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Outline

� The dynamics we are interested in: non-isothermal models for

� Liquid Crystals flows

� Mixtures of two viscous incompressible Newtonian fluids

� Damage phoenomena in viscoelastic materials

� The common features of the PDEs

� The new notion of solution

� The analytical results

� Some open related problems
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Mathematical problems arising from Thermomechanics

� Hydrodynamics of liquid crystals flows:

� a liquid crystal may flow like a liquid, but its molecules may be oriented in a

crystal-like way

� aim: deal with the nematic liquid crystals in the Landau-de Gennes theory, in which

the order parameter describing the orientation of molecules is a matrix, the so-called

Q-tensor and to include velocity and temperature dependence in the model

� Two-phase mixtures of fluids:

� avoid analytical problems of interface singularities: an alternative approach to the

sharp interface models is the diffuse interface models (the H-model). The sharp

interface is replaced by a thin interfacial region where a partial mixing of the fluids is

allowed; a new variable ϕ represents the concentration difference of the fluids

� aim: to consider the non-isothermal version of the model

� Damage phenomena:

� aim: deal with a non-isothermal diffuse interface models in thermoviscoelasticity

accounting for the evolution of the displacement variables, the order (damage)

parameter χ, indicating the local proportion of damage

E. Rocca · Wias Colloquium, January 27th, 2014 · Page 3 (47)



Mathematical problems arising from Thermomechanics

� Hydrodynamics of liquid crystals flows:

� a liquid crystal may flow like a liquid, but its molecules may be oriented in a

crystal-like way

� aim: deal with the nematic liquid crystals in the Landau-de Gennes theory, in which

the order parameter describing the orientation of molecules is a matrix, the so-called

Q-tensor and to include velocity and temperature dependence in the model

� Two-phase mixtures of fluids:

� avoid analytical problems of interface singularities: an alternative approach to the

sharp interface models is the diffuse interface models (the H-model). The sharp

interface is replaced by a thin interfacial region where a partial mixing of the fluids is

allowed; a new variable ϕ represents the concentration difference of the fluids

� aim: to consider the non-isothermal version of the model

� Damage phenomena:

� aim: deal with a non-isothermal diffuse interface models in thermoviscoelasticity

accounting for the evolution of the displacement variables, the order (damage)

parameter χ, indicating the local proportion of damage

E. Rocca · Wias Colloquium, January 27th, 2014 · Page 3 (47)



Mathematical problems arising from Thermomechanics

� Hydrodynamics of liquid crystals flows:

� a liquid crystal may flow like a liquid, but its molecules may be oriented in a

crystal-like way

� aim: deal with the nematic liquid crystals in the Landau-de Gennes theory, in which

the order parameter describing the orientation of molecules is a matrix, the so-called

Q-tensor and to include velocity and temperature dependence in the model

� Two-phase mixtures of fluids:

� avoid analytical problems of interface singularities: an alternative approach to the

sharp interface models is the diffuse interface models (the H-model). The sharp

interface is replaced by a thin interfacial region where a partial mixing of the fluids is

allowed; a new variable ϕ represents the concentration difference of the fluids

� aim: to consider the non-isothermal version of the model

� Damage phenomena:

� aim: deal with a non-isothermal diffuse interface models in thermoviscoelasticity

accounting for the evolution of the displacement variables, the order (damage)

parameter χ, indicating the local proportion of damage

E. Rocca · Wias Colloquium, January 27th, 2014 · Page 3 (47)



Mathematical problems arising from Thermomechanics

� Hydrodynamics of liquid crystals flows:

� a liquid crystal may flow like a liquid, but its molecules may be oriented in a

crystal-like way

� aim: deal with the nematic liquid crystals in the Landau-de Gennes theory, in which

the order parameter describing the orientation of molecules is a matrix, the so-called

Q-tensor and to include velocity and temperature dependence in the model

� Two-phase mixtures of fluids:

� avoid analytical problems of interface singularities: an alternative approach to the

sharp interface models is the diffuse interface models (the H-model). The sharp

interface is replaced by a thin interfacial region where a partial mixing of the fluids is

allowed; a new variable ϕ represents the concentration difference of the fluids

� aim: to consider the non-isothermal version of the model

� Damage phenomena:

� aim: deal with a non-isothermal diffuse interface models in thermoviscoelasticity

accounting for the evolution of the displacement variables, the order (damage)

parameter χ, indicating the local proportion of damage

E. Rocca · Wias Colloquium, January 27th, 2014 · Page 3 (47)



Common features: the nonlinearity of the related PDEs

� Liquid crystals

θt + v · ∇xθ + divq = θ
(
∂tf(Q) + u · ∇xf(Q)

)
+ σ : ∇xv + Γ(θ)|H|2

divv = 0, ∂tv + div(v ⊗ v) +∇xp = div(σ + T(θ,Q)), σ = ν(θ)(∇xv +∇txv)

Qt + v · ∇xQ− S(∇xv,Q) = Γ(θ)H, H = ∆Q− θ ∂f(Q)

∂Q
− ∂G(Q)

∂Q
� Two-phase mixtures of fluids

θt + v · ∇xθ + divq = −θ(ϕt + v · ∇xϕ) + σ : ∇xv+|∇xµ|2

divv = 0 , vt + div(v ⊗ v) +∇xp = div σ − µ∇xϕ, σ = ν(θ)
(
∇xv +∇txv

)
ϕt + v · ∇xϕ = ∆µ , µ = −∆ϕ+W ′(ϕ)− θ

� Damage

θt + divq = −θ(χt + ρ divut) + a(χ)|ε(ut)|2 + |χt|2

utt − div(a(χ)ε(ut) + b(χ)ε(u)− ρθ1) = f , ε(u) = (∇xu +∇txu)/2

χt + ∂I(−∞,0](χt)− div(|∇χ|p−2∇χ) +W ′(χ) 3 −b′(χ)|ε(u)|2/2 + θ
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The main ideas to handle nonlinearities

