Weierstrass Institute for
Applied Analysis and Stochastics

Entropic solutions for systems of PDEs arising in complex fluids dynamics

Elisabetta Rocca

Supported by the FP7-IDEAS-ERC-StG Grant "EntroPhase"

- The dynamics we are interested in: non-isothermal models for
- Liquid Crystals flows
- Mixtures of two viscous incompressible Newtonian fluids
- Damage phoenomena in viscoelastic materials
- The common features of the PDEs
- The new notion of solution
- The analytical results
- Some open related problems

Mathematical problems arising from Thermomechanics

■ Hydrodynamics of liquid crystals flows:

- a liquid crystal may flow like a liquid, but its molecules may be oriented in a crystal-like way
- aim: deal with the nematic liquid crystals in the Landau-de Gennes theory, in which the order parameter describing the orientation of molecules is a matrix, the so-called \mathbb{Q}-tensor and to include velocity and temperature dependence in the model

Mathematical problems arising from Thermomechanics

■ Hydrodynamics of liquid crystals flows:
■ a liquid crystal may flow like a liquid, but its molecules may be oriented in a crystal-like way

- aim: deal with the nematic liquid crystals in the Landau-de Gennes theory, in which the order parameter describing the orientation of molecules is a matrix, the so-called \mathbb{Q}-tensor and to include velocity and temperature dependence in the model
- Two-phase mixtures of fluids:
- avoid analytical problems of interface singularities: an alternative approach to the sharp interface models is the diffuse interface models (the H-model). The sharp interface is replaced by a thin interfacial region where a partial mixing of the fluids is allowed; a new variable φ represents the concentration difference of the fluids
- aim: to consider the non-isothermal version of the model

Mathematical problems arising from Thermomechanics

- Hydrodynamics of liquid crystals flows:
- a liquid crystal may flow like a liquid, but its molecules may be oriented in a crystal-like way
- aim: deal with the nematic liquid crystals in the Landau-de Gennes theory, in which the order parameter describing the orientation of molecules is a matrix, the so-called \mathbb{Q}-tensor and to include velocity and temperature dependence in the model
■ Two-phase mixtures of fluids:
- avoid analytical problems of interface singularities: an alternative approach to the sharp interface models is the diffuse interface models (the H-model). The sharp interface is replaced by a thin interfacial region where a partial mixing of the fluids is allowed; a new variable φ represents the concentration difference of the fluids
\square aim: to consider the non-isothermal version of the model
- Damage phenomena:

■ aim: deal with a non-isothermal diffuse interface models in thermoviscoelasticity accounting for the evolution of the displacement variables, the order (damage) parameter χ, indicating the local proportion of damage

- Liquid crystals

$$
\begin{aligned}
& \theta_{t}+\mathbf{v} \cdot \nabla_{x} \theta+\operatorname{div} \mathbf{q}=\theta\left(\partial_{t} f(\mathbb{Q})+\mathbf{u} \cdot \nabla_{x} f(\mathbb{Q})\right)+\sigma: \nabla_{x} \mathbf{v}+\Gamma(\theta)|\mathbb{H}|^{2} \\
& \operatorname{div} \mathbf{v}=0, \partial_{t} \mathbf{v}+\operatorname{div}(\mathbf{v} \otimes \mathbf{v})+\nabla_{x} p=\operatorname{div}(\sigma+\mathbb{T}(\theta, \mathbb{Q})), \quad \sigma=\nu(\theta)\left(\nabla_{x} \mathbf{v}+\nabla_{x}^{t} \mathbf{v}\right) \\
& \mathbb{Q}_{t}+\mathbf{v} \cdot \nabla_{x} \mathbb{Q}-\mathbb{S}\left(\nabla_{x} \mathbf{v}, \mathbb{Q}\right)=\Gamma(\theta) \mathbb{H}, \quad \mathbb{H}=\Delta \mathbb{Q}-\theta \frac{\partial f(\mathbb{Q})}{\partial \mathbb{Q}}-\frac{\partial G(\mathbb{Q})}{\partial \mathbb{Q}}
\end{aligned}
$$

- Two-phase mixtures of fluids

$$
\begin{aligned}
& \theta_{t}+\mathbf{v} \cdot \nabla_{x} \theta+\operatorname{div} \mathbf{q}=-\theta\left(\varphi_{t}+\mathbf{v} \cdot \nabla_{x} \varphi\right)+\sigma: \nabla_{x} \mathbf{v}+\left|\nabla_{x} \mu\right|^{2} \\
& \operatorname{div} \mathbf{v}=0, \mathbf{v}_{t}+\operatorname{div}(\mathbf{v} \otimes \mathbf{v})+\nabla_{x} p=\operatorname{div} \sigma-\mu \nabla_{x} \varphi, \quad \sigma=\nu(\theta)\left(\nabla_{x} \mathbf{v}+\nabla_{x}^{t} \mathbf{v}\right) \\
& \varphi_{t}+\mathbf{v} \cdot \nabla_{x} \varphi=\Delta \mu, \quad \mu=-\Delta \varphi+W^{\prime}(\varphi)-\theta
\end{aligned}
$$

- Damage

$$
\begin{aligned}
& \theta_{t}+\operatorname{div} \mathbf{q}=-\theta\left(\chi_{t}+\rho \operatorname{div} \mathbf{u}_{t}\right)+a(\chi)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+\left|\chi_{t}\right|^{2} \\
& \mathbf{u}_{t t}-\operatorname{div}\left(a(\chi) \varepsilon\left(\mathbf{u}_{t}\right)+b(\chi) \varepsilon(\mathbf{u})-\rho \theta \mathbf{1}\right)=\mathbf{f}, \quad \varepsilon(\mathbf{u})=\left(\nabla_{x} \mathbf{u}+\nabla_{x}^{t} \mathbf{u}\right) / 2 \\
& \chi_{t}+\partial I_{(-\infty, 0]}\left(\chi_{t}\right)-\operatorname{div}\left(|\nabla \chi|^{p-2} \nabla \chi\right)+W^{\prime}(\chi) \ni-b^{\prime}(\chi)|\varepsilon(\mathbf{u})|^{2} / 2+\theta
\end{aligned}
$$

- Reinterpret the nonlinear PDEs
- Reinterpret the nonlinear PDEs
- Combining the concept of weak solution satisfying
- Reinterpret the nonlinear PDEs
- Combining the concept of weak solution satisfying

1. a suitable energy conservation and entropy inequality inspired by:
1.1. the works of E. Feireisl and co-authors ([Feireisl, Comput. Math. Appl. (2007)] and [Bulíček, Feireisl, \& Málek, Nonlinear Anal. Real World Appl. (2009)]) for heat conduction in fluids

- Reinterpret the nonlinear PDEs
- Combining the concept of weak solution satisfying

1. a suitable energy conservation and entropy inequality inspired by:
1.1. the works of E. Feireisl and co-authors ([Feireisl, Comput. Math. Appl. (2007)] and [Buliček, Feireisl, \& Málek, Nonlinear Anal. Real World Appl. (2009)]) for heat conduction in fluids
2. a generalization of the principle of virtual powers inspired by:
2.1. a notion of weak solution introduced by [Heinemann, Kraus, Adv. Math. Sci. Appl. (2011)] for non-degenerating isothermal diffuse interface models for phase separation and damage

Liquid crystals

- The motivations:
- Theoretical studies of these types of materials are motivated by real-world applications: proper functioning of many practical devices relies on optical properties of certain liquid crystalline substances in the presence or absence of an electric field: a multi-billion dollar industry
- At the molecular level, what marks the difference between a liquid crystal and an ordinary, isotropic fluid is that, while the centers of mass of LC molecules do not exhibit any long-range correlation, molecular orientations do exhibit orientational correlations
- The motivations:
- Theoretical studies of these types of materials are motivated by real-world applications: proper functioning of many practical devices relies on optical properties of certain liquid crystalline substances in the presence or absence of an electric field: a multi-billion dollar industry
- At the molecular level, what marks the difference between a liquid crystal and an ordinary, isotropic fluid is that, while the centers of mass of LC molecules do not exhibit any long-range correlation, molecular orientations do exhibit orientational correlations
- The objective: include the temperature dependence in models describing the evolution of nematic liquid crystal flows within the Landau-De Gennes theories (cf. [De Gennes, Prost (1995)])

To the present state of knowledge, three main types of liquid crystals are distinguished, termed smectic, nematic and cholesteric

http://www.laynetworks.com/Molecular-Orientation-in-Liquid-Crystal-Phases.htm

Main LC types

To the present state of knowledge, three main types of liquid crystals are distinguished, termed smectic, nematic and cholesteric

http://www.laynetworks.com/Molecular-Orientation-in-Liquid-Crystal-Phases.htm

The smectic phase forms well-defined layers that can slide one over another in a manner very similar to that of a soap

The nematic phase: the molecules have long-range orientational order, but no tendency to the formation of layers. Their center of mass positions all point in the same direction (within each specific domain)

Crystals in the cholesteric phase exhibit a twisting of the molecules perpendicular to the director, with the molecular axis parallel to the director

- We consider the range of temperatures typical for the nematic phase

http://www.netwalk.com/ laserlab/lclinks.html
- The nematic liquid crystals are composed of rod-like molecules, with the long axes of neighboring molecules aligned
- We consider the range of temperatures typical for the nematic phase

http://www.netwalk.com/ laserlab/lclinks.html
- The nematic liquid crystals are composed of rod-like molecules, with the long axes of neighboring molecules aligned
- Most mathematical work has been done on the Oseen-Frank theory, in which the mean orientation of the rod-like molecules is described by a vector field d. However, more popular among physicists is the Landau-de Gennes theory, in which the order parameter describing the orientation of molecules is a matrix, the so-called \mathbb{Q}-tensor
- We consider the range of temperatures typical for the
nematic phase

http://www.netwalk.com/ laserlab/lclinks.html
- The nematic liquid crystals are composed of rod-like molecules, with the long axes of neighboring molecules aligned
- Most mathematical work has been done on the Oseen-Frank theory, in which the mean orientation of the rod-like molecules is described by a vector field \boldsymbol{d}. However, more popular among physicists is the Landau-de Gennes theory, in which the order parameter describing the orientation of molecules is a matrix, the so-called \mathbb{Q}-tensor
- The flow velocity v evidently disturbs the alignment of the molecules and also the converse is true: a change in the alignment will produce a perturbation of the velocity field \mathbf{v}. Moreover, we want to include in our model also the changes of the temperature θ
- Consider a nematic liquid crystal filling a bounded connected container Ω in \mathbb{R}^{3} with "regular" boundary
- Consider a nematic liquid crystal filling a bounded connected container Ω in \mathbb{R}^{3} with "regular" boundary
- The distribution of molecular orientations in a ball $B\left(x_{0}, \delta\right), x_{0} \in \Omega$ can be represented as a probability measure μ on the unit sphere \mathbb{S}^{2} satisfying $\mu(E)=\mu(-E)$ for $E \subset \mathbb{S}^{2}$
- For a continuously distributed measure we have $d \mu(p)=\rho(p) d p$ where $d p$ is an element of the surface area on \mathbb{S}^{2} and $\rho \geq 0, \int_{\mathbb{S}^{2}} \rho(p) d p=1, \rho(p)=\rho(-p)$

- The first moment $\int_{\mathbb{S}^{2}} p d \mu(p)=0$, the second moment $M=\int_{\mathbb{S}^{2}} p \otimes p d \mu(p)$ is a symmetric nonnegative 3×3 matrix (for every $\mathbf{v} \in \mathbb{S}^{2}$, $\mathbf{v} \cdot M \cdot \mathbf{v}=\int_{\mathbb{S}^{2}}(\mathbf{v} \cdot p)^{2} d \mu(p)=<\cos ^{2} \theta>$, where θ is the angle between p and \mathbf{v}) satisfying $\operatorname{tr}(M)=1$
- The first moment $\int_{\mathbb{S}^{2}} p d \mu(p)=0$, the second moment $M=\int_{\mathbb{S}^{2}} p \otimes p d \mu(p)$ is a symmetric non-negative 3×3 matrix (for every $\mathbf{v} \in \mathbb{S}^{2}$,
$\mathbf{v} \cdot M \cdot \mathbf{v}=\int_{\mathbb{S}^{2}}(\mathbf{v} \cdot p)^{2} d \mu(p)=<\cos ^{2} \theta>$, where θ is the angle between p and \mathbf{v}) satisfying $\operatorname{tr}(M)=1$
- If the orientation of molecules is equally distributed in all directions (the distribution is isotropic) and then $\mu=\mu_{0}$, where $d \mu_{0}(p)=\frac{1}{4 \pi} d S$. In this case the second moment tensor is $M_{0}=\frac{1}{4 \pi} \int_{\mathbb{S}^{2}} p \otimes p d S=\frac{1}{3} \mathbf{1}$, because $\int_{\mathbb{S}^{2}} p_{1} p_{2} d S=0$, $\int_{\mathbb{S}^{2}} p_{1}^{2} d S=\int_{\mathbb{S}^{2}} p_{2}^{2} d S$, etc., and $\operatorname{tr}\left(M_{0}\right)=1$
- The first moment $\int_{\mathbb{S}^{2}} p d \mu(p)=0$, the second moment $M=\int_{\mathbb{S}^{2}} p \otimes p d \mu(p)$ is a symmetric non-negative 3×3 matrix (for every $\mathbf{v} \in \mathbb{S}^{2}$,
$\mathbf{v} \cdot M \cdot \mathbf{v}=\int_{\mathbb{S}^{2}}(\mathbf{v} \cdot p)^{2} d \mu(p)=<\cos ^{2} \theta>$, where θ is the angle between p and \mathbf{v}) satisfying $\operatorname{tr}(M)=1$
- If the orientation of molecules is equally distributed in all directions (the distribution is isotropic) and then $\mu=\mu_{0}$, where $d \mu_{0}(p)=\frac{1}{4 \pi} d S$. In this case the second moment tensor is $M_{0}=\frac{1}{4 \pi} \int_{\mathbb{S}^{2}} p \otimes p d S=\frac{1}{3} \mathbf{1}$, because $\int_{\mathbb{S}^{2}} p_{1} p_{2} d S=0$, $\int_{\mathbb{S}^{2}} p_{1}^{2} d S=\int_{\mathbb{S}^{2}} p_{2}^{2} d S$, etc., and $\operatorname{tr}\left(M_{0}\right)=1$
- The de Gennes \mathbb{Q}-tensor measures the deviation of M from its isotropic value

$$
\mathbb{Q}=M-M_{0}=\int_{\mathbb{S}^{2}}\left(p \otimes p-\frac{1}{3} \mathbf{1}\right) d \mu(p)
$$

