Solutions to a full model for thermoviscoelastic materials

E. Rocca

Università degli Studi di Milano

Joint International Meeting of the American Mathematical Society and the Romanian Mathematical Society
Special Session: Mathematical Models in Life and Environment

> June 27-30, 2013, Alba Iulia, Romania
joint work with Riccarda Rossi (Università di Brescia, Italy)
Continuation of a talk at MathProSpeM2012 - Rome, April 16-20, 2012
erc
Supported by the FP7-IDEAS-ERC-StG Grant "EntroPhase" \#256872

Outline

Outline

- Introduce the full non-isothermal model in a unified approach for
- damage phenomena and
- phase transitions in termoviscoelastic materials

Outline

- Introduce the full non-isothermal model in a unified approach for
- damage phenomena and
- phase transitions in termoviscoelastic materials
- Handle nonlinearities \Longrightarrow suitable solution notion

Outline

- Introduce the full non-isothermal model in a unified approach for
- damage phenomena and
- phase transitions in termoviscoelastic materials
- Handle nonlinearities \Longrightarrow suitable solution notion
\diamond coupling entropy inequality and total energy identity with
\diamond a generalized principle of virtual powers

Outline

- Introduce the full non-isothermal model in a unified approach for
- damage phenomena and
- phase transitions in termoviscoelastic materials
- Handle nonlinearities \Longrightarrow suitable solution notion
\diamond coupling entropy inequality and total energy identity with
\diamond a generalized principle of virtual powers
- Present other possible applications of these formulations to: phase separation, liquid crystals, immiscible fluids

The full PDE system

State variables:

- the absolute temperature θ
- the (small) displacement variables $\mathbf{u}\left(\varepsilon_{i j}(\mathbf{u}):=\left(u_{i, j}+u_{j, i}\right) / 2, i, j=1,2,3\right)$
- the phase or damage parameter $\chi \in[0,1]: \chi=0$ (solid phase/completely damaged), $\chi=1$ (liquid phase/completely undamaged)
ruled by

The full PDE system

State variables:

- the absolute temperature θ
- the (small) displacement variables $\mathbf{u}\left(\varepsilon_{i j}(\mathbf{u}):=\left(u_{i, j}+u_{j, i}\right) / 2, i, j=1,2,3\right)$
- the phase or damage parameter $\chi \in[0,1]: \chi=0$ (solid phase/completely damaged), $\chi=1$ (liquid phase/completely undamaged)
ruled by - internal energy balance displaying nonlinear dissipation -

The full PDE system

State variables:

- the absolute temperature θ
- the (small) displacement variables $\mathbf{u}\left(\varepsilon_{i j}(\mathbf{u}):=\left(u_{i, j}+u_{j, i}\right) / 2, i, j=1,2,3\right)$
- the phase or damage parameter $\chi \in[0,1]: \chi=0$ (solid phase/completely damaged), $\chi=1$ (liquid phase/completely undamaged)
ruled by - internal energy balance displaying nonlinear dissipation - the momentum equation containing χ-dependent elliptic operators -

The full PDE system

State variables:

- the absolute temperature θ
- the (small) displacement variables $\mathbf{u}\left(\varepsilon_{i j}(\mathbf{u}):=\left(u_{i, j}+u_{j, i}\right) / 2, i, j=1,2,3\right)$
- the phase or damage parameter $\chi \in[0,1]: \chi=0$ (solid phase/completely damaged), $\chi=1$ (liquid phase/completely undamaged)
ruled by - internal energy balance displaying nonlinear dissipation - the momentum equation containing χ-dependent elliptic operators - the phase dynamics possibly displaying nonlinearities both in χ and χ_{t}

The full PDE system

State variables:

- the absolute temperature θ
- the (small) displacement variables $\mathbf{u}\left(\varepsilon_{i j}(\mathbf{u}):=\left(u_{i, j}+u_{j, i}\right) / 2, i, j=1,2,3\right)$
- the phase or damage parameter $\chi \in[0,1]: \chi=0$ (solid phase/completely damaged), $\chi=1$ (liquid phase/completely undamaged)
ruled by - internal energy balance displaying nonlinear dissipation - the momentum equation containing χ-dependent elliptic operators - the phase dynamics possibly displaying nonlinearities both in χ and χ_{t}

$$
\begin{aligned}
& \left.\theta_{t}+\chi_{t} \theta+\rho \theta \operatorname{div} \mathbf{u}_{t}-\operatorname{div}(\mathrm{K}(\theta) \nabla \theta)\right)=g+a(\chi)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+\left|\chi_{t}\right|^{2} \\
& \mathbf{u}_{t t}-\operatorname{div}\left(a(\chi) \varepsilon\left(\mathbf{u}_{t}\right)+b(\chi) \varepsilon(\mathbf{u})-\rho \theta \mathbf{1}\right)=\mathbf{f} \\
& \chi_{t}+\mu \partial I_{(-\infty, 0]}\left(\chi_{t}\right)-\Delta \chi-\eta \Delta_{p} \chi+W^{\prime}(\chi) \ni-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta
\end{aligned}
$$

The full PDE system

State variables:

- the absolute temperature θ
- the (small) displacement variables $\mathbf{u}\left(\varepsilon_{i j}(\mathbf{u}):=\left(u_{i, j}+u_{j, i}\right) / 2, i, j=1,2,3\right)$
- the phase or damage parameter $\chi \in[0,1]: \chi=0$ (solid phase/completely damaged), $\chi=1$ (liquid phase/completely undamaged)
ruled by - internal energy balance displaying nonlinear dissipation - the momentum equation containing χ-dependent elliptic operators - the phase dynamics possibly displaying nonlinearities both in χ and χ_{t}

$$
\begin{aligned}
& \left.\theta_{t}+\chi_{t} \theta+\rho \theta \operatorname{div} \mathbf{u}_{t}-\operatorname{div}(\mathrm{K}(\theta) \nabla \theta)\right)=g+a(\chi)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+\left|\chi_{t}\right|^{2} \\
& \mathbf{u}_{t t}-\operatorname{div}\left(a(\chi) \varepsilon\left(\mathbf{u}_{t}\right)+b(\chi) \varepsilon(\mathbf{u})-\rho \theta \mathbf{1}\right)=\mathbf{f} \\
& \chi_{t}+\mu \partial I_{(-\infty, 0]}\left(\chi_{t}\right)-\Delta \chi-\eta \Delta_{p} \chi+W^{\prime}(\chi) \ni-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta
\end{aligned}
$$

- Unidirectional: $I_{(-\infty, 0]}\left(\chi_{t}\right)=0$ if $\chi_{t} \in(-\infty, 0], I_{(-\infty, 0]}\left(\chi_{t}\right)=+\infty$ otherwise; $\mu=1$ in damage phenomena $-\mu=0$ in phase transitions
- p-Laplacian: $-\Delta_{p}: W^{1, p}(\Omega) \rightarrow W^{1, p}(\Omega)^{*}$ the p-Laplacian $(p>d) ; \eta>0$ in phase transitions $-\eta \geq 0$ in damage phenomena
- $W=\widehat{\beta}+\widehat{\gamma}, \widehat{\gamma} \in C^{2}(\mathbb{R}), \widehat{\beta}$ proper, convex, I.s.c. (e.g. $\widehat{\beta}=I_{[0,1]}$ or $W^{\prime}(\chi)=\chi^{3}-\chi$, etc.)

The main aim of our most recent cooperation with R. Rossi

The main aim of our most recent cooperation with R. Rossi

- Give a GLOBAL - in time - existence result for the FULL PDE system displaying the high order dissipative terms on the right hand in side in the temperature equation:

$$
\left.\theta_{t}+\chi_{t} \theta+\rho \theta \operatorname{div} \mathbf{u}_{t}-\operatorname{div}(\mathrm{K}(\theta) \nabla \theta)\right)=g+a(\chi)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+\left|\chi_{t}\right|^{2}
$$

The main aim of our most recent cooperation with R. Rossi

- Give a GLOBAL - in time - existence result for the FULL PDE system displaying the high order dissipative terms on the right hand in side in the temperature equation:

$$
\left.\theta_{t}+\chi_{t} \theta+\rho \theta \operatorname{div} \mathbf{u}_{t}-\operatorname{div}(\mathrm{K}(\theta) \nabla \theta)\right)=g+a(\chi)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+\left|\chi_{t}\right|^{2}
$$

\Rightarrow These terms were neglected in most of the past contribution in the literature or considered only in the 1D case or in the framework of local - in time - existence (cf., e.g., [E. Bonetti, G. Bonfanti (2007)], [P. Krečí, J. Sprekels, U. Stefanelli (2003)], [F. Luterotti and U. Stefanelli, ZAA (2002)])

The main aim of our most recent cooperation with R. Rossi

- Give a GLOBAL - in time - existence result for the FULL PDE system displaying the high order dissipative terms on the right hand in side in the temperature equation:

$$
\left.\theta_{t}+\chi_{t} \theta+\rho \theta \operatorname{div} \mathbf{u}_{t}-\operatorname{div}(\mathrm{K}(\theta) \nabla \theta)\right)=g+a(\chi)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+\left|\chi_{t}\right|^{2}
$$

\Rightarrow These terms were neglected in most of the past contribution in the literature or considered only in the 1D case or in the framework of local - in time - existence (cf., e.g., [E. Bonetti, G. Bonfanti (2007)], [P. Krečí, J. Sprekels, U. Stefanelli (2003)], [F. Luterotti and U. Stefanelli, ZAA (2002)])
\Rightarrow We were not able to handle them at MathProSpeM2012 - Rome, April 16-20, 2012

The main ideas to handle nonlinearities and degeneracy

The main ideas to handle nonlinearities and degeneracy

Combining the concept of weak solution satisfying:

The main ideas to handle nonlinearities and degeneracy

Combining the concept of weak solution satisfying:

1. a suitable energy conservation and entropy inequality inspired by:
1.1. the works of E. Feireisl and co-authors ([Feireisl, Comput. Math. Appl. (2007)], [Bulíček, Feireisl, \& Málek, Nonlinear Anal. Real World Appl. (2009)], and [Feireisl, Petzeltovà, E.R., Math. Meth. Appl. Sci. (2009)]) for heat conduction in fluids \Longrightarrow weak formulation of the internal energy balance called entropic formulation

The main ideas to handle nonlinearities and degeneracy

Combining the concept of weak solution satisfying:

1. a suitable energy conservation and entropy inequality inspired by:
1.1. the works of E. Feireisl and co-authors ([Feireisl, Comput. Math. Appl. (2007)], [Bulíček, Feireisl, \& Málek, Nonlinear Anal. Real World Appl. (2009)], and [Feireisl, Petzeltovà, E.R., Math. Meth. Appl. Sci. (2009)]) for heat conduction in fluids \Longrightarrow weak formulation of the internal energy balance called entropic formulation
2. a generalization of the principle of virtual powers inspired by:
2.1. a notion of weak solution introduced by [Heinemann, Kraus, WIAS, Adv. Math. Sci. Appl. (2011) and European J. Appl. Math. (2013)] for non-degenerating isothermal diffuse interface models for phase separation and damage \Longrightarrow weak formulation of the damage equation

Entropic formulation: a phase transitions model

A first application of the entropic formulation: solid-liquid phase transitions

In order to show the potential power of this idea we

> ... give a description of the method stating more precisely the content of this recent work [E. Feireisl, H. Petzeltovà, E.R., Existence of solutions to some models of phase changes with microscopic movements, Math. Meth. Appl. Sci. (2009)] in which this notion of solution has been firstly applied to phase transition models

A first application of the entropic formulation: solid-liquid phase transitions

In order to show the potential power of this idea we

> ... give a description of the method stating more precisely the content of this recent work [E. Feireisl, H. Petzeltovà, E.R., Existence of solutions to some models of phase changes with microscopic movements, Math. Meth. Appl. Sci. (2009)] in which this notion of solution has been firstly applied to phase transition models

We consider there a model for solid-liquid phase transitions associated to a nonlinear PDE system

$$
\begin{aligned}
& \theta_{t}+\chi_{t} \theta-\Delta \theta=\left|\chi_{t}\right|^{2} \\
& \chi_{t}-\Delta \chi+W^{\prime}(\chi)=\theta-\theta_{c}
\end{aligned}
$$

A first application of the entropic formulation: solid-liquid phase transitions

In order to show the potential power of this idea we

> ... give a description of the method stating more precisely the content of this recent work [E. Feireisl, H. Petzeltovà, E.R., Existence of solutions to some models of phase changes with microscopic movements, Math. Meth. Appl. Sci. (2009)] in which this notion of solution has been firstly applied to phase transition models

We consider there a model for solid-liquid phase transitions associated to a nonlinear PDE system

$$
\begin{aligned}
& \theta_{t}+\chi_{t} \theta-\Delta \theta=\left|\chi_{t}\right|^{2} \\
& \chi_{t}-\Delta \chi+W^{\prime}(\chi)=\theta-\theta_{c}
\end{aligned}
$$

- No global-in-time well-posedness result had yet been obtained in the 3D case, even neglecting $\left|\chi_{t}\right|^{2}$ on the r.h.s.

