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Outline

Introduce the full non-isothermal model in a unified approach for

- damage phenomena and

- phase transitions in termoviscoelastic materials

Handle nonlinearities =⇒ suitable solution notion

� coupling entropy inequality and total energy identity with

� a generalized principle of virtual powers

Present other possible applications of these formulations to: phase separation, liquid
crystals, immiscible fluids
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The full PDE system

State variables:

- the absolute temperature θ

- the (small) displacement variables u (εij(u) := (ui,j + uj,i )/2, i , j = 1, 2, 3)

- the phase or damage parameter χ ∈ [0, 1]: χ = 0 (solid phase/completely
damaged), χ = 1 (liquid phase/completely undamaged)

ruled by

- internal energy balance displaying nonlinear dissipation - the momentum
equation containing χ-dependent elliptic operators - the phase dynamics possibly
displaying nonlinearities both in χ and χt

θt + χtθ + ρθ div ut − div(K(θ)∇θ)) = g + a(χ)|ε(ut)|2 + |χt |2

utt − div(a(χ)ε(ut) + b(χ)ε(u)− ρθ1) = f

χt + µ∂I(−∞,0](χt)−∆χ−η∆pχ+ W ′(χ) 3 −b′(χ)
|ε(u)|2

2
+ θ

• Unidirectional: I(−∞,0](χt) = 0 if χt ∈ (−∞, 0], I(−∞,0](χt) = +∞ otherwise; µ = 1 in
damage phenomena – µ = 0 in phase transitions

• p-Laplacian: −∆p : W 1,p(Ω)→W 1,p(Ω)∗ the p−Laplacian (p > d); η > 0 in phase
transitions – η ≥ 0 in damage phenomena

• W = β̂ + γ̂, γ̂ ∈ C2(R), β̂ proper, convex, l.s.c. (e.g. β̂ = I[0,1] or W ′(χ) = χ3 − χ, etc.)
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E. Rocca (Università di Milano) Weak solutions for degenerating PDEs June 27 - 30, 2013 3 / 36



The main aim of our most recent cooperation with R. Rossi

Give a GLOBAL - in time - existence result for the FULL PDE system displaying
the high order dissipative terms on the right hand in side in the temperature
equation:

θt + χtθ + ρθ div ut − div(K(θ)∇θ)) = g + a(χ)|ε(ut)|2 + |χt |2

⇒ These terms were neglected in most of the past contribution in the literature or
considered only in the 1D case or in the framework of local - in time - existence (cf.,
e.g., [E. Bonetti, G. Bonfanti (2007)], [P. Kreč́ı, J. Sprekels, U. Stefanelli (2003)], [F.

Luterotti and U. Stefanelli, ZAA (2002)])

⇒ We were not able to handle them at MathProSpeM2012 – Rome, April 16–20, 2012
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The main ideas to handle nonlinearities and degeneracy

Combining the concept of weak solution satisfying:

1. a suitable energy conservation and entropy inequality inspired by:

1.1. the works of E. Feireisl and co-authors ([Feireisl, Comput. Math. Appl. (2007)],
[Buĺıček, Feireisl, & Málek, Nonlinear Anal. Real World Appl. (2009)], and [Feireisl,
Petzeltovà, E.R., Math. Meth. Appl. Sci. (2009)]) for heat conduction in fluids =⇒
weak formulation of the internal energy balance called entropic formulation

2. a generalization of the principle of virtual powers inspired by:

2.1. a notion of weak solution introduced by [Heinemann, Kraus, WIAS, Adv. Math. Sci.
Appl. (2011) and European J. Appl. Math. (2013)] for non-degenerating isothermal
diffuse interface models for phase separation and damage =⇒ weak formulation of the
damage equation
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E. Rocca (Università di Milano) Weak solutions for degenerating PDEs June 27 - 30, 2013 5 / 36



The main ideas to handle nonlinearities and degeneracy

Combining the concept of weak solution satisfying:

1. a suitable energy conservation and entropy inequality inspired by:

1.1. the works of E. Feireisl and co-authors ([Feireisl, Comput. Math. Appl. (2007)],
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Entropic formulation: a phase transitions model
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A first application of the entropic formulation: solid-liquid phase transitions

In order to show the potential power of this idea we

... give a description of the method stating more precisely
the content of this recent work [E. Feireisl, H. Petzeltovà,

E.R., Existence of solutions to some models of phase changes

with microscopic movements, Math. Meth. Appl. Sci. (2009)]

in which this notion of solution has been firstly applied to
phase transition models

We consider there a model for solid-liquid phase transitions associated to a nonlinear
PDE system

θt + χtθ −∆θ = |χt |2

χt −∆χ+ W ′(χ) = θ − θc

No global-in-time well-posedness result had yet been obtained in the 3D case, even
neglecting |χt |2 on the r.h.s.