The de Genes \mathbb{Q}-tensor measures the deviation of M from its isotropic value

$$
\mathbb{Q}=M-M_{0}=\int_{\mathbb{S}^{2}}\left(p \otimes p-\frac{1}{3} \mathbf{1}\right) d \mu(p)
$$

Note that (cf. [Ball, Majumdar, Molecular Crystals and Liquid Crystals (2010)])

1. $\mathbb{Q}=\mathbb{Q}^{T}$
2. $\operatorname{tr}(\mathbb{Q})=0$
3. $\mathbb{Q} \geq-\frac{1}{3} 1$

The de Gennes \mathbb{Q}-tensor measures the deviation of M from its isotropic value

$$
\mathbb{Q}=M-M_{0}=\int_{\mathbb{S}^{2}}\left(p \otimes p-\frac{1}{3} \mathbf{1}\right) d \mu(p)
$$

Note that (cf. [Ball, Majumdar, Molecular Crystals and Liquid Crystals (2010)])

1. $\mathbb{Q}=\mathbb{Q}^{T}$
2. $\operatorname{tr}(\mathbb{Q})=0$
3. $\mathbb{Q} \geq-\frac{1}{3} 1$
1.+2. implies $\mathbb{Q}=\lambda_{1} \mathbf{n}_{1} \otimes \mathbf{n}_{1}+\lambda_{2} \mathbf{n}_{2} \otimes \mathbf{n}_{2}+\lambda_{3} \mathbf{n}_{3} \otimes \mathbf{n}_{3}$, where $\left\{\mathbf{n}_{i}\right\}$ is an othonormal basis of eigenvectors of \mathbb{Q} with corresponding eigenvalues λ_{i} such that $\lambda_{1}+\lambda_{2}+\lambda_{3}=0$
2.+3. implies $-\frac{1}{3} \leq \lambda_{i} \leq \frac{2}{3}$
$\square \mathbb{Q}=0$ does not imply $\mu=\mu_{0}$ (e.g. $\mu=\frac{1}{6} \sum_{i=1}^{3}\left(\delta_{e_{i}}+\delta_{-e_{i}}\right)$)

- In the Landau-de Gennes free energy there is no a-priori bound on the eigenvalues
- In the Landau-de Gennes free energy there is no a-priori bound on the eigenvalues
- In order to naturally enforce the physical constraints in the eigenvalues of the symmetric, traceless tensors \mathbb{Q}, Ball and Majumdar have recently introduced in [Ball, Majumdar, Molecular Crystals and Liquid Crystals (2010)] a singular component
$f(\mathbb{Q})=\left\{\begin{array}{l}\inf _{\rho \in \mathcal{A}_{\mathbb{Q}}} \int_{S^{2}} \rho(\mathbf{p}) \log (\rho(\mathbf{p})) \mathrm{d} \mathbf{p} \text { if } \lambda_{i}[\mathbb{Q}] \in(-1 / 3,2 / 3), i=1,2,3, \\ \infty \text { otherwise, }\end{array}\right.$
$\mathcal{A}_{\mathbb{Q}}=\left\{\rho: S^{2} \rightarrow[0, \infty) \mid \int_{S^{2}} \rho(\mathbf{p}) \mathrm{d} \mathbf{p}=1 ; \mathbb{Q}=\int_{S^{2}}\left(\mathbf{p} \otimes \mathbf{p}-\frac{1}{3} \mathbb{I}\right) \rho(\mathbf{p}) \mathrm{d} \mathbf{p}\right\}$.
to the bulk free-energy f_{B} enforcing the eigenvalues to stay in the interval $\left(-\frac{1}{3}, \frac{2}{3}\right)$
[\Rightarrow] For the Landau-de Gennes free energy with "regular" potential, the hydrodynamic theory has been developed in [Paicu, Zarnescu, SIAM (2011) and ARMA (2012)] in the isothermal case

Our main contributions

We study the non-isothermal evolutionary system for nematic liquid crystals within the recent Ball-Majumdar \mathbb{Q}-tensorial model preserving the physical eigenvalue constraint on the traceless and symmetric matrices \mathbb{Q} :

Our main contributions

We study the non-isothermal evolutionary system for nematic liquid crystals within the recent Ball-Majumdar \mathbb{Q}-tensorial model preserving the physical eigenvalue constraint on the traceless and symmetric matrices \mathbb{Q} :

1. [E. Feireisl, E. R., G. Schimperna, A. Zarnescu], Evolution of non-isothermal Landau-de Gennes nematic liquid crystals flows with singular potential, Comm. Math. Sci., 12 (2014), 317-343

We study the non-isothermal evolutionary system for nematic liquid crystals within the recent Ball-Majumdar \mathbb{Q}-tensorial model preserving the physical eigenvalue constraint on the traceless and symmetric matrices \mathbb{Q} :

1. [E. Feireisl, E. R., G. Schimperna, A. Zarnescu], Evolution of non-isothermal Landau-de Gennes nematic liquid crystals flows with singular potential, Comm. Math. Sci., 12 (2014), 317-343
2. [E. Feireisl, E. R., G. Schimperna, A. Zarnescu], Nonisothermal nematic liquid crystal flows with the Ball-Majumdar free energy, preprint arXiv:1310.8474 (2013), 1-27, WIAS Preprint No. 1865, (2013)

We study the non-isothermal evolutionary system for nematic liquid crystals within the recent Ball-Majumdar \mathbb{Q}-tensorial model preserving the physical eigenvalue constraint on the traceless and symmetric matrices \mathbb{Q} :

1. [E. Feireisl, E. R., G. Schimperna, A. Zarnescu], Evolution of non-isothermal Landau-de Gennes nematic liquid crystals flows with singular potential, Comm. Math. Sci., 12 (2014), 317-343
2. [E. Feireisl, E. R., G. Schimperna, A. Zarnescu], Nonisothermal nematic liquid crystal flows with the Ball-Majumdar free energy, preprint arXiv:1310.8474 (2013), 1-27, WIAS Preprint No. 1865, (2013)

We work in the three-dimensional torus $\Omega \subset \mathbb{R}^{3}$ in order to avoid complications connected with boundary conditions. We consider the evolution of the following variables:

- the mean velocity field v
- the tensor field \mathbb{Q}, representing preferred (local) orientation of the crystals
- the absolute temperature θ

Energy and dissipation

- The free energy density takes the form

$$
\mathcal{F}=\frac{1}{2}|\nabla \mathbb{Q}|^{2}+f_{B}(\theta, \mathbb{Q})-\theta \log \theta-a \theta^{m}
$$

where

- $f_{B}(\theta, \mathbb{Q})=\theta f(\mathbb{Q})+G(\mathbb{Q})$ is bulk the configuration potential
- f is the convex I.s.c. and singular Ball-Majumdar potential, G is a smooth function of \mathbb{Q}
- $a \theta^{m}$ prescribes a power-like specific heat
- The free energy density takes the form

$$
\mathcal{F}=\frac{1}{2}|\nabla \mathbb{Q}|^{2}+f_{B}(\theta, \mathbb{Q})-\theta \log \theta-a \theta^{m}
$$

where

- $f_{B}(\theta, \mathbb{Q})=\theta f(\mathbb{Q})+G(\mathbb{Q})$ is bulk the configuration potential
- f is the convex I.s.c. and singular Ball-Majumdar potential, G is a smooth function of \mathbb{Q}
- $a \theta^{m}$ prescribes a power-like specific heat
- The dissipation pseudo-potential is given by

$$
\mathcal{P}=\frac{\nu(\theta)}{4}\left|\nabla \mathbf{v}+\nabla^{t} \mathbf{v}\right|^{2}+I_{\{0\}}(\operatorname{div} \mathbf{v})+\frac{\kappa(\theta)}{2 \theta}|\nabla \theta|^{2}+\frac{1}{2 \Gamma(\theta)}\left|D_{t} \mathbb{Q}\right|^{2}
$$

- ν, κ and Γ are the smooth viscosity, the heat conductivity, and the collective rotational coefficients, $D_{t} \mathbb{Q}$ is a "generalized material derivative"
- Incompressibility: I_{0} the indicator function of $\{0\}: I_{0}=0$ if $\operatorname{div} \mathbf{v}=0,+\infty$ otherwise)

We assume that the driving force governing the dynamics of the director \mathbb{Q} is of "gradient type" $\partial_{\mathbb{Q}} \mathcal{F}$:

$$
\begin{equation*}
\partial_{t} \mathbb{Q}+\mathbf{v} \cdot \nabla \mathbb{Q}-\mathbb{S}(\nabla \mathbf{v}, \mathbb{Q})=\Gamma(\theta) \mathbb{H}, \tag{eq-Q}
\end{equation*}
$$

- The left hand side is the "generalized material derivative"

$$
D_{t} \mathbb{Q}=\partial_{t} \mathbb{Q}+\mathbf{v} \cdot \nabla \mathbb{Q}-\mathbb{S}(\nabla \mathbf{v}, \mathbb{Q})
$$

- \mathbb{S} represents deformation and stretching effects of the crystal director along the flow

We assume that the driving force governing the dynamics of the director \mathbb{Q} is of "gradient type" $\partial_{\mathbb{Q}} \mathcal{F}$:

$$
\begin{equation*}
\partial_{t} \mathbb{Q}+\mathbf{v} \cdot \nabla \mathbb{Q}-\mathbb{S}(\nabla \mathbf{v}, \mathbb{Q})=\Gamma(\theta) \mathbb{H} \tag{eq-Q}
\end{equation*}
$$

- The left hand side is the "generalized material derivative"

$$
D_{t} \mathbb{Q}=\partial_{t} \mathbb{Q}+\mathbf{v} \cdot \nabla \mathbb{Q}-\mathbb{S}(\nabla \mathbf{v}, \mathbb{Q})
$$

■ \mathbb{S} represents deformation and stretching effects of the crystal director along the flow
■ The right hand side is of "gradient type" $-\mathbb{H}=\partial_{\mathbb{Q}} \mathcal{F}$, i.e.
$\square \mathbb{H}=\Delta \mathbb{Q}-\theta \frac{\partial f(\mathbb{Q})}{\partial \mathbb{Q}}-\frac{\partial G(\mathbb{Q})}{\partial \mathbb{Q}}=\Delta \mathbb{Q}-\theta \frac{\partial f(\mathbb{Q})}{\partial \mathbb{Q}}+\lambda \mathbb{Q}, \lambda \geq 0$

We assume that the driving force governing the dynamics of the director \mathbb{Q} is of "gradient type" $\partial_{\mathbb{Q}} \mathcal{F}$:

$$
\begin{equation*}
\partial_{t} \mathbb{Q}+\mathbf{v} \cdot \nabla \mathbb{Q}-\mathbb{S}(\nabla \mathbf{v}, \mathbb{Q})=\Gamma(\theta) \mathbb{H} \tag{eq-Q}
\end{equation*}
$$

- The left hand side is the "generalized material derivative"

$$
D_{t} \mathbb{Q}=\partial_{t} \mathbb{Q}+\mathbf{v} \cdot \nabla \mathbb{Q}-\mathbb{S}(\nabla \mathbf{v}, \mathbb{Q})
$$

■ \mathbb{S} represents deformation and stretching effects of the crystal director along the flow
■ The right hand side is of "gradient type" $-\mathbb{H}=\partial_{\mathbb{Q}} \mathcal{F}$, i.e.
$\square \mathbb{H}=\Delta \mathbb{Q}-\theta \frac{\partial f(\mathbb{Q})}{\partial \mathbb{Q}}-\frac{\partial G(\mathbb{Q})}{\partial \mathbb{Q}}=\Delta \mathbb{Q}-\theta \frac{\partial f(\mathbb{Q})}{\partial \mathbb{Q}}+\lambda \mathbb{Q}, \lambda \geq 0$