A first application of the entropic formulation: solid-liquid phase transitions

In order to show the potential power of this idea we
\ldots give a description of the method stating more precisely
the content of this recent work [E. Feireisl, H. Petzeltovà,
E.R., Existence of solutions to some models of phase changes
with microscopic movements, Math. Meth. Appl. Sci. (2009)]
in which this notion of solution has been firstly applied to
phase transition models

We consider there a model for solid-liquid phase transitions associated to a nonlinear PDE system

$$
\begin{aligned}
& \theta_{t}+\chi_{t} \theta-\Delta \theta=\left|\chi_{t}\right|^{2} \\
& \chi_{t}-\Delta \chi+W^{\prime}(\chi)=\theta-\theta_{c}
\end{aligned}
$$

- No global-in-time well-posedness result had yet been obtained in the 3D case, even neglecting $\left|\chi_{t}\right|^{2}$ on the r.h.s.
- A 1D global result was proved in [F. Luterotti and U. Stefanelli, ZAA (2002)]

A first application of the entropic formulation: solid-liquid phase transitions

In order to show the potential power of this idea we

> ... give a description of the method stating more precisely the content of this recent work [E. Feireisl, H. Petzeltovà, E.R., Existence of solutions to some models of phase changes with microscopic movements, Math. Meth. Appl. Sci. (2009)] in which this notion of solution has been firstly applied to phase transition models

We consider there a model for solid-liquid phase transitions associated to a nonlinear PDE system

$$
\begin{aligned}
& \theta_{t}+\chi_{t} \theta-\Delta \theta=\left|\chi_{t}\right|^{2} \\
& \chi_{t}-\Delta \chi+W^{\prime}(\chi)=\theta-\theta_{c}
\end{aligned}
$$

- No global-in-time well-posedness result had yet been obtained in the 3D case, even neglecting $\left|\chi_{t}\right|^{2}$ on the r.h.s.
- A 1D global result was proved in [F. Luterotti and U. Stefanelli, ZAA (2002)]
\Longrightarrow a new weaker notion of solution is needed

Entropic formulation

Idea: Start directly from the basic principles of Thermodynamics just assuming that the

Entropic formulation

Idea: Start directly from the basic principles of Thermodynamics just assuming that the

- entropy of the system is controlled by dissipation

Entropic formulation

Idea: Start directly from the basic principles of Thermodynamics just assuming that the

- entropy of the system is controlled by dissipation and

Entropic formulation

Idea: Start directly from the basic principles of Thermodynamics just assuming that the

- entropy of the system is controlled by dissipation and
- total energy is conserved during the evolution

Entropic formulation

Idea: Start directly from the basic principles of Thermodynamics just assuming that the

- entropy of the system is controlled by dissipation and
- total energy is conserved during the evolution

The nonlinear equation for θ (internal energy balance) is replaced by

> the entropy inequality + the total energy conservation

Entropic formulation

Idea: Start directly from the basic principles of Thermodynamics just assuming that the

- entropy of the system is controlled by dissipation and
- total energy is conserved during the evolution

The nonlinear equation for θ (internal energy balance) is replaced by
the entropy inequality + the total energy conservation

Finally, couple these relations to a suitable phase dynamics

The entropy production

Assuming the system is thermally isolated, the entropy balance results

The entropy production

Assuming the system is thermally isolated, the entropy balance results

$$
\int_{0}^{T} \int_{\Omega} s_{t} \varphi-\int_{0}^{T} \int_{\Omega} \frac{\mathbf{q}}{\theta} \cdot \nabla \varphi=\int_{0}^{T} \int_{\Omega} r \varphi \quad \forall \varphi \in \mathcal{D}\left(\bar{Q}_{T}\right), \quad Q_{T}:=(0, T) \times \Omega
$$

r represents the entropy production rate.

The entropy production

Assuming the system is thermally isolated, the entropy balance results

$$
\int_{0}^{T} \int_{\Omega} s_{t} \varphi-\int_{0}^{T} \int_{\Omega} \frac{\mathbf{q}}{\theta} \cdot \nabla \varphi=\int_{0}^{T} \int_{\Omega} r \varphi \quad \forall \varphi \in \mathcal{D}\left(\bar{Q}_{T}\right), \quad Q_{T}:=(0, T) \times \Omega
$$

r represents the entropy production rate. Then, in order to comply with the Clausius-Duhem inequality, we assume:
(i) r is a nonnegative measure on \bar{Q}_{T};
(ii) $r \geq \frac{1}{\theta}\left(\left|\chi_{t}\right|^{2}-\frac{\mathbf{q} \cdot \nabla \theta}{\theta}\right) \geq 0$.

The entropy production

Assuming the system is thermally isolated, the entropy balance results

$$
\int_{0}^{T} \int_{\Omega} s_{t} \varphi-\int_{0}^{T} \int_{\Omega} \frac{\mathbf{q}}{\theta} \cdot \nabla \varphi=\int_{0}^{T} \int_{\Omega} r \varphi \quad \forall \varphi \in \mathcal{D}\left(\bar{Q}_{T}\right), \quad Q_{T}:=(0, T) \times \Omega
$$

r represents the entropy production rate. Then, in order to comply with the Clausius-Duhem inequality, we assume:
(i) r is a nonnegative measure on \bar{Q}_{T};
(ii) $r \geq \frac{1}{\theta}\left(\left|\chi_{t}\right|^{2}-\frac{\mathbf{q} \cdot \nabla \theta}{\theta}\right) \geq 0$.

Taking $\mathbf{q}=-\nabla \theta, s=\log \theta+\chi$, we get

$$
\begin{aligned}
\int_{0}^{T} \int_{\Omega}\left((\log \theta+\chi) \partial_{t} \varphi\right. & -\nabla \log \theta \cdot \nabla \varphi) d x d t \\
& \leq \int_{0}^{T} \int_{\Omega} \frac{1}{\theta}\left(-\left|\chi_{t}\right|^{2}-\nabla \log \theta \cdot \nabla \theta\right) \varphi d x d t
\end{aligned}
$$

for every test function $\varphi \in \mathcal{D}\left(\bar{Q}_{T}\right), \varphi \geq 0$

The entropy production

Assuming the system is thermally isolated, the entropy balance results

$$
\int_{0}^{T} \int_{\Omega} s_{t} \varphi-\int_{0}^{T} \int_{\Omega} \frac{\mathbf{q}}{\theta} \cdot \nabla \varphi=\int_{0}^{T} \int_{\Omega} r \varphi \quad \forall \varphi \in \mathcal{D}\left(\bar{Q}_{T}\right), \quad Q_{T}:=(0, T) \times \Omega
$$

r represents the entropy production rate. Then, in order to comply with the Clausius-Duhem inequality, we assume:
(i) r is a nonnegative measure on \bar{Q}_{T};
(ii) $r \geq \frac{1}{\theta}\left(\left|\chi_{t}\right|^{2}-\frac{\mathbf{q} \cdot \nabla \theta}{\theta}\right) \geq 0$.

Taking $\mathbf{q}=-\nabla \theta, s=\log \theta+\chi$, we get

$$
\begin{aligned}
\int_{0}^{T} \int_{\Omega}\left((\log \theta+\chi) \partial_{t} \varphi\right. & -\nabla \log \theta \cdot \nabla \varphi) d x d t \\
& \leq \int_{0}^{T} \int_{\Omega} \frac{1}{\theta}\left(-\left|\chi_{t}\right|^{2}-\nabla \log \theta \cdot \nabla \theta\right) \varphi d x d t
\end{aligned}
$$

for every test function $\varphi \in \mathcal{D}\left(\bar{Q}_{T}\right), \varphi \geq 0$
\Rightarrow the total entropy is controlled by dissipation

The energy conservation and phase relation

The total energy has to be preserved. Hence

$$
E(t)=E(0) \text { for a.e. } t \in[0, T]
$$

where

$$
E \equiv \int_{\Omega}\left(\theta+W(\chi)+\frac{|\nabla \chi|^{2}}{2}\right) d x .
$$

The energy conservation and phase relation

The total energy has to be preserved. Hence

$$
E(t)=E(0) \text { for a.e. } t \in[0, T]
$$

where

$$
E \equiv \int_{\Omega}\left(\theta+W(\chi)+\frac{|\nabla \chi|^{2}}{2}\right) d x .
$$

Finally, the phase dynamics results as

$$
\chi_{t}-\Delta \chi+W^{\prime}(\chi)=\theta-\theta_{c} \quad \text { a.e. in } \Omega \times(0, T),
$$

where W is a double well or double obstacle potential: $W=\widehat{\beta}+\widehat{\gamma}$ where
$\widehat{\beta}: \mathbb{R} \rightarrow[0,+\infty]$ is proper, lower semi-continuous, convex function
$\widehat{\gamma} \in C^{2}(\mathbb{R}), \widehat{\gamma}^{\prime} \in C^{0,1}(\mathbb{R}): \widehat{\gamma}^{\prime \prime}(r) \geq-K$ for all $r \in \mathbb{R}, W(r) \geq c_{w} r^{2}$ for all $r \in \operatorname{dom}(\widehat{\beta})$

Examples: $\widehat{\beta}(r)=r \ln (r)+(1-r) \ln (1-r)$ or $\widehat{\beta}(r)=I_{[0,1]}(r)$

The existence theorem [E. Feireisl, H. Petzeltová, E.R., M2AS (2009)]
Fix $T>0$ and take suitable initial data. Let $s \in(1,2)$ be a proper exponent depending on the space dimension.

The existence theorem [E. Feireisl, H. Petzeltová, E.R., M2AS (2009)]
Fix $T>0$ and take suitable initial data. Let $s \in(1,2)$ be a proper exponent depending on the space dimension. Then there exists at least one pair (θ, χ) s.t.

$$
\begin{aligned}
& \theta \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right) \cap L^{s}\left(Q_{T}\right), \quad \theta(x, t)>0 \quad \text { a. e. in } Q_{T} \\
& \log (\theta) \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right) \cap L^{2}\left(0, T ; H^{1}(\Omega)\right) \cap W^{1,1}\left(0, T ; W^{-2,3 / 2}(\Omega)\right) \\
& \chi \in C^{0}\left([0, T] ; H^{1}(\Omega)\right) \cap L^{s}\left(0, T ; W_{N}^{2, s}(\Omega)\right) \quad \chi_{t} \in L^{s}\left(Q_{T}\right),
\end{aligned}
$$

The existence theorem [E. Feireisl, H. Petzeltová, E.R., M2AS (2009)]
Fix $T>0$ and take suitable initial data. Let $s \in(1,2)$ be a proper exponent depending on the space dimension. Then there exists at least one pair (θ, χ) s.t.

$$
\begin{aligned}
& \theta \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right) \cap L^{s}\left(Q_{T}\right), \quad \theta(x, t)>0 \quad \text { a. e. in } Q_{T} \\
& \log (\theta) \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right) \cap L^{2}\left(0, T ; H^{1}(\Omega)\right) \cap W^{1,1}\left(0, T ; W^{-2,3 / 2}(\Omega)\right) \\
& \chi \in C^{0}\left([0, T] ; H^{1}(\Omega)\right) \cap L^{s}\left(0, T ; W_{N}^{2, s}(\Omega)\right) \quad \chi_{t} \in L^{s}\left(Q_{T}\right),
\end{aligned}
$$

satisfying the entropy inequality $\left(\forall \varphi \in \mathcal{D}\left(\bar{Q}_{T}\right), \varphi \geq 0\right)$:

$$
\begin{aligned}
\int_{0}^{T} \int_{\Omega}((\log \theta+\chi) & \left.\partial_{t} \varphi-\nabla \log \theta \cdot \nabla \varphi\right) d x d t \\
& \leq \int_{0}^{T} \int_{\Omega} \frac{1}{\theta}\left(-\left|\chi_{t}\right|^{2}-\nabla \log \theta \cdot \nabla \theta\right) \varphi d x d t
\end{aligned}
$$

The existence theorem [E. Feireisl, H. Petzeltová, E.R., M2AS (2009)]
Fix $T>0$ and take suitable initial data. Let $s \in(1,2)$ be a proper exponent depending on the space dimension. Then there exists at least one pair (θ, χ) s.t.

$$
\begin{aligned}
& \theta \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right) \cap L^{s}\left(Q_{T}\right), \quad \theta(x, t)>0 \quad \text { a. e. in } Q_{T} \\
& \log (\theta) \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right) \cap L^{2}\left(0, T ; H^{1}(\Omega)\right) \cap W^{1,1}\left(0, T ; W^{-2,3 / 2}(\Omega)\right) \\
& \chi \in C^{0}\left([0, T] ; H^{1}(\Omega)\right) \cap L^{s}\left(0, T ; W_{N}^{2, s}(\Omega)\right) \quad \chi_{t} \in L^{s}\left(Q_{T}\right),
\end{aligned}
$$

satisfying the entropy inequality $\left(\forall \varphi \in \mathcal{D}\left(\bar{Q}_{T}\right), \varphi \geq 0\right)$:

$$
\begin{aligned}
\int_{0}^{T} \int_{\Omega}((\log \theta+\chi) & \left.\partial_{t} \varphi-\nabla \log \theta \cdot \nabla \varphi\right) d x d t \\
& \leq \int_{0}^{T} \int_{\Omega} \frac{1}{\theta}\left(-\left|\chi_{t}\right|^{2}-\nabla \log \theta \cdot \nabla \theta\right) \varphi d x d t
\end{aligned}
$$

the phase equation

$$
\chi_{t}-\Delta \chi+W^{\prime}(\chi)=\theta-\theta_{c} \quad \text { a.e. in } Q_{T}, \quad \chi(0)=\chi_{0} \quad \text { a.e. in } \Omega
$$

The existence theorem [E. Feireisl, H. Petzeltová, E.R., M2AS (2009)]
Fix $T>0$ and take suitable initial data. Let $s \in(1,2)$ be a proper exponent depending on the space dimension. Then there exists at least one pair (θ, χ) s.t.