� Reinterpret the nonlinear PDEs

� Combining the concept of weak solution satisfying

1. a suitable energy conservation and entropy inequality inspired by:

1.1. the works of E. Feireisl and co-authors ([Feireisl, Comput. Math. Appl. (2007)] and

[Bulíček, Feireisl, & Málek, Nonlinear Anal. Real World Appl. (2009)]) for heat conduction in

fluids

2. a generalization of the principle of virtual powers inspired by:

2.1. a notion of weak solution introduced by [Heinemann, Kraus, Adv. Math. Sci. Appl. (2011)]

for non-degenerating isothermal diffuse interface models for phase separation and

damage
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Liquid crystals
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Liquid Crystals flows

I The motivations:

� Theoretical studies of these types of materials are motivated by real-world

applications: proper functioning of many practical devices relies on optical

properties of certain liquid crystalline substances in the presence or absence of an

electric field: a multi-billion dollar industry

� At the molecular level, what marks the difference between a liquid crystal and an

ordinary, isotropic fluid is that, while the centers of mass of LC molecules do not

exhibit any long-range correlation, molecular orientations do exhibit orientational

correlations

I The objective: include the temperature dependence in models describing the evolution

of nematic liquid crystal flows within the Landau-De Gennes theories (cf. [De Gennes,

Prost (1995)])
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Main LC types

To the present state of knowledge, three main types of liquid crystals are distinguished, termed

smectic, nematic and cholesteric

http://www.laynetworks.com/Molecular-Orientation-in-Liquid-Crystal-Phases.htm

The smectic phase forms well-defined layers that can slide one over another in a manner very similar to that

of a soap

The nematic phase: the molecules have long-range orientational order, but no tendency to the formation of

layers. Their center of mass positions all point in the same direction (within each specific domain)

Crystals in the cholesteric phase exhibit a twisting of the molecules perpendicular to the director, with the

molecular axis parallel to the director
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Our main aim

� We consider the range of temperatures typical for the nematic phase

http://www.netwalk.com/ laserlab/lclinks.html

� The nematic liquid crystals are composed of rod-like molecules, with the long axes of

neighboring molecules aligned

� Most mathematical work has been done on the Oseen-Frank theory, in which the mean

orientation of the rod-like molecules is described by a vector field d. However, more

popular among physicists is the Landau-de Gennes theory, in which the order parameter

describing the orientation of molecules is a matrix, the so-called Q-tensor

I The flow velocity v evidently disturbs the alignment of the molecules and also the

converse is true: a change in the alignment will produce a perturbation of the velocity field

v. Moreover, we want to include in our model also the changes of the temperature θ
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The Landau-de Gennes theory: the molecular orientation

� Consider a nematic liquid crystal filling a bounded connected container Ω in R3 with

“regular” boundary

� The distribution of molecular orientations in a ball B(x0, δ), x0 ∈ Ω can be represented

as a probability measure µ on the unit sphere S2 satisfying µ(E) = µ(−E) forE ⊂ S2

� For a continuously distributed measure we have dµ(p) = ρ(p)dp where dp is an

element of the surface area on S2 and ρ ≥ 0,
∫
S2 ρ(p)dp = 1, ρ(p) = ρ(−p)
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The Landau-de Gennes theory: the Q-tensor

� The first moment
∫
S2 p dµ(p) = 0, the second moment M =

∫
S2 p⊗ p dµ(p) is a

symmetric non-negative 3× 3 matrix (for every v ∈ S2,

v ·M · v =
∫
S2(v · p)2 dµ(p) =< cos2 θ >, where θ is the angle between p and v)

satisfying tr(M) = 1

� If the orientation of molecules is equally distributed in all directions (the distribution is

isotropic) and then µ = µ0, where dµ0(p) = 1
4π
dS. In this case the second moment

tensor is M0 = 1
4π

∫
S2 p⊗ p dS = 1

3
1, because

∫
S2 p1p2 dS = 0,∫

S2 p
2
1 dS =

∫
S2 p

2
2 dS, etc., and tr(M0) = 1

I The de Gennes Q-tensor measures the deviation of M from its isotropic value

Q = M −M0 =

∫
S2

(
p⊗ p− 1

3
1

)
dµ(p)

E. Rocca · Wias Colloquium, January 27th, 2014 · Page 11 (47)



The Landau-de Gennes theory: the Q-tensor

� The first moment
∫
S2 p dµ(p) = 0, the second moment M =

∫
S2 p⊗ p dµ(p) is a

symmetric non-negative 3× 3 matrix (for every v ∈ S2,

v ·M · v =
∫
S2(v · p)2 dµ(p) =< cos2 θ >, where θ is the angle between p and v)

satisfying tr(M) = 1

� If the orientation of molecules is equally distributed in all directions (the distribution is

isotropic) and then µ = µ0, where dµ0(p) = 1
4π
dS. In this case the second moment

tensor is M0 = 1
4π

∫
S2 p⊗ p dS = 1

3
1, because

∫
S2 p1p2 dS = 0,∫

S2 p
2
1 dS =

∫
S2 p

2
2 dS, etc., and tr(M0) = 1

I The de Gennes Q-tensor measures the deviation of M from its isotropic value

Q = M −M0 =

∫
S2

(
p⊗ p− 1

3
1

)
dµ(p)