- $\Gamma(\theta)$ represents a collective rotational viscosity coefficient

We assume that the driving force governing the dynamics of the director \mathbb{Q} is of "gradient type" $\partial_{\mathbb{Q}} \mathcal{F}$:

$$
\begin{equation*}
\partial_{t} \mathbb{Q}+\mathbf{v} \cdot \nabla \mathbb{Q}-\mathbb{S}(\nabla \mathbf{v}, \mathbb{Q})=\Gamma(\theta) \mathbb{H} \tag{eq-Q}
\end{equation*}
$$

- The left hand side is the "generalized material derivative"

$$
D_{t} \mathbb{Q}=\partial_{t} \mathbb{Q}+\mathbf{v} \cdot \nabla \mathbb{Q}-\mathbb{S}(\nabla \mathbf{v}, \mathbb{Q})
$$

■ \mathbb{S} represents deformation and stretching effects of the crystal director along the flow

- The right hand side is of "gradient type" $-\mathbb{H}=\partial_{\mathbb{Q}} \mathcal{F}$, i.e.
$\square \mathbb{H}=\Delta \mathbb{Q}-\theta \frac{\partial f(\mathbb{Q})}{\partial \mathbb{Q}}-\frac{\partial G(\mathbb{Q})}{\partial \mathbb{Q}}=\Delta \mathbb{Q}-\theta \frac{\partial f(\mathbb{Q})}{\partial \mathbb{Q}}+\lambda \mathbb{Q}, \lambda \geq 0$
- $\Gamma(\theta)$ represents a collective rotational viscosity coefficient
- The function f represents the convex part of a singular potential of [Ball-Majumdar] type

The Ball-Majumdar potential (cf. [Ball, Majumdar (2010)]) exhibit a logarithmic divergence as the eigenvalues of \mathbb{Q} approaches $-\frac{1}{3}$ and $\frac{2}{3}$

$$
\begin{aligned}
& f(\mathbb{Q})=\left\{\begin{array}{l}
\inf _{\rho \in \mathcal{A}_{\mathbb{Q}}} \int_{S^{2}} \rho(\mathbf{p}) \log (\rho(\mathbf{p})) \mathrm{d} \mathbf{p} \text { if } \lambda_{i}[\mathbb{Q}] \in(-1 / 3,2 / 3), i=1,2,3, \\
\infty \text { otherwise, }
\end{array}\right. \\
& \mathcal{A}_{\mathbb{Q}}=\left\{\rho: S^{2} \rightarrow[0, \infty) \mid \int_{S^{2}} \rho(\mathbf{p}) \mathrm{d} \mathbf{p}=1 ; \mathbb{Q}=\int_{S^{2}}\left(\mathbf{p} \otimes \mathbf{p}-\frac{1}{3} \mathbb{I}\right) \rho(\mathbf{p}) \mathrm{d} \mathbf{p}\right\} .
\end{aligned}
$$

\Longrightarrow It explodes "logarithmically" as one of the eigenvalues of \mathbb{Q} approaches the limiting values $-1 / 3$ or $2 / 3$.

- In the context of nematic liquid crystals, we have the incompressibility constraint

$$
\operatorname{div} \mathbf{v}=0
$$

Equation of momentum

- In the context of nematic liquid crystals, we have the incompressibility constraint

$$
\operatorname{div} \mathbf{v}=0
$$

■ By virtue of Newton's second law, the balance of momentum reads

$$
\begin{equation*}
\partial_{t} \mathbf{v}+\operatorname{div}(\mathbf{v} \otimes \mathbf{v})=\operatorname{div} \sigma+\boldsymbol{g} \tag{eq-v}
\end{equation*}
$$

- In the context of nematic liquid crystals, we have the incompressibility constraint

$$
\operatorname{div} \mathbf{v}=0
$$

■ By virtue of Newton's second law, the balance of momentum reads

$$
\begin{equation*}
\partial_{t} \mathbf{v}+\operatorname{div}(\mathbf{v} \otimes \mathbf{v})=\operatorname{div} \sigma+\boldsymbol{g} \tag{eq-v}
\end{equation*}
$$

- The stress σ is given by

$$
\sigma=\frac{\nu(\theta)}{2}\left(\nabla \mathbf{v}+\nabla^{t} \mathbf{v}\right)-p \mathbb{I}+\mathbb{T}
$$

- In the context of nematic liquid crystals, we have the incompressibility constraint

$$
\operatorname{div} \mathbf{v}=0
$$

- By virtue of Newton's second law, the balance of momentum reads

$$
\begin{equation*}
\partial_{t} \mathbf{v}+\operatorname{div}(\mathbf{v} \otimes \mathbf{v})=\operatorname{div} \sigma+\boldsymbol{g} \tag{eq-v}
\end{equation*}
$$

- The stress σ is given by

$$
\sigma=\frac{\nu(\theta)}{2}\left(\nabla \mathbf{v}+\nabla^{t} \mathbf{v}\right)-p \mathbb{I}+\mathbb{T}
$$

■ The coupling term (or "extra-stress") \mathbb{T} depends both on θ and \mathbb{Q}
$\mathbb{T}=2 \xi(\mathbb{H}: \mathbb{Q})\left(\mathbb{Q}+\frac{1}{3} \mathbb{I}\right)-\xi\left[\mathbb{H}\left(\mathbb{Q}+\frac{1}{3} \mathbb{I}\right)+\left(\mathbb{Q}+\frac{1}{3} \mathbb{I}\right) \mathbb{H}\right]+(\mathbb{Q H}-\mathbb{H} \mathbb{Q})-\nabla \mathbb{Q} \odot \nabla \mathbb{Q}$
where ξ is a fixed scalar parameter

Entropy inequality

The evolution of temperature is prescribed by stating the entropy inequality

$$
\begin{gathered}
s_{t}+\mathbf{v} \cdot \nabla s-\operatorname{div}\left(\frac{\kappa(\theta)}{\theta} \nabla \theta\right) \\
\geq \frac{1}{\theta}\left(\frac{\nu(\theta)}{2}\left|\nabla \mathbf{v}+\nabla^{t} \mathbf{v}\right|^{2}+\Gamma(\theta)|\mathbb{H}|^{2}+\frac{\kappa(\theta)}{\theta}|\nabla \theta|^{2}\right) \\
\text { where } s^{\prime \prime}=-\partial_{\theta} \mathcal{F}^{\prime \prime}=-f(\mathbb{Q})+1+\log \theta+m a \theta^{m-1}
\end{gathered}
$$

The evolution of temperature is prescribed by stating the entropy inequality

$$
\begin{gathered}
s_{t}+\mathbf{v} \cdot \nabla s-\operatorname{div}\left(\frac{\kappa(\theta)}{\theta} \nabla \theta\right) \\
\geq \frac{1}{\theta}\left(\frac{\nu(\theta)}{2}\left|\nabla \mathbf{v}+\nabla^{t} \mathbf{v}\right|^{2}+\Gamma(\theta)|\mathbb{H}|^{2}+\frac{\kappa(\theta)}{\theta}|\nabla \theta|^{2}\right) \\
\text { where } s^{\prime \prime}=-\partial_{\theta} \mathcal{F}^{\prime \prime}=-f(\mathbb{Q})+1+\log \theta+m a \theta^{m-1}
\end{gathered}
$$

- The viscosity ν is smooth and bounded - without any growth condition
$\square \kappa(r)=A_{0}+A_{k} r^{k}, A_{0}, A_{k}>0, \frac{3 k+2 m}{3}>9, \frac{3}{2}<m \leq \frac{6 k}{5}$
$\square(r)=\Gamma_{0}+\Gamma_{1} r, \Gamma_{0}, \Gamma_{1}>0$

The evolution of temperature is prescribed by stating the entropy inequality

$$
\begin{gathered}
s_{t}+\mathbf{v} \cdot \nabla s-\operatorname{div}\left(\frac{\kappa(\theta)}{\theta} \nabla \theta\right) \\
\geq \frac{1}{\theta}\left(\frac{\nu(\theta)}{2}\left|\nabla \mathbf{v}+\nabla^{t} \mathbf{v}\right|^{2}+\Gamma(\theta)|\mathbb{H}|^{2}+\frac{\kappa(\theta)}{\theta}|\nabla \theta|^{2}\right) \\
\text { where } s^{\prime \prime}=-\partial_{\theta} \mathcal{F}^{\prime \prime}=-f(\mathbb{Q})+1+\log \theta+m a \theta^{m-1}
\end{gathered}
$$

- The viscosity ν is smooth and bounded - without any growth condition

■ $\kappa(r)=A_{0}+A_{k} r^{k}, A_{0}, A_{k}>0, \frac{3 k+2 m}{3}>9, \frac{3}{2}<m \leq \frac{6 k}{5}$
■ $\Gamma(r)=\Gamma_{0}+\Gamma_{1} r, \Gamma_{0}, \Gamma_{1}>0$

- The "heat" balance can be recovered by (formally) multiplying by θ
- Due to the quadratic terms, we can only interpret (eq- θ) as an inequality
- Passing from the heat equation to the entropy inequality gives rise to some information loss
- Passing from the heat equation to the entropy inequality gives rise to some information loss

■ Following an idea by [Bulíček, Feireisl, \& Málek (2009)], we can complement the system with the total energy balance

$$
\begin{gather*}
\partial_{t}\left(\frac{1}{2}|\mathbf{v}|^{2}+e\right)+\operatorname{div}\left(\left(\frac{1}{2}|\mathbf{v}|^{2}+e\right) \mathbf{v}\right)+\operatorname{div} \mathbf{q} \tag{eq-bal}\\
=\operatorname{div}(\sigma \mathbf{v})+\operatorname{div}\left(\Gamma(\theta) \nabla \mathbb{Q}:\left(\Delta \mathbb{Q}-\theta \frac{\partial f(\mathbb{Q})}{\partial \mathbb{Q}}+\lambda \theta\right)\right)+\boldsymbol{g} \cdot \mathbf{v}
\end{gather*}
$$

where $e=\mathcal{F}+s \theta$ is the internal energy

- Passing from the heat equation to the entropy inequality gives rise to some information loss

■ Following an idea by [Bulíček, Feireisl, \& Málek (2009)], we can complement the system with the total energy balance

$$
\begin{gather*}
\partial_{t}\left(\frac{1}{2}|\mathbf{v}|^{2}+e\right)+\operatorname{div}\left(\left(\frac{1}{2}|\mathbf{v}|^{2}+e\right) \mathbf{v}\right)+\operatorname{div} \mathbf{q} \tag{eq-bal}\\
=\operatorname{div}(\sigma \mathbf{v})+\operatorname{div}\left(\Gamma(\theta) \nabla \mathbb{Q}:\left(\Delta \mathbb{Q}-\theta \frac{\partial f(\mathbb{Q})}{\partial \mathbb{Q}}+\lambda \theta\right)\right)+\boldsymbol{g} \cdot \mathbf{v}
\end{gather*}
$$

where $e=\mathcal{F}+s \theta$ is the internal energy
■ Note the explicit occurrence of the pressure p "hidden" inside

$$
\sigma=\frac{\nu(\theta)}{2}\left(\nabla \mathbf{v}+\nabla^{t} \mathbf{v}\right)-p \mathbb{I}+\mathbb{T}
$$

- Passing from the heat equation to the entropy inequality gives rise to some information loss

■ Following an idea by [Bulíček, Feireisl, \& Málek (2009)], we can complement the system with the total energy balance

$$
\begin{gather*}
\partial_{t}\left(\frac{1}{2}|\mathbf{v}|^{2}+e\right)+\operatorname{div}\left(\left(\frac{1}{2}|\mathbf{v}|^{2}+e\right) \mathbf{v}\right)+\operatorname{div} \mathbf{q} \tag{eq-bal}\\
=\operatorname{div}(\sigma \mathbf{v})+\operatorname{div}\left(\Gamma(\theta) \nabla \mathbb{Q}:\left(\Delta \mathbb{Q}-\theta \frac{\partial f(\mathbb{Q})}{\partial \mathbb{Q}}+\lambda \theta\right)\right)+\boldsymbol{g} \cdot \mathbf{v}
\end{gather*}
$$

where $e=\mathcal{F}+s \theta$ is the internal energy
■ Note the explicit occurrence of the pressure p "hidden" inside

$$
\sigma=\frac{\nu(\theta)}{2}\left(\nabla \mathbf{v}+\nabla^{t} \mathbf{v}\right)-p \mathbb{I}+\mathbb{T}
$$

- To control it, assuming periodic b.c.'s is essential

Theorem: existence of global in time "Entropic solutions"

We can prove existence of at least one "Entropic solution" to system (eq-v)+(eq-Q)+(eq- $\theta)+($ eq-bal) for finite-energy initial data , namely

$$
\begin{aligned}
& \theta_{0} \in L^{\infty}(\Omega), \quad \operatorname{essinf}_{x \in \Omega} \theta_{0}(x)=\underline{\theta}>0 \\
& \mathbb{Q}_{0} \in H^{1}(\Omega), \quad f\left(\mathbb{Q}_{0}\right) \in L^{1}(\Omega) \\
& \mathbf{v}_{0} \in L^{2}(\Omega), \operatorname{div} \mathbf{v}_{0}=0
\end{aligned}
$$

