev inequality.

• Such a condition means that |Ω| has to be sufficiently small once the shape of Ω is

fixed.
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The result

Theorem

Assume the smallness condition on Omega is satisfied and

∆φ∗ ∈ L∞(Ω).

Then, there exists ρ∗ > 0, depending only on Ω, T , the structure and the data of the

problem, such that, for every ρ > ρ∗, the following is true: if (φ, µ, σ, ξ, ζ) is a solution to

our problem with µ satisfying the estimate stated in the previous Theorem, there exists a

time T ∗ ∈ [0,T ) such that

φ(t) = φ∗ a.e. in Ω for every t ∈ [T ∗,T ].

In particular, there exists a solution for which the sliding mode condition holds true.
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Values of ρ∗ and T ∗

Remark

In the proof we can show that possible values of ρ∗ and T ∗ that fit the above
statement are

ρ∗ =
1

1− Csys

(
Ĉ + M + M∗π +

τ

T
M0

)
and T ∗ =

τ

ρ− A(ρ)
M0

where M, M0, M∗π and A(ρ) are given by

M := ‖µΓ‖∞ + ‖∆φ∗‖∞ + ‖ξ∗‖∞ , M0 := ‖φ0 − φ∗‖∞
M∗π := sup{|π(φ∗(x) + r)| : x ∈ Ω, |r | ≤ M0}

A(ρ) := Csys ρ+ Ĉ + M + M∗π for ρ > 0

with ξ∗ := β◦(φ∗). In these formulas, Ĉ is the same as in the estimate for µ.
The above definitions ensure that A(ρ) < ρ for ρ > ρ∗ and that T ∗ ∈ [0,T ).
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In conclusion ...

• the field is open to related research issues like extensions of the model, other diffuse

interface models (vast literature growing and growing), optimal control problems,

different SMC laws (e.g., in the equation for σ), numerics, . . .
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Outline

1 Diffuse interfaces in tumor growth

2 A tumor growth model

3 Content of the joint work with P. Colli, G. Gilardi, G. Marinoschi

4 Other Open problems and Perspectives
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Open problems and Perspectives

O1. Include chemotaxis χ0 and the evolution of average velocities in the model.

P1. To study the long-time behavior of solutions:
I recent results on existence of attractors with A. Miranville and G. Schimperna to

appear on JDE
I recent results on convergence of trajectories with C. Cavaterra and H. Wu, online on

AMO
I work in progress: with A. Giorgini, K.-F. Lam, and G. Schimperna for a model

proposed by Lowengrub et al. including velocities.

P2. The study of optimal control for different models: for a prostate model introduced

by H. Gomez et al. and proposed to us by G. Lorenzo and A. Reali (work in progress

with P. Colli and G. Marinoschi).

P3. To add the mechanics in Lagrangean coordinates in a multiphase model: for example

considering the tumor sample as a porous media (with P. Krejč́ı and J. Sprekels).

P4. Include a stochastic term in phase-field models for tumor growth representing for

example uncertainty of a therapy or random oscillations of the tumor phase (with C.

Orrieri and L. Scarpa).
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P4. Include a stochastic term in phase-field models for tumor growth representing for

example uncertainty of a therapy or random oscillations of the tumor phase (with C.

Orrieri and L. Scarpa).
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AMO
I work in progress: with A. Giorgini, K.-F. Lam, and G. Schimperna for a model

proposed by Lowengrub et al. including velocities.

P2. The study of optimal control for different models: for a prostate model introduced

by H. Gomez et al. and proposed to us by G. Lorenzo and A. Reali (work in progress

with P. Colli and G. Marinoschi).

P3. To add the mechanics in Lagrangean coordinates in a multiphase model: for example

considering the tumor sample as a porous media (with P. Krejč́ı and J. Sprekels).

P4. Include a stochastic term in phase-field models for tumor growth representing for

example uncertainty of a therapy or random oscillations of the tumor phase (with C.

Orrieri and L. Scarpa).
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P4. Include a stochastic term in phase-field models for tumor growth representing for

example uncertainty of a therapy or random oscillations of the tumor phase (with C.

Orrieri and L. Scarpa).
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Many thanks to all of you for the attention!

My contact: elisabetta.rocca@unipv.it
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