E. Rocca · Wias Colloquium, January 27th, 2014 · Page 11 (47)



The Landau-de Gennes theory: the Q-tensor

� The first moment
∫
S2 p dµ(p) = 0, the second moment M =

∫
S2 p⊗ p dµ(p) is a

symmetric non-negative 3× 3 matrix (for every v ∈ S2,

v ·M · v =
∫
S2(v · p)2 dµ(p) =< cos2 θ >, where θ is the angle between p and v)

satisfying tr(M) = 1

� If the orientation of molecules is equally distributed in all directions (the distribution is

isotropic) and then µ = µ0, where dµ0(p) = 1
4π
dS. In this case the second moment

tensor is M0 = 1
4π

∫
S2 p⊗ p dS = 1

3
1, because

∫
S2 p1p2 dS = 0,∫

S2 p
2
1 dS =

∫
S2 p

2
2 dS, etc., and tr(M0) = 1

I The de Gennes Q-tensor measures the deviation of M from its isotropic value

Q = M −M0 =

∫
S2

(
p⊗ p− 1

3
1

)
dµ(p)

E. Rocca · Wias Colloquium, January 27th, 2014 · Page 11 (47)



Some properties of the Q-tensors

The de Gennes Q-tensor measures the deviation of M from its isotropic value

Q = M −M0 =

∫
S2

(
p⊗ p− 1

3
1

)
dµ(p)

Note that (cf. [Ball, Majumdar, Molecular Crystals and Liquid Crystals (2010)])

1. Q = QT

2. tr(Q) = 0

3. Q ≥ − 1
3
1

1.+2. implies Q = λ1n1 ⊗ n1 + λ2n2 ⊗ n2 + λ3n3 ⊗ n3, where {ni} is an othonormal

basis of eigenvectors of Q with corresponding eigenvalues λi such that

λ1 + λ2 + λ3 = 0

2.+3. implies− 1
3
≤ λi ≤ 2

3

� Q = 0 does not imply µ = µ0 (e.g. µ = 1
6

∑3
i=1(δei + δ−ei))
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The Ball-Majumdar singular potential

� In the Landau-de Gennes free energy there is no a-priori bound on the eigenvalues

� In order to naturally enforce the physical constraints in the eigenvalues of the symmetric,

traceless tensors Q, Ball and Majumdar have recently introduced in [Ball, Majumdar,

Molecular Crystals and Liquid Crystals (2010)] a singular component

f(Q) =


infρ∈AQ

∫
S2 ρ(p) log(ρ(p)) dp if λi[Q] ∈ (−1/3, 2/3), i = 1, 2, 3,

∞ otherwise,

AQ =

{
ρ : S2 → [0,∞)

∣∣∣ ∫
S2

ρ(p) dp = 1;Q =

∫
S2

(
p⊗ p− 1

3
I
)
ρ(p) dp

}
.

to the bulk free-energy fB enforcing the eigenvalues to stay in the interval (− 1
3
, 2

3
)

[⇒] For the Landau-de Gennes free energy with “regular” potential, the hydrodynamic

theory has been developed in [Paicu, Zarnescu, SIAM (2011) and ARMA (2012)] in the

isothermal case
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isothermal case
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Our main contributions

We study the non-isothermal evolutionary system for nematic liquid crystals within the recent

Ball-Majumdar Q-tensorial model preserving the physical eigenvalue constraint on the

traceless and symmetric matrices Q:

1. [E. Feireisl, E. R., G. Schimperna, A. Zarnescu], Evolution of non-isothermal Landau-de

Gennes nematic liquid crystals flows with singular potential, Comm. Math. Sci., 12 (2014),

317–343

2. [E. Feireisl, E. R., G. Schimperna, A. Zarnescu], Nonisothermal nematic liquid crystal

flows with the Ball-Majumdar free energy, preprint arXiv:1310.8474 (2013), 1–27, WIAS

Preprint No. 1865, (2013)

We work in the three-dimensional torus Ω ⊂ R3 in order to avoid complications connected with

boundary conditions. We consider the evolution of the following variables:

� the mean velocity field v

� the tensor field Q, representing preferred (local) orientation of the crystals

� the absolute temperature θ
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Energy and dissipation

� The free energy density takes the form

F =
1

2
|∇Q|2 + fB(θ,Q)−θ log θ − aθm

where

� fB(θ,Q) = θf(Q) +G(Q) is bulk the configuration potential

� f is the convex l.s.c. and singular Ball-Majumdar potential, G is a smooth function

of Q
� aθm prescribes a power-like specific heat

� The dissipation pseudo-potential is given by

P =
ν(θ)

4
|∇v +∇tv|2 + I{0}(divv) +

κ(θ)

2θ
|∇θ|2 +

1

2Γ(θ)
|DtQ|2

� ν, κ and Γ are the smooth viscosity, the heat conductivity, and the collective

rotational coefficients, DtQ is a “generalized material derivative”

� Incompressibility: I0 the indicator function of {0}: I0 = 0 if divv = 0, +∞
otherwise)
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Q-tensor equation

We assume that the driving force governing the dynamics of the director Q is of “gradient

type” ∂QF :

∂tQ + v · ∇Q− S(∇v,Q) = Γ(θ)H, (eq-Q)

� The left hand side is the “generalized material derivative”

DtQ = ∂tQ + v · ∇Q− S(∇v,Q)

� S represents deformation and stretching effects of the crystal director along the flow

� The right hand side is of “gradient type”−H = ∂QF , i.e.