Theorem: existence of global in time "Entropic solutions"

We can prove existence of at least one "Entropic solution" to system (eq-v)+(eq-Q)+(eq- $\theta)+(e q-b a l)$ for finite-energy initial data, namely

$$
\begin{aligned}
& \theta_{0} \in L^{\infty}(\Omega), \quad \operatorname{essinf}_{x \in \Omega} \theta_{0}(x)=\underline{\theta}>0 \\
& \mathbb{Q}_{0} \in H^{1}(\Omega), \quad f\left(\mathbb{Q}_{0}\right) \in L^{1}(\Omega) \\
& \mathbf{v}_{0} \in L^{2}(\Omega), \operatorname{div} \mathbf{v}_{0}=0
\end{aligned}
$$

- Notice that, if the solution is more regular, the entropy inequality becomes an equality and, multiplying it by θ we just get the standard internal energy balance

$$
\theta_{t}+\mathbf{v} \cdot \nabla_{x} \theta+\operatorname{div} \mathbf{q}=\theta\left(\partial_{t} f(\mathbb{Q})+\mathbf{u} \cdot \nabla_{x} f(\mathbb{Q})\right)+\nu(\theta)\left|\nabla_{x} \mathbf{v}+\nabla_{x}^{t} \mathbf{v}\right|^{2}+\Gamma(\theta)|\mathbb{H}|^{2}
$$

Theorem: existence of global in time "Entropic solutions"

We can prove existence of at least one "Entropic solution" to system (eq-v)+(eq-Q)+(eq- $\theta)+(e q-b a l)$ for finite-energy initial data, namely

$$
\begin{aligned}
& \theta_{0} \in L^{\infty}(\Omega), \quad \operatorname{essinf}_{x \in \Omega} \theta_{0}(x)=\underline{\theta}>0 \\
& \mathbb{Q}_{0} \in H^{1}(\Omega), \quad f\left(\mathbb{Q}_{0}\right) \in L^{1}(\Omega) \\
& \mathbf{v}_{0} \in L^{2}(\Omega), \operatorname{div} \mathbf{v}_{0}=0
\end{aligned}
$$

- Notice that, if the solution is more regular, the entropy inequality becomes an equality and, multiplying it by θ we just get the standard internal energy balance

$$
\theta_{t}+\mathbf{v} \cdot \nabla_{x} \theta+\operatorname{div} \mathbf{q}=\theta\left(\partial_{t} f(\mathbb{Q})+\mathbf{u} \cdot \nabla_{x} f(\mathbb{Q})\right)+\nu(\theta)\left|\nabla_{x} \mathbf{v}+\nabla_{x}^{t} \mathbf{v}\right|^{2}+\Gamma(\theta)|\mathbb{H}|^{2}
$$

- However, this regularity is out of reach for this model: that is why this solution notion is significative

Two-phase mixtures of fluids

- A non-isothermal model for the flow of a mixture of two
- viscous
- incompressible
- Newtonian fluids
- of equal density
- A non-isothermal model for the flow of a mixture of two
- viscous
- incompressible
- Newtonian fluids
- of equal density
- Avoid problems related to interface singularities
\Longrightarrow use a diffuse interface model
\Longrightarrow the classical sharp interface replaced by a thin interfacial region
- A partial mixing of the macroscopically immiscible fluids is allowed $\Longrightarrow \varphi$ is the order parameter, e.g. the concentration difference
- A non-isothermal model for the flow of a mixture of two
- viscous
- incompressible
- Newtonian fluids
- of equal density
- Avoid problems related to interface singularities
\Longrightarrow use a diffuse interface model
\Longrightarrow the classical sharp interface replaced by a thin interfacial region
- A partial mixing of the macroscopically immiscible fluids is allowed $\Longrightarrow \varphi$ is the order parameter, e.g. the concentration difference
- The original idea of diffuse interface model for fluids: Hohenberg and HALPERIN, '77
\Longrightarrow H-model
Later, Gurtin et AL., '96: continuum mechanical derivation based on microforces
- Models of two-phase or two-component fluids are receiving growing attention (e.g., Abels, Boyer, Garcke, Grün, Grasselli, Lowengrub, Truskinovski, ...)
- Including temperature dependence is a widely open issue
- Including temperature dependence is a widely open issue

Difficulties: getting models which are at the same time thermodynamically consistent and mathematically tractable

- Including temperature dependence is a widely open issue

Difficulties: getting models which are at the same time thermodynamically consistent and mathematically tractable

- Our idea: a weak formulation of the system as a combination of total energy balance plus entropy production inequality \Longrightarrow "Entropic formulation"

Our contribution [Eleuteri, R., Schimperna, WIAS preprint no. 1920 (2014)]

- Including temperature dependence is a widely open issue

Difficulties: getting models which are at the same time thermodynamically consistent and mathematically tractable

- Our idea: a weak formulation of the system as a combination of total energy balance plus entropy production inequality \Longrightarrow "Entropic formulation"
- This method has been recently proposed by [BuLíčEK-MÁLEK-FEIREISL, '09] for the Navier-Stokes-Fourier system and has been proved to be effective to study e.g.

■ nonisothermal models for phase transitions ([FEIREISL-PETZELTOVÁ-R., '09]) and
■ the evolution of nematic liquid crystals ([Frémond, FeireisL, R., Schimperna, Zarnescu, '12,'13])

- We want to describe the behavior of a mixture of two incompressible fluids of the same density in terms of the following state variables

■ v: macroscopic velocity (Navier-Stokes),

- p: pressure (Navier-Stokes),
- φ : order parameter (Cahn-Hilliard),
- μ : chemical potential (Cahn-Hilliard),
- θ : absolute temperature (Entropic formulation).
- We want to describe the behavior of a mixture of two incompressible fluids of the same density in terms of the following state variables
- v: macroscopic velocity (Navier-Stokes),
- p: pressure (Navier-Stokes),
- φ : order parameter (Cahn-Hilliard),
- μ : chemical potential (Cahn-Hilliard),
- θ : absolute temperature (Entropic formulation).
- We do not neglect convection and capillarity effects. We assume constant mobility and smooth configuration potential in Cahn-Hilliard. We take temperature dependent coefficients wherever possible. We assume the system being insulated from the exterior.

■ We start by specifying two functionals:

- the free energy Ψ, related to the equilibrium state of the material, and
- the dissipation pseudo-potential Φ, describing the processes leading to dissipation of energy (ie., transformation into heat)

■ We start by specifying two functionals:

- the free energy Ψ, related to the equilibrium state of the material, and
- the dissipation pseudo-potential Φ, describing the processes leading to dissipation of energy (i.e., transformation into heat)
- Then we impose the balances of momentum, configuration energy, and both of internal energy and of entropy, in terms of these functionals

■ We start by specifying two functionals:

- the free energy Ψ, related to the equilibrium state of the material, and
- the dissipation pseudo-potential Φ, describing the processes leading to dissipation of energy (i.e., transformation into heat)
- Then we impose the balances of momentum, configuration energy, and both of internal energy and of entropy, in terms of these functionals
- The thermodynamical consistency of the model is then a direct consequence of the solution notion

Modelling: the free energy

The total free energy is given as a function of the state variables $E=\left(\theta, \varphi, \nabla_{x} \varphi\right)$

$$
\Psi(E)=\int_{\Omega} \psi(E) \mathrm{d} x, \quad \psi(E)=f(\theta)-\theta \varphi+\frac{\varepsilon}{2}\left|\nabla_{x} \varphi\right|^{2}+\frac{1}{\varepsilon} F(\varphi)
$$

The total free energy is given as a function of the state variables $E=\left(\theta, \varphi, \nabla_{x} \varphi\right)$

$$
\Psi(E)=\int_{\Omega} \psi(E) \mathrm{d} x, \quad \psi(E)=f(\theta)-\theta \varphi+\frac{\varepsilon}{2}\left|\nabla_{x} \varphi\right|^{2}+\frac{1}{\varepsilon} F(\varphi)
$$

- $f(\theta)$ is related to the specific heat $c_{v}(\theta)=Q^{\prime}(\theta)$ by $Q(\theta)=f(\theta)-\theta f^{\prime}(\theta)$. In our case we need $c_{v}(\theta) \sim c_{\delta} \theta^{\delta}$ for some $\delta \in(1 / 2,1)$

The total free energy is given as a function of the state variables $E=\left(\theta, \varphi, \nabla_{x} \varphi\right)$

$$
\Psi(E)=\int_{\Omega} \psi(E) \mathrm{d} x, \quad \psi(E)=f(\theta)-\theta \varphi+\frac{\varepsilon}{2}\left|\nabla_{x} \varphi\right|^{2}+\frac{1}{\varepsilon} F(\varphi)
$$

- $f(\theta)$ is related to the specific heat $c_{v}(\theta)=Q^{\prime}(\theta)$ by $Q(\theta)=f(\theta)-\theta f^{\prime}(\theta)$. In our case we need $c_{v}(\theta) \sim c_{\delta} \theta^{\delta}$ for some $\delta \in(1 / 2,1)$

■ $\varepsilon>0$ is related to the interfacial thickness

The total free energy is given as a function of the state variables $E=\left(\theta, \varphi, \nabla_{x} \varphi\right)$

$$
\Psi(E)=\int_{\Omega} \psi(E) \mathrm{d} x, \quad \psi(E)=f(\theta)-\theta \varphi+\frac{\varepsilon}{2}\left|\nabla_{x} \varphi\right|^{2}+\frac{1}{\varepsilon} F(\varphi)
$$

- $f(\theta)$ is related to the specific heat $c_{v}(\theta)=Q^{\prime}(\theta)$ by $Q(\theta)=f(\theta)-\theta f^{\prime}(\theta)$. In our case we need $c_{v}(\theta) \sim c_{\delta} \theta^{\delta}$ for some $\delta \in(1 / 2,1)$

■ $\varepsilon>0$ is related to the interfacial thickness
■ we need $F(\varphi)$ to be the classical smooth double well potential $F(\varphi) \sim \frac{1}{4}\left(\varphi^{2}-1\right)^{2}$

The dissipation potential is taken as function of $\delta E=\left(D \mathbf{u}, \frac{D \varphi}{D t}, \nabla_{x} \theta\right)$ and E

$$
\Phi(\delta E, E)=\int_{\Omega}\left(\frac{\nu(\theta)}{2}|D \mathbf{v}|^{2}+I_{\{0\}}(\operatorname{div} \mathbf{v})+\frac{\kappa(\theta)}{2 \theta}\left|\nabla_{x} \theta\right|^{2}+\frac{\left|\nabla_{x} \mu\right|^{2}}{2}\right) \mathrm{d} x
$$

The dissipation potential is taken as function of $\delta E=\left(D \mathbf{u}, \frac{D \varphi}{D t}, \nabla_{x} \theta\right)$ and E

$$
\Phi(\delta E, E)=\int_{\Omega}\left(\frac{\nu(\theta)}{2}|D \mathbf{v}|^{2}+I_{\{0\}}(\operatorname{div} \mathbf{v})+\frac{\kappa(\theta)}{2 \theta}\left|\nabla_{x} \theta\right|^{2}+\frac{\left|\nabla_{x} \mu\right|^{2}}{2}\right) \mathrm{d} x
$$

■ $\nu=\nu(\theta)>0$ the viscosity coefficient, $\kappa=\kappa(\theta)>0$ the heat conductivity

The dissipation potential is taken as function of $\delta E=\left(D \mathbf{u}, \frac{D \varphi}{D t}, \nabla_{x} \theta\right)$ and E

$$
\Phi(\delta E, E)=\int_{\Omega}\left(\frac{\nu(\theta)}{2}|D \mathbf{v}|^{2}+I_{\{0\}}(\operatorname{div} \mathbf{v})+\frac{\kappa(\theta)}{2 \theta}\left|\nabla_{x} \theta\right|^{2}+\frac{\left|\nabla_{x} \mu\right|^{2}}{2}\right) \mathrm{d} x
$$

■ $\nu=\nu(\theta)>0$ the viscosity coefficient, $\kappa=\kappa(\theta)>0$ the heat conductivity
■ $D \mathbf{v}=\left(\nabla_{x} \mathbf{v}+\nabla_{x}^{t} \mathbf{v}\right) / 2$ the symmetric gradient

The dissipation potential is taken as function of $\delta E=\left(D \mathbf{u}, \frac{D \varphi}{D t}, \nabla_{x} \theta\right)$ and E

$$
\Phi(\delta E, E)=\int_{\Omega}\left(\frac{\nu(\theta)}{2}|D \mathbf{v}|^{2}+I_{\{0\}}(\operatorname{div} \mathbf{v})+\frac{\kappa(\theta)}{2 \theta}\left|\nabla_{x} \theta\right|^{2}+\frac{\left|\nabla_{x} \mu\right|^{2}}{2}\right) \mathrm{d} x
$$

■ $\nu=\nu(\theta)>0$ the viscosity coefficient, $\kappa=\kappa(\theta)>0$ the heat conductivity
■ $D \mathbf{v}=\left(\nabla_{x} \mathbf{v}+\nabla_{x}^{t} \mathbf{v}\right) / 2$ the symmetric gradient