$$
\begin{aligned}
& \theta \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right) \cap L^{s}\left(Q_{T}\right), \quad \theta(x, t)>0 \quad \text { a. e. in } Q_{T} \\
& \log (\theta) \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right) \cap L^{2}\left(0, T ; H^{1}(\Omega)\right) \cap W^{1,1}\left(0, T ; W^{-2,3 / 2}(\Omega)\right) \\
& \chi \in C^{0}\left([0, T] ; H^{1}(\Omega)\right) \cap L^{s}\left(0, T ; W_{N}^{2, s}(\Omega)\right) \quad \chi_{t} \in L^{s}\left(Q_{T}\right),
\end{aligned}
$$

satisfying the entropy inequality $\left(\forall \varphi \in \mathcal{D}\left(\bar{Q}_{T}\right), \varphi \geq 0\right)$:

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega}\left((\log \theta+\chi) \partial_{t} \varphi-\nabla \log \theta \cdot \nabla \varphi\right) d x d t \\
& \leq \int_{0}^{T} \int_{\Omega} \frac{1}{\theta}\left(-\left|\chi_{t}\right|^{2}-\nabla \log \theta \cdot \nabla \theta\right) \varphi d x d t
\end{aligned}
$$

the phase equation

$$
\chi_{t}-\Delta \chi+W^{\prime}(\chi)=\theta-\theta_{c} \quad \text { a.e. in } Q_{T}, \quad \chi(0)=\chi_{0} \quad \text { a.e. in } \Omega
$$

and the total energy conservation

$$
E(t)=E(0) \quad \text { a.e. in }[0, T], \quad E \equiv \int_{\Omega}\left(\theta+W(\chi)+\frac{|\nabla \chi|^{2}}{2}\right) d x
$$

The main advantages of this approach

The main advantages of this approach

- It complies with thermodynamical principles and hence it gives for free thermodynamically consistent models

The main advantages of this approach

- It complies with thermodynamical principles and hence it gives for free thermodynamically consistent models
- It gives rise exactly to the previous the PDE system

$$
\begin{aligned}
& \theta_{t}+\chi_{t} \theta-\Delta \theta=\left|\chi_{t}\right|^{2} \\
& \chi_{t}-\Delta \chi+W^{\prime}(\chi)=\theta-\theta_{c}
\end{aligned}
$$

at least in case the solution (θ, χ) is sufficiently smooth

The main advantages of this approach

- It complies with thermodynamical principles and hence it gives for free thermodynamically consistent models
- It gives rise exactly to the previous the PDE system

$$
\begin{aligned}
& \theta_{t}+\chi_{t} \theta-\Delta \theta=\left|\chi_{t}\right|^{2} \\
& \chi_{t}-\Delta \chi+W^{\prime}(\chi)=\theta-\theta_{c}
\end{aligned}
$$

at least in case the solution (θ, χ) is sufficiently smooth

- However, in this case and similarly in many other situations, to prove that the solution has this extra regularity is out of reach

The main advantages of this approach

- It complies with thermodynamical principles and hence it gives for free thermodynamically consistent models
- It gives rise exactly to the previous the PDE system

$$
\begin{aligned}
& \theta_{t}+\chi_{t} \theta-\Delta \theta=\left|\chi_{t}\right|^{2} \\
& \chi_{t}-\Delta \chi+W^{\prime}(\chi)=\theta-\theta_{c}
\end{aligned}
$$

at least in case the solution (θ, χ) is sufficiently smooth

- However, in this case and similarly in many other situations, to prove that the solution has this extra regularity is out of reach
- It can be suitable also in different applications such as the ones related to SMA, liquid crystal flows, damage phenomena and phase transitions in themoviscoelastic materials

Our model [Rocca-Rossi, work in progress, 2013]

The free-energy

cf. [M. Frémond, Phase Change in Mechanics, Lecture Notes of UMI, Springer-Verlag, 2012]

$$
\mathcal{F}=\int_{\Omega}\left(c_{v} \theta(1-\log \theta)+b(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\frac{|\nabla \chi|^{2}}{2}+\eta \frac{|\nabla \chi|^{p}}{p}+W(\chi)-\theta \chi-\rho \theta \operatorname{tr}(\varepsilon(\mathbf{u}))\right) \mathrm{d} x
$$

- damage: $b(\chi)=\chi$; the stiffness of the material decreases as $\chi \searrow 0$
- phase transitions: $b(\chi)=1-\chi$; elastic effects are not present in the fluid
- $W=\widehat{\beta}+\widehat{\gamma}, \widehat{\gamma} \in C^{2}(\mathbb{R}), \widehat{\beta}$ proper, convex, I.s.c.
- $\eta>0$ and $p>d$ in phase transitions, $\eta \geq 0$ in damage
- $c_{v}>0$, take it $=1$ for simplicity

The free-energy

cf. [M. Frémond, Phase Change in Mechanics, Lecture Notes of UMI, Springer-Verlag, 2012]

$$
\mathcal{F}=\int_{\Omega}\left(c_{v} \theta(1-\log \theta)+b(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\frac{|\nabla \chi|^{2}}{2}+\eta \frac{|\nabla \chi|^{p}}{p}+W(\chi)-\theta \chi-\rho \theta \operatorname{tr}(\varepsilon(\mathbf{u}))\right) \mathrm{d} x
$$

- damage: $b(\chi)=\chi$; the stiffness of the material decreases as $\chi \searrow 0$
- phase transitions: $b(\chi)=1-\chi$; elastic effects are not present in the fluid
- $W=\widehat{\beta}+\widehat{\gamma}, \widehat{\gamma} \in C^{2}(\mathbb{R}), \widehat{\beta}$ proper, convex, I.s.c.
- $\eta>0$ and $p>d$ in phase transitions, $\eta \geq 0$ in damage
- $c_{v}>0$, take it $=1$ for simplicity

The pseudo-potential

$$
\mathcal{P}=\frac{\mathrm{K}(\theta)}{2}|\nabla \theta|^{2}+\frac{1}{2}\left|\chi_{t}\right|^{2}+a(\chi) \frac{\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}}{2}+\mu I_{(-\infty, 0]}\left(\chi_{t}\right)
$$

- $a(\chi)=\chi$: no viscosty in solid phase or when the material is completely damaged
- K is the heat conductivity, $\mathrm{K}(\theta) \geq c_{1}\left(1+\nu \theta^{k}\right)$ for some $c_{1}, \nu>0, k>1$
- $\mu \neq 0$ in damage: $I_{(-\infty, 0]}\left(\chi_{t}\right)=0$ if $\chi_{t} \in(-\infty, 0]$, $I_{(-\infty, 0]}\left(\chi_{t}\right)=+\infty$ otherwise (irreversibility of the damage)

The modelling

The momentum equation

$$
\begin{gathered}
\mathbf{u}_{t t}-\operatorname{div} \sigma=\mathbf{f} \quad\left(\sigma=\sigma^{d}+\sigma^{n d}=\frac{\partial \mathcal{P}}{\partial \varepsilon\left(\mathbf{u}_{t}\right)}+\frac{\partial \mathcal{F}}{\partial \varepsilon(\mathbf{u})}\right) \quad \text { becomes } \\
\mathbf{u}_{t t}-\operatorname{div}\left(a(\chi) \varepsilon\left(\mathbf{u}_{t}\right)+b(\chi) \varepsilon(\mathbf{u})-\rho \theta \mathbf{1}\right)=\mathbf{f}
\end{gathered}
$$

The modelling

The momentum equation

$$
\begin{gathered}
\mathbf{u}_{t t}-\operatorname{div} \sigma=\mathbf{f} \quad\left(\sigma=\sigma^{d}+\sigma^{n d}=\frac{\partial \mathcal{P}}{\partial \varepsilon\left(\mathbf{u}_{t}\right)}+\frac{\partial \mathcal{F}}{\partial \varepsilon(\mathbf{u})}\right) \quad \text { becomes } \\
\mathbf{u}_{t t}-\operatorname{div}\left(a(\chi) \varepsilon\left(\mathbf{u}_{t}\right)+b(\chi) \varepsilon(\mathbf{u})-\rho \theta \mathbf{1}\right)=\mathbf{f}
\end{gathered}
$$

The "standard" principle of virtual powers

$$
B-\operatorname{div} \mathbf{H}=0 \quad\left(B=\frac{\partial \mathcal{P}}{\partial \chi_{t}}+\frac{\partial \mathcal{F}}{\partial \chi}, \mathbf{H}=\frac{\partial \mathcal{F}}{\partial \nabla \chi}\right) \quad \text { becomes }
$$

$$
\chi_{t}+\mu \partial I_{(-\infty, 0]}\left(\chi_{t}\right)-\Delta \chi-\eta \Delta_{p} \chi+W^{\prime}(\chi) \ni-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta
$$

The modelling

The momentum equation

$$
\begin{gathered}
\mathbf{u}_{t t}-\operatorname{div} \sigma=\mathbf{f} \quad\left(\sigma=\sigma^{d}+\sigma^{n d}=\frac{\partial \mathcal{P}}{\partial \varepsilon\left(\mathbf{u}_{t}\right)}+\frac{\partial \mathcal{F}}{\partial \varepsilon(\mathbf{u})}\right) \quad \text { becomes } \\
\mathbf{u}_{t t}-\operatorname{div}\left(a(\chi) \varepsilon\left(\mathbf{u}_{t}\right)+b(\chi) \varepsilon(\mathbf{u})-\rho \theta \mathbf{1}\right)=\mathbf{f}
\end{gathered}
$$

The "standard" principle of virtual powers

$$
B-\operatorname{div} \mathbf{H}=0 \quad\left(B=\frac{\partial \mathcal{P}}{\partial \chi_{t}}+\frac{\partial \mathcal{F}}{\partial \chi}, \mathbf{H}=\frac{\partial \mathcal{F}}{\partial \nabla \chi}\right) \quad \text { becomes }
$$

$$
\chi_{t}+\mu \partial I_{(-\infty, 0]}\left(\chi_{t}\right)-\Delta \chi-\eta \Delta_{p} \chi+W^{\prime}(\chi) \ni-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta
$$

The internal energy balance

$$
e_{t}+\operatorname{div} \mathbf{q}=g+\sigma: \varepsilon\left(\mathbf{u}_{t}\right)+B \chi_{t}+\mathbf{H} \cdot \nabla \chi_{t} \quad\left(e=\mathcal{F}-\theta \frac{\partial \mathcal{F}}{\partial \theta}, \quad \mathbf{q}=\frac{\partial \mathcal{F}}{\partial \nabla \theta}\right)
$$

becomes

$$
\theta_{t}+\chi_{t} \theta+\rho \theta \operatorname{div} \mathbf{u}_{t}-\operatorname{div}(\mathrm{K}(\theta) \nabla \theta)=g+a(\chi)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+\left|\chi_{t}\right|^{2}
$$

Our previous results (cf. [MathProSpeM2012 - Rome, April 16-20, 2012])

Our previous results (cf. [MathProSpeM2012 - Rome, April 16-20, 2012])
[First result] Local in time well-posedness for a suitable formulation of the reversible problem ($\mu, \eta=0$), using in

$$
\theta_{t}+\chi_{t} \theta-\Delta \theta=g \quad \underbrace{+a(\chi)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+\left|\chi_{t}\right|^{2}}_{=0}
$$

the small perturbations assumption in the 3D (in space) setting [E.R., Rossi, J. Differential Equations, 2008]

Our previous results (cf. [MathProSpeM2012 - Rome, April 16-20, 2012])
[First result] Local in time well-posedness for a suitable formulation of the reversible problem ($\mu, \eta=0$), using in

$$
\theta_{t}+\chi_{t} \theta-\Delta \theta=g \quad \underbrace{+a(\chi)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+\left|\chi_{t}\right|^{2}}_{=0}
$$

the small perturbations assumption in the 3D (in space) setting [E.R., Rossi, J. Differential Equations, 2008]
[SECOND ReSUlT] Global well-posedness in the 1D case $(\mu, \eta=0)$ without small perturbations assumption [E.R, Rossi, Appl. Math., Special Volume (2008)]

Our previous results (cf. [MathProSpeM2012 - Rome, April 16-20, 2012])
[FIRST RESULT] Local in time well-posedness for a suitable formulation of the reversible problem ($\mu, \eta=0$), using in

$$
\theta_{t}+\chi_{t} \theta-\Delta \theta=g \quad \underbrace{+a(\chi)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+\left|\chi_{t}\right|^{2}}_{=0}
$$

the small perturbations assumption in the 3D (in space) setting [E.R., Rossi, J. Differential Equations, 2008]
[SECOND ReSult] Global well-posedness in the 1D case $(\mu, \eta=0)$ without small perturbations assumption [E.R, Rossi, Appl. Math., Special Volume (2008)]

Note: in both these results we assumed χ_{0} separated from the thresholds 0 and 1 and we prove (via coercivity condition on W at the thresholds 0 and 1) that the solution χ of

$$
\chi_{t}-\Delta \chi+W^{\prime}(\chi) \ni-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta
$$

during the evolution continues to stay separated from 0 and $1 \Longrightarrow$ prevent degeneracy (the operators are uniformly elliptic)

Our previous results (cf. [MathProSpeM2012 - Rome, April 16-20, 2012])
[First result] Local in time well-posedness for a suitable formulation of the reversible problem ($\mu, \eta=0$), using in

$$
\theta_{t}+\chi_{t} \theta-\Delta \theta=g \quad \underbrace{+a(\chi)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+\left|\chi_{t}\right|^{2}}_{=0}
$$

the small perturbations assumption in the 3D (in space) setting [E.R., Rossi, J. Differential Equations, 2008]
[SECOND RESULT] Global well-posedness in the 1D case $(\mu, \eta=0)$ without small perturbations assumption [E.R, Rossi, Appl. Math., Special Volume (2008)]

Note: in both these results we assumed χ_{0} separated from the thresholds 0 and 1 and we prove (via coercivity condition on W at the thresholds 0 and 1) that the solution χ of

$$
\chi_{t}-\Delta \chi+W^{\prime}(\chi) \ni-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta
$$

during the evolution continues to stay separated from 0 and $1 \Longrightarrow$ prevent degeneracy (the operators are uniformly elliptic)
[The last result] [E.R., R. Rossi, preprint arXiv:1205.3578v2 (2012)]: global existence result in 3D using a suitable notion of solution and without enforcing the separation property, i.e. allowing for degeneracy with $\mu=1, \eta>0$, but always within the small perturbations assumption

Our next goal: the full system without the small perturbations hyp.