A 1D global result was proved in [F. Luterotti and U. Stefanelli, ZAA (2002)]

=⇒ a new weaker notion of solution is needed
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E.R., Existence of solutions to some models of phase changes

with microscopic movements, Math. Meth. Appl. Sci. (2009)]

in which this notion of solution has been firstly applied to
phase transition models

We consider there a model for solid-liquid phase transitions associated to a nonlinear
PDE system

θt + χtθ −∆θ = |χt |2

χt −∆χ+ W ′(χ) = θ − θc

No global-in-time well-posedness result had yet been obtained in the 3D case, even
neglecting |χt |2 on the r.h.s.

A 1D global result was proved in [F. Luterotti and U. Stefanelli, ZAA (2002)]

=⇒ a new weaker notion of solution is needed
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Entropic formulation

Idea: Start directly from the basic principles of Thermodynamics just assuming that the

entropy of the system is controlled by dissipation

and

total energy is conserved during the evolution

The nonlinear equation for θ (internal energy balance) is replaced by

the entropy inequality + the total energy conservation

Finally, couple these relations to a suitable phase dynamics
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The entropy production

Assuming the system is thermally isolated, the entropy balance results

∫ T

0

∫
Ω

stϕ−
∫ T

0

∫
Ω

q

θ
· ∇ϕ =

∫ T

0

∫
Ω

rϕ ∀ϕ ∈ D(QT ), QT := (0,T )× Ω

r represents the entropy production rate. Then, in order to comply with the
Clausius-Duhem inequality, we assume:

(i) r is a nonnegative measure on QT ;

(ii) r ≥ 1

θ

(
|χt |2 −

q · ∇θ
θ

)
≥ 0.

Taking q = −∇θ, s = log θ + χ, we get∫ T

0

∫
Ω

(
(log θ + χ) ∂tϕ−∇ log θ · ∇ϕ

)
dxdt

≤
∫ T

0

∫
Ω

1

θ

(
−|χt |2 −∇ log θ · ∇θ

)
ϕdxdt

for every test function ϕ ∈ D(QT ), ϕ ≥ 0

⇒ the total entropy is controlled by dissipation
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The energy conservation and phase relation

The total energy has to be preserved. Hence

E(t) = E(0) for a.e. t ∈ [0,T ]

where

E ≡
∫

Ω

(
θ + W (χ) +

|∇χ|2

2

)
dx .

Finally, the phase dynamics results as

χt −∆χ+ W ′(χ) = θ − θc a.e. in Ω× (0,T ),

where W is a double well or double obstacle potential: W = β̂ + γ̂ where

β̂ : R→ [0,+∞] is proper, lower semi-continuous, convex function

γ̂ ∈ C 2(R), γ̂′ ∈ C 0,1(R) : γ̂′′(r) ≥ −K for all r ∈ R, W (r) ≥ cw r
2 for all r ∈ dom(β̂)

Examples: β̂(r) = r ln(r) + (1− r) ln(1− r) or β̂(r) = I[0,1](r)
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The existence theorem [E. Feireisl, H. Petzeltová, E.R., M2AS (2009)]

Fix T > 0 and take suitable initial data. Let s ∈ (1, 2) be a proper exponent depending
on the space dimension.

Then there exists at least one pair (θ, χ) s.t.

θ ∈ L∞(0,T ; L1(Ω)) ∩ Ls(QT ), θ(x , t) > 0 a. e. in QT

log(θ) ∈ L∞(0,T ; L1(Ω)) ∩ L2(0,T ;H1(Ω)) ∩W 1,1(0,T ;W−2,3/2(Ω))

χ ∈ C 0([0,T ];H1(Ω)) ∩ Ls(0,T ;W 2,s
N (Ω)) χt ∈ Ls(QT ) ,

satisfying the entropy inequality (∀ϕ ∈ D(QT ), ϕ ≥ 0):∫ T

0

∫
Ω

((log θ + χ) ∂tϕ−∇ log θ · ∇ϕ) dx dt

≤
∫ T

0

∫
Ω

1

θ

(
−|χt |2 −∇ log θ · ∇θ

)
ϕ dx dt

the phase equation

χt −∆χ+ W ′(χ) = θ − θc a.e. in QT , χ(0) = χ0 a.e. in Ω

and the total energy conservation

E(t) = E(0) a.e. in [0,T ], E ≡
∫

Ω

(
θ + W (χ) +

|∇χ|2

2

)
dx
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The main advantages of this approach

It complies with thermodynamical principles and hence it gives for free
thermodynamically consistent models

It gives rise exactly to the previous the PDE system

θt + χtθ −∆θ = |χt |2

χt −∆χ+ W ′(χ) = θ − θc

at least in case the solution (θ, χ) is sufficiently smooth

However, in this case and similarly in many other situations, to prove that the
solution has this extra regularity is out of reach

It can be suitable also in different applications such as the ones related to SMA,
liquid crystal flows, damage phenomena and phase transitions in
themoviscoelastic materials
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Our model [Rocca-Rossi, work in progress, 2013]
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The free-energy
cf. [M. Frémond, Phase Change in Mechanics, Lecture Notes of UMI, Springer-Verlag, 2012]

F =

∫
Ω

(
cvθ(1− log θ) + b(χ)

|ε(u)|2

2
+
|∇χ|2

2
+ η
|∇χ|p

p
+ W (χ)− θχ− ρθtr(ε(u))

)
dx

• damage: b(χ) = χ; the stiffness of the material decreases as χ↘ 0

• phase transitions: b(χ) = 1− χ; elastic effects are not present in the fluid

W = β̂ + γ̂, γ̂ ∈ C2(R), β̂ proper, convex, l.s.c.

