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Introduction

We present here the results of the following joint work

[E. Feireisl, E. Rocca, G. Schimperna, A. Zarnescu, On a hyperbolic system arising in liquid crystals modeling,

Journal of Hyperbolic Differential Equations, 2018]

We consider a model of liquid crystals (LCs), based on a nonlinear hyperbolic system of
differential equations, that represents an inviscid version of the model proposed in

[T. Qian, P. Sheng, Generalized hydrodynamic equations for nematic liquid crystals. Phys. Rev. E, 1998]

and studied analytically in [F. de Anna, A. Zarnescu, arXiv:1608.08872]

Here is the plan of the talk:

Introduce the Liquid Crystals modeling and Q-tensors formalism

Present a simplification of the Qian-Sheng (QS-model) and the resulting PDEs

Propose the concept of dissipative solution, for which a global-in-time existence theorem is
shown

The main advantages and the potential future perspectives
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The motivation

Liquid crystals are a state of matter that have properties between those of a conventional
liquid and those of a solid crystal. A liquid crystal may flow like a liquid, but its molecules
may be oriented in a crystal-like way

Theoretical studies of these types of materials are motivated by real-world applications:
proper functioning of many practical devices relies on optical properties of certain liquid
crystalline substances in the presence or absence of an electric field: a multi-billion dollar
industry

At the molecular level, what marks the difference between a liquid crystal and an ordinary,
isotropic fluid is that, while the centers of mass of LC molecules do not exhibit any
long-range correlation, molecular orientations do exhibit orientational correlations
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To the present state of knowledge, three main types of liquid crystals are distinguished, termed
smectic, nematic and cholesteric

http://www.laynetworks.com/Molecular-Orientation-in-Liquid-Crystal-Phases.htm

The smectic phase forms well-defined layers that can slide one over another in a manner very similar to that of
a soap

The nematic phase: the molecules have long-range orientational order, but no tendency to the formation of
layers. Their center of mass positions all point in the same direction (within each specific domain)

Crystals in the cholesteric phase exhibit a twisting of the molecules perpendicular to the director, with the
molecular axis parallel to the director
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Our main aim

We consider the range of temperatures typical for the nematic phase

http://www.netwalk.com/ laserlab/lclinks.html

The nematic liquid crystals are composed of rod-like molecules, with the long axes of
neighboring molecules aligned

Most mathematical work has been done on the Oseen-Frank theory, in which the mean
orientation of the rod-like molecules is described by a vector field d . However, more popular
among physicists is the Landau-de Gennes theory, in which the order parameter describing
the orientation of molecules is a matrix, the so-called Q-tensor

I The flow velocity u evidently disturbs the alignment of the molecules and also the converse
is true: a change in the alignment will produce a perturbation of the velocity field u

• Moreover, also changes of the temperature or effects of magnetic and electric fields should
be considered (in the future maybe)

E. Rocca (Università degli Studi di Pavia) Hyperbolic system in LCs modeling May 7–11, 2018 7 / 48



Our main aim

We consider the range of temperatures typical for the nematic phase

http://www.netwalk.com/ laserlab/lclinks.html

The nematic liquid crystals are composed of rod-like molecules, with the long axes of
neighboring molecules aligned

Most mathematical work has been done on the Oseen-Frank theory, in which the mean
orientation of the rod-like molecules is described by a vector field d . However, more popular
among physicists is the Landau-de Gennes theory, in which the order parameter describing
the orientation of molecules is a matrix, the so-called Q-tensor

I The flow velocity u evidently disturbs the alignment of the molecules and also the converse
is true: a change in the alignment will produce a perturbation of the velocity field u

• Moreover, also changes of the temperature or effects of magnetic and electric fields should
be considered (in the future maybe)
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The Landau-de Gennes theory: the molecular orientation

Consider a nematic liquid crystal filling a bounded connected container Ω in R3 with
“regular” boundary

The distribution of molecular orientations in a ball B(x0, δ), x0 ∈ Ω can be represented as a
probability measure µ on the unit sphere S2 satisfying µ(E) = µ(−E) for E ⊂ S2