- Incompressibility: I_{0} the indicator function of $\{0\}: I_{0}=0$ if $\operatorname{div} \mathbf{v}=0,+\infty$ otherwise)

The dissipation potential is taken as function of $\delta E=\left(D \mathbf{u}, \frac{D \varphi}{D t}, \nabla_{x} \theta\right)$ and E

$$
\Phi(\delta E, E)=\int_{\Omega}\left(\frac{\nu(\theta)}{2}|D \mathbf{v}|^{2}+I_{\{0\}}(\operatorname{div} \mathbf{v})+\frac{\kappa(\theta)}{2 \theta}\left|\nabla_{x} \theta\right|^{2}+\frac{\left|\nabla_{x} \mu\right|^{2}}{2}\right) \mathrm{d} x
$$

■ $\nu=\nu(\theta)>0$ the viscosity coefficient, $\kappa=\kappa(\theta)>0$ the heat conductivity
■ $D \mathbf{v}=\left(\nabla_{x} \mathbf{v}+\nabla_{x}^{t} \mathbf{v}\right) / 2$ the symmetric gradient

- Incompressibility: I_{0} the indicator function of $\{0\}: I_{0}=0$ if $\operatorname{div} \mathbf{v}=0,+\infty$ otherwise)

■ $\frac{D(\cdot)}{D t}=(\cdot)_{t}+\mathbf{v} \cdot \nabla_{x}(\cdot)$ the material derivative

The dissipation potential is taken as function of $\delta E=\left(D \mathbf{u}, \frac{D \varphi}{D t}, \nabla_{x} \theta\right)$ and E

$$
\Phi(\delta E, E)=\int_{\Omega}\left(\frac{\nu(\theta)}{2}|D \mathbf{v}|^{2}+I_{\{0\}}(\operatorname{div} \mathbf{v})+\frac{\kappa(\theta)}{2 \theta}\left|\nabla_{x} \theta\right|^{2}+\frac{\left|\nabla_{x} \mu\right|^{2}}{2}\right) \mathrm{d} x
$$

■ $\nu=\nu(\theta)>0$ the viscosity coefficient, $\kappa=\kappa(\theta)>0$ the heat conductivity
■ $D \mathbf{v}=\left(\nabla_{x} \mathbf{v}+\nabla_{x}^{t} \mathbf{v}\right) / 2$ the symmetric gradient

- Incompressibility: I_{0} the indicator function of $\{0\}: I_{0}=0$ if $\operatorname{div} \mathbf{v}=0,+\infty$ otherwise)
- $\frac{D(\cdot)}{D t}=(\cdot)_{t}+\mathbf{v} \cdot \nabla_{x}(\cdot)$ the material derivative
- the chemical potential μ is defined as $\frac{D \varphi}{D t}=\Delta \mu$
- It is obtained (at least for no-flux b.c.'s) as the following gradient-flow problem

$$
\begin{gathered}
\partial_{L_{\#}^{2}(\Omega), \frac{D \varphi}{D t}} \Phi+\partial_{L_{\#}^{2}(\Omega), \varphi_{\#}} \Psi=0 \\
\text { where } L_{\#}^{2}(\Omega)=\left\{\xi \in L^{2}(\Omega): \bar{\xi}:=|\Omega|^{-1} \int_{\Omega} \xi \mathrm{d} x=0\right\}, \varphi_{\#}=\varphi-\overline{\varphi_{0}}
\end{gathered}
$$

- It is obtained (at least for no-flux b.c.'s) as the following gradient-flow problem

$$
\partial_{L_{\#}^{2}(\Omega), \frac{D \varphi}{D t}} \Phi+\partial_{L_{\#}^{2}(\Omega), \varphi_{\#}} \Psi=0
$$

where $L_{\#}^{2}(\Omega)=\left\{\xi \in L^{2}(\Omega): \bar{\xi}:=|\Omega|^{-1} \int_{\Omega} \xi \mathrm{d} x=0\right\}, \varphi_{\#}=\varphi-\overline{\varphi_{0}}$

■ Using the form of the Free energy

$$
\Psi=\int_{\Omega}\left(f(\theta)-\theta \varphi+\frac{\varepsilon}{2}\left|\nabla_{x} \varphi\right|^{2}+\frac{1}{\varepsilon} F(\varphi)\right) \mathrm{d} x
$$

and of the Pseudopotential of dissipation

$$
\Phi=\int_{\Omega}\left(\frac{\nu(\theta)}{2}|D \mathbf{v}|^{2}+I_{\{0\}}(\operatorname{div} \mathbf{v})+\frac{\kappa(\theta)}{2 \theta}\left|\nabla_{x} \theta\right|^{2}+\frac{\left|\nabla_{x} \mu\right|^{2}}{2}\right) \mathrm{d} x
$$

we then arrive at the Cahn-Hilliard system with Neumann homs. b.c. for μ and φ

$$
\begin{equation*}
\frac{D \varphi}{D t}=\Delta \mu, \quad \mu=-\varepsilon \Delta \varphi+\frac{1}{\varepsilon} F^{\prime}(\varphi)-\theta, \quad \frac{\partial \varphi}{\partial \mathbf{n}}=\frac{\partial \mu}{\partial \mathbf{n}}=0 \text { on } \Gamma \tag{CahnHill}
\end{equation*}
$$

The Navier-Stokes system is obtained as a momentum balance by setting

$$
\frac{D \mathbf{v}}{D t}=\mathbf{v}_{t}+\operatorname{div}(\mathbf{v} \otimes \mathbf{v})=\operatorname{div} \sigma
$$

The Navier-Stokes system is obtained as a momentum balance by setting

$$
\frac{D \mathbf{v}}{D t}=\mathbf{v}_{t}+\operatorname{div}(\mathbf{v} \otimes \mathbf{v})=\operatorname{div}\left(\sigma^{d}+\sigma^{n d}\right)
$$

where the stress σ is split into its
■ dissipative part

$$
\sigma^{d}:=\frac{\partial \phi}{\partial D \mathbf{v}}=\nu(\theta) D \mathbf{v}-p \mathbb{I}, \quad \operatorname{div} \mathbf{v}=0
$$

representing kinetic energy which dissipates (i.e. is transformed into heat) due to viscosity, and its

■ non-dissipative part $\sigma^{n d}=-\varepsilon \nabla_{x} \varphi \otimes \nabla_{x} \varphi$ which is determined in agreement with Thermodynamics

The internal energy balance

The balance of internal energy takes the form

$$
(Q(\theta))_{t}+\mathbf{v} \cdot \nabla_{x} Q(\theta)+\theta \frac{D \varphi}{D t}-\operatorname{div}\left(\kappa(\theta) \nabla_{x} \theta\right)=\nu(\theta)|D \mathbf{v}|^{2}+\left|\nabla_{x} \mu\right|^{2}
$$

where $Q(\theta)=f(\theta)-\theta f^{\prime}(\theta)$ and $Q^{\prime}(\theta)=: c_{v}(\theta)$

The internal energy balance

The balance of internal energy takes the form

$$
(Q(\theta))_{t}+\mathbf{v} \cdot \nabla_{x} Q(\theta)+\theta \frac{D \varphi}{D t}-\operatorname{div}\left(\kappa(\theta) \nabla_{x} \theta\right)=\nu(\theta)|D \mathbf{v}|^{2}+\left|\nabla_{x} \mu\right|^{2}
$$

where $Q(\theta)=f(\theta)-\theta f^{\prime}(\theta)$ and $Q^{\prime}(\theta)=: c_{v}(\theta)$

The dissipation terms on the right hand side are in perfect agreement with the
Pseudopotential of dissipation

$$
\Phi=\int_{\Omega}\left(\frac{\nu(\theta)}{2}|D \mathbf{v}|^{2}+I_{\{0\}}(\operatorname{div} \mathbf{v})+\frac{\kappa(\theta)}{2 \theta}\left|\nabla_{x} \theta\right|^{2}+\frac{\left|\nabla_{x} \mu\right|^{2}}{2}\right) \mathrm{d} x
$$

Following [BULÍčEK, FEIREISL, \& MÁLEK], we replace the pointwise internal energy balance by the total energy balance

$$
\begin{align*}
\left(\partial_{t}\right. & \left.+\mathbf{v} \cdot \nabla_{x}\right)\left(\frac{|\mathbf{v}|^{2}}{2}+e\right)+\operatorname{div}\left(p \mathbf{v}-\kappa(\theta) \nabla_{x} \theta-(\nu(\theta) D \mathbf{v}) \mathbf{v}\right) \\
& =\operatorname{div}\left(\varphi_{t} \nabla_{x} \varphi+\mu \nabla_{x} \mu\right) \tag{energy}
\end{align*}
$$

with the internal energy

$$
e=F(\varphi)+\frac{1}{2}\left|\nabla_{x} \varphi\right|^{2}+Q(\theta) \quad Q^{\prime}(\theta)=c_{v}(\theta)
$$

Following [BULÍčEK, FEIREISL, \& MÁLEK], we replace the pointwise internal energy balance by the total energy balance

$$
\begin{aligned}
\left(\partial_{t}\right. & \left.+\mathbf{v} \cdot \nabla_{x}\right)\left(\frac{|\mathbf{v}|^{2}}{2}+e\right)+\operatorname{div}\left(p \mathbf{v}-\kappa(\theta) \nabla_{x} \theta-(\nu(\theta) D \mathbf{v}) \mathbf{v}\right) \\
& =\operatorname{div}\left(\varphi_{t} \nabla_{x} \varphi+\mu \nabla_{x} \mu\right)
\end{aligned}
$$

with the internal energy

$$
e=F(\varphi)+\frac{1}{2}\left|\nabla_{x} \varphi\right|^{2}+Q(\theta) \quad Q^{\prime}(\theta)=c_{v}(\theta)
$$

and the entropy inequality

$$
\begin{aligned}
& (\Lambda(\theta)+\varphi)_{t}+\mathbf{v} \cdot \nabla_{x}(\Lambda(\theta)+\varphi)-\operatorname{div}\left(\frac{\kappa(\theta) \nabla_{x} \theta}{\theta}\right) \\
& \geq \frac{\nu(\theta)}{\theta}|D \mathbf{v}|^{2}+\frac{1}{\theta}\left|\nabla_{x} \mu\right|^{2}+\frac{\kappa(\theta)}{\theta^{2}}\left|\nabla_{x} \theta\right|^{2}, \quad \text { where } \quad \Lambda(\theta)=\int_{1}^{\theta} \frac{c_{v}(s)}{s} \mathrm{~d} s \sim \theta^{\delta}
\end{aligned}
$$

- a weak form of the momentum balance (in distributional sense)

$$
\mathbf{v}_{t}+\mathbf{v} \cdot \nabla_{x} \mathbf{v}+\nabla_{x} p=\operatorname{div}(\nu(\theta) D \mathbf{v})-\operatorname{div}\left(\nabla_{x} \varphi \otimes \nabla_{x} \varphi\right), \quad \operatorname{div} \mathbf{v}=0
$$

- a weak form of the momentum balance (in distributional sense)

$$
\mathbf{v}_{t}+\mathbf{v} \cdot \nabla_{x} \mathbf{v}+\nabla_{x} p=\operatorname{div}(\nu(\theta) D \mathbf{v})-\operatorname{div}\left(\nabla_{x} \varphi \otimes \nabla_{x} \varphi\right), \quad \operatorname{div} \mathbf{v}=0
$$

- the Cahn-Hilliard system in $H^{1}(\Omega)^{\prime}$

$$
\varphi_{t}+\mathbf{v} \cdot \nabla_{x} \varphi=\Delta \mu, \quad \mu=-\Delta \varphi+F^{\prime}(\varphi)-\theta ;
$$

- a weak form of the momentum balance (in distributional sense)

$$
\mathbf{v}_{t}+\mathbf{v} \cdot \nabla_{x} \mathbf{v}+\nabla_{x} p=\operatorname{div}(\nu(\theta) D \mathbf{v})-\operatorname{div}\left(\nabla_{x} \varphi \otimes \nabla_{x} \varphi\right), \quad \operatorname{div} \mathbf{v}=0
$$

- the Cahn-Hilliard system in $H^{1}(\Omega)^{\prime}$

$$
\varphi_{t}+\mathbf{v} \cdot \nabla_{x} \varphi=\Delta \mu, \quad \mu=-\Delta \varphi+F^{\prime}(\varphi)-\theta ;
$$

- a weak form of the total energy balance (in distributional sense)

$$
\begin{aligned}
& \partial_{t}\left(\frac{1}{2}|\mathbf{v}|^{2}+e\right)+\mathbf{v} \cdot \nabla_{x}\left(\frac{1}{2}|\mathbf{v}|^{2}+e\right)+\operatorname{div}(p \mathbf{v}+\mathbf{q}-\mathbb{S} \mathbf{u}) \\
& -\operatorname{div}\left(\varphi_{t} \nabla_{x} \varphi+\mu \nabla_{x} \mu\right)=0 \quad \text { where } \quad e=F(\varphi)+\frac{1}{2}\left|\nabla_{x} \varphi\right|^{2}+\int_{1}^{\theta} c_{v}(s) \mathrm{d} s
\end{aligned}
$$