η > 0 and p > d in phase transitions, η ≥ 0 in damage

cv > 0, take it = 1 for simplicity

The pseudo-potential

P =
K(θ)

2
|∇θ|2 +

1

2
|χt |2 + a(χ)

|ε(ut)|2

2
+ µI(−∞,0](χt)

a(χ) = χ: no viscosty in solid phase or when the material is completely damaged

K is the heat conductivity, K(θ) ≥ c1(1 + νθk ) for some c1, ν > 0, k > 1

µ 6= 0 in damage: I(−∞,0](χt) = 0 if χt ∈ (−∞, 0], I(−∞,0](χt) = +∞ otherwise

(irreversibility of the damage)
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The modelling

The momentum equation

utt − div σ = f
(
σ = σd + σnd = ∂P

∂ε(ut )
+ ∂F
∂ε(u)

)
becomes

utt − div(a(χ)ε(ut) + b(χ)ε(u)− ρθ1) = f

The “standard” principle of virtual powers

B − div H = 0
(
B = ∂P

∂χt
+ ∂F

∂χ
,H = ∂F

∂∇χ

)
becomes

χt + µ∂I(−∞,0](χt)−∆χ−η∆pχ+ W ′(χ) 3 −b′(χ) |ε(u)|2
2

+ θ

The internal energy balance

et + div q = g + σ : ε(ut) + Bχt + H · ∇χt

(
e = F − θ ∂F

∂θ
, q = ∂P

∂∇θ

)
becomes

θt + χtθ + ρθ div ut − div(K(θ)∇θ) = g+a(χ)|ε(ut)|2 + |χt |2
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Our previous results (cf. [MathProSpeM2012 – Rome, April 16–20, 2012])

[First result] Local in time well-posedness for a suitable formulation of the reversible problem

(µ, η = 0), using in

θt + χtθ −∆θ = g +a(χ)|ε(ut)|2 + |χt |2︸ ︷︷ ︸
= 0

the small perturbations assumption in the 3D (in space) setting [E.R., Rossi, J. Differential
Equations, 2008]

[Second result] Global well-posedness in the 1D case (µ, η = 0) without small perturbations

assumption [E.R, Rossi, Appl. Math., Special Volume (2008)]

Note: in both these results we assumed χ0 separated from the thresholds 0 and 1 and we
prove (via coercivity condition on W at the thresholds 0 and 1) that the solution χ of

χt −∆χ+ W ′(χ) 3 −b′(χ)
|ε(u)|2

2
+ θ

during the evolution continues to stay separated from 0 and 1 =⇒ prevent degeneracy
(the operators are uniformly elliptic)

[The last result] [E.R., R. Rossi, preprint arXiv:1205.3578v2 (2012)]: global existence
result in 3D using a suitable notion of solution and without enforcing the separation
property, i.e. allowing for degeneracy with µ = 1, η > 0, but always within the small
perturbations assumption
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Our next goal: the full system without the small perturbations hyp.

We restric to the non-degenerate case =⇒ replace a and b by a + δ, b + δ in the
momentum balance:

utt − div((a(χ) + δ)ε(ut) + (b(χ) + δ)ε(u)− ρθ1) = f for δ > 0

In order to handle

the high order dissipative terms in the θ-equation

the quadratic nonlinearity in the χ-equation

we need a suitable weak formulation

We consider separately the cases:

of irreversible damage processes µ = 1, η ≥ 0

of reversible model of phase transitions µ = 0, η > 0
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E. Rocca (Università di Milano) Weak solutions for degenerating PDEs June 27 - 30, 2013 17 / 36



Our next goal: the full system without the small perturbations hyp.

We restric to the non-degenerate case =⇒ replace a and b by a + δ, b + δ in the
momentum balance:

utt − div((a(χ) + δ)ε(ut) + (b(χ) + δ)ε(u)− ρθ1) = f for δ > 0

In order to handle

the high order dissipative terms in the θ-equation

the quadratic nonlinearity in the χ-equation

we need a suitable weak formulation

We consider separately the cases:

of irreversible damage processes µ = 1, η ≥ 0

of reversible model of phase transitions µ = 0, η > 0
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The irreversible damage process: µ = 1 and η = 0

θt + χtθ + ρθ div ut − div(K(θ)∇θ)) = g + (a(χ) + δ)|ε(ut)|2 + |χt |2

utt − div((a(χ) + δ)ε(ut) + (b(χ) + δ)ε(u)− ρθ1) = f

χt + µ∂I(−∞,0](χt)︸ ︷︷ ︸
= ∂I(−∞,0](χt)

−∆χ −η∆pχ︸ ︷︷ ︸
= 0

+ W ′(χ) 3 −b′(χ)
|ε(u)|2

2
+ θ
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Hypothesis (I).