For a continuously distributed measure we have dµ(p) = ρ(p)dp where dp is an element of
the surface area on S2 and ρ ≥ 0,

∫
S2 ρ(p)dp = 1, ρ(p) = ρ(−p)
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The Landau-de Gennes theory: the Q-tensor

The first moment
∫
S2 p dµ(p) = 0, the second moment M =

∫
S2 p ⊗ p dµ(p) is a symmetric

non-negative 3× 3 matrix (for every v ∈ S2, v ·M · v =
∫
S2 (v · p)2 dµ(p) =< cos2 θ >, where

θ is the angle between p and v) satisfying tr(M) = 1

If the orientation of molecules is equally distributed in all directions (the distribution is
isotropic) and then µ = µ0, where dµ0(p) = 1

4π
dS . In this case the second moment tensor is

M0 = 1
4π

∫
S2 p ⊗ p dS = 1

3
1, because

∫
S2 p1p2 dS = 0,

∫
S2 p2

1 dS =
∫
S2 p2

2 dS , etc., and

tr(M0) = 1

I The de Gennes Q-tensor measures the deviation of M from its isotropic value

Q = M −M0 =

∫
S2

(
p ⊗ p −

1

3
1

)
dµ(p)

I Note that (cf. [Ball, Majumdar, Molecular Crystals and Liquid Crystals (2010)])

1. Q = QT

2. tr(Q) = 0

3. Q ≥ − 1
3 1

1.+2. implies Q = λ1n1 ⊗ n1 + λ2n2 ⊗ n2 + λ3n3 ⊗ n3, where {ni} is an othonormal basis of eigenvectors
of Q with corresponding eigenvalues λi such that λ1 + λ2 + λ3 = 0

2.+3. implies − 1
3 ≤ λi ≤ 2

3

I Q = 0 does not imply µ = µ0 (e.g. µ = 1
6

∑3
i=1(δei + δ−ei

))
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The reduction to the Oseen-Frank model

If the eigenvalues of Q are all distinct then Q is said to be biaxial (biaxiality implies the
existence of more than one preferred direction of molecular alignment)

If two λi are equal then Q is said to be uniaxial (liquid crystal materials with a single
preferred direction of molecular alignment)

Reduction to the Oseen-Frank (1925, 1952) model (Ericksen model, 1991): the uniaxial case:
λ1 = λ2 = − s

3
, λ3 = 2s

3
, setting n3 = d where ni is an orthonormal basis of eigenvectors of Q

corresponding to λi , we have

Q = −
s

3
(1− d ⊗ d ) +

2s

3
d ⊗ d = s

(
d ⊗ d −

1

3
1

)
,

where − 1
2
≤ s ≤ 1.

Here s ∈ R is a real scalar order parameter that measures the degree of orientational ordering and
d is a vector representing the direction of preferred molecular alignment: the director field.
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The Landau-de Gennes free energy

Suppose (for the moment) that the material is incompressible, homogeneous and at a constant
temperature T in Ω. At each x ∈ Ω we have an order parameter tensor Q(x) and the Landau-de
Gennes free energy (defined in the space of traceless symmetric 3× 3 matrixes) is

FLG (Q) =

∫
Ω

(
L

2
|∇Q(x)|2 + fB(Q(x))

)
dx ,

where

|∇Q|2 =
∑3

i,j,k=1 Qij,kQij,k is the elastic energy density that penalizes spatial
inhomogeneities and L > 0 is a material-dependent elastic constant

fB(Q) is the bulk free energy density, e.g., (following [de Gennes, Prost (1995)])

fB(Q) =
α(T − T∗)

2
tr(Q2)−

b

3
tr(Q3) +

c

4
(tr(Q2))2

where α, b, c are material-dependent positive constants, T is the absolute temperature and
T∗ is a characteristic liquid crystal temperature. Call a = α(T − T∗)
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The Oseen-Frank free energy

It can be shown (cf. [Majumdar, Zarnescu, ARMA (2010)]) that, if L is small in

FLG (Q) =

∫
Ω

(
L

2
|∇Q(x)|2 + fB(Q(x))

)
dx ,

it is reasonable to consider a theory where Q is required to be uniaxial with constant scalar
order parameter s > 0, i.e.