� H = ∆Q− θ ∂f(Q)
∂Q − ∂G(Q)

∂Q = ∆Q− θ ∂f(Q)
∂Q + λQ, λ ≥ 0

� Γ(θ) represents a collective rotational viscosity coefficient

� The function f represents the convex part of a singular potential of [Ball-Majumdar] type
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The Ball-Majumdar potential

The Ball-Majumdar potential (cf. [Ball, Majumdar (2010)]) exhibit a logarithmic divergence as

the eigenvalues of Q approaches− 1
3

and 2
3

f(Q) =


infρ∈AQ

∫
S2 ρ(p) log(ρ(p)) dp if λi[Q] ∈ (−1/3, 2/3), i = 1, 2, 3,

∞ otherwise,

AQ =

{
ρ : S2 → [0,∞)

∣∣∣ ∫
S2

ρ(p) dp = 1;Q =

∫
S2

(
p⊗ p− 1

3
I
)
ρ(p) dp

}
.

=⇒ It explodes “logarithmically” as one of the eigenvalues of Q approaches the limiting values

−1/3 or 2/3.
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Equation of momentum

� In the context of nematic liquid crystals, we have the incompressibility constraint

divv = 0

� By virtue of Newton’s second law, the balance of momentum reads

∂tv + div(v ⊗ v) = div σ + g (eq-v)

� The stress σ is given by

σ =
ν(θ)

2
(∇v +∇tv)− pI + T

� The coupling term (or “extra-stress”) T depends both on θ and Q

T = 2ξ (H : Q)

(
Q +

1

3
I
)
−ξ
[
H
(
Q +

1

3
I
)

+

(
Q +

1

3
I
)
H
]

+(QH− HQ)−∇Q�∇Q

where ξ is a fixed scalar parameter
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Entropy inequality

The evolution of temperature is prescribed by stating the entropy inequality

st + v · ∇s− div

(
κ(θ)

θ
∇θ
)

(eq-θ)

≥ 1

θ

(
ν(θ)

2

∣∣∇v +∇tv
∣∣2 + Γ(θ)|H|2 +

κ(θ)

θ
|∇θ|2

)

where s“ = −∂θF ′′ = −f(Q) + 1 + log θ +maθm−1

� The viscosity ν is smooth and bounded - without any growth condition

� κ(r) = A0 +Akr
k, A0, Ak > 0, 3k+2m

3
> 9, 3

2
< m ≤ 6k

5

� Γ(r) = Γ0 + Γ1r, Γ0, Γ1 > 0

� The “heat” balance can be recovered by (formally) multiplying by θ

� Due to the quadratic terms, we can only interpret (eq-θ) as an inequality
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Total energy balance

� Passing from the heat equation to the entropy inequality gives rise to some information

loss

� Following an idea by [Bulíček, Feireisl, & Málek (2009)], we can complement the system

with the total energy balance

∂t

(
1

2
|v|2 + e

)
+ div

(
(
1

2
|v|2 + e)v

)
+ divq (eq-bal)

= div(σv) + div

(
Γ(θ)∇Q :

(
∆Q− θ ∂f(Q)

∂Q
+ λθ

))
+ g · v

where e = F + sθ is the internal energy

� Note the explicit occurrence of the pressure p “hidden” inside

σ =
ν(θ)

2
(∇v +∇tv)− pI + T

� To control it, assuming periodic b.c.’s is essential
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Main result: the “Entropic formulation”

Theorem: existence of global in time “Entropic solutions”

We can prove existence of at least one “Entropic solution” to

system (eq-v)+(eq-Q)+(eq-θ)+(eq-bal) for finite-energy initial data , namely

θ0 ∈ L∞(Ω), essinfx∈Ω θ0(x) = θ > 0,

Q0 ∈ H1(Ω), f(Q0) ∈ L1(Ω),

v0 ∈ L2(Ω), divv0 = 0.

� Notice that, if the solution is more regular, the entropy inequality becomes an equality

and, multiplying it by θ we just get the standard internal energy balance

θt+v ·∇xθ+divq= θ
(
∂tf(Q)+u ·∇xf(Q)

)
+ν(θ)

∣∣∇xv +∇txv
∣∣2 + Γ(θ)|H|2

� However, this regularity is out of reach for this model: that is why this solution notion is

significative

E. Rocca · Wias Colloquium, January 27th, 2014 · Page 21 (47)



Main result: the “Entropic formulation”

Theorem: existence of global in time “Entropic solutions”

We can prove existence of at least one “Entropic solution” to

system (eq-v)+(eq-Q)+(eq-θ)+(eq-bal) for finite-energy initial data , namely

θ0 ∈ L∞(Ω), essinfx∈Ω θ0(x) = θ > 0,

Q0 ∈ H1(Ω), f(Q0) ∈ L1(Ω),

v0 ∈ L2(Ω), divv0 = 0.