- a weak form of the momentum balance (in distributional sense)

$$
\mathbf{v}_{t}+\mathbf{v} \cdot \nabla_{x} \mathbf{v}+\nabla_{x} p=\operatorname{div}(\nu(\theta) D \mathbf{v})-\operatorname{div}\left(\nabla_{x} \varphi \otimes \nabla_{x} \varphi\right), \quad \operatorname{div} \mathbf{v}=0
$$

- the Cahn-Hilliard system in $H^{1}(\Omega)^{\prime}$

$$
\varphi_{t}+\mathbf{v} \cdot \nabla_{x} \varphi=\Delta \mu, \quad \mu=-\Delta \varphi+F^{\prime}(\varphi)-\theta ;
$$

- a weak form of the total energy balance (in distributional sense)

$$
\begin{aligned}
& \partial_{t}\left(\frac{1}{2}|\mathbf{v}|^{2}+e\right)+\mathbf{v} \cdot \nabla_{x}\left(\frac{1}{2}|\mathbf{v}|^{2}+e\right)+\operatorname{div}(p \mathbf{v}+\mathbf{q}-\mathbb{S} \mathbf{u}) \\
& -\operatorname{div}\left(\varphi_{t} \nabla_{x} \varphi+\mu \nabla_{x} \mu\right)=0 \quad \text { where } \quad e=F(\varphi)+\frac{1}{2}\left|\nabla_{x} \varphi\right|^{2}+\int_{1}^{\theta} c_{v}(s) \mathrm{d} s
\end{aligned}
$$

■ the weak form of the entropy production inequality

$$
\begin{aligned}
& (\Lambda(\theta)+\varphi)_{t}+\mathbf{v} \cdot \nabla_{x}(\Lambda(\theta))+\mathbf{v} \cdot \nabla_{x} \varphi-\operatorname{div}\left(\frac{\kappa(\theta) \nabla_{x} \theta}{\theta}\right) \\
& \geq \frac{\nu(\theta)}{\theta}|D \mathbf{v}|^{2}+\frac{1}{\theta}\left|\nabla_{x} \mu\right|^{2}+\frac{\kappa(\theta)}{\theta^{2}}\left|\nabla_{x} \theta\right|^{2}, \quad \text { where } \quad \Lambda(\theta)=\int_{1}^{\theta} \frac{c_{v}(s)}{s} \mathrm{~d} s
\end{aligned}
$$

- In order to get a tractable system in 3D, we need to specify assumptions on coefficients in a careful way:
- In order to get a tractable system in 3D, we need to specify assumptions on coefficients in a careful way:

■ The viscosity $\nu(\theta)$ is assumed smooth and bounded

- The specific heat $c_{v}(\theta) \sim \theta^{\delta}, 1 / 2<\delta<1$

■ The heat conductivity $\kappa(\theta) \sim 1+\theta^{\beta}, \beta \geq 2$

- The potential $F(\varphi)=\frac{1}{4}\left(\varphi^{2}-1\right)^{2}$
- In order to get a tractable system in 3D, we need to specify assumptions on coefficients in a careful way:
- The viscosity $\nu(\theta)$ is assumed smooth and bounded
- The specific heat $c_{v}(\theta) \sim \theta^{\delta}, 1 / 2<\delta<1$

■ The heat conductivity $\kappa(\theta) \sim 1+\theta^{\beta}, \beta \geq 2$

- The potential $F(\varphi)=\frac{1}{4}\left(\varphi^{2}-1\right)^{2}$
- Concerning B.C.'s, our results are proved for no-flux conditions for θ, φ, and μ and complete slip conditions for \mathbf{v}

$$
\begin{aligned}
& \mathbf{v} \cdot \mathbf{n}_{\left.\right|_{\Gamma}}=0 \quad \text { (the fluid cannot exit } \Omega, \text { it can move tangentially to } \Gamma \text {) } \\
& {[\mathbf{S n}] \times \mathbf{n}_{\Gamma \Gamma}=0, \quad \text { where } \mathbb{S}=\nu(\theta) D \mathbf{v} \quad \text { (exclude friction effects with the boundary) }}
\end{aligned}
$$

They can be easily extended to the case of periodic B.C.'s for all unknowns

Existence of global in time "Entropic solutions"

Theorem

We can prove existence of at least one global in time "Entropic solution" $(\mathbf{v}, \varphi, \mu, \theta)$

$$
\begin{aligned}
& \mathbf{v} \in L^{\infty}\left(0, T ; L^{2}\left(\Omega ; \mathbb{R}^{3}\right)\right) \cap L^{2}\left(0, T ; \mathbf{V}_{\mathbf{n}}\right) \\
& \varphi \in L^{\infty}\left(0, T ; H^{1}(\Omega)\right) \cap L^{2}\left(0, T ; H^{3}(\Omega)\right) \cap H^{1}\left(0, T ; H^{1}(\Omega)^{\prime}\right) \\
& \mu \in L^{2}\left(0, T ; H^{1}(\Omega)\right) \cap L^{\frac{14}{5}}((0, T) \times \Omega) \\
& \theta \in L^{\infty}\left(0, T ; L^{\delta+1}(\Omega)\right) \cap L^{\beta}\left(0, T ; L^{3 \beta}(\Omega)\right) \cap L^{2}\left(0, T ; H^{1}(\Omega)\right) \\
& \theta>0 \text { a.e. in }(0, T) \times \Omega, \quad \log \theta \in L^{2}\left(0, T ; H^{1}(\Omega)\right)
\end{aligned}
$$

to system given by (momentum), (CahnHill), (entropy) and (energy), in distributional sense and for finite-energy initial data

$$
\mathbf{v}_{0} \in L^{2}(\Omega), \operatorname{div} \mathbf{v}_{0}=0, \quad \varphi_{0} \in H^{1}(\Omega), \quad \theta_{0} \in L^{\delta+1}(\Omega), \quad \theta_{0}>0 \text { a.e. }
$$

Damage phenomena

State variables:

- the absolute temperature θ
- the (small) displacement variables $\mathbf{u}\left(\varepsilon_{i j}(\mathbf{u}):=\left(u_{i, j}+u_{j, i}\right) / 2, i, j=1,2,3\right)$
- the damage parameter $\chi \in[0,1]: \chi=0$ (completely damaged), $\chi=1$ (completely undamaged)
ruled by

State variables:

- the absolute temperature θ
- the (small) displacement variables $\mathbf{u}\left(\varepsilon_{i j}(\mathbf{u}):=\left(u_{i, j}+u_{j, i}\right) / 2, i, j=1,2,3\right)$
- the damage parameter $\chi \in[0,1]: \chi=0$ (completely damaged), $\chi=1$ (completely undamaged)
ruled by

$$
\begin{aligned}
& \left.\theta_{t}+\chi_{t} \theta+\rho \theta \operatorname{div} \mathbf{u}_{t}-\operatorname{div}(\mathrm{K}(\theta) \nabla \theta)\right)=g+a(\chi)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+\left|\chi_{t}\right|^{2} \\
& \mathbf{u}_{t t}-\operatorname{div}\left(a(\chi) \varepsilon\left(\mathbf{u}_{t}\right)+b(\chi) \varepsilon(\mathbf{u})-\rho \theta \mathbf{1}\right)=\mathbf{f} \\
& \chi_{t}+\partial I_{(-\infty, 0]}\left(\chi_{t}\right)-\operatorname{div}\left(|\nabla \chi|^{p-2} \nabla \chi\right)+W^{\prime}(\chi) \ni-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta
\end{aligned}
$$

State variables:

- the absolute temperature θ
- the (small) displacement variables $\mathbf{u}\left(\varepsilon_{i j}(\mathbf{u}):=\left(u_{i, j}+u_{j, i}\right) / 2, i, j=1,2,3\right)$
- the damage parameter $\chi \in[0,1]: \chi=0$ (completely damaged), $\chi=1$ (completely undamaged)
ruled by

$$
\begin{aligned}
& \left.\theta_{t}+\chi_{t} \theta+\rho \theta \operatorname{div} \mathbf{u}_{t}-\operatorname{div}(\mathrm{K}(\theta) \nabla \theta)\right)=g+a(\chi)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+\left|\chi_{t}\right|^{2} \\
& \mathbf{u}_{t t}-\operatorname{div}\left(a(\chi) \varepsilon\left(\mathbf{u}_{t}\right)+b(\chi) \varepsilon(\mathbf{u})-\rho \theta \mathbf{1}\right)=\mathbf{f} \\
& \chi_{t}+\partial I_{(-\infty, 0]}\left(\chi_{t}\right)-\operatorname{div}\left(|\nabla \chi|^{p-2} \nabla \chi\right)+W^{\prime}(\chi) \ni-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta
\end{aligned}
$$

- Unidirectional: $I_{(-\infty, 0]}\left(\chi_{t}\right)=0$ if $\chi_{t} \in(-\infty, 0], I_{(-\infty, 0]}\left(\chi_{t}\right)=+\infty$ otherwise;
- p-Laplacian: $-\Delta_{p}: W^{1, p}(\Omega) \rightarrow W^{1, p}(\Omega)^{*}(p>d$ for this presentation);
- The double-obstacle: $W=\widehat{\beta}+\widehat{\gamma}, \widehat{\gamma} \in C^{2}(\mathbb{R}), \widehat{\beta}$ proper, convex, l.s.c. (e.g.
$\left.\widehat{\beta}=I_{[0,1]}\right)$

Our contribution [E.Rocca, Riccarda Rossi (in preparation)]

- GLOBAL - in time - existence result for the FULL PDE system displaying the high order dissipative terms on the right hand in side in the temperature equation:

$$
\left.\theta_{t}+\chi_{t} \theta+\rho \theta \operatorname{div} \mathbf{u}_{t}-\operatorname{div}(\mathrm{K}(\theta) \nabla \theta)\right)=g+a(\chi)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+\left|\chi_{t}\right|^{2}
$$

- GLOBAL - in time - existence result for the FULL PDE system displaying the high order dissipative terms on the right hand in side in the temperature equation:

$$
\left.\theta_{t}+\chi_{t} \theta+\rho \theta \operatorname{div} \mathbf{u}_{t}-\operatorname{div}(\mathrm{K}(\theta) \nabla \theta)\right)=g+a(\chi)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+\left|\chi_{t}\right|^{2}
$$

\Rightarrow These terms were neglected in most of the past contribution in the literature or considered only in the 1D case or in the framework of local - in time - existence (cf., e.g., [E. Bonetti, G. Bonfanti (2007)], [P. Krečí, J. Sprekels, U. Stefanelli (2003)], [F. Luterotti and U. Stefanelli (2002)], [E.R., R. Rossi (2013)])

The free-energy cf. [M. Frémond, Phase Change in Mechanics, Lecture Notes of UMI,
Springer-Verlag, 2012]

$$
\mathcal{F}=\int_{\Omega}\left(\theta(1-\log \theta)+b(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\frac{|\nabla \chi|^{p}}{p}+W(\chi)-\theta \chi-\rho \theta \operatorname{tr}(\varepsilon(\mathbf{u}))\right) \mathrm{d} x
$$

The free-energy cf. [M. Frémond, Phase Change in Mechanics, Lecture Notes of UMI,
Springer-Verlag, 2012]

$$
\mathcal{F}=\int_{\Omega}\left(\theta(1-\log \theta)+b(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\frac{|\nabla \chi|^{p}}{p}+W(\chi)-\theta \chi-\rho \theta \operatorname{tr}(\varepsilon(\mathbf{u}))\right) \mathrm{d} x
$$

■ e.g. $b(\chi)=\chi$; the stiffness of the material decreases as $\chi \searrow 0$ (complete damage)

The free-energy cf. [M. Frémond, Phase Change in Mechanics, Lecture Notes of UMI,
Springer-Verlag, 2012]

$$
\mathcal{F}=\int_{\Omega}\left(\theta(1-\log \theta)+b(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\frac{|\nabla \chi|^{p}}{p}+W(\chi)-\theta \chi-\rho \theta \operatorname{tr}(\varepsilon(\mathbf{u}))\right) \mathrm{d} x
$$

■ e.g. $b(\chi)=\chi$; the stiffness of the material decreases as $\chi \searrow 0$ (complete damage)
■ $W=\widehat{\beta}+\widehat{\gamma}, \widehat{\gamma} \in C^{2}(\mathbb{R}), \widehat{\beta}$ proper, convex, I.s.c. (e.g. $\widehat{\beta}=I_{[0,1]}$)

The free-energy cf. [M. Frémond, Phase Change in Mechanics, Lecture Notes of UMI,
Springer-Verlag, 2012]

$$
\mathcal{F}=\int_{\Omega}\left(\theta(1-\log \theta)+b(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\frac{|\nabla \chi|^{p}}{p}+W(\chi)-\theta \chi-\rho \theta \operatorname{tr}(\varepsilon(\mathbf{u}))\right) \mathrm{d} x
$$