Q = s

(
d ⊗ d −

1

3
1

)
.

Here d = d (x) ∈ S2 represents the preferred direction of molecular alignment

In this case fB is constant and we can consider only the elastic energy and calculating it in
terms of d we obtain the simplest form of the Oseen-Frank free energy (1925, 1958)
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The Ball-Majumdar singular potential

In the Landau-de Gennes free energy there is no a-priori bound on the eigenvalues

In order to naturally enforce the physical constraints in the eigenvalues of the symmetric,
traceless tensors Q, Ball and Majumdar have recently introduced in [Ball, Majumdar, Molecular

Crystals and Liquid Crystals (2010)] a singular component

f (Q) =


infρ∈AQ

∫
S2 ρ(p) log(ρ(p)) dp if λi [Q] ∈ (−1/3, 2/3), i = 1, 2, 3,

∞ otherwise,

AQ =

{
ρ : S2 → [0,∞)

∣∣∣ ∫
S2
ρ(p) dp = 1;Q =

∫
S2

(
p⊗ p−

1

3
I
)
ρ(p) dp

}
.

to the bulk free-energy fB enforcing the eigenvalues to stay in the interval (− 1
3
, 2

3
).
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The hydrodynamic theories in the isothermal case

⇒ The hydrodynamic theory corresponding to the Oseen-Frank free energy has been developed
by Ericksen (1961) and Leslie (1968) (the celebrated Leslie-Ericksen model)

⇒ The Lin-Liu model (1995) is obtained by replacing the unit-vector constraint on d with a
Ginzburg-Landau penalization W (d ) = 1

4ε2 (|d |2 − 1)2, on the director field d , which should
formally converge to the Leslie-Ericksen model when ε→ 0, but this is an important open
issue

⇒ For the Landau-de Gennes free energy with “regular” potential, the hydrodynamic theory has
been developed in [Paicu, Zarnescu, SIAM (2011) and ARMA (2012)]
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Our main aims

We present here a system modeling the hydrodynamics of nematic liquid crystals in the Q-tensor
framework.

The system is an inviscid version of the QS-model proposed in

[F. Gay-Balmaz, C. Tronci, The helicity and vorticity of liquid crystal flows, Proc. R. Soc. Lond. Ser. A Math.

Phys. Eng. Sci., 2011]

as a simplification of the QS-model, that captures its essential features and exhibits a number of
interesting conservation and geometric properties that could be relevant in particular to describing
defect patterns, thanks to the (presumptively) singular character of the equations.

The most characteristic specific feature of this model is the presence of an inertial term that
appears as a second-order material derivative.

This term provides a hyperbolic character to the equations and is the main source of difficulties in
the analysis.

It should be noted that this second material derivative also appears in the more commonly used
Ericksen-Leslie model of liquid crystals, but there it generates even worse effects due to the
additional presence of the unit-length constraint.
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E. Rocca (Università degli Studi di Pavia) Hyperbolic system in LCs modeling May 7–11, 2018 17 / 48



The PDEs

The system we are studying is:

divxv = 0

∂tv + v · ∇xv +∇xΠ = −divx (∇xQ�∇xQ)

∂tQ + v · ∇xQ = P

∂tP + v · ∇xP = −
∂F
∂Q

+ ∆Q− λI

For the sake of simplicity, we restrict ourselves to the periodic boundary conditions, for which the
underlying spatial domain may be identified with the flat torus:

T 3 =
(
[−π, π]|{−π,π}

)3

The system is

the standard Euler system for the fluid velocity v = v(t, x) ∈ R3, coupled via a nonlinear
forcing term with

a wave-like equation governing the time evolution of the Q-tensor Q = Q(t, x) ∈ R3×3
0,sym - a

symmetric traceless matrix

The pressure Π and the factor λI may be seen as Lagrange multipliers compensating the
deviation of the motion from the divergenceless and zero-trace state, respectively
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Energy functional