Our next goal: the full system without the small perturbations hyp.

We restric to the non-degenerate case \Longrightarrow replace a and b by $a+\delta, b+\delta$ in the momentum balance:

$$
\mathbf{u}_{t t}-\operatorname{div}\left((a(\chi)+\delta) \varepsilon\left(\mathbf{u}_{t}\right)+(b(\chi)+\delta) \varepsilon(\mathbf{u})-\rho \theta \mathbf{1}\right)=\mathbf{f} \quad \text { for } \delta>0
$$

Our next goal: the full system without the small perturbations hyp.

We restric to the non-degenerate case \Longrightarrow replace a and b by $a+\delta, b+\delta$ in the momentum balance:

$$
\mathbf{u}_{t t}-\operatorname{div}\left((a(\chi)+\delta) \varepsilon\left(\mathbf{u}_{t}\right)+(b(\chi)+\delta) \varepsilon(\mathbf{u})-\rho \theta \mathbf{1}\right)=\mathbf{f} \quad \text { for } \delta>0
$$

In order to handle

- the high order dissipative terms in the θ-equation
- the quadratic nonlinearity in the χ-equation

Our next goal: the full system without the small perturbations hyp.

We restric to the non-degenerate case \Longrightarrow replace a and b by $a+\delta, b+\delta$ in the momentum balance:

$$
\mathbf{u}_{t t}-\operatorname{div}\left((a(\chi)+\delta) \varepsilon\left(\mathbf{u}_{t}\right)+(b(\chi)+\delta) \varepsilon(\mathbf{u})-\rho \theta \mathbf{1}\right)=\mathbf{f} \quad \text { for } \delta>0
$$

In order to handle

- the high order dissipative terms in the θ-equation
- the quadratic nonlinearity in the χ-equation
we need a suitable weak formulation

Our next goal: the full system without the small perturbations hyp.

We restric to the non-degenerate case \Longrightarrow replace a and b by $a+\delta, b+\delta$ in the momentum balance:

$$
\mathbf{u}_{t t}-\operatorname{div}\left((a(\chi)+\delta) \varepsilon\left(\mathbf{u}_{t}\right)+(b(\chi)+\delta) \varepsilon(\mathbf{u})-\rho \theta \mathbf{1}\right)=\mathbf{f} \quad \text { for } \delta>0
$$

In order to handle

- the high order dissipative terms in the θ-equation
- the quadratic nonlinearity in the χ-equation
we need a suitable weak formulation
We consider separately the cases:
- of irreversible damage processes $\mu=1, \eta \geq 0$
- of reversible model of phase transitions $\mu=0, \eta>0$

The irreversible damage process: $\mu=1$ and $\eta=0$

$$
\begin{aligned}
& \left.\theta_{t}+\chi_{t} \theta+\rho \theta \operatorname{div} \mathbf{u}_{t}-\operatorname{div}(\mathrm{K}(\theta) \nabla \theta)\right)=g+(a(\chi)+\delta)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+\left|\chi_{t}\right|^{2} \\
& \mathbf{u}_{t t}-\operatorname{div}\left((a(\chi)+\delta) \varepsilon\left(\mathbf{u}_{t}\right)+(b(\chi)+\delta) \varepsilon(\mathbf{u})-\rho \theta \mathbf{1}\right)=\mathbf{f} \\
& \chi_{t}+\underbrace{\mu \partial I_{(-\infty, 0]}\left(\chi_{t}\right)}_{=\partial I_{(-\infty, 0]}\left(\chi_{t}\right)}-\Delta \chi \underbrace{-\eta \Delta_{p} \chi}_{=0}+W^{\prime}(\chi) \ni-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta
\end{aligned}
$$

Hypothesis (I).

The function $\mathrm{K}:[0,+\infty) \rightarrow(0,+\infty)$ is continuous and
$\exists c_{1}, \nu>0, k>1: \quad \forall \theta \in[0,+\infty) \quad \mathrm{K}(\theta) \geq c_{1}\left(1+\nu \theta^{k}\right)$.

Hypothesis (I).
The function $\mathrm{K}:[0,+\infty) \rightarrow(0,+\infty)$ is continuous and

$$
\exists c_{1}, \nu>0, k>1: \quad \forall \theta \in[0,+\infty) \quad \mathrm{K}(\theta) \geq c_{1}\left(1+\nu \theta^{k}\right) .
$$

Hypothesis (II). $a \in \mathrm{C}^{1}(\mathbb{R}), b \in \mathrm{C}^{2}(\mathbb{R})$ are such that $a(x), b(x) \geq 0, b^{\prime}(x) \geq 0$ for all $x \in \mathbb{R}$.

Hypothesis (1).
The function $\mathrm{K}:[0,+\infty) \rightarrow(0,+\infty)$ is continuous and

$$
\exists c_{1}, \nu>0, k>1: \quad \forall \theta \in[0,+\infty) \quad \mathrm{K}(\theta) \geq c_{1}\left(1+\nu \theta^{k}\right) .
$$

Hypothesis (II).

$$
a \in \mathrm{C}^{1}(\mathbb{R}), b \in \mathrm{C}^{2}(\mathbb{R}) \text { are such that } a(x), b(x) \geq 0, b^{\prime}(x) \geq 0 \text { for all } x \in \mathbb{R} .
$$

Hypothesis (III). $W=\widehat{\beta}+\widehat{\gamma}$, where
$\widehat{\beta}: \operatorname{dom}(\widehat{\beta}) \rightarrow \mathbb{R}$ is proper, I.s.c., convex;, $\operatorname{dom}(\widehat{\beta}) \subseteq[0,+\infty)$ is bounded,

$$
\widehat{\gamma} \in \mathrm{C}^{2}(\mathbb{R}), \quad \exists c_{w}>0: \quad W(r) \geq c_{w} r^{2} \quad \forall r \in \operatorname{dom}(\widehat{\beta}) .
$$

Hereafter, we shall denote by $\beta=\partial \widehat{\beta}$ the subdifferential of $\widehat{\beta}$, and set $\gamma:=\widehat{\gamma}^{\prime}$.

Hypothesis (1).
The function $\mathrm{K}:[0,+\infty) \rightarrow(0,+\infty)$ is continuous and

$$
\exists c_{1}, \nu>0, k>1: \quad \forall \theta \in[0,+\infty) \quad K(\theta) \geq c_{1}\left(1+\nu \theta^{k}\right) .
$$

Hypothesis (II).

$$
a \in \mathrm{C}^{1}(\mathbb{R}), b \in \mathrm{C}^{2}(\mathbb{R}) \text { are such that } a(x), b(x) \geq 0, b^{\prime}(x) \geq 0 \text { for all } x \in \mathbb{R} .
$$

Hypothesis (III). $W=\widehat{\beta}+\widehat{\gamma}$, where

$$
\begin{aligned}
& \widehat{\beta}: \operatorname{dom}(\widehat{\beta}) \rightarrow \mathbb{R} \text { is proper, l.s.c., convex; } \quad \operatorname{dom}(\widehat{\beta}) \subseteq[0,+\infty) \text { is bounded, } \\
& \widehat{\gamma} \in C^{2}(\mathbb{R}), \quad \exists c_{w}>0: \quad W(r) \geq c_{w} r^{2} \quad \forall r \in \operatorname{dom}(\widehat{\beta})
\end{aligned}
$$

Hereafter, we shall denote by $\beta=\partial \widehat{\beta}$ the subdifferential of $\widehat{\beta}$, and set $\gamma:=\widehat{\gamma}^{\prime}$.
Hypothesis (IV).

$$
\begin{aligned}
& \mathbf{f} \in L^{2}\left(0, T ; L^{2}(\Omega)\right) \\
& g \in L^{1}\left(0, T ; L^{1}(\Omega)\right) \cap L^{2}\left(0, T ; H^{1}(\Omega)^{\prime}\right), \quad g \geq 0 \quad \text { a.e. in } \Omega \times(0, T)
\end{aligned}
$$

and that the initial data comply with

$$
\begin{array}{ll}
\theta_{0} \in L^{1}(\Omega), & \exists \theta_{*}>0: \quad \min _{\Omega} \theta_{0} \geq \theta_{*}>0, \quad \log \theta_{0} \in L^{1}(\Omega) \\
\mathbf{u}_{0} \in H_{0}^{1}(\Omega), \quad \mathbf{v}_{0} \in L^{2}\left(\Omega ; \mathbb{R}^{d}\right), \quad \chi_{0} \in H^{1}(\Omega), \quad \widehat{\beta}\left(\chi_{0}\right) \in L^{1}(\Omega)
\end{array}
$$

Existence of weak solutions

Given $\delta>0, \mu=1, \eta=0$, there exists (measurable) functions

$$
\begin{aligned}
& \theta \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right) \cap L^{2}\left(0, T ; H^{1}(\Omega)\right), \\
& \mathbf{u} \in H^{1}\left(0, T ; H_{0}^{1}(\Omega)\right) \cap W^{1, \infty}\left(0, T ; L^{2}\left(\Omega ; \mathbb{R}^{d}\right)\right) \cap H^{2}\left(0, T ; H^{-1}\left(\Omega ; \mathbb{R}^{d}\right)\right), \\
& \chi \in L^{\infty}\left(0, T ; H^{1}(\Omega)\right) \cap H^{1}\left(0, T ; L^{2}(\Omega)\right),
\end{aligned}
$$

fulfilling the initial conditions

$$
\begin{array}{ll}
\mathbf{u}(0, x)=\mathbf{u}_{0}(x), \quad \mathbf{u}_{t}(0, x)=\mathbf{v}_{0}(x) & \text { for a.e. } x \in \Omega \\
\chi(0, x)=\chi_{0}(x) & \text { for a.e. } x \in \Omega
\end{array}
$$

together with the entropy inequality
the total energy inequality
the weak momentum equation (in $H^{-1}(\Omega)$)
the generalized principle of virtual powers

The entropy inequality + total energy inequality

The entropy inequality + total energy inequality

The entropy inequality

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega}(\log (\theta)+\chi) \varphi_{t} \mathrm{~d} x \mathrm{~d} t+\rho \int_{0}^{T} \int_{\Omega} \operatorname{div}\left(\mathbf{u}_{t}\right) \varphi \mathrm{d} x \mathrm{~d} t-\int_{0}^{T} \int_{\Omega} \mathrm{K}(\theta) \nabla \log (\theta) \cdot \nabla \varphi \mathrm{d} x \mathrm{~d} t \\
& \leq-\int_{0}^{T} \int_{\Omega} \mathrm{K}(\theta) \frac{\varphi}{\theta} \nabla \log (\theta) \cdot \nabla \theta \mathrm{d} x \mathrm{~d} t-\int_{0}^{T} \int_{\Omega}\left((a(\chi)+\delta)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+g+\left|\chi_{t}\right|^{2}\right) \frac{\varphi}{\theta} \mathrm{d} x \mathrm{~d} t
\end{aligned}
$$ for all $\varphi \in \mathcal{D}(\bar{\Omega} \times[0, T])$ with $\varphi \geq 0$;

The entropy inequality + total energy inequality

The entropy inequality

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega}(\log (\theta)+\chi) \varphi_{t} \mathrm{~d} x \mathrm{~d} t+\rho \int_{0}^{T} \int_{\Omega} \operatorname{div}\left(\mathbf{u}_{t}\right) \varphi \mathrm{d} x \mathrm{~d} t-\int_{0}^{T} \int_{\Omega} \mathrm{K}(\theta) \nabla \log (\theta) \cdot \nabla \varphi \mathrm{d} x \mathrm{~d} t \\
& \leq-\int_{0}^{T} \int_{\Omega} \mathrm{K}(\theta) \frac{\varphi}{\theta} \nabla \log (\theta) \cdot \nabla \theta \mathrm{d} x \mathrm{~d} t-\int_{0}^{T} \int_{\Omega}\left((a(\chi)+\delta)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+g+\left|\chi_{t}\right|^{2}\right) \frac{\varphi}{\theta} \mathrm{d} x \mathrm{~d} t
\end{aligned}
$$

for all $\varphi \in \mathcal{D}(\bar{\Omega} \times[0, T])$ with $\varphi \geq 0$;
The total energy inequality for almost all $t \in(0, T)$

$$
\mathscr{E}\left(\theta(t), \mathbf{u}(t), \mathbf{u}_{t}(t), \chi(t)\right) \leq \mathscr{E}\left(\theta(0), \mathbf{u}(0), \mathbf{u}_{t}(0), \chi(0)\right)+\int_{0}^{t} \int_{\Omega} g \mathrm{~d} x \mathrm{~d} s \int_{0}^{t} \int_{\Omega} \mathbf{f} \cdot \mathbf{u}_{t} \mathrm{~d} x \mathrm{~d} s
$$

where
$\mathscr{E}\left(\theta, \mathbf{u}, \mathbf{u}_{t}, \chi\right):=\int_{\Omega} \theta \mathrm{d} x+\frac{1}{2} \int_{\Omega}\left|\mathbf{u}_{t}\right|^{2} \mathrm{~d} x+\frac{1}{2}(b(\chi(t))+\delta)|\varepsilon(\mathbf{u})|^{2}(t)+\frac{1}{2} \int_{\Omega}|\nabla \chi|^{2} \mathrm{~d} x+\int_{\Omega} W(\chi) \mathrm{d} x$