- e.g. $b(\chi)=\chi$; the stiffness of the material decreases as $\chi \searrow 0$ (complete damage)
$\square W=\widehat{\beta}+\widehat{\gamma}, \widehat{\gamma} \in C^{2}(\mathbb{R}), \widehat{\beta}$ proper, convex, l.s.c. (e.g. $\left.\widehat{\beta}=I_{[0,1]}\right)$
The pseudo-potential of dissipation

$$
\mathcal{P}=\frac{\mathrm{K}(\theta)}{2}|\nabla \theta|^{2}+\frac{1}{2}\left|\chi_{t}\right|^{2}+a(\chi) \frac{\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}}{2}+I_{(-\infty, 0]}\left(\chi_{t}\right)
$$

The free-energy cf. [M. Frémond, Phase Change in Mechanics, Lecture Notes of UMI,
Springer-Verlag, 2012]

$$
\mathcal{F}=\int_{\Omega}\left(\theta(1-\log \theta)+b(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\frac{|\nabla \chi|^{p}}{p}+W(\chi)-\theta \chi-\rho \theta \operatorname{tr}(\varepsilon(\mathbf{u}))\right) \mathrm{d} x
$$

■ e.g. $b(\chi)=\chi$; the stiffness of the material decreases as $\chi \searrow 0$ (complete damage)

- $W=\widehat{\beta}+\widehat{\gamma}, \widehat{\gamma} \in C^{2}(\mathbb{R}), \widehat{\beta}$ proper, convex, I.s.c. (egg. $\left.\widehat{\beta}=I_{[0,1]}\right)$

The pseudo-potential of dissipation

$$
\mathcal{P}=\frac{\mathrm{K}(\theta)}{2}|\nabla \theta|^{2}+\frac{1}{2}\left|\chi_{t}\right|^{2}+a(\chi) \frac{\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}}{2}+I_{(-\infty, 0]}\left(\chi_{t}\right)
$$

- e.g. $a(\chi)=\chi$: no viscosty when the material is completely damaged
- K is the heat conductivity, $\mathrm{K}(\theta) \geq c_{1}\left(1+\nu \theta^{k}\right)$ for some $c_{1}, \nu>0, k>1$
- $I_{(-\infty, 0]}\left(\chi_{t}\right)=0$ if $\chi_{t} \in(-\infty, 0], I_{(-\infty, 0]}\left(\chi_{t}\right)=+\infty$ otherwise (irreversibility of the damage)

The momentum equation

$$
\begin{gathered}
\mathbf{u}_{t t}-\operatorname{div} \sigma=\mathbf{f} \quad\left(\sigma=\sigma^{d}+\sigma^{n d}=\frac{\partial \mathcal{P}}{\partial \varepsilon\left(\mathbf{u}_{t}\right)}+\frac{\partial \mathcal{F}}{\partial \varepsilon(\mathbf{u})}\right) \quad \text { becomes } \\
\mathbf{u}_{t t}-\operatorname{div}\left(a(\chi) \varepsilon\left(\mathbf{u}_{t}\right)+b(\chi) \varepsilon(\mathbf{u})-\rho \theta \mathbf{1}\right)=\mathbf{f}
\end{gathered}
$$

The momentum equation

$$
\begin{gathered}
\mathbf{u}_{t t}-\operatorname{div} \sigma=\mathbf{f} \quad\left(\sigma=\sigma^{d}+\sigma^{n d}=\frac{\partial \mathcal{P}}{\partial \varepsilon\left(\mathbf{u}_{t}\right)}+\frac{\partial \mathcal{F}}{\partial \varepsilon(\mathbf{u})}\right) \quad \text { becomes } \\
\mathbf{u}_{t t}-\operatorname{div}\left(a(\chi) \varepsilon\left(\mathbf{u}_{t}\right)+b(\chi) \varepsilon(\mathbf{u})-\rho \theta \mathbf{1}\right)=\mathbf{f}
\end{gathered}
$$

The "standard" principle of virtual powers

$$
\begin{gathered}
B-\operatorname{div} \mathbf{H}=0 \quad\left(B=\frac{\partial \mathcal{P}}{\partial \chi_{t}}+\frac{\partial \mathcal{F}}{\partial \chi}, \mathbf{H}=\frac{\partial \mathcal{F}}{\partial \nabla \chi}\right) \quad \text { becomes } \\
\chi_{t}+\partial I_{(-\infty, 0]}\left(\chi_{t}\right)-\Delta_{p} \chi+W^{\prime}(\chi) \ni-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta
\end{gathered}
$$

The momentum equation

$$
\begin{gathered}
\mathbf{u}_{t t}-\operatorname{div} \sigma=\mathbf{f} \quad\left(\sigma=\sigma^{d}+\sigma^{n d}=\frac{\partial \mathcal{P}}{\partial \varepsilon\left(\mathbf{u}_{t}\right)}+\frac{\partial \mathcal{F}}{\partial \varepsilon(\mathbf{u})}\right) \quad \text { becomes } \\
\mathbf{u}_{t t}-\operatorname{div}\left(a(\chi) \varepsilon\left(\mathbf{u}_{t}\right)+b(\chi) \varepsilon(\mathbf{u})-\rho \theta \mathbf{1}\right)=\mathbf{f}
\end{gathered}
$$

The "standard" principle of virtual powers

$$
\begin{gathered}
B-\operatorname{div} \mathbf{H}=0 \quad\left(B=\frac{\partial \mathcal{P}}{\partial \chi_{t}}+\frac{\partial \mathcal{F}}{\partial \chi}, \mathbf{H}=\frac{\partial \mathcal{F}}{\partial \nabla \chi}\right) \quad \text { becomes } \\
\chi_{t}+\partial I_{(-\infty, 0]}\left(\chi_{t}\right)-\Delta_{p} \chi+W^{\prime}(\chi) \ni-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta
\end{gathered}
$$

The internal energy balance

$$
e_{t}+\operatorname{div} \mathbf{q}=g+\sigma: \varepsilon\left(\mathbf{u}_{t}\right)+B \chi_{t}+\mathbf{H} \cdot \nabla \chi_{t} \quad\left(e=\mathcal{F}-\theta \frac{\partial \mathcal{F}}{\partial \theta}, \quad \mathbf{q}=\frac{\partial \mathcal{P}}{\partial \nabla \theta}\right)
$$

becomes

$$
\theta_{t}+\chi_{t} \theta+\rho \theta \operatorname{div} \mathbf{u}_{t}-\operatorname{div}(\mathrm{K}(\theta) \nabla \theta)=g+a(\chi)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+\left|\chi_{t}\right|^{2}
$$

[The last result] [E.R., R. Rossi, preprint arXiv:1205.3578v2 (2012), to appear on M3AS]: global existence result in 3D using a suitable notion of solution and without enforcing the separation property, i.e. allowing for degeneracy: $a(\chi)=b(\chi)=\chi$, but always within the small perturbations assumption, i.e. neglecting the quadratic terms on the r.h.s. in the internal energy balance
[Our goals] We restric to the non-degenerate case \Longrightarrow replace a and b by $a+\delta, b+\delta$ in the momentum balance:

$$
\mathbf{u}_{t t}-\operatorname{div}\left((a(\chi)+\delta) \varepsilon\left(\mathbf{u}_{t}\right)+(b(\chi)+\delta) \varepsilon(\mathbf{u})-\rho \theta \mathbf{1}\right)=\mathbf{f} \quad \text { for } \delta>0
$$

[The last result] [E.R., R. Rossi, preprint arXiv:1205.3578v2 (2012), to appear on M3AS]: global existence result in 3D using a suitable notion of solution and without enforcing the separation property, i.e. allowing for degeneracy: $a(\chi)=b(\chi)=\chi$, but always within the small perturbations assumption, i.e. neglecting the quadratic terms on the r.h.s. in the internal energy balance
[Our goals] We restric to the non-degenerate case \Longrightarrow replace a and b by $a+\delta, b+\delta$ in the momentum balance:

$$
\mathbf{u}_{t t}-\operatorname{div}\left((a(\chi)+\delta) \varepsilon\left(\mathbf{u}_{t}\right)+(b(\chi)+\delta) \varepsilon(\mathbf{u})-\rho \theta \mathbf{1}\right)=\mathbf{f} \quad \text { for } \delta>0
$$

In order to handle

- the high order dissipative terms in the θ-equation
- the quadratic nonlinearity in the χ-equation
[The last result] [E.R., R. Rossi, preprint arXiv:1205.3578v2 (2012), to appear on M3AS]: global existence result in 3D using a suitable notion of solution and without enforcing the separation property, i.e. allowing for degeneracy: $a(\chi)=b(\chi)=\chi$, but always within the small perturbations assumption, i.e. neglecting the quadratic terms on the r.h.s. in the internal energy balance
[Our goals] We restric to the non-degenerate case \Longrightarrow replace a and b by $a+\delta, b+\delta$ in the momentum balance:

$$
\mathbf{u}_{t t}-\operatorname{div}\left((a(\chi)+\delta) \varepsilon\left(\mathbf{u}_{t}\right)+(b(\chi)+\delta) \varepsilon(\mathbf{u})-\rho \theta \mathbf{1}\right)=\mathbf{f} \quad \text { for } \delta>0
$$

In order to handle

- the high order dissipative terms in the θ-equation
- the quadratic nonlinearity in the χ-equation
we need a suitable weak formulation

Hypothesis (I).

The function $\mathrm{K}:[0,+\infty) \rightarrow(0,+\infty)$ is continuous and

$$
\exists c_{0}, c_{1}, \nu>0, k>1: \quad \forall \theta \in[0,+\infty) \quad c_{0}\left(1+\theta^{k}\right) \leq \mathrm{K}(\theta) \leq c_{1}\left(1+\nu \theta^{k}\right)
$$

Hypothesis (I).

The function $\mathrm{K}:[0,+\infty) \rightarrow(0,+\infty)$ is continuous and

$$
\exists c_{0}, c_{1}, \nu>0, k>1: \forall \theta \in[0,+\infty) \quad c_{0}\left(1+\theta^{k}\right) \leq \mathrm{K}(\theta) \leq c_{1}\left(1+\nu \theta^{k}\right)
$$

Hypothesis (II). $a \in \mathrm{C}^{1}(\mathbb{R}), b \in \mathrm{C}^{2}(\mathbb{R})$ are such that $a(x), b(x) \geq 0$, for all $x \in \mathbb{R}$

Hypothesis (I).

The function $\mathrm{K}:[0,+\infty) \rightarrow(0,+\infty)$ is continuous and

$$
\exists c_{0}, c_{1}, \nu>0, k>1: \forall \theta \in[0,+\infty) \quad c_{0}\left(1+\theta^{k}\right) \leq \mathrm{K}(\theta) \leq c_{1}\left(1+\nu \theta^{k}\right)
$$

Hypothesis (II). $a \in \mathrm{C}^{1}(\mathbb{R}), b \in \mathrm{C}^{2}(\mathbb{R})$ are such that $a(x), b(x) \geq 0$, for all $x \in \mathbb{R}$
Hypothesis (III). $W=\widehat{\beta}+\widehat{\gamma}$, where

$$
\begin{aligned}
& \widehat{\beta}: \operatorname{dom}(\widehat{\beta}) \rightarrow \mathbb{R} \text { is proper, I.s.c., convex;, } \operatorname{dom}(\widehat{\beta}) \subseteq[0,+\infty) \text { is bounded, } \\
& \widehat{\gamma} \in \mathrm{C}^{2}(\mathbb{R}), \quad \exists c_{w}, c_{w}^{\prime}>0: W(r) \geq c_{w} r^{2}-c_{w}^{\prime} \quad \forall r \in \operatorname{dom}(\widehat{\beta})
\end{aligned}
$$

Hereafter, we shall denote by $\beta=\partial \widehat{\beta}$ the subdifferential of $\widehat{\beta}$, and set $\gamma:=\widehat{\gamma}^{\prime}$

Hypothesis (I).