The function K : [0,+∞)→ (0,+∞) is continuous and

∃c1, ν > 0, k > 1 : ∀θ ∈ [0,+∞) K(θ) ≥ c1(1 + νθk) .

Hypothesis (II).

a ∈ C1(R), b ∈ C2(R) are such that a(x), b(x) ≥ 0, b′(x) ≥ 0 for all x ∈ R.

Hypothesis (III). W = β̂ + γ̂, where

β̂ : dom(β̂)→ R is proper, l.s.c., convex;, dom(β̂) ⊆ [0,+∞) is bounded,

γ̂ ∈ C2(R), ∃ cw > 0 : W (r) ≥ cw r
2 ∀r ∈ dom(β̂) .

Hereafter, we shall denote by β = ∂β̂ the subdifferential of β̂, and set γ := γ̂′.

Hypothesis (IV).

f ∈ L2(0,T ; L2(Ω)),

g ∈ L1(0,T ; L1(Ω)) ∩ L2(0,T ;H1(Ω)′), g ≥ 0 a.e. in Ω× (0,T ) ,

and that the initial data comply with

θ0 ∈ L1(Ω), ∃ θ∗ > 0 : min
Ω
θ0 ≥ θ∗ > 0 , log θ0 ∈ L1(Ω),

u0 ∈ H1
0 (Ω), v0 ∈ L2(Ω;Rd), χ0 ∈ H1(Ω), β̂(χ0) ∈ L1(Ω).
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Existence of weak solutions

Given δ > 0, µ = 1, η = 0, there exists (measurable) functions

θ ∈ L∞(0,T ; L1(Ω)) ∩ L2(0,T ;H1(Ω)) ,

u ∈ H1(0,T ;H1
0 (Ω)) ∩W 1,∞(0,T ; L2(Ω;Rd)) ∩ H2(0,T ;H−1(Ω;Rd)) ,

χ ∈ L∞(0,T ;H1(Ω)) ∩ H1(0,T ; L2(Ω)) ,

fulfilling the initial conditions

u(0, x) = u0(x), ut(0, x) = v0(x) for a.e. x ∈ Ω

χ(0, x) = χ0(x) for a.e. x ∈ Ω

together with

the entropy inequality

the total energy inequality

the weak momentum equation (in H−1(Ω))

the generalized principle of virtual powers
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The entropy inequality + total energy inequality

The entropy inequality∫ T

0

∫
Ω

(log(θ) + χ)ϕt dx dt + ρ

∫ T

0

∫
Ω

div(ut)ϕ dx dt −
∫ T

0

∫
Ω

K(θ)∇ log(θ) · ∇ϕ dx dt

≤−
∫ T

0

∫
Ω

K(θ)
ϕ

θ
∇ log(θ) · ∇θ dx dt −

∫ T

0

∫
Ω

(
(a(χ) + δ)|ε(ut)|2 + g + |χt |2

) ϕ
θ
dx dt

for all ϕ ∈ D(Ω× [0,T ]) with ϕ ≥ 0;

The total energy inequality for almost all t ∈ (0,T )

E (θ(t), u(t), ut(t), χ(t))≤E (θ(0), u(0), ut(0), χ(0)) +

∫ t

0

∫
Ω
g dx ds

∫ t

0

∫
Ω

f · ut dx ds

where

E (θ, u, ut , χ) :=

∫
Ω
θ dx +

1

2

∫
Ω
|ut |2 dx +

1

2
(b(χ(t))+δ)|ε(u)|2(t)+

1

2

∫
Ω
|∇χ|2 dx +

∫
Ω
W (χ)dx

In case we add the p−laplacian (i.e. η > 0) we obtain the total energy identity

Ep(θ(t), u(t), ut(t), χ(t))=Ep(θ(0), u(0), ut(0), χ(0)) +

∫ t

0

∫
Ω
g dx ds

∫ t

0

∫
Ω

f · ut dx ds

where

Ep(θ, u, ut , χ) := E (θ, u, ut , χ)+
1

p

∫
Ω
|∇χ|p dx
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The generalized principle of virtual powers

The relations: χt(x , t) ≤ 0 for almost all (x , t) ∈ Ω× (0,T ), as well as∫
Ω

(
χt(t)ϕ+∇χ(t) · ∇ϕ+ ξ(t)ϕ+ γ(χ(t))ϕ+ b′(χ(t))

|ε(u(t))|2

2
ϕ− θ(t)ϕ

)
dx ≥ 0

for all ϕ ∈W 1,2
− (Ω), for a.a. t ∈ (0,T )

with ξ ∈ ∂I[0,+∞)(χ) in the following sense:

ξ ∈ L1(0,T ; L1(Ω)) and 〈ξ(t), ϕ− χ(t)〉W 1,2(Ω) ≤ 0 ∀ϕ ∈W 1,2
+ (Ω), for a.a. t ∈ (0,T )

and the energy inequality for all t ∈ (0,T ], for s = 0 (in case we omit the p-laplacian), and for
almost all 0 < s ≤ t (in case we add the p-laplacian):∫ t

s

∫
Ω
|χt |2 dx dr +

∫
Ω

(
1

2
|∇χ(t)|2 + W (χ(t))