The entropy inequality + total energy inequality

The entropy inequality

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega}(\log (\theta)+\chi) \varphi_{t} \mathrm{~d} x \mathrm{~d} t+\rho \int_{0}^{T} \int_{\Omega} \operatorname{div}\left(\mathbf{u}_{t}\right) \varphi \mathrm{d} x \mathrm{~d} t-\int_{0}^{T} \int_{\Omega} \mathrm{K}(\theta) \nabla \log (\theta) \cdot \nabla \varphi \mathrm{d} x \mathrm{~d} t \\
& \leq-\int_{0}^{T} \int_{\Omega} \mathrm{K}(\theta) \frac{\varphi}{\theta} \nabla \log (\theta) \cdot \nabla \theta \mathrm{d} x \mathrm{~d} t-\int_{0}^{T} \int_{\Omega}\left((a(\chi)+\delta)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+g+\left|\chi_{t}\right|^{2}\right) \frac{\varphi}{\theta} \mathrm{d} x \mathrm{~d} t
\end{aligned}
$$

for all $\varphi \in \mathcal{D}(\bar{\Omega} \times[0, T])$ with $\varphi \geq 0$;
The total energy inequality for almost all $t \in(0, T)$

$$
\mathscr{E}\left(\theta(t), \mathbf{u}(t), \mathbf{u}_{t}(t), \chi(t)\right) \leq \mathscr{E}\left(\theta(0), \mathbf{u}(0), \mathbf{u}_{t}(0), \chi(0)\right)+\int_{0}^{t} \int_{\Omega} g \mathrm{~d} x \mathrm{~d} s \int_{0}^{t} \int_{\Omega} \mathbf{f} \cdot \mathbf{u}_{t} \mathrm{~d} x \mathrm{~d} s
$$

where
$\mathscr{E}\left(\theta, \mathbf{u}, \mathbf{u}_{t}, \chi\right):=\int_{\Omega} \theta \mathrm{d} x+\frac{1}{2} \int_{\Omega}\left|\mathbf{u}_{t}\right|^{2} \mathrm{~d} x+\frac{1}{2}(b(\chi(t))+\delta)|\varepsilon(\mathbf{u})|^{2}(t)+\frac{1}{2} \int_{\Omega}|\nabla \chi|^{2} \mathrm{~d} x+\int_{\Omega} W(\chi) \mathrm{d} x$
In case we add the p-laplacian (i.e. $\eta>0$) we obtain the total energy identity

$$
\mathscr{E}_{p}\left(\theta(t), \mathbf{u}(t), \mathbf{u}_{t}(t), \chi(t)\right)=\mathscr{E}_{p}\left(\theta(0), \mathbf{u}(0), \mathbf{u}_{t}(0), \chi(0)\right)+\int_{0}^{t} \int_{\Omega} g \mathrm{~d} x \mathrm{~d} s \int_{0}^{t} \int_{\Omega} \mathbf{f} \cdot \mathbf{u}_{t} \mathrm{~d} x \mathrm{~d} s
$$

where

$$
\mathscr{E}_{P}\left(\theta, \mathbf{u}, \mathbf{u}_{t}, \chi\right):=\mathscr{E}\left(\theta, \mathbf{u}, \mathbf{u}_{t}, \chi\right)+\frac{1}{p} \int_{\Omega}|\nabla \chi|^{p} \mathrm{~d} x
$$

The generalized principle of virtual powers

The relations: $\chi_{t}(x, t) \leq 0$ for almost all $(x, t) \in \Omega \times(0, T)$, as well as

$$
\begin{array}{r}
\int_{\Omega}\left(\chi_{t}(t) \varphi+\nabla \chi(t) \cdot \nabla \varphi+\xi(t) \varphi+\gamma(\chi(t)) \varphi+b^{\prime}(\chi(t)) \frac{|\varepsilon(\mathbf{u}(t))|^{2}}{2} \varphi-\theta(t) \varphi\right) \mathrm{d} x \geq 0 \\
\text { for all } \varphi \in W_{-}^{1,2}(\Omega), \quad \text { for a.a. } t \in(0, T)
\end{array}
$$

with $\xi \in \partial_{[0,+\infty)}(\chi)$ in the following sense:
$\xi \in L^{1}\left(0, T ; L^{1}(\Omega)\right) \quad$ and $\quad\langle\xi(t), \varphi-\chi(t)\rangle_{W^{1,2}(\Omega)} \leq 0 \quad \forall \varphi \in W_{+}^{1,2}(\Omega)$, for a.a. $t \in(0, T)$ and the energy inequality for all $t \in(0, T]$, for $s=0$ (in case we omit the p-laplacian), and for almost all $0<s \leq t$ (in case we add the p-laplacian):

$$
\begin{aligned}
\int_{s}^{t} \int_{\Omega}\left|\chi_{t}\right|^{2} \mathrm{~d} x \mathrm{~d} r & +\int_{\Omega}\left(\frac{1}{2}|\nabla \chi(t)|^{2}+W(\chi(t))\right) \mathrm{d} x \\
& \leq \int_{\Omega}\left(\frac{1}{2}|\nabla \chi(s)|^{2}+W(\chi(s))\right) \mathrm{d} x+\int_{s}^{t} \int_{\Omega} \chi_{t}\left(-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta\right) \mathrm{d} x \mathrm{~d} r
\end{aligned}
$$

where

$$
W_{+}^{1,2}(\Omega):=\left\{\zeta \in W^{1,2}(\Omega): \zeta(x) \geq 0 \quad \text { for a.a. } x \in \Omega\right\} \quad \text { and analogously for } W_{-}^{1,2}(\Omega)
$$

Generalized principle of virtual powers vs classical phase inclusion

Generalized principle of virtual powers vs classical phase inclusion

- If (w, \mathbf{u}, χ) are "more regular" and satisfy the notion of weak solution: the one-sided inequality $\left(\forall \varphi \in L^{2}\left(0, T ; W_{-}^{1,2}(\Omega)\right) \cap L^{\infty}(Q)\right)$:

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega} \chi_{t} \varphi+\nabla \chi \nabla \varphi+\xi \varphi+\gamma(\chi) \varphi+b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2} \varphi-\theta \varphi \geq 0 \tag{one-sided}
\end{equation*}
$$

with $\xi \in \partial I_{[0,+\infty)}(\chi)$ and the energy inequality:

$$
\begin{aligned}
& \int_{s}^{t} \int_{\Omega}\left|\chi_{t}\right|^{2} \mathrm{~d} x \mathrm{~d} r+\frac{1}{2}|\nabla \chi(t)|^{2}+\int_{\Omega} W(\chi(t)) \mathrm{d} x \\
& \leq \frac{1}{2}|\nabla \chi(s)|^{2}+\int_{\Omega} W(\chi(s)) \mathrm{d} x+\int_{s}^{t} \int_{\Omega} \chi_{t}\left(-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta\right) \mathrm{d} x \mathrm{~d} r
\end{aligned}
$$

Generalized principle of virtual powers vs classical phase inclusion

- If (w, \mathbf{u}, χ) are "more regular" and satisfy the notion of weak solution: the one-sided inequality $\left(\forall \varphi \in L^{2}\left(0, T ; W_{-}^{1,2}(\Omega)\right) \cap L^{\infty}(Q)\right)$:

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega} \chi_{t} \varphi+\nabla \chi \nabla \varphi+\xi \varphi+\gamma(\chi) \varphi+b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2} \varphi-\theta \varphi \geq 0 \tag{one-sided}
\end{equation*}
$$

with $\xi \in \partial I_{[0,+\infty)}(\chi)$ and the energy inequality:

$$
\begin{aligned}
& \int_{s}^{t} \int_{\Omega}\left|\chi_{t}\right|^{2} \mathrm{~d} x \mathrm{~d} r+\frac{1}{2}|\nabla \chi(t)|^{2}+\int_{\Omega} W(\chi(t)) \mathrm{d} x \\
& \leq \frac{1}{2}|\nabla \chi(s)|^{2}+\int_{\Omega} W(\chi(s)) \mathrm{d} x+\int_{s}^{t} \int_{\Omega} \chi_{t}\left(-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta\right) \mathrm{d} x \mathrm{~d} r
\end{aligned}
$$

- "Differentiating in time" the energy inequality (energy) and using the chain rule, we conclude that (w, \mathbf{u}, χ, ξ) comply with

$$
\left\langle\chi_{t}(t)-\Delta \chi(t)+\xi(t)+\gamma(\chi(t))+b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}-\theta(t), \chi_{t}(t)\right\rangle_{W^{1,2}(\Omega)} \leq 0 \text { for a.e.t (ineq) }
$$

(one-sided) - (ineq) + " $\chi_{t} \leq 0$ a.e." are equivalent to the usual phase inclusion

$$
\chi_{t}-\Delta \chi+\xi+\gamma(\chi)+b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}-\theta \in-\partial I_{(-\infty, 0]}\left(\chi_{t}\right) \text { in } W^{1,2}(\Omega)^{*}
$$

An idea of the proof

- Implicit time-discrete scheme (its well-posedness is proved by resorting to fixed-point type existence results for elliptic systems featuring pseudo-monotone operators)

An idea of the proof

- Implicit time-discrete scheme (its well-posedness is proved by resorting to fixed-point type existence results for elliptic systems featuring pseudo-monotone operators)
- A-priori estimates

An idea of the proof

- Implicit time-discrete scheme (its well-posedness is proved by resorting to fixed-point type existence results for elliptic systems featuring pseudo-monotone operators)
- A-priori estimates
- Passage to the limit: the strong convergence of \mathbf{u}_{n} to \mathbf{u} in $W^{1, \infty}\left(0, T ; L^{2}(\Omega)\right) \cap H^{1}\left(0, T ; H^{1}(\Omega)\right)$ obtained via Cauchy argument

An idea of the proof

- Implicit time-discrete scheme (its well-posedness is proved by resorting to fixed-point type existence results for elliptic systems featuring pseudo-monotone operators)
- A-priori estimates
- Passage to the limit: the strong convergence of \mathbf{u}_{n} to \mathbf{u} in $W^{1, \infty}\left(0, T ; L^{2}(\Omega)\right) \cap H^{1}\left(0, T ; H^{1}(\Omega)\right)$ obtained via Cauchy argument
- In case $\eta>0$, we also get the strong convergence of χ_{n} to χ in $L^{p}\left(0, T ; W^{1, p}(\Omega)\right)$, using the compact embedding of $W^{1, p}(\Omega)$ in $C^{0}(\bar{\Omega})$ for $p>d \Longrightarrow$ total energy identity

$$
\mathscr{E}_{P}\left(\theta(t), \mathbf{u}(t), \mathbf{u}_{t}(t), \chi(t)\right)=\mathscr{E}_{p}\left(\theta(0), \mathbf{u}(0), \mathbf{u}_{t}(0), \chi(0)\right)+\int_{0}^{t} \int_{\Omega} g \mathrm{~d} x \mathrm{~d} s \int_{0}^{t} \int_{\Omega} \mathbf{f} \cdot \mathbf{u}_{t} \mathrm{~d} x \mathrm{~d} s
$$

and the energy inequality for χ for all $t \in(0, T]$ and for almost all $0<s \leq t$:

$$
\begin{aligned}
& \int_{s}^{t} \int_{\Omega}\left|\chi_{t}\right|^{2} \mathrm{~d} x \mathrm{~d} r+\int_{\Omega}\left(\frac{1}{2}|\nabla \chi(t)|^{2}+\frac{1}{p}|\nabla \chi(t)|^{p}+W(\chi(t))\right) \mathrm{d} x \\
& \leq \int_{\Omega}\left(\frac{1}{2}|\nabla \chi(s)|^{2}+\frac{1}{p}|\nabla \chi(s)|^{p}+W(\chi(s))\right) \mathrm{d} x+\int_{s}^{t} \int_{\Omega} \chi_{t}\left(-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta\right) \mathrm{d} x \mathrm{~d} r
\end{aligned}
$$

Positivity of θ

From the θ-equation

$$
\left.\theta_{t}+\chi_{t} \theta+\rho \theta \operatorname{div} \mathbf{u}_{t}-\operatorname{div}(\mathrm{K}(\theta) \nabla \theta)\right)=g+(a(\chi)+\delta)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+\left|\chi_{t}\right|^{2}
$$

we get

$$
\theta_{t}-\operatorname{div}(\mathrm{K}(\theta) \nabla \theta) \geq-\frac{1}{2} \theta^{2}
$$

and so the function $h(t)$ solving

$$
h_{t}=-\frac{1}{2} h^{2}, \quad h(0)=\theta_{*}>0
$$

is a subsolution of the θ-equation. Hence, we get

$$
\theta(t, \cdot) \geq h(t)>\theta_{*}>0 \quad \text { for all } t \in[0, T]
$$

A priori estimates

$$
\begin{align*}
& \left.\theta_{t}+\chi_{t} \theta+\rho \theta \operatorname{div} \mathbf{u}_{t}-\operatorname{div}(\mathrm{K}(\theta) \nabla \theta)\right)=g+a(\chi)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+\left|\chi_{t}\right|^{2} \tag{1}\\
& \mathbf{u}_{t t}-\operatorname{div}\left(a(\chi) \varepsilon\left(\mathbf{u}_{t}\right)+b(\chi) \varepsilon(\mathbf{u})-\rho \theta \mathbf{1}\right)=\mathbf{f} \tag{2}\\
& \chi_{t}+\mu \partial \boldsymbol{I}_{(-\infty, 0]}\left(\chi_{t}\right)-\Delta \chi+W^{\prime}(\chi) \ni-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta \tag{3}
\end{align*}
$$