The problem admits a natural energy functional

E[v ,P,Q] =

∫
Ω

[
1

2
|v |2 +

1

2
|P|2 +

1

2
|∇xQ|2 + F(Q)

]
dx

It is easy to check, by multiplying by v the velocity-equation:

∂tv + v · ∇xv +∇xΠ = −divx (∇xQ�∇xQ)

by P(= ∂tQ + v · ∇xQ) the equation:

∂tP + v · ∇xP = −
∂F
∂Q

+ ∆Q− λI

and integrating the resulting sum by parts, that the total energy is conserved

d
dt
E[v ,P,Q] = 0

for any smooth solution of our system
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Qualitative features
The system can be regarded as an extended Euler system and this was the main motivation for
proposing it in the Gay-Balmaz-Tronci paper

Indeed, if one defines the extended circulation vector, where Pij∇xQij represents the circulation
associated with the fluid interaction with the nematic order parameter field (here and in the
following we assume Einstein summation convention, of summation over repeated indices)

CQS := v + Pij∇xQij

and the extended vorticity
ω̄QS := ∇x × CQS

then we have the Euler-like equation

∂t ω̄QS +∇x × (v × ω̄QS ) = 0

In addition there hold a circulation theorem

d
dt

∮
Γ(t)

v + Pij∇xQij dσ = 0

where Γ(t) is a closed path moving with velocity v and the helicity conservation

d
dt

∫
Ω
CQS · ω̄QS dx = 0

as a direct consequence of the Euler-like equation
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E. Rocca (Università degli Studi di Pavia) Hyperbolic system in LCs modeling May 7–11, 2018 20 / 48



Our goals and main difficulties

Our goal is to study the existence of global-in-time solutions to the problem

divxv = 0

∂tv + v · ∇xv +∇xΠ = −divx (∇xQ�∇xQ)

∂tQ + v · ∇xQ = P

∂tP + v · ∇xP = −
∂F
∂Q

+ ∆Q− λI

This may seem a rather ambitious task as the problem is highly non-linear involving the
incompressible Euler system for which the existence of physically admissible solutions is an
open problem even in the class of weak solutions (see [Wiedemann, Ann. Inst. H. Poincaré Anal.

Non Linéaire (2011)] and [Székelyhidi–Wiedemann, Arch. Rational Mech. Anal. (2012)])

To circumvent these well-known difficulties, we introduce a new class of dissipative solutions
inspired by a similar concept introduced by P.L. Lions in the context of Euler flow

The dissipative solutions enjoy the following properties:

Any classical solution of problem above is a dissipative solution

Any (sufficiently) smooth dissipative solution is a classical solution

A dissipative solution coincides with the classical solution emanating from the same initial
data as long as the latter exists
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An idea of the proof

Our strategy is based on the following steps:

1. First, we establish existence of smooth solutions of our system defined on a possibly short
time interval the length of which depends on the norm of the initial data in certain Sobolev
spaces. This will be done in an entirely standard way by the energy method well developed in
the theory of hyperbolic conservation laws

2. Next, we introduce the concept of dissipative solution which will satisfy:

I the system of equations in the sense of distributions, where the right-hand sides will contain two
extra terms playing the role of defect measures

I the energy inequality:

E[v , P,Q](τ) +D(τ) ≤ E[v , P,Q](0) for a.a. τ > 0,

with a dissipation defect D dominating, in a certain sense specified later on, the defect measure in
the equations

3. Next, we derive a relative energy inequality playing the role of a “distance” between a
dissipative solution and any sufficiently smooth process
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4. Similarly to [E. Feireisl, A. Novotný, and Y. Sun, Indiana Univ. Math. J. (2011)], we use the relative
energy to show the weak-strong uniqueness property for the class of dissipative solutions

5. Finally, we observe that the same procedure used in the construction of local smooth
solutions gives rise to a dissipative solution
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4. Similarly to [E. Feireisl, A. Novotný, and Y. Sun, Indiana Univ. Math. J. (2011)], we use the relative
energy to show the weak-strong uniqueness property for the class of dissipative solutions

5. Finally, we observe that the same procedure used in the construction of local smooth
solutions gives rise to a dissipative solution
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Notations

For A,B two 3× 3 matrices we denote the inner product on the space of matrices as
A : B = tr(AB)

The product ∇A⊗∇B is a matrix with ij component ∂iA : ∂jB.