The function $\mathrm{K}:[0,+\infty) \rightarrow(0,+\infty)$ is continuous and

$$
\exists c_{0}, c_{1}, \nu>0, k>1: \forall \theta \in[0,+\infty) \quad c_{0}\left(1+\theta^{k}\right) \leq \mathrm{K}(\theta) \leq c_{1}\left(1+\nu \theta^{k}\right)
$$

Hypothesis (II). $a \in \mathrm{C}^{1}(\mathbb{R}), b \in \mathrm{C}^{2}(\mathbb{R})$ are such that $a(x), b(x) \geq 0$, for all $x \in \mathbb{R}$
Hypothesis (III). $W=\widehat{\beta}+\widehat{\gamma}$, where

$$
\begin{aligned}
& \widehat{\beta}: \operatorname{dom}(\widehat{\beta}) \rightarrow \mathbb{R} \text { is proper, I.s.c., convex; } \operatorname{dom}(\widehat{\beta}) \subseteq[0,+\infty) \text { is bounded, } \\
& \widehat{\gamma} \in \mathrm{C}^{2}(\mathbb{R}), \quad \exists c_{w}, c_{w}^{\prime}>0: W(r) \geq c_{w} r^{2}-c_{w}^{\prime} \quad \forall r \in \operatorname{dom}(\widehat{\beta})
\end{aligned}
$$

Hereafter, we shall denote by $\beta=\partial \widehat{\beta}$ the subdifferential of $\widehat{\beta}$, and set $\gamma:=\widehat{\gamma}^{\prime}$
Hypothesis (IV).

$$
\begin{aligned}
& \mathbf{f} \in L^{2}\left(0, T ; L^{2}(\Omega)\right) \\
& g \in L^{1}\left(0, T ; L^{1}(\Omega)\right) \cap L^{2}\left(0, T ; H^{1}(\Omega)^{\prime}\right), \quad g \geq 0 \quad \text { a.e. in } \Omega \times(0, T)
\end{aligned}
$$

and that the initial data comply with

$$
\begin{aligned}
& \theta_{0} \in L^{1}(\Omega), \quad \exists \theta_{*}>0: \quad \min _{\Omega} \theta_{0} \geq \theta_{*}>0, \quad \log \theta_{0} \in L^{1}(\Omega) \\
& \mathbf{u}_{0} \in H_{0}^{2}(\Omega), \quad \mathbf{v}_{0} \in L^{2}\left(\Omega ; \mathbb{R}^{d}\right), \quad \chi_{0} \in W^{1, p}(\Omega), \quad \widehat{\beta}\left(\chi_{0}\right) \in L^{1}(\Omega)
\end{aligned}
$$

Existence of "Entropic solutions"

Given $\delta>0$ there exists (measurable) functions

$$
\begin{aligned}
& \theta \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right) \cap L^{2}\left(0, T ; H^{1}(\Omega)\right) \\
& \mathbf{u} \in H^{1}\left(0, T ; H_{0}^{2}(\Omega)\right) \cap W^{1, \infty}\left(0, T ; H_{0}^{1}\left(\Omega ; \mathbb{R}^{d}\right)\right) \cap H^{2}\left(0, T ; L^{2}\left(\Omega ; \mathbb{R}^{d}\right)\right), \\
& \chi \in L^{\infty}\left(0, T ; H^{1}(\Omega)\right) \cap H^{1}\left(0, T ; L^{2}(\Omega)\right),
\end{aligned}
$$

fulfilling the initial conditions

$$
\begin{array}{ll}
\mathbf{u}(0, x)=\mathbf{u}_{0}(x), \quad \mathbf{u}_{t}(0, x)=\mathbf{v}_{0}(x) & \text { for a.e. } x \in \Omega \\
\chi(0, x)=\chi_{0}(x) & \text { for a.e. } x \in \Omega
\end{array}
$$

together with
the entropy inequality
the total energy inequality
the weak momentum equation (a.e. in $\Omega \times(0, T)$)
the generalized principle of virtual powers

The entropy inequality

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega}(\log (\theta)+\chi) \varphi_{t} \mathrm{~d} x \mathrm{~d} t+\rho \int_{0}^{T} \int_{\Omega} \operatorname{div}\left(\mathbf{u}_{t}\right) \varphi \mathrm{d} x \mathrm{~d} t-\int_{0}^{T} \int_{\Omega} \mathrm{K}(\theta) \nabla \log (\theta) \cdot \nabla \varphi \mathrm{d} x \mathrm{~d} t \\
& \leq-\int_{0}^{T} \int_{\Omega} \mathrm{K}(\theta) \frac{\varphi}{\theta} \nabla \log (\theta) \cdot \nabla \theta \mathrm{d} x \mathrm{~d} t-\int_{0}^{T} \int_{\Omega}\left((a(\chi)+\delta)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+g+\left|\chi_{t}\right|^{2}\right) \frac{\varphi}{\theta} \mathrm{d} x \mathrm{~d} t
\end{aligned}
$$

$$
\text { for all } \varphi \in \mathcal{D}(\bar{\Omega} \times[0, T]) \text { with } \varphi \geq 0
$$

The entropy inequality

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega}(\log (\theta)+\chi) \varphi_{t} \mathrm{~d} x \mathrm{~d} t+\rho \int_{0}^{T} \int_{\Omega} \operatorname{div}\left(\mathbf{u}_{t}\right) \varphi \mathrm{d} x \mathrm{~d} t-\int_{0}^{T} \int_{\Omega} \mathrm{K}(\theta) \nabla \log (\theta) \cdot \nabla \varphi \mathrm{d} x \mathrm{~d} t \\
& \leq-\int_{0}^{T} \int_{\Omega} \mathrm{K}(\theta) \frac{\varphi}{\theta} \nabla \log (\theta) \cdot \nabla \theta \mathrm{d} x \mathrm{~d} t-\int_{0}^{T} \int_{\Omega}\left((a(\chi)+\delta)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+g+\left|\chi_{t}\right|^{2}\right) \frac{\varphi}{\theta} \mathrm{d} x \mathrm{~d} t
\end{aligned}
$$ for all $\varphi \in \mathcal{D}(\bar{\Omega} \times[0, T])$ with $\varphi \geq 0$;

The total energy inequality for almost all $t \in(0, T)$ and almost all $s \in(0, t)$, and for $s=0$

$$
E\left(\theta(t), \mathbf{u}(t), \mathbf{u}_{t}(t), \chi(t)\right) \leq E\left(\theta(s), \mathbf{u}(s), \mathbf{u}_{t}(s), \chi(s)\right)+\int_{s}^{t} \int_{\Omega} g \mathrm{~d} x \mathrm{~d} r \int_{s}^{t} \int_{\Omega} \mathbf{f} \cdot \mathbf{u}_{t} \mathrm{~d} x \mathrm{~d} r
$$

where
$E\left(\theta, \mathbf{u}, \mathbf{u}_{t}, \chi\right):=\int_{\Omega} \theta+\frac{1}{2} \int_{\Omega}\left|\mathbf{u}_{t}\right|^{2}+\frac{1}{2}(b(\chi(t))+\delta)|\varepsilon(\mathbf{u})|^{2}(t)+\frac{1}{p} \int_{\Omega}|\nabla \chi|^{p}+\int_{\Omega} W(\chi)$

The relations: $\chi_{t}(x, t) \leq 0$ for almost all $(x, t) \in \Omega \times(0, T)$, as well as

$$
\begin{array}{r}
\int_{\Omega}\left(\chi_{t}(t) \varphi+|\nabla \chi(t)|^{p-2} \nabla \chi(t) \cdot \nabla \varphi+\xi(t) \varphi+\gamma(\chi(t)) \varphi+b^{\prime}(\chi(t)) \frac{|\varepsilon(\mathbf{u}(t))|^{2}}{2} \varphi-\theta(t) \varphi\right) \geq 0 \\
\text { for all } \varphi \in W_{-}^{1, p}(\Omega), \quad \text { for a.a. } t \in(0, T)
\end{array}
$$

with $\xi \in \partial I_{[0,+\infty)}(\chi)$ in the following sense:
$\xi \in L^{1}\left(0, T ; L^{1}(\Omega)\right) \quad$ and $\quad\langle\xi(t), \varphi-\chi(t)\rangle_{W^{1, p}(\Omega)} \leq 0 \forall \varphi \in W_{+}^{1, p}(\Omega)$, for a.a. $t \in(0, T)$ and the energy inequality for all $t \in(0, T]$, for $s=0$ and for almost all $0<s \leq t$:

$$
\begin{aligned}
\int_{s}^{t} \int_{\Omega}\left|\chi_{t}\right|^{2} \mathrm{~d} x \mathrm{~d} r & +\int_{\Omega}\left(\frac{1}{p}|\nabla \chi(t)|^{p}+W(\chi(t))\right) \mathrm{d} x \\
& \leq \int_{\Omega}\left(\frac{1}{p}|\nabla \chi(s)|^{p}+W(\chi(s))\right) \mathrm{d} x+\int_{s}^{t} \int_{\Omega} \chi_{t}\left(-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta\right) \mathrm{d} x \mathrm{~d} r
\end{aligned}
$$

where

$$
W_{+}^{1, p}(\Omega):=\left\{\zeta \in W^{1, p}(\Omega): \zeta(x) \geq 0 \quad \text { for a.a. } x \in \Omega\right\} \quad \text { and analogously for } W_{-}^{1, p}(\Omega)
$$

- If $(\theta, \mathbf{u}, \chi)$ are "more regular" and satisfy the notion of weak solution:
the one-sided inequality $\left(\forall \varphi \in L^{2}\left(0, T ; W_{-}^{1, p}(\Omega)\right) \cap L^{\infty}(Q)\right)$:

$$
\int_{0}^{T} \int_{\Omega} \chi_{t} \varphi+|\nabla \chi|^{p-2} \nabla \chi \nabla \varphi+\xi \varphi+\gamma(\chi) \varphi+b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2} \varphi-\theta \varphi \geq 0
$$

with $\xi \in \partial I_{[0,+\infty)}(\chi)$ and the energy inequality:

$$
\begin{aligned}
& \int_{s}^{t} \int_{\Omega}\left|\chi_{t}\right|^{2} \mathrm{~d} x \mathrm{~d} r+\frac{1}{p}|\nabla \chi(t)|^{p}+\int_{\Omega} W(\chi(t)) \mathrm{d} x \\
& \leq \frac{1}{p}|\nabla \chi(s)|^{p}+\int_{\Omega} W(\chi(s)) \mathrm{d} x+\int_{s}^{t} \int_{\Omega} \chi_{t}\left(-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta\right) \mathrm{d} x \mathrm{~d} r
\end{aligned}
$$

- If $(\theta, \mathbf{u}, \chi)$ are "more regular" and satisfy the notion of weak solution:
the one-sided inequality $\left(\forall \varphi \in L^{2}\left(0, T ; W_{-}^{1, p}(\Omega)\right) \cap L^{\infty}(Q)\right)$:

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega} \chi_{t} \varphi+|\nabla \chi|^{p-2} \nabla \chi \nabla \varphi+\xi \varphi+\gamma(\chi) \varphi+b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2} \varphi-\theta \varphi \geq 0 \tag{one-sided}
\end{equation*}
$$

with $\xi \in \partial I_{[0,+\infty)}(\chi)$ and the energy inequality:

$$
\begin{align*}
& \int_{s}^{t} \int_{\Omega}\left|\chi_{t}\right|^{2} \mathrm{~d} x \mathrm{~d} r+\frac{1}{p}|\nabla \chi(t)|^{p}+\int_{\Omega} W(\chi(t)) \mathrm{d} x \\
& \leq \frac{1}{p}|\nabla \chi(s)|^{p}+\int_{\Omega} W(\chi(s)) \mathrm{d} x+\int_{s}^{t} \int_{\Omega} \chi_{t}\left(-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta\right) \mathrm{d} x \mathrm{~d} r \tag{energy}
\end{align*}
$$

- "Differentiating in time" the energy inequality (energy) and using the chain rule, we conclude that $(\theta, \mathbf{u}, \chi, \xi)$ comply with

$$
\begin{equation*}
\left\langle\chi_{t}(t)-\Delta_{p} \chi(t)+\xi(t)+\gamma(\chi(t))+b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}-\theta(t), \chi_{t}(t)\right\rangle_{W^{1, p}(\Omega)} \leq 0 \text { for a.e. } t \tag{ineq}
\end{equation*}
$$

(one-sided) - (ineq) + " $\chi_{t} \leq 0$ a.e." are equivalent to the usual phase inclusion

$$
\chi_{t}-\Delta_{p} \chi+\xi+\gamma(\chi)+b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}-\theta \in-\partial I_{(-\infty, 0]}\left(\chi_{t}\right) \text { in } W^{1, p}(\Omega)^{*}
$$

- The main advantages of this approach:
- The main advantages of this approach:
- it is possible to make a strongly nonlinear system mathematically tractable by means just of the use of the standard principles of Thermodynamics
- The main advantages of this approach:
- it is possible to make a strongly nonlinear system mathematically tractable by means just of the use of the standard principles of Thermodynamics
- the regularity of solutions and initial data is just the one suggested by the energy and entropy estimates. Hence we respect the physical conditions
- The main advantages of this approach:
- it is possible to make a strongly nonlinear system mathematically tractable by means just of the use of the standard principles of Thermodynamics
- the regularity of solutions and initial data is just the one suggested by the energy and entropy estimates. Hence we respect the physical conditions

■ Some further developments:

- The main advantages of this approach:
- it is possible to make a strongly nonlinear system mathematically tractable by means just of the use of the standard principles of Thermodynamics
- the regularity of solutions and initial data is just the one suggested by the energy and entropy estimates. Hence we respect the physical conditions

■ Some further developments:

- The study of the long-time behaviour of the Liquid crystal model
- The main advantages of this approach:
- it is possible to make a strongly nonlinear system mathematically tractable by means just of the use of the standard principles of Thermodynamics
- the regularity of solutions and initial data is just the one suggested by the energy and entropy estimates. Hence we respect the physical conditions

■ Some further developments:

■ The study of the long-time behaviour of the Liquid crystal model

- Uniqueness and equilibria in 2D for the Two-phase fluids model

- The main advantages of this approach:
- it is possible to make a strongly nonlinear system mathematically tractable by means just of the use of the standard principles of Thermodynamics
- the regularity of solutions and initial data is just the one suggested by the energy and entropy estimates. Hence we respect the physical conditions

■ Some further developments:

■ The study of the long-time behaviour of the Liquid crystal model

- Uniqueness and equilibria in 2D for the Two-phase fluids model

work in Pmogess

wofk in prockits
- Temperature-dependence in a model for damage and phase separation