)
dx

≤
∫

Ω

(
1

2
|∇χ(s)|2 + W (χ(s))

)
dx +

∫ t

s

∫
Ω
χt

(
−b′(χ)

|ε(u)|2

2
+ θ

)
dx dr

where

W 1,2
+ (Ω) :=

{
ζ ∈W 1,2(Ω) : ζ(x) ≥ 0 for a.a. x ∈ Ω

}
and analogously for W 1,2

− (Ω)
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Generalized principle of virtual powers vs classical phase inclusion

If (w , u, χ) are “more regular” and satisfy the notion of weak solution:

the one-sided inequality (∀ϕ ∈ L2(0,T ;W 1,2
− (Ω)) ∩ L∞(Q)):∫ T

0

∫
Ω
χtϕ+∇χ∇ϕ+ ξϕ+ γ(χ)ϕ+ b′(χ)

|ε(u)|2

2
ϕ− θϕ≥ 0 (one-sided)

with ξ ∈ ∂I[0,+∞)(χ) and the energy inequality:∫ t

s

∫
Ω
|χt |2 dx dr +

1

2
|∇χ(t)|2 +

∫
Ω
W (χ(t)) dx

≤
1

2
|∇χ(s)|2 +

∫
Ω
W (χ(s)) dx +

∫ t

s

∫
Ω
χt

(
−b′(χ)

|ε(u)|2

2
+ θ

)
dx dr

(energy)

“Differentiating in time” the energy inequality (energy) and using the chain rule, we
conclude that (w , u, χ, ξ) comply with

〈χt(t)−∆χ(t) + ξ(t) + γ(χ(t)) + b′(χ)
|ε(u)|2

2
− θ(t), χt(t)〉

W 1,2(Ω)
≤ 0 for a.e.t (ineq)

(one-sided) − (ineq) + “χt ≤ 0 a.e.” are equivalent to the usual phase inclusion

χt −∆χ+ ξ + γ(χ) + b′(χ)
|ε(u)|2

2
− θ ∈ −∂I(−∞,0](χt) in W 1,2(Ω)∗

E. Rocca (Università di Milano) Weak solutions for degenerating PDEs June 27 - 30, 2013 23 / 36



Generalized principle of virtual powers vs classical phase inclusion

If (w , u, χ) are “more regular” and satisfy the notion of weak solution:

the one-sided inequality (∀ϕ ∈ L2(0,T ;W 1,2
− (Ω)) ∩ L∞(Q)):∫ T

0

∫
Ω
χtϕ+∇χ∇ϕ+ ξϕ+ γ(χ)ϕ+ b′(χ)

|ε(u)|2

2
ϕ− θϕ≥ 0 (one-sided)

with ξ ∈ ∂I[0,+∞)(χ) and the energy inequality:∫ t

s

∫
Ω
|χt |2 dx dr +

1

2
|∇χ(t)|2 +

∫
Ω
W (χ(t)) dx

≤
1

2
|∇χ(s)|2 +

∫
Ω
W (χ(s)) dx +

∫ t

s

∫
Ω
χt

(
−b′(χ)

|ε(u)|2

2
+ θ

)
dx dr

(energy)

“Differentiating in time” the energy inequality (energy) and using the chain rule, we
conclude that (w , u, χ, ξ) comply with

〈χt(t)−∆χ(t) + ξ(t) + γ(χ(t)) + b′(χ)
|ε(u)|2

2
− θ(t), χt(t)〉

W 1,2(Ω)
≤ 0 for a.e.t (ineq)

(one-sided) − (ineq) + “χt ≤ 0 a.e.” are equivalent to the usual phase inclusion

χt −∆χ+ ξ + γ(χ) + b′(χ)
|ε(u)|2

2
− θ ∈ −∂I(−∞,0](χt) in W 1,2(Ω)∗
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An idea of the proof

Implicit time-discrete scheme (its well-posedness is proved by resorting to fixed-point
type existence results for elliptic systems featuring pseudo-monotone operators)

A-priori estimates

Passage to the limit: the strong convergence of un to u in
W 1,∞(0,T ; L2(Ω)) ∩ H1(0,T ;H1(Ω)) obtained via Cauchy argument

• In case η > 0, we also get the strong convergence of χn to χ in Lp(0,T ;W 1,p(Ω)),
using the compact embedding of W 1,p(Ω) in C 0(Ω̄) for p > d =⇒ total energy
identity

Ep(θ(t), u(t), ut(t), χ(t))=Ep(θ(0), u(0), ut(0), χ(0))+

∫ t

0

∫
Ω

g dx ds

∫ t

0

∫
Ω

f·ut dx ds

and the energy inequality for χ for all t ∈ (0,T ] and for almost all 0 < s ≤ t:∫ t

s

∫
Ω
|χt |2 dx dr +

∫
Ω

(
1

2
|∇χ(t)|2+

1

p
|∇χ(t)|p + W (χ(t))

)
dx

≤
∫

Ω

(
1

2
|∇χ(s)|2+

1

p
|∇χ(s)|p + W (χ(s))