� Notice that, if the solution is more regular, the entropy inequality becomes an equality

and, multiplying it by θ we just get the standard internal energy balance

θt+v ·∇xθ+divq= θ
(
∂tf(Q)+u ·∇xf(Q)

)
+ν(θ)

∣∣∇xv +∇txv
∣∣2 + Γ(θ)|H|2

� However, this regularity is out of reach for this model: that is why this solution notion is

significative

E. Rocca · Wias Colloquium, January 27th, 2014 · Page 21 (47)



Main result: the “Entropic formulation”

Theorem: existence of global in time “Entropic solutions”

We can prove existence of at least one “Entropic solution” to

system (eq-v)+(eq-Q)+(eq-θ)+(eq-bal) for finite-energy initial data , namely
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∣∣2 + Γ(θ)|H|2
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Two-phase mixtures of fluids
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Mixtures of two viscous incompressible Newtonian fluids

� A non-isothermal model for the flow of a mixture of two

� viscous

� incompressible

� Newtonian fluids

� of equal density

� Avoid problems related to interface singularities

=⇒ use a diffuse interface model

=⇒ the classical sharp interface replaced by a thin interfacial region

� A partial mixing of the macroscopically immiscible fluids is allowed

=⇒ ϕ is the order parameter, e.g. the concentration difference

� The original idea of diffuse interface model for fluids: HOHENBERG and HALPERIN, ’77

=⇒ H-model

Later, GURTIN ET AL., ’96: continuum mechanical derivation based on microforces

� Models of two-phase or two-component fluids are receiving growing attention (e.g.,

ABELS, BOYER, GARCKE, GRÜN, GRASSELLI, LOWENGRUB, TRUSKINOVSKI, ...)
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Our contribution [Eleuteri, R., Schimperna, WIAS preprint no. 1920 (2014)]

• Including temperature dependence is a widely open issue

Difficulties: getting models which are at the same time thermodynamically consistent and

mathematically tractable

• Our idea: a weak formulation of the system as a combination of total energy balance plus

entropy production inequality =⇒ “Entropic formulation”

� This method has been recently proposed by [BULÍČEK-MÁLEK-FEIREISL, ’09] for the

Navier-Stokes-Fourier system and has been proved to be effective to study e.g.

� nonisothermal models for phase transitions ([FEIREISL-PETZELTOVÁ-R., ’09]) and

� the evolution of nematic liquid crystals ([FRÉMOND, FEIREISL, R., SCHIMPERNA,

ZARNESCU, ’12,’13])
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The state variables and physical asssumptions

� We want to describe the behavior of a mixture of two incompressible fluids of the same

density in terms of the following state variables

� v: macroscopic velocity (Navier-Stokes),

� p: pressure (Navier-Stokes),

� ϕ: order parameter (Cahn-Hilliard),

� µ: chemical potential (Cahn-Hilliard),

� θ: absolute temperature (Entropic formulation).

� We do not neglect convection and capillarity effects. We assume constant mobility and

smooth configuration potential in Cahn-Hilliard. We take temperature dependent

coefficients wherever possible. We assume the system being insulated from the exterior.
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Modelling

� We start by specifying two functionals:

� the free energy Ψ, related to the equilibrium state of the material, and

� the dissipation pseudo-potential Φ, describing the processes leading to

dissipation of energy (i.e., transformation into heat)

� Then we impose the balances of momentum, configuration energy, and both of

internal energy and of entropy, in terms of these functionals

� The thermodynamical consistency of the model is then a direct consequence of the

solution notion
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Modelling: the free energy

The total free energy is given as a function of the state variables E = (θ, ϕ,∇xϕ)

Ψ(E) =

∫
Ω

ψ(E) dx, ψ(E) = f(θ)− θϕ+
ε

2
|∇xϕ|2 +

1

ε
F (ϕ)

� f(θ) is related to the specific heat cv(θ) = Q′(θ) by Q(θ) = f(θ)− θf ′(θ). In our

case we need cv(θ) ∼ cδθδ for some δ ∈ (1/2, 1)

� ε > 0 is related to the interfacial thickness

� we need F (ϕ) to be the classical smooth double well potential F (ϕ) ∼ 1
4
(ϕ2 − 1)2
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Modelling: the dissipation potential

The dissipation potential is taken as function of δE = (Du, Dϕ
Dt
,∇xθ) and E

Φ(δE,E) =

∫
Ω

(
ν(θ)

2
|Dv|2 + I{0}(divv) +

κ(θ)

2θ
|∇xθ|2 +

|∇xµ|2

2

)
dx

� ν = ν(θ) > 0 the viscosity coefficient, κ = κ(θ) > 0 the heat conductivity

� Dv = (∇xv +∇txv)/2 the symmetric gradient

� Incompressibility: I0 the indicator function of {0}: I0 = 0 if divv = 0, +∞
otherwise)

�
D(·)
Dt

= (·)t + v · ∇x(·) the material derivative

� the chemical potential µ is defined as Dϕ
Dt

= ∆µ
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Modelling: Cahn-Hilliard

� It is obtained (at least for no-flux b.c.’s) as the following gradient-flow problem

∂
L2

#
(Ω),Dϕ

Dt
Φ + ∂L2

#
(Ω),ϕ#

Ψ = 0

where L2
#(Ω) = {ξ ∈ L2(Ω) : ξ := |Ω|−1

∫
Ω ξ dx = 0}, ϕ# = ϕ− ϕ0

� Using the form of the Free energy

Ψ =

∫
Ω

(
f(θ)− θϕ+

ε

2
|∇xϕ|2 +

1

ε
F (ϕ)

)
dx

and of the Pseudopotential of dissipation

Φ =

∫
Ω

(
ν(θ)

2
|Dv|2 + I{0}(divv) +

κ(θ)

2θ
|∇xθ|2 +

|∇xµ|2

2

)
dx

we then arrive at the Cahn-Hilliard system with Neumann hom. b.c. for µ and ϕ

Dϕ

Dt
= ∆µ, µ = −ε∆ϕ+

1

ε
F ′(ϕ)− θ, ∂ϕ

∂n
=
∂µ

∂n
= 0 on Γ (CahnHill)
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Modelling: momentum balance