Energy estimate. $\int_{0}^{t}\left((1) \times 1+(\right.$ momentum $\left.) \times \mathbf{u}_{t}+(3) \times \chi_{t}\right)$ ds gives an estimate for $\|\theta\|_{L^{\infty}\left(0, T ; L^{1}(\Omega)\right)},\|\mathbf{u}\|_{W^{1, \infty}\left(0, T ; L^{2}\left(\Omega ; \mathbb{R}^{d}\right)\right)},\left\|(b(\chi)+\delta)^{1 / 2} \varepsilon(\mathbf{u})\right\|_{L^{\infty}\left(0, T ; L^{2}\left(\Omega ; \mathbb{R}^{d \times d}\right)\right)},\|\chi\|_{L^{\infty}\left(0, T ; H^{1}(\Omega)\right)}$

A priori estimates

$$
\begin{align*}
& \left.\theta_{t}+\chi_{t} \theta+\rho \theta \operatorname{div} \mathbf{u}_{t}-\operatorname{div}(\mathrm{K}(\theta) \nabla \theta)\right)=g+a(\chi)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+\left|\chi_{t}\right|^{2} \tag{1}\\
& \mathbf{u}_{t t}-\operatorname{div}\left(a(\chi) \varepsilon\left(\mathbf{u}_{t}\right)+b(\chi) \varepsilon(\mathbf{u})-\rho \theta \mathbf{1}\right)=\mathbf{f} \tag{2}\\
& \chi_{t}+\mu \partial I_{(-\infty, 0]}\left(\chi_{t}\right)-\Delta \chi+W^{\prime}(\chi) \ni-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta \tag{3}
\end{align*}
$$

Energy estimate. $\int_{0}^{t}\left((1) \times 1+(\right.$ momentum $\left.) \times \mathbf{u}_{t}+(3) \times \chi_{t}\right)$ ds gives an estimate for $\|\theta\|_{L^{\infty}\left(0, T ; L^{1}(\Omega)\right)},\|\mathbf{u}\|_{W^{1, \infty}\left(0, T ; L^{2}\left(\Omega ; \mathbb{R}^{d}\right)\right)},\left\|(b(\chi)+\delta)^{1 / 2} \varepsilon(\mathbf{u})\right\|_{L^{\infty}\left(0, T ; L^{2}\left(\Omega ; \mathbb{R}^{d \times d}\right)\right)},\|\chi\|_{L^{\infty}\left(0, T ; H^{1}(\Omega)\right)}$
Entropy estimate. $\int_{0}^{t}(1) \times \frac{1}{\theta} \mathrm{~d} s$ gives an estimate for

$$
\left\|\theta^{-1 / 2} \chi_{t}\right\|_{L^{2}(\Omega \times(0, T))},\left\|\theta^{-1 / 2}(a(\chi)+\delta)^{1 / 2} \varepsilon\left(\mathbf{u}_{t}\right)\right\|_{L^{2}(\Omega \times(0, T))},\|\log (\theta)\|_{L^{2}\left(0, T ; H^{1}(\Omega)\right) \cap L^{\infty}\left(0, T ; L^{1}(\Omega)\right)}
$$

A priori estimates

$$
\begin{align*}
& \left.\theta_{t}+\chi_{t} \theta+\rho \theta \operatorname{div} \mathbf{u}_{t}-\operatorname{div}(\mathrm{K}(\theta) \nabla \theta)\right)=g+a(\chi)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+\left|\chi_{t}\right|^{2} \tag{1}\\
& \mathbf{u}_{t t}-\operatorname{div}\left(a(\chi) \varepsilon\left(\mathbf{u}_{t}\right)+b(\chi) \varepsilon(\mathbf{u})-\rho \theta \mathbf{1}\right)=\mathbf{f} \tag{2}\\
& \chi_{t}+\mu \partial I_{(-\infty, 0]}\left(\chi_{t}\right)-\Delta \chi+W^{\prime}(\chi) \ni-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta \tag{3}
\end{align*}
$$

Energy estimate. $\int_{0}^{t}\left((1) \times 1+(\right.$ momentum $\left.) \times \mathbf{u}_{t}+(3) \times \chi_{t}\right)$ ds gives an estimate for
$\|\theta\|_{L^{\infty}\left(0, T ; L^{1}(\Omega)\right)},\|\mathbf{u}\|_{W^{1, \infty}\left(0, T ; L^{2}\left(\Omega ; \mathbb{R}^{d}\right)\right)},\left\|(b(\chi)+\delta)^{1 / 2} \varepsilon(\mathbf{u})\right\|_{L^{\infty}\left(0, T ; L^{2}\left(\Omega ; \mathbb{R}^{d \times d}\right)\right)},\|\chi\|_{L^{\infty}\left(0, T ; H^{1}(\Omega)\right)}$
Entropy estimate. $\int_{0}^{t}(1) \times \frac{1}{\theta} \mathrm{~d} s$ gives an estimate for
$\left\|\theta^{-1 / 2} \chi_{t}\right\|_{L^{2}(\Omega \times(0, T))},\left\|\theta^{-1 / 2}(a(\chi)+\delta)^{1 / 2} \varepsilon\left(\mathbf{u}_{t}\right)\right\|_{L^{2}(\Omega \times(0, T))},\|\log (\theta)\|_{L^{2}\left(0, T ; H^{1}(\Omega)\right) \cap L^{\infty}\left(0, T ; L^{1}(\Omega)\right)}$
Third estimate. $\int_{0}^{t}(1) \times \theta^{\alpha-1} \mathrm{~d} s$ with $\alpha \in(0,1)$ gives

$$
\|\theta\|_{L^{m}\left(0, T ; L^{m}(\Omega)\right)} \leq C \quad \text { for all } \frac{7}{6} \leq m<\frac{5}{3}
$$

and using the Hyp. on $\mathrm{K}\left(\mathrm{K}(\theta) \geq c_{1}\left(1+\nu \theta^{k}\right)\right)$:

$$
\|\theta\|_{L^{2}\left(0, T ; H^{1}(\Omega)\right)} \leq C
$$

A priori estimates

$$
\begin{align*}
& \left.\theta_{t}+\chi_{t} \theta+\rho \theta \operatorname{div} \mathbf{u}_{t}-\operatorname{div}(\mathrm{K}(\theta) \nabla \theta)\right)=g+a(\chi)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+\left|\chi_{t}\right|^{2} \tag{1}\\
& \mathbf{u}_{t t}-\operatorname{div}\left(a(\chi) \varepsilon\left(\mathbf{u}_{t}\right)+b(\chi) \varepsilon(\mathbf{u})-\rho \theta \mathbf{1}\right)=\mathbf{f} \tag{2}\\
& \chi_{t}+\mu \partial I_{(-\infty, 0]}\left(\chi_{t}\right)-\Delta \chi+W^{\prime}(\chi) \ni-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta \tag{3}
\end{align*}
$$

Energy estimate. $\int_{0}^{t}\left((1) \times 1+(\right.$ momentum $\left.) \times \mathbf{u}_{t}+(3) \times \chi_{t}\right) \mathrm{d} s$ gives an estimate for
$\|\theta\|_{L^{\infty}\left(0, T ; L^{1}(\Omega)\right)},\|u\|_{W^{1, \infty}\left(0, T ; L^{2}\left(\Omega ; \mathbb{R}^{d}\right)\right)},\left\|(b(\chi)+\delta)^{1 / 2} \varepsilon(\mathbf{u})\right\|_{L^{\infty}\left(0, T ; L^{2}\left(\Omega ; \mathbb{R}^{d \times d}\right)\right)},\|\chi\|_{L^{\infty}\left(0, T ; H^{1}(\Omega)\right)}$
Entropy estimate. $\int_{0}^{t}(1) \times \frac{1}{\theta} \mathrm{~d} s$ gives an estimate for

$$
\left\|\theta^{-1 / 2} \chi_{t}\right\|_{L^{2}(\Omega \times(0, T))},\left\|\theta^{-1 / 2}(a(\chi)+\delta)^{1 / 2} \varepsilon\left(\mathbf{u}_{t}\right)\right\|_{L^{2}(\Omega \times(0, T))},\|\log (\theta)\|_{L^{2}\left(0, T ; H^{1}(\Omega)\right) \cap L^{\infty}\left(0, T ; L^{1}(\Omega)\right)}
$$

Third estimate. $\int_{0}^{t}(1) \times \theta^{\alpha-1} \mathrm{~d} s$ with $\alpha \in(0,1)$ gives

$$
\|\theta\|_{L^{m}\left(0, T ; L^{m}(\Omega)\right)} \leq C \quad \text { for all } \frac{7}{6} \leq m<\frac{5}{3}
$$

and using the Hyp. on $\mathrm{K}\left(\mathrm{K}(\theta) \geq c_{1}\left(1+\nu \theta^{k}\right)\right)$:

$$
\|\theta\|_{L^{2}\left(0, T ; H^{1}(\Omega)\right)} \leq C
$$

Fourth estimate. $\int_{0}^{t}\left((\right.$ momentum $\left.) \times \mathbf{u}_{t}+(3) \times \chi_{t}\right)$ ds gives

$$
\left\|\chi_{t}\right\|_{L^{2}(\Omega \times(0, T))}+\left\|(a(\chi)+\delta)^{1 / 2} \varepsilon\left(\mathbf{u}_{t}\right)\right\|_{L^{2}(\Omega \times(0, T))} \leq C
$$

A priori estimates

$$
\begin{align*}
& \left.\theta_{t}+\chi_{t} \theta+\rho \theta \operatorname{div} \mathbf{u}_{t}-\operatorname{div}(\mathrm{K}(\theta) \nabla \theta)\right)=g+a(\chi)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+\left|\chi_{t}\right|^{2} \tag{1}\\
& \mathbf{u}_{t t}-\operatorname{div}\left(a(\chi) \varepsilon\left(\mathbf{u}_{t}\right)+b(\chi) \varepsilon(\mathbf{u})-\rho \theta \mathbf{1}\right)=\mathbf{f} \tag{2}\\
& \chi_{t}+\mu \partial \boldsymbol{I}_{(-\infty, 0]}\left(\chi_{t}\right)-\Delta \chi+W^{\prime}(\chi) \ni-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta \tag{3}
\end{align*}
$$

Energy estimate. $\int_{0}^{t}\left((1) \times 1+(\right.$ momentum $\left.) \times \mathbf{u}_{t}+(3) \times \chi_{t}\right) \mathrm{d} s$ gives an estimate for
$\|\theta\|_{L^{\infty}\left(0, T ; L^{1}(\Omega)\right)},\|u\|_{W^{1, \infty}\left(0, T ; L^{2}\left(\Omega ; \mathbb{R}^{d}\right)\right)},\left\|(b(\chi)+\delta)^{1 / 2} \varepsilon(\mathbf{u})\right\|_{L^{\infty}\left(0, T ; L^{2}\left(\Omega ; \mathbb{R}^{d \times d}\right)\right)},\|\chi\|_{L^{\infty}\left(0, T ; H^{1}(\Omega)\right)}$
Entropy estimate. $\int_{0}^{t}(1) \times \frac{1}{\theta} \mathrm{~d} s$ gives an estimate for

$$
\left\|\theta^{-1 / 2} \chi_{t}\right\|_{L^{2}(\Omega \times(0, T))},\left\|\theta^{-1 / 2}(a(\chi)+\delta)^{1 / 2} \varepsilon\left(\mathbf{u}_{t}\right)\right\|_{L^{2}(\Omega \times(0, T))},\|\log (\theta)\|_{L^{2}\left(0, T ; H^{1}(\Omega)\right) \cap L^{\infty}\left(0, T ; L^{1}(\Omega)\right)}
$$

Third estimate. $\int_{0}^{t}(1) \times \theta^{\alpha-1} \mathrm{~d} s$ with $\alpha \in(0,1)$ gives

$$
\|\theta\|_{L^{m}\left(0, T ; L^{m}(\Omega)\right)} \leq C \quad \text { for all } \frac{7}{6} \leq m<\frac{5}{3}
$$

and using the Hyp. on $\mathrm{K}\left(\mathrm{K}(\theta) \geq c_{1}\left(1+\nu \theta^{k}\right)\right)$:

$$
\|\theta\|_{L^{2}\left(0, T ; H^{1}(\Omega)\right)} \leq C
$$

Fourth estimate. $\int_{0}^{t}\left((\right.$ momentum $\left.) \times \mathbf{u}_{t}+(3) \times \chi_{t}\right)$ ds gives

$$
\left\|\chi_{t}\right\|_{L^{2}(\Omega \times(0, T))}+\left\|(a(\chi)+\delta)^{1 / 2} \varepsilon\left(\mathbf{u}_{t}\right)\right\|_{L^{2}(\Omega \times(0, T))} \leq C
$$

Fifth estimate. By comparison, we get (for some $\alpha>1$ depending on d (the dimension of Ω))

$$
\left\|(\log \theta)_{t}\right\|_{L^{1}\left(0, T ;\left(W^{2, \alpha}(\Omega)\right)^{*}\right)}+\left\|\mathbf{u}_{t t}\right\|_{L^{2}\left(0, T ; H^{-1}(\Omega)\right)} \leq C
$$