)
dx +

∫ t

s

∫
Ω
χt

(
−b′(χ)

|ε(u)|2

2
+ θ

)
dx dr
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Positivity of θ

From the θ-equation

θt + χtθ + ρθ div ut − div(K(θ)∇θ)) = g + (a(χ) + δ)|ε(ut)|2 + |χt |2

we get

θt − div(K(θ)∇θ) ≥ −1

2
θ2

and so the function h(t) solving

ht = −1

2
h2, h(0) = θ∗ > 0

is a subsolution of the θ-equation. Hence, we get

θ(t, ·) ≥ h(t) > θ∗ > 0 for all t ∈ [0,T ]
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A priori estimates

θt + χtθ + ρθ div ut − div(K(θ)∇θ)) = g + a(χ)|ε(ut)|2 + |χt |2 (1)

utt − div(a(χ)ε(ut) + b(χ)ε(u)− ρθ1) = f (2)

χt + µ∂I(−∞,0](χt)−∆χ+ W ′(χ) 3 −b′(χ)
|ε(u)|2

2
+ θ (3)

Energy estimate.
∫ t

0 ((1)×1+(momentum)×ut+(3)×χt) ds gives an estimate for

‖θ‖L∞(0,T ;L1(Ω)), ‖u‖W 1,∞(0,T ;L2(Ω;Rd )), ‖(b(χ) + δ)1/2ε(u)‖L∞(0,T ;L2(Ω;Rd×d )), ‖χ‖L∞(0,T ;H1(Ω))

Entropy estimate.
∫ t

0 (1)× 1
θ
ds gives an estimate for

‖θ−1/2χt‖L2(Ω×(0,T )), ‖θ
−1/2(a(χ) + δ)1/2ε(ut)‖L2(Ω×(0,T )), ‖ log(θ)‖L2(0,T ;H1(Ω))∩L∞(0,T ;L1(Ω))

Third estimate.
∫ t

0 (1)×θα−1 ds with α ∈ (0, 1) gives

‖θ‖Lm(0,T ;Lm(Ω)) ≤ C for all
7

6
≤ m <

5

3

and using the Hyp. on K (K(θ) ≥ c1(1 + νθk )):

‖θ‖L2(0,T ;H1(Ω)) ≤ C

Fourth estimate.
∫ t

0 ((momentum)×ut+(3)×χt) ds gives

‖χt‖L2(Ω×(0,T )) + ‖(a(χ) + δ)1/2ε(ut)‖L2(Ω×(0,T )) ≤ C

Fifth estimate. By comparison, we get (for some α > 1 depending on d (the dimension of Ω))

‖(log θ)t‖L1(0,T ;(W 2,α(Ω))∗) + ‖utt‖L2(0,T ;H−1(Ω)) ≤ C
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E. Rocca (Università di Milano) Weak solutions for degenerating PDEs June 27 - 30, 2013 26 / 36



A priori estimates

θt + χtθ + ρθ div ut − div(K(θ)∇θ)) = g + a(χ)|ε(ut)|2 + |χt |2 (1)

utt − div(a(χ)ε(ut) + b(χ)ε(u)− ρθ1) = f (2)

χt + µ∂I(−∞,0](χt)−∆χ+ W ′(χ) 3 −b′(χ)
|ε(u)|2

2
+ θ (3)

Energy estimate.
∫ t

0 ((1)×1+(momentum)×ut+(3)×χt) ds gives an estimate for

‖θ‖L∞(0,T ;L1(Ω)), ‖u‖W 1,∞(0,T ;L2(Ω;Rd )), ‖(b(χ) + δ)1/2ε(u)‖L∞(0,T ;L2(Ω;Rd×d )), ‖χ‖L∞(0,T ;H1(Ω))

Entropy estimate.
∫ t

0 (1)× 1
θ
ds gives an estimate for

‖θ−1/2χt‖L2(Ω×(0,T )), ‖θ
−1/2(a(χ) + δ)1/2ε(ut)‖L2(Ω×(0,T )), ‖ log(θ)‖L2(0,T ;H1(Ω))∩L∞(0,T ;L1(Ω))

Third estimate.
∫ t

0 (1)×θα−1 ds with α ∈ (0, 1) gives

‖θ‖Lm(0,T ;Lm(Ω)) ≤ C for all
7

6
≤ m <

5

3

and using the Hyp. on K (K(θ) ≥ c1(1 + νθk )):

‖θ‖L2(0,T ;H1(Ω)) ≤ C

Fourth estimate.
∫ t

0 ((momentum)×ut+(3)×χt) ds gives

‖χt‖L2(Ω×(0,T )) + ‖(a(χ) + δ)1/2ε(ut)‖L2(Ω×(0,T )) ≤ C

Fifth estimate. By comparison, we get (for some α > 1 depending on d (the dimension of Ω))

‖(log θ)t‖L1(0,T ;(W 2,α(Ω))∗) + ‖utt‖L2(0,T ;H−1(Ω)) ≤ C
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Weak sequential stability

θn → θ weakly star in L∞(0,T ; L1(Ω)) ∩ L2(0,T ;H1(Ω)) , (1)

un → u weakly star in H2(0,T ;H−1(Ω)) ∩W 1,∞(0,T ; L2(Ω)) ∩ H1(0,T ;H1(Ω)) , (2)