The Navier-Stokes system is obtained as a momentum balance by setting

Dv

Dt
= vt + div(v ⊗ v) = div σ, (momentum)

where the stress σ is split into its

� dissipative part

σd :=
∂φ

∂Dv
= ν(θ)Dv − pI, divv = 0,

representing kinetic energy which dissipates (i.e. is transformed into heat) due to

viscosity, and its

� non-dissipative part σnd = −ε∇xϕ⊗∇xϕ which is determined in agreement with

Thermodynamics
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The internal energy balance

The balance of internal energy takes the form

(Q(θ))t + v · ∇xQ(θ) + θ
Dϕ

Dt
− div(κ(θ)∇xθ) = ν(θ)|Dv|2 + |∇xµ|2

where Q(θ) = f(θ)− θf ′(θ) and Q′(θ) =: cv(θ)

The dissipation terms on the right hand side are in perfect agreement with the

Pseudopotential of dissipation

Φ =

∫
Ω

(
ν(θ)

2
|Dv|2 + I{0}(divv) +

κ(θ)

2θ
|∇xθ|2 +

|∇xµ|2

2

)
dx
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Entropic solutions: Total Energy balance and Entropy inequality

Following [BULÍČEK, FEIREISL, & MÁLEK], we replace the pointwise internal energy balance by

the total energy balance

(∂t + v · ∇x)

(
|v|2

2
+ e

)
+ div

(
pv − κ(θ)∇xθ − (ν(θ)Dv)v

)
= div

(
ϕt∇xϕ+ µ∇xµ) (energy)

with the internal energy

e = F (ϕ) +
1

2
|∇xϕ|2 +Q(θ) Q′(θ) = cv(θ)

and the entropy inequality

(Λ(θ) + ϕ)t + v · ∇x(Λ(θ) + ϕ)− div

(
κ(θ)∇xθ

θ

)
(entropy)

≥ ν(θ)

θ
|Dv|2 +

1

θ
|∇xµ|2 +

κ(θ)

θ2
|∇xθ|2, where Λ(θ) =

∫ θ

1

cv(s)

s
ds ∼ θδ
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The PDEs (equations and inequalities)

� a weak form of the momentum balance (in distributional sense)

vt + v · ∇xv +∇xp = div(ν(θ)Dv)− div(∇xϕ⊗∇xϕ), divv = 0;

� the Cahn-Hilliard system in H1(Ω)′

ϕt + v · ∇xϕ = ∆µ, µ = −∆ϕ+ F ′(ϕ)− θ;
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1
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cv(s) ds;
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∫ θ
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cv(s)
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Assumptions on the data and boundary conditions

� In order to get a tractable system in 3D, we need to specify assumptions on coefficients in

a careful way:

� The viscosity ν(θ) is assumed smooth and bounded

� The specific heat cv(θ) ∼ θδ , 1/2 < δ < 1

� The heat conductivity κ(θ) ∼ 1 + θβ , β ≥ 2

� The potential F (ϕ) = 1
4
(ϕ2 − 1)2

� Concerning B.C.’s, our results are proved for no-flux conditions for θ, ϕ, and µ and

complete slip conditions for v

v · n|Γ = 0 (the fluid cannot exit Ω, it can move tangentially to Γ)

[Sn]× n|Γ = 0, where S = ν(θ)Dv (exclude friction effects with the boundary)

They can be easily extended to the case of periodic B.C.’s for all unknowns
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Existence of global in time “Entropic solutions”

Theorem

We can prove existence of at least one global in time “Entropic solution” (v, ϕ, µ, θ)

v ∈ L∞(0, T ;L2(Ω;R3)) ∩ L2(0, T ;Vn)

ϕ ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H3(Ω)) ∩H1(0, T ;H1(Ω)′)

µ ∈ L2(0, T ;H1(Ω)) ∩ L
14
5 ((0, T )× Ω)

θ ∈ L∞(0, T ;Lδ+1(Ω)) ∩ Lβ(0, T ;L3β(Ω)) ∩ L2(0, T ;H1(Ω))

θ > 0 a.e. in (0, T )× Ω, log θ ∈ L2(0, T ;H1(Ω))

to system given by (momentum), (CahnHill), (entropy) and (energy), in distributional sense and

for finite-energy initial data

v0 ∈ L2(Ω), divv0 = 0, ϕ0 ∈ H1(Ω), θ0 ∈ Lδ+1(Ω), θ0 > 0 a.e.
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Damage phenomena
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The damage phenomena

State variables:

- the absolute temperature θ

- the (small) displacement variables u (εij(u) := (ui,j + uj,i)/2, i, j = 1, 2, 3)

- the damage parameter χ ∈ [0, 1]: χ = 0 (completely damaged), χ = 1 (completely

undamaged)

ruled by

θt + χtθ + ρθ divut − div(K(θ)∇θ)) = g + a(χ)|ε(ut)|2 + |χt|2

utt − div(a(χ)ε(ut) + b(χ)ε(u)− ρθ1) = f

χt + ∂I(−∞,0](χt)− div(|∇χ|p−2∇χ) +W ′(χ) 3 −b′(χ)
|ε(u)|2

2
+ θ

• Unidirectional: I(−∞,0](χt) = 0 if χt ∈ (−∞, 0], I(−∞,0](χt) = +∞ otherwise;

• p-Laplacian:−∆p : W 1,p(Ω)→W 1,p(Ω)∗ (p > d for this presentation);

• The double-obstacle: W = β̂ + γ̂, γ̂ ∈ C2(R), β̂ proper, convex, l.s.c. (e.g.