Weak sequential stability

$$
\begin{align*}
& \theta_{n} \rightarrow \theta \quad \text { weakly star in } L^{\infty}\left(0, T ; L^{1}(\Omega)\right) \cap L^{2}\left(0, T ; H^{1}(\Omega)\right), \tag{1}\\
& \mathbf{u}_{n} \rightarrow \mathbf{u} \quad \text { weakly star in } H^{2}\left(0, T ; H^{-1}(\Omega)\right) \cap W^{1, \infty}\left(0, T ; L^{2}(\Omega)\right) \cap H^{1}\left(0, T ; H^{1}(\Omega)\right), \tag{2}\\
& \partial_{t} \mathbf{u}_{n} \rightarrow \partial_{t} \mathbf{u} \quad \text { strongly in } L^{2}\left(0, T ; L^{2}(\Omega)\right), \tag{3}\\
& \chi_{n} \rightarrow \chi \quad \text { weakly star in } H^{1}\left(0, T ; L^{2}(\Omega)\right) \cap L^{\infty}\left(0, T ; H^{1}(\Omega)\right), \tag{4}\\
& \log \left(\theta_{n}\right) \rightarrow v \quad \text { strongly in } L^{2}\left(0, T ; L^{s}(\Omega)\right), \tag{5}
\end{align*}
$$

for some $s \in(1,6)$ for $d=3$ whence $\log \left(\theta_{n}\right) \rightarrow v$ a.e. and so $v=\log \theta$ and $\theta_{n} \rightarrow \theta$ a.e. and we have

$$
\begin{array}{ll}
\theta_{n} \rightarrow \theta & \text { strongly in } L^{h}(\Omega \times(0, T)), \text { for every } h \in[1,8 / 3) \text { for } d=3 \\
\chi_{n} \rightarrow \chi & \text { strongly in } L^{q}(\Omega \times(0, T)) \quad \forall q \in[1,+\infty)
\end{array}
$$

Test the approximated \mathbf{u}-equation by $\partial_{t}\left(\mathbf{u}_{n}-\mathbf{u}\right)$, where \mathbf{u} is the limit of \mathbf{u}_{n} obtained in the previous convergence. Hence, we finally get
$\left\|\left(\mathbf{u}_{n}-\mathbf{u}\right)_{t}(t)\right\|_{L^{2}(\Omega)}^{2}+\int_{0}^{t}\left(a\left(\chi_{n}\right)+\delta\right)\left|\left(\varepsilon(\mathbf{u})_{n}-\varepsilon(\mathbf{u})\right)_{t}\right|^{2} \mathrm{~d} s+\left(b\left(\chi_{n}(t)+\delta\right)\left|\left(\varepsilon(\mathbf{u})_{n}-\varepsilon(\mathbf{u})\right)(t)\right|^{2} \rightarrow 0\right.$ as $n \nearrow \infty$, which entails

$$
\mathbf{u}_{n} \rightarrow \mathbf{u} \quad \text { strongly in } W^{1, \infty}\left(0, T ; L^{2}(\Omega)\right) \cap H^{1}\left(0, T ; H^{1}(\Omega)\right)
$$

Passage to the limit

- By the previous convergences we pass to the limit in the momentum balance in $H^{-1}(\Omega)$

Passage to the limit

- By the previous convergences we pass to the limit in the momentum balance in $H^{-1}(\Omega)$
- We cannot pass to the limit on the right hand side in the θ-equation

$$
\left.\theta_{t}+\chi_{t} \theta+\rho \theta \operatorname{div} \mathbf{u}_{t}-\operatorname{div}(\mathrm{K}(\theta) \nabla \theta)\right)=g+(a(\chi)+\delta)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+\left|\chi_{t}\right|^{2}
$$

but via weak convergences and lower semicontinuity we obtain

- The entropy inequality (for all $\varphi \in \mathcal{D}(\bar{\Omega} \times[0, T])$ with $\varphi \geq 0)$

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega}(\log (\theta)+\chi) \varphi_{t} \mathrm{~d} x \mathrm{~d} t+\rho \int_{0}^{T} \int_{\Omega} \operatorname{div}\left(\mathbf{u}_{t}\right) \varphi \mathrm{d} x \mathrm{~d} t-\int_{0}^{T} \int_{\Omega} \mathrm{K}(\theta) \nabla \log (\theta) \cdot \nabla \varphi \mathrm{d} x \mathrm{~d} t \\
& \leq-\int_{0}^{T} \int_{\Omega} \mathrm{K}(\theta) \frac{\varphi}{\theta} \nabla \log (\theta) \cdot \nabla \theta \mathrm{d} x \mathrm{~d} t-\int_{0}^{T} \int_{\Omega}\left((a(\chi)+\delta)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+g+\left|\chi_{t}\right|^{2}\right) \frac{\varphi}{\theta} \mathrm{d} x \mathrm{~d} t
\end{aligned}
$$

Passage to the limit

- By the previous convergences we pass to the limit in the momentum balance in $H^{-1}(\Omega)$
- We cannot pass to the limit on the right hand side in the θ-equation

$$
\left.\theta_{t}+\chi_{t} \theta+\rho \theta \operatorname{div} \mathbf{u}_{t}-\operatorname{div}(\mathrm{K}(\theta) \nabla \theta)\right)=g+(a(\chi)+\delta)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+\left|\chi_{t}\right|^{2}
$$

but via weak convergences and lower semicontinuity we obtain

- The entropy inequality (for all $\varphi \in \mathcal{D}(\bar{\Omega} \times[0, T])$ with $\varphi \geq 0)$

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega}(\log (\theta)+\chi) \varphi_{t} \mathrm{~d} x \mathrm{~d} t+\rho \int_{0}^{T} \int_{\Omega} \operatorname{div}\left(\mathbf{u}_{t}\right) \varphi \mathrm{d} x \mathrm{~d} t-\int_{0}^{T} \int_{\Omega} \mathrm{K}(\theta) \nabla \log (\theta) \cdot \nabla \varphi \mathrm{d} x \mathrm{~d} t \\
& \leq-\int_{0}^{T} \int_{\Omega} \mathrm{K}(\theta) \frac{\varphi}{\theta} \nabla \log (\theta) \cdot \nabla \theta \mathrm{d} x \mathrm{~d} t-\int_{0}^{T} \int_{\Omega}\left((a(\chi)+\delta)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+g+\left|\chi_{t}\right|^{2}\right) \frac{\varphi}{\theta} \mathrm{d} x \mathrm{~d} t
\end{aligned}
$$

- The total energy inequality for almost all $t \in(0, T)$

$$
\mathscr{E}\left(\theta(t), \mathbf{u}(t), \mathbf{u}_{t}(t), \chi(t)\right) \leq \mathscr{E}\left(\theta(0), \mathbf{u}(0), \mathbf{u}_{t}(0), \chi(0)\right)+\int_{0}^{t} \int_{\Omega} g \mathrm{~d} x \mathrm{~d} s \int_{0}^{t} \int_{\Omega} \mathbf{f} \cdot \mathbf{u}_{t} \mathrm{~d} x \mathrm{~d} s
$$

Passage to the limit

- By the previous convergences we pass to the limit in the momentum balance in $\mathrm{H}^{-1}(\Omega)$
- We cannot pass to the limit on the right hand side in the θ-equation

$$
\left.\theta_{t}+\chi_{t} \theta+\rho \theta \operatorname{div} \mathbf{u}_{t}-\operatorname{div}(K(\theta) \nabla \theta)\right)=g+(a(\chi)+\delta)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+\left|\chi_{t}\right|^{2}
$$

but via weak convergences and lower semicontinuity we obtain

- The entropy inequality (for all $\varphi \in \mathcal{D}(\bar{\Omega} \times[0, T])$ with $\varphi \geq 0$)

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega}(\log (\theta)+\chi) \varphi_{t} \mathrm{~d} x \mathrm{~d} t+\rho \int_{0}^{T} \int_{\Omega} \operatorname{div}\left(\mathbf{u}_{t}\right) \varphi \mathrm{d} x \mathrm{~d} t-\int_{0}^{T} \int_{\Omega} \mathrm{K}(\theta) \nabla \log (\theta) \cdot \nabla \varphi \mathrm{d} x \mathrm{~d} t \\
& \leq-\int_{0}^{T} \int_{\Omega} \mathrm{K}(\theta) \frac{\varphi}{\theta} \nabla \log (\theta) \cdot \nabla \theta \mathrm{d} x \mathrm{~d} t-\int_{0}^{T} \int_{\Omega}\left((a(\chi)+\delta)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+g+\left|\chi_{t}\right|^{2}\right) \frac{\varphi}{\theta} \mathrm{d} x \mathrm{~d} t
\end{aligned}
$$

- The total energy inequality for almost all $t \in(0, T)$

$$
\mathscr{E}\left(\theta(t), \mathbf{u}(t), \mathbf{u}_{t}(t), \chi(t)\right) \leq \mathscr{E}\left(\theta(0), \mathbf{u}(0), \mathbf{u}_{t}(0), \chi(0)\right)+\int_{0}^{t} \int_{\Omega} g \mathrm{~d} x \mathrm{~d} s \int_{0}^{t} \int_{\Omega} \mathbf{f} \cdot \mathbf{u}_{t} \mathrm{~d} x \mathrm{~d} s
$$

- The generalized principle of virtual powers for all $\varphi \in W_{-}^{1,2}(\Omega)$, for a.a. $t \in(0, T)$

$$
\begin{aligned}
& \int_{\Omega}\left(\chi_{t}(t) \varphi+\nabla \chi(t) \cdot \nabla \varphi+\xi(t) \varphi+\gamma(\chi(t)) \varphi+b^{\prime}(\chi(t)) \frac{|\varepsilon(\mathbf{u}(t))|^{2}}{2} \varphi-\theta(t) \varphi\right) \mathrm{d} x \geq 0 ; \\
& \int_{0}^{t} \int_{\Omega}\left|\chi_{t}\right|^{2} \mathrm{~d} x \mathrm{~d} r+\int_{\Omega}\left(\frac{1}{2}|\nabla \chi(t)|^{2}+W(\chi(t))\right) \mathrm{d} x \leq \int_{\Omega}\left(\frac{1}{2}\left|\nabla \chi_{0}\right|^{2}+W\left(\chi_{0}\right)\right) \mathrm{d} x \\
& \quad+\int_{0}^{t} \int_{\Omega} \chi_{t}\left(-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta\right) \mathrm{d} x \mathrm{~d} r, \text { with } \xi \in \partial I_{[0,+\infty)}(\chi) \text { and for all } t \in(0, T]
\end{aligned}
$$

The reversible phase transitions in thermoviscoelastic materials: $\mu=0$ and $\eta>0$

$$
\begin{aligned}
& \left.\theta_{t}+\chi_{t} \theta+\rho \theta \operatorname{div} \mathbf{u}_{t}-\operatorname{div}(\mathrm{K}(\theta) \nabla \theta)\right)=g+(a(\chi)+\delta)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+\left|\chi_{t}\right|^{2} \\
& \mathbf{u}_{t t}-\operatorname{div}\left((a(\chi)+\delta) \varepsilon\left(\mathbf{u}_{t}\right)+(b(\chi)+\delta) \varepsilon(\mathbf{u})-\rho \theta \mathbf{1}\right)=\mathbf{f} \\
& \chi_{t}+\underbrace{\mu \partial I_{(-\infty, 0]}\left(\chi_{t}\right)}_{=0}-\Delta \chi-\eta \Delta_{\rho} \chi+W^{\prime}(\chi) \ni-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta
\end{aligned}
$$

Hypothesis on W

Beside, Hypothesis (III). We suppose that the potential W is given by $W=\widehat{\beta}+\widehat{\gamma}$, where

$$
\begin{aligned}
& \widehat{\beta}: \operatorname{dom}(\widehat{\beta}) \rightarrow \mathbb{R} \text { is proper, I.s.c., convex; } \\
& \widehat{\gamma} \in \mathrm{C}^{2}(\mathbb{R}), \quad \exists c_{w}>0: \quad W(r) \geq c_{w} r^{2} \quad \forall r \in \operatorname{dom}(\widehat{\beta}) .
\end{aligned}
$$

Hereafter, we shall denote by $\beta=\partial \widehat{\beta}$ the subdifferential of $\widehat{\beta}$, and set $\gamma:=\widehat{\gamma}^{\prime}$

Hypothesis on W

Beside, Hypothesis (III). We suppose that the potential W is given by $W=\widehat{\beta}+\widehat{\gamma}$, where

$$
\begin{aligned}
& \widehat{\beta}: \operatorname{dom}(\widehat{\beta}) \rightarrow \mathbb{R} \text { is proper, l.s.c., convex; } \\
& \widehat{\gamma} \in C^{2}(\mathbb{R}), \quad \exists c_{w}>0: \quad W(r) \geq c_{w} r^{2} \quad \forall r \in \operatorname{dom}(\widehat{\beta})
\end{aligned}
$$

Hereafter, we shall denote by $\beta=\partial \widehat{\beta}$ the subdifferential of $\widehat{\beta}$, and set $\gamma:=\widehat{\gamma}^{\prime}$
Assume that $\widehat{\beta}$ is a regular potential satisfying a suitable growth condition (depending on d):

Hypothesis (IV). $W \in C^{1}(\mathbb{R})$ and there exist $C_{w}>0$ and $p \in(1,6)$ if $d=3$, $p \in(1,+\infty)$ if $d=2$ such that

$$
\left|W^{\prime}(r)\right| \leq C_{w}\left(1+|r|^{p}\right) \quad \forall r \in \mathbb{R}
$$