∂tun → ∂tu strongly in L2(0,T ; L2(Ω)) , (3)

χn → χ weakly star in H1(0,T ; L2(Ω)) ∩ L∞(0,T ;H1(Ω)) , (4)

log(θn)→ v strongly in L2(0,T ; Ls(Ω)) , (5)

for some s ∈ (1, 6) for d = 3 whence log(θn)→ v a.e. and so v = log θ and θn → θ a.e. and we
have

θn → θ strongly in Lh(Ω× (0,T )), for every h ∈ [1, 8/3) for d = 3

χn → χ strongly in Lq(Ω× (0,T )) ∀q ∈ [1,+∞)

Test the approximated u-equation by ∂t(un − u), where u is the limit of un obtained in the
previous convergence. Hence, we finally get

‖(un − u)t(t)‖2
L2(Ω)

+

∫ t

0
(a(χn) + δ)|(ε(u)n − ε(u))t |2 ds + (b(χn(t) + δ)|(ε(u)n − ε(u))(t)|2 → 0

as n↗∞, which entails

un → u strongly in W 1,∞(0,T ; L2(Ω)) ∩ H1(0,T ;H1(Ω))
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Passage to the limit
• By the previous convergences we pass to the limit in the momentum balance in H−1(Ω)

• We cannot pass to the limit on the right hand side in the θ-equation

θt + χtθ + ρθ div ut − div(K(θ)∇θ)) = g + (a(χ) + δ)|ε(ut)|2 + |χt |2

but via weak convergences and lower semicontinuity we obtain

− The entropy inequality (for all ϕ ∈ D(Ω× [0,T ]) with ϕ ≥ 0)∫ T

0

∫
Ω

(log(θ) + χ)ϕt dx dt + ρ

∫ T

0

∫
Ω

div(ut)ϕ dx dt −
∫ T

0

∫
Ω

K(θ)∇ log(θ) · ∇ϕ dx dt
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Ω

K(θ)
ϕ

θ
∇ log(θ) · ∇θ dx dt −

∫ T

0

∫
Ω

(
(a(χ) + δ)|ε(ut)|2 + g + |χt |2

) ϕ
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Ω
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|∇χ(t)|2 + W (χ(t))
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Ω
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1

2
|∇χ0|2 + W (χ0)
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∫ t
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Ω
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+ θ
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The reversible phase transitions in thermoviscoelastic materials:
µ = 0 and η > 0

θt + χtθ + ρθ div ut − div(K(θ)∇θ)) = g + (a(χ) + δ)|ε(ut)|2 + |χt |2

utt − div((a(χ) + δ)ε(ut) + (b(χ) + δ)ε(u)− ρθ1) = f

χt + µ∂I(−∞,0](χt)︸ ︷︷ ︸
= 0

−∆χ−η∆pχ+ W ′(χ) 3 −b′(χ)
|ε(u)|2

2
+ θ
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Hypothesis on W

Beside, Hypothesis (III). We suppose that the potential W is given by W = β̂ + γ̂,
where

β̂ : dom(β̂)→ R is proper, l.s.c., convex;

γ̂ ∈ C2(R), ∃ cw > 0 : W (r) ≥ cw r
2 ∀r ∈ dom(β̂) .

Hereafter, we shall denote by β = ∂β̂ the subdifferential of β̂, and set γ := γ̂′

Assume that β̂ is a regular potential satisfying a suitable growth condition (depending on
d):
Hypothesis (IV). W ∈ C 1(R) and there exist Cw > 0 and p ∈ (1, 6) if d = 3,
p ∈ (1,+∞) if d = 2 such that

|W ′(r)| ≤ Cw (1 + |r |p) ∀r ∈ R
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Existence of weak solutions

Given δ > 0, µ = 0, η > 0, there exists functions

θ ∈ L∞(0,T ; L1(Ω)) ∩ L2(0,T ;H1(Ω)) ,

u ∈ H1(0,T ;H2
0 (Ω;Rd)) ∩W 1,∞(0,T ;H1

0 (Ω)) ∩ H2(0,T ; L2(Ω;Rd)) ,

χ ∈ L∞(0,T ;W 1,p(Ω)) ∩ H1(0,T ; L2(Ω)) ,

fulfilling the initial conditions

u(0, x) = u0(x), ut(0, x) = v0(x) for a.e. x ∈ Ω,

χ(0, x) = χ0(x) for a.e. x ∈ Ω,

the entropy inequality

the total energy identity

the weak momentum (in H−1(Ω)) and phase (in (W 1,p(Ω))∗) - equations
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The further estimate in case η > 0

Being η > 0 in the χ-equation

χt −∆χ−η∆pχ+ W ′(χ) 3 −b′(χ)
|ε(u)|2

2
+ θ (phase)

we can test the u-equation

utt − div((a(χ) + δ)ε(ut) + (b(χ) + δ)ε(u)− ρθ1) = f (momentum)

by − div(ε(ut)), using the L∞(0,T ;W 1,p(Ω))-regularity of χ

This allows us to obtain an estimate for u in

H1(0,T ;H2
0 (Ω;Rd)) ∩W 1,∞(0,T ;H1

0 (Ω)) ∩ H2(0,T ; L2(Ω;Rd))

which allows us to pass to the limit in the quadratic term |ε(u)|2 in (phase)