β̂ = I[0,1])
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Our contribution [E.Rocca, Riccarda Rossi (in preparation)]

� GLOBAL - in time - existence result for the FULL PDE system displaying the high

order dissipative terms on the right hand in side in the temperature equation:

θt + χtθ + ρθ divut − div(K(θ)∇θ)) = g + a(χ)|ε(ut)|2 + |χt|2

⇒ These terms were neglected in most of the past contribution in the literature or considered

only in the 1D case or in the framework of local - in time - existence (cf., e.g., [E. Bonetti, G.

Bonfanti (2007)], [P. Krečí, J. Sprekels, U. Stefanelli (2003)], [F. Luterotti and U. Stefanelli (2002)],

[E.R., R. Rossi (2013)])
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The free-energy cf. [M. Frémond, Phase Change in Mechanics, Lecture Notes of UMI,

Springer-Verlag, 2012]

F =

∫
Ω

(
θ(1− log θ) + b(χ)

|ε(u)|2

2
+
|∇χ|p

p
+W (χ)− θχ− ρθtr(ε(u))

)
dx

� e.g. b(χ) = χ; the stiffness of the material decreases as χ↘ 0 (complete damage)

� W = β̂ + γ̂, γ̂ ∈ C2(R), β̂ proper, convex, l.s.c. (e.g. β̂ = I[0,1])

The pseudo-potential of dissipation

P =
K(θ)

2
|∇θ|2 +

1

2
|χt|2 + a(χ)

|ε(ut)|2

2
+ I(−∞,0](χt)

� e.g. a(χ) = χ: no viscosty when the material is completely damaged

� K is the heat conductivity, K(θ) ≥ c1(1 + νθk) for some c1, ν > 0, k > 1

� I(−∞,0](χt) = 0 if χt ∈ (−∞, 0], I(−∞,0](χt) = +∞ otherwise (irreversibility of

the damage)
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The modelling

The momentum equation

utt − div σ = f
(
σ = σd + σnd = ∂P

∂ε(ut)
+ ∂F
∂ε(u)

)
becomes

utt − div(a(χ)ε(ut) + b(χ)ε(u)− ρθ1) = f

The “standard” principle of virtual powers

B − divH = 0
(
B = ∂P

∂χt
+ ∂F

∂χ
,H = ∂F

∂∇χ

)
becomes

χt + ∂I(−∞,0](χt)−∆pχ+W ′(χ) 3 −b′(χ) |ε(u)|2
2

+ θ

The internal energy balance

et + divq = g + σ : ε(ut) +Bχt + H · ∇χt
(
e = F − θ ∂F

∂θ
, q = ∂P

∂∇θ

)
becomes

θt + χtθ + ρθ divut − div(K(θ)∇θ) = g+a(χ)|ε(ut)|2 + |χt|2
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Our previous result and our goals

[The last result] [E.R., R. Rossi, preprint arXiv:1205.3578v2 (2012), to appear on M3AS]: global

existence result in 3D using a suitable notion of solution and without enforcing the separation

property, i.e. allowing for degeneracy: a(χ) = b(χ) = χ, but always within the small

perturbations assumption, i.e. neglecting the quadratic terms on the r.h.s. in the internal

energy balance

[Our goals] We restric to the non-degenerate case =⇒ replace a and b by a+ δ, b+ δ in the

momentum balance:

utt − div((a(χ) + δ)ε(ut) + (b(χ) + δ)ε(u)− ρθ1) = f for δ > 0

In order to handle

� the high order dissipative terms in the θ-equation

� the quadratic nonlinearity in the χ-equation

we need a suitable weak formulation
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Assumptions

Hypothesis (I).

The function K : [0,+∞)→ (0,+∞) is continuous and

∃c0, c1, ν > 0, k > 1 : ∀θ ∈ [0,+∞) c0(1 + θk) ≤ K(θ) ≤ c1(1 + νθk)

Hypothesis (II). a ∈ C1(R), b ∈ C2(R) are such that a(x), b(x) ≥ 0, for all x ∈ R
Hypothesis (III). W = β̂ + γ̂, where

β̂ : dom(β̂)→ R is proper, l.s.c., convex;, dom(β̂) ⊆ [0,+∞) is bounded,

γ̂ ∈ C2(R), ∃ cw, c′w > 0 : W (r) ≥ cwr2 − c′w ∀r ∈ dom(β̂)

Hereafter, we shall denote by β = ∂β̂ the subdifferential of β̂, and set γ := γ̂′

Hypothesis (IV).

f ∈ L2(0, T ;L2(Ω)),

g ∈ L1(0, T ;L1(Ω)) ∩ L2(0, T ;H1(Ω)′), g ≥ 0 a.e. in Ω× (0, T ) ,

and that the initial data comply with

θ0 ∈ L1(Ω), ∃ θ∗ > 0 : min
Ω
θ0 ≥ θ∗ > 0 , log θ0 ∈ L1(Ω),

u0 ∈ H2
0 (Ω), v0 ∈ L2(Ω;Rd), χ0 ∈W 1,p(Ω), β̂(χ0) ∈ L1(Ω).
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Existence of “Entropic solutions”