Existence of weak solutions

Given $\delta>0, \mu=0, \eta>0$, there exists functions

$$
\begin{aligned}
& \theta \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right) \cap L^{2}\left(0, T ; H^{1}(\Omega)\right) \\
& \mathbf{u} \in H^{1}\left(0, T ; H_{0}^{2}\left(\Omega ; \mathbb{R}^{d}\right)\right) \cap W^{1, \infty}\left(0, T ; H_{0}^{1}(\Omega)\right) \cap H^{2}\left(0, T ; L^{2}\left(\Omega ; \mathbb{R}^{d}\right)\right) \\
& \chi \in L^{\infty}\left(0, T ; W^{1, p}(\Omega)\right) \cap H^{1}\left(0, T ; L^{2}(\Omega)\right)
\end{aligned}
$$

fulfilling the initial conditions

$$
\begin{array}{ll}
\mathbf{u}(0, x)=\mathbf{u}_{0}(x), \quad \mathbf{u}_{t}(0, x)=\mathbf{v}_{0}(x) & \text { for a.e. } x \in \Omega \\
\chi(0, x)=\chi_{0}(x) & \text { for a.e. } x \in \Omega
\end{array}
$$

- the entropy inequality
- the total energy identity
- the weak momentum (in $H^{-1}(\Omega)$) and phase (in $\left(W^{1, p}(\Omega)\right)^{*}$) - equations

The further estimate in case $\eta>0$

- Being $\eta>0$ in the χ-equation

$$
\begin{equation*}
\chi_{t}-\Delta \chi-\eta \Delta_{p} \chi+W^{\prime}(\chi) \ni-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta \tag{phase}
\end{equation*}
$$

we can test the \mathbf{u}-equation

$$
\mathbf{u}_{t t}-\operatorname{div}\left((a(\chi)+\delta) \varepsilon\left(\mathbf{u}_{t}\right)+(b(\chi)+\delta) \varepsilon(\mathbf{u})-\rho \theta \mathbf{1}\right)=\mathbf{f}
$$

by $-\operatorname{div}\left(\varepsilon\left(\mathbf{u}_{t}\right)\right)$, using the $L^{\infty}\left(0, T ; W^{1, p}(\Omega)\right)$-regularity of χ

The further estimate in case $\eta>0$

- Being $\eta>0$ in the χ-equation

$$
\begin{equation*}
\chi_{t}-\Delta \chi-\eta \Delta_{p} \chi+W^{\prime}(\chi) \ni-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta \tag{phase}
\end{equation*}
$$

we can test the \mathbf{u}-equation

$$
\begin{equation*}
\mathbf{u}_{t t}-\operatorname{div}\left((a(\chi)+\delta) \varepsilon\left(\mathbf{u}_{t}\right)+(b(\chi)+\delta) \varepsilon(\mathbf{u})-\rho \theta \mathbf{1}\right)=\mathbf{f} \tag{momentum}
\end{equation*}
$$

by $-\operatorname{div}\left(\varepsilon\left(\mathbf{u}_{t}\right)\right)$, using the $L^{\infty}\left(0, T ; W^{1, p}(\Omega)\right)$-regularity of χ

- This allows us to obtain an estimate for \mathbf{u} in

$$
H^{1}\left(0, T ; H_{0}^{2}\left(\Omega ; \mathbb{R}^{d}\right)\right) \cap W^{1, \infty}\left(0, T ; H_{0}^{1}(\Omega)\right) \cap H^{2}\left(0, T ; L^{2}\left(\Omega ; \mathbb{R}^{d}\right)\right)
$$

which allows us to pass to the limit in the quadratic term $|\varepsilon(\mathbf{u})|^{2}$ in (phase)

The further estimate in case $\eta>0$

- Being $\eta>0$ in the χ-equation

$$
\begin{equation*}
\chi_{t}-\Delta \chi-\eta \Delta_{p} \chi+W^{\prime}(\chi) \ni-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta \tag{phase}
\end{equation*}
$$

we can test the \mathbf{u}-equation

$$
\begin{equation*}
\mathbf{u}_{t t}-\operatorname{div}\left((a(\chi)+\delta) \varepsilon\left(\mathbf{u}_{t}\right)+(b(\chi)+\delta) \varepsilon(\mathbf{u})-\rho \theta \mathbf{1}\right)=\mathbf{f} \tag{momentum}
\end{equation*}
$$

by $-\operatorname{div}\left(\varepsilon\left(\mathbf{u}_{t}\right)\right)$, using the $L^{\infty}\left(0, T ; W^{1, p}(\Omega)\right)$-regularity of χ

- This allows us to obtain an estimate for \mathbf{u} in

$$
H^{1}\left(0, T ; H_{0}^{2}\left(\Omega ; \mathbb{R}^{d}\right)\right) \cap W^{1, \infty}\left(0, T ; H_{0}^{1}(\Omega)\right) \cap H^{2}\left(0, T ; L^{2}\left(\Omega ; \mathbb{R}^{d}\right)\right)
$$

which allows us to pass to the limit in the quadratic term $|\varepsilon(\mathbf{u})|^{2}$ in (phase)

- By using the compact embedding of $W^{1, p}(\Omega)$ in $C^{0}(\bar{\Omega})$, we can get a strong convergence of χ_{n} to χ in $L^{p}\left(0, T ; W^{1, p}(\Omega)\right)$ allowing us to obtain the total energy identity (not only inequality)
$\mathscr{E}\left(\theta(t), \mathbf{u}(t), \mathbf{u}_{t}(t), \chi(t)\right)=\mathscr{E}\left(\theta(0), \mathbf{u}(0), \mathbf{u}_{t}(0), \chi(0)\right)+\int_{0}^{t} \int_{\Omega} g \mathrm{~d} x \mathrm{~d} s \int_{0}^{t} \int_{\Omega} \mathbf{f} \cdot \mathbf{u}_{t} \mathrm{~d} x \mathrm{~d} s$

Comparison between irreversible and reversible

- The irreversible case (damage) seems to be solvable even in case $\eta=0$

Comparison between irreversible and reversible

- The irreversible case (damage) seems to be solvable even in case $\eta=0$
- This does not seem to be case for the reversible system (thermoviscoelasticty)

Comparison between irreversible and reversible

- The irreversible case (damage) seems to be solvable even in case $\eta=0$
- This does not seem to be case for the reversible system (thermoviscoelasticty)
- The point probably is that the generalized principle of virtual powers is taylored specifically on the irreversible case and does not fit to the reversible one

Comparison between irreversible and reversible

- The irreversible case (damage) seems to be solvable even in case $\eta=0$
- This does not seem to be case for the reversible system (thermoviscoelasticty)
- The point probably is that the generalized principle of virtual powers is taylored specifically on the irreversible case and does not fit to the reversible one
- A different (weaker) notion of phase equation would be needed in the reversible case \Longrightarrow This is still an OPEN PROBLEM!

A further application to liquid crystals

- In [E. Feireisl, M. Frémond, E.R., G. Schimperna, ARMA 2012] we have coupled the incompressible Nevier-Stokes equation

$$
\begin{aligned}
& \operatorname{div} \mathbf{v}=0, \quad \mathbf{v}_{t}+\mathbf{v} \cdot \nabla_{x} \mathbf{v}+\nabla_{x} p=\operatorname{div} \mathbb{S}+\operatorname{div} \sigma^{n d}+\mathbf{g} \\
& \mathbb{S}=\nu(\theta)\left(\nabla_{x} \mathbf{v}+\nabla_{x}^{t} \mathbf{v}\right), \quad \sigma^{n d}=-\nabla_{x} \mathbf{d} \odot \nabla_{x} \mathbf{d}+\left(\partial_{\mathbf{d}} W(\mathbf{d})-\Delta \mathbf{d}\right) \otimes \mathbf{d}
\end{aligned}
$$

where $\nabla_{x} \mathbf{d} \odot \nabla_{x} \mathbf{d}$ is the 3×3 matrix given by $\nabla_{i} \mathbf{d} \cdot \nabla_{j} \mathbf{d},(\mathbf{a} \otimes \mathbf{b})_{i j}:=a_{i} b_{j}$, $1 \leq i, j \leq 3$, and the evolution of the director field \mathbf{d}, representing preferred orientation of molecules in a neighborhood of any point of a reference domain

with an entropic formulation of the inernal energy balance displaying higher order nonlinearities on the right hand side

$$
\theta_{t}+\mathbf{v} \cdot \theta+\operatorname{div} \mathbf{q}=\mathbb{S}: \nabla_{x} \mathbf{v}+\left|\Delta \mathbf{d}-\partial_{\mathbf{d}} W(\mathbf{d})\right|^{2}
$$

- In [E. Feireisl, E.R., G. Schimperna, A. Zarnescu, Comm. Math. Sci., to appear] we have extended it to the tensorial Ball-Majumdar model for liquid crystals

A further application to two phase fluids

- A fluid-mechanical theory for two-phase mixtures of fluids faces a well known mathematical difficulty:
- the movement of the interfaces \Longrightarrow Lagrangian description
- the bulk fluid flow \Longrightarrow Eulerian framework

A further application to two phase fluids

- A fluid-mechanical theory for two-phase mixtures of fluids faces a well known mathematical difficulty:
- the movement of the interfaces \Longrightarrow Lagrangian description
- the bulk fluid flow \Longrightarrow Eulerian framework
- The phase-field methods overcome this problem by postulating the existence of a "diffuse" interface spread over a possibly narrow region covering the "real" sharp interface boundary
- a phase variable χ (concentration difference of the two components) is introduced to demarcate the two species and to indicate the location of the interface
- mixing energy f is defined in terms of χ and its spatial gradient

A further application to two phase fluids

- A fluid-mechanical theory for two-phase mixtures of fluids faces a well known mathematical difficulty:
- the movement of the interfaces \Longrightarrow Lagrangian description
- the bulk fluid flow \Longrightarrow Eulerian framework
- The phase-field methods overcome this problem by postulating the existence of a "diffuse" interface spread over a possibly narrow region covering the "real" sharp interface boundary
- a phase variable χ (concentration difference of the two components) is introduced to demarcate the two species and to indicate the location of the interface
- mixing energy f is defined in terms of χ and its spatial gradient
- The time evolution of $\chi \Longrightarrow$ convection-diffusion equation: variants of Cahn-Hilliard or Allen-Cahn or other types of dynamics (cf. [Hohenberg, Halperin (1977)], [Anderson, McFadden, Wheeler (1998)], [Gurtin, Polignone, Vinals (1996)], etc.)

A further application to two phase fluids

- A fluid-mechanical theory for two-phase mixtures of fluids faces a well known mathematical difficulty:
- the movement of the interfaces \Longrightarrow Lagrangian description
- the bulk fluid flow \Longrightarrow Eulerian framework
- The phase-field methods overcome this problem by postulating the existence of a "diffuse" interface spread over a possibly narrow region covering the "real" sharp interface boundary
- a phase variable χ (concentration difference of the two components) is introduced to demarcate the two species and to indicate the location of the interface
- mixing energy f is defined in terms of χ and its spatial gradient
- The time evolution of $\chi \Longrightarrow$ convection-diffusion equation: variants of Cahn-Hilliard or Allen-Cahn or other types of dynamics (cf. [Hohenberg, Halperin (1977)], [Anderson, McFadden, Wheeler (1998)], [Gurtin, Polignone, Vinals (1996)], etc.)
- With Michela Eleuteri (Università di Milano) and Giulio Schimperna (Università di Pavia) we aim to consider the non-isothermal version of [H. Abels, ARMA (2009)]

A further application to two phase fluids

- A fluid-mechanical theory for two-phase mixtures of fluids faces a well known mathematical difficulty:
- the movement of the interfaces \Longrightarrow Lagrangian description
- the bulk fluid flow \Longrightarrow Eulerian framework
- The phase-field methods overcome this problem by postulating the existence of a "diffuse" interface spread over a possibly narrow region covering the "real" sharp interface boundary
- a phase variable χ (concentration difference of the two components) is introduced to demarcate the two species and to indicate the location of the interface
- mixing energy f is defined in terms of χ and its spatial gradient
- The time evolution of $\chi \Longrightarrow$ convection-diffusion equation: variants of Cahn-Hilliard or Allen-Cahn or other types of dynamics (cf. [Hohenberg, Halperin (1977)], [Anderson, McFadden, Wheeler (1998)], [Gurtin, Polignone, Vinals (1996)], etc.)
- With Michela Eleuteri (Università di Milano) and Giulio Schimperna (Università di Pavia) we aim to consider the non-isothermal version of [H. Abels, ARMA (2009)]

$$
\begin{aligned}
& \operatorname{div} \mathbf{v}=0, \quad \partial_{t} \mathbf{v}+\operatorname{div}(\mathbf{v} \otimes \mathbf{v})+\nabla p=\operatorname{div} \mathbb{S}-\mu \nabla_{x} \chi, \quad \mathbb{S}=\nu(\theta, \chi)\left(\nabla_{x} \mathbf{v}+\nabla_{x}^{t} \mathbf{v}\right) \\
& \partial_{t} \theta+\lambda(\theta)\left(\chi_{t}+\mathbf{v} \cdot \nabla_{x} \chi\right)+\operatorname{div}(\theta \mathbf{v})+\operatorname{div} \mathbf{q}=\mathbb{S}: \nabla_{x} \mathbf{v}+\left|\nabla_{x} \mu\right|^{2} \\
& \partial_{t} \chi+\mathbf{v} \cdot \nabla_{x} \chi=\Delta \mu, \quad \mu=-\Delta \chi+W^{\prime}(\chi)-\lambda(\theta)
\end{aligned}
$$

Entropic notion of solution is needed in order to interpret the internal energy balance

Thanks for your attention!

cf. http://www.mat.unimi.it/users/rocca/