By using the compact embedding of W 1,p(Ω) in C 0(Ω̄), we can get a strong
convergence of χn to χ in Lp(0,T ;W 1,p(Ω)) allowing us to obtain the total energy
identity (not only inequality)

E (θ(t), u(t), ut(t), χ(t))=E (θ(0), u(0), ut(0), χ(0))+

∫ t

0

∫
Ω

g dx ds

∫ t

0

∫
Ω

f ·ut dx ds
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Comparison between irreversible and reversible

The irreversible case (damage) seems to be solvable even in case η = 0

This does not seem to be case for the reversible system (thermoviscoelasticty)

The point probably is that the generalized principle of virtual powers is taylored
specifically on the irreversible case and does not fit to the reversible one

A different (weaker) notion of phase equation would be needed in the reversible case
=⇒ This is still an OPEN PROBLEM!
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A further application to liquid crystals

In [E. Feireisl, M. Frémond, E.R., G. Schimperna, ARMA 2012] we have coupled the
incompressible Nevier-Stokes equation

div v = 0, vt + v · ∇xv +∇xp = div S + div σnd + g

S = ν(θ)
(
∇xv +∇t

xv
)
, σnd = −∇xd�∇xd + (∂dW (d)−∆d)⊗ d

where ∇xd�∇xd is the 3× 3 matrix given by ∇id · ∇jd, (a⊗ b)ij := aibj ,
1 ≤ i , j ≤ 3, and the evolution of the director field d, representing preferred
orientation of molecules in a neighborhood of any point of a reference domain

dt + v · ∇xd−d · ∇xv = ∆d− ∂dW (d)

with an entropic formulation of the inernal energy balance displaying higher order
nonlinearities on the right hand side

θt + v · θ + div q = S : ∇xv+|∆d− ∂dW (d)|2

In [E. Feireisl, E.R., G. Schimperna, A. Zarnescu, Comm. Math. Sci., to appear] we
have extended it to the tensorial Ball-Majumdar model for liquid crystals
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A further application to two phase fluids

A fluid-mechanical theory for two-phase mixtures of fluids faces a well known mathematical
difficulty:

I the movement of the interfaces =⇒ Lagrangian description

I the bulk fluid flow =⇒ Eulerian framework

The phase-field methods overcome this problem by postulating the existence of a “diffuse”
interface spread over a possibly narrow region covering the “real” sharp interface boundary

I a phase variable χ (concentration difference of the two components) is introduced to
demarcate the two species and to indicate the location of the interface

I mixing energy f is defined in terms of χ and its spatial gradient

The time evolution of χ =⇒ convection-diffusion equation: variants of Cahn-Hilliard or
Allen-Cahn or other types of dynamics (cf. [Hohenberg, Halperin (1977)], [Anderson,
McFadden, Wheeler (1998)], [Gurtin, Polignone, Vinals (1996)], etc.)

With Michela Eleuteri (Università di Milano) and Giulio Schimperna (Università di Pavia)
we aim to consider the non-isothermal version of [H. Abels, ARMA (2009)]

div v = 0 , ∂tv + div(v ⊗ v) +∇p = div S−µ∇xχ , S = ν(θ, χ)
(
∇xv +∇t

xv
)

∂tθ + λ(θ) (χt + v · ∇xχ) + div (θv) + div q = S : ∇xv+|∇xµ|2

∂tχ+ v · ∇xχ = ∆µ , µ = −∆χ+ W ′(χ)− λ(θ)

Entropic notion of solution is needed in order to interpret the internal energy balance
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interface spread over a possibly narrow region covering the “real” sharp interface boundary

I a phase variable χ (concentration difference of the two components) is introduced to
demarcate the two species and to indicate the location of the interface

I mixing energy f is defined in terms of χ and its spatial gradient

The time evolution of χ =⇒ convection-diffusion equation: variants of Cahn-Hilliard or
Allen-Cahn or other types of dynamics (cf. [Hohenberg, Halperin (1977)], [Anderson,
McFadden, Wheeler (1998)], [Gurtin, Polignone, Vinals (1996)], etc.)

With Michela Eleuteri (Università di Milano) and Giulio Schimperna (Università di Pavia)
we aim to consider the non-isothermal version of [H. Abels, ARMA (2009)]

div v = 0 , ∂tv + div(v ⊗ v) +∇p = div S−µ∇xχ , S = ν(θ, χ)
(
∇xv +∇t

xv
)

∂tθ + λ(θ) (χt + v · ∇xχ) + div (θv) + div q = S : ∇xv+|∇xµ|2

∂tχ+ v · ∇xχ = ∆µ , µ = −∆χ+ W ′(χ)− λ(θ)

Entropic notion of solution is needed in order to interpret the internal energy balance
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Thanks for your attention!

cf. http://www.mat.unimi.it/users/rocca/
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