Given δ > 0 there exists (measurable) functions

θ ∈ L∞(0, T ;L1(Ω)) ∩ L2(0, T ;H1(Ω)) ,

u ∈ H1(0, T ;H2
0 (Ω)) ∩W 1,∞(0, T ;H1

0 (Ω;Rd)) ∩H2(0, T ;L2(Ω;Rd)) ,

χ ∈ L∞(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)) ,

fulfilling the initial conditions

u(0, x) = u0(x), ut(0, x) = v0(x) for a.e.x ∈ Ω

χ(0, x) = χ0(x) for a.e.x ∈ Ω

together with

the entropy inequality

the total energy inequality

the weak momentum equation (a.e. in Ω× (0, T ))

the generalized principle of virtual powers
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The entropy inequality + total energy inequality

The entropy inequality∫ T

0

∫
Ω

(log(θ) + χ)ϕt dxdt+ ρ

∫ T

0

∫
Ω

div(ut)ϕ dx dt−
∫ T

0

∫
Ω
K(θ)∇ log(θ) · ∇ϕ dxdt

≤−
∫ T

0

∫
Ω
K(θ)

ϕ

θ
∇ log(θ) · ∇θ dxdt−

∫ T

0

∫
Ω

(
(a(χ) + δ)|ε(ut)|2 + g + |χt|2

) ϕ
θ

dxdt

for all ϕ ∈ D(Ω× [0, T ]) with ϕ ≥ 0;

The total energy inequality for almost all t ∈ (0, T ) and almost all s ∈ (0, t), and for s = 0

E(θ(t),u(t),ut(t), χ(t))≤E(θ(s),u(s),ut(s), χ(s)) +

∫ t

s

∫
Ω
g dxdr

∫ t

s

∫
Ω
f · ut dxdr

where

E(θ,u,ut, χ) :=

∫
Ω
θ +

1

2

∫
Ω
|ut|2 +

1

2
(b(χ(t)) + δ)|ε(u)|2(t) +

1

p

∫
Ω
|∇χ|p +

∫
Ω
W (χ)
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The generalized principle of virtual powers

The relations: χt(x, t) ≤ 0 for almost all (x, t) ∈ Ω× (0, T ), as well as∫
Ω

(
χt(t)ϕ+ |∇χ(t)|p−2∇χ(t) · ∇ϕ+ ξ(t)ϕ+ γ(χ(t))ϕ+ b′(χ(t))

|ε(u(t))|2

2
ϕ− θ(t)ϕ

)
≥ 0

for all ϕ ∈W 1,p
− (Ω), for a.a. t ∈ (0, T )

with ξ ∈ ∂I[0,+∞)(χ) in the following sense:

ξ ∈ L1(0, T ;L1(Ω)) and 〈ξ(t), ϕ− χ(t)〉W1,p(Ω) ≤ 0 ∀ϕ ∈W 1,p
+ (Ω), for a.a. t ∈ (0, T )

and the energy inequality for all t ∈ (0, T ], for s = 0 and for almost all 0 < s ≤ t:∫ t

s

∫
Ω
|χt|2 dxdr +

∫
Ω

(
1

p
|∇χ(t)|p +W (χ(t))

)
dx

≤
∫

Ω

(
1

p
|∇χ(s)|p +W (χ(s))

)
dx+

∫ t

s

∫
Ω
χt

(
−b′(χ)

|ε(u)|2

2
+ θ

)
dx dr

where

W 1,p
+ (Ω) :=

{
ζ ∈W 1,p(Ω) : ζ(x) ≥ 0 for a.a.x ∈ Ω

}
and analogously for W 1,p

− (Ω)
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Generalized principle of virtual powers vs classical phase inclusion

� If (θ,u, χ) are “more regular” and satisfy the notion of weak solution:

the one-sided inequality (∀ϕ ∈ L2(0, T ;W 1,p
− (Ω)) ∩ L∞(Q)):∫ T

0

∫
Ω
χtϕ+ |∇χ|p−2∇χ∇ϕ+ ξϕ+ γ(χ)ϕ+ b′(χ)

|ε(u)|2

2
ϕ− θϕ≥ 0

(one-sided)

with ξ ∈ ∂I[0,+∞)(χ) and the energy inequality:∫ t

s

∫
Ω
|χt|2 dx dr +

1

p
|∇χ(t)|p +

∫
Ω
W (χ(t)) dx

≤
1

p
|∇χ(s)|p +

∫
Ω
W (χ(s)) dx+

∫ t

s

∫
Ω
χt

(
−b′(χ)

|ε(u)|2

2
+ θ

)
dxdr

(energy)

� “Differentiating in time” the energy inequality (energy) and using the chain rule, we conclude that

(θ,u, χ, ξ) comply with

〈χt(t)−∆pχ(t) + ξ(t) + γ(χ(t)) + b′(χ)
|ε(u)|2

2
− θ(t), χt(t)〉

W1,p(Ω)
≤ 0 for a.e.t

(ineq)

(one-sided)− (ineq) + “χt ≤ 0 a.e.” are equivalent to the usual phase inclusion

χt −∆pχ+ ξ + γ(χ) + b′(χ)
|ε(u)|2

2
− θ ∈ −∂I(−∞,0](χt) in W 1,p(Ω)∗
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Comments and further developments

� The main advantages of this approach:

� it is possible to make a strongly nonlinear system mathematically tractable by means

just of the use of the standard principles of Thermodynamics

� the regularity of solutions and initial data is just the one suggested by the energy

and entropy estimates. Hence we respect the physical conditions

� Some further developments:

� The study of the long-time behaviour of the Liquid crystal model

� Uniqueness and equilibria in 2D for the Two-phase fluids model

� Temperature-dependence in a model for damage and phase separation
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