If M(x) is a 3× 3-matrix, then |M| denotes the Frobenius norm of the matrix, i.e.

|M| =
√
M : Mt . Furthermore ∇ ·M stands for the vector field

(∑3
j=1

∂Mij

∂xj

)
i=1...3

If v is a 3-dimensional vector and Q is a 3× 3 matrix then v ⊗Q is a third order tensor with
components viQkl with i , k, l ∈ {1, 2, 3}

If P is a 3× 3 then ∇xP is a third-order tensor and we denote by v ⊗ Q : ∇xP the scalar∑3
i,j,k=1 vkQij

∂Pij

∂xk
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Assumptions on the potential

(A1) The function F : R3×3
0,sym → R is isotropic, i.e.

F(Q) = F(RQRt), ∀R ∈ O(3).

(A2) F is Λ-convex: there exists Λ ≥ 0 such that F + Λ|Q|2 is a strictly convex non-negative
function. Hence we will set

G(Q) := F(Q) + Λ|Q|2.

(A3) There exists a constant C̄ > 0 such that

|∂F(Q)| ≤ C̄(1 + |Q|q), for some exponent q < 5.

Remarks.

Assumption (A3) could be generalized and include also potentials with faster (polynomial)
growth at infinity, the only complication being the possible appearence of a further defect
term in the energy balance. The function G(Q) can be controlled only in L1 in that case

Exponential growth at infinity or “singular” potentials (i.e., F being identically infinity
outside a bounded set, like the Ball-Majumdar potential) is more delicate: a further
measure-valued term (the limit of ∂F(Q)) would then occur

Examples of functions that satisfies (A1)-(A3) are

F(Q) =
a

2
|Q|2 +

b

3
tr(Q3) +

c

4
|Q|4 where a, b ∈ R and c > 0
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Theorem 1: local strong solutions

Let s ≥ 3 and F ∈ C s+1(R3×3
0,sym;R) satisfying (A1)-(A3). Consider the initial data

v(0, ·) = v0 ∈W s,2(T 3;R3), P(0, ·) = P0 ∈W s,2(T 3;R3×3
0,sym),

Q(0, ·) = Q0 ∈W s+1,2(T 3;R3×3
0,sym)

such that divxv0 = 0.

Then there exists T0 > 0 depending solely on the norm of the initial data such that our problem

divxv = 0

∂tv + v · ∇xv +∇xΠ = −divx (∇xQ�∇xQ)

∂tQ + v · ∇xQ = P

∂tP + v · ∇xP = −
∂F
∂Q

+ ∆Q− λI

admits a strong solution in [0,T0]× T 3, unique in the class

v ∈ C([0,T0];W s,2(T 3;R3)),

P ∈ C([0,T0];W s,2(T 3;R3×3
0,sym)), Q ∈ C([0,T0];W s+1,2(T 3;R3×3

0,sym)).
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We name by dissipative solutions the trio of functions [v ,P,Q] such that

v ∈ Cweak([0,T ]; L2(T 3; R3)), P ∈ Cweak([0,T ]; L2(T 3; R3×3)),

Q ∈ Cweak([0,T ]; W 1,2(T 3; R3×3)) ∩ C([0,T ]; L2(T 3; R3×3)),

they satisfy the relations:∫
Ω

v(τ, ·) · ∇xϕ dx = 0 for any ϕ ∈ C∞c (T 3),[∫
Ω

v · ϕ dx
]t=τ

t=0

=

∫ τ

0

∫
Ω

v · ∂tϕ + (v ⊗ v) : ∇xϕ + (∇xQ�∇xQ) : ∇xϕ dx +
〈
R1;∇xϕ

〉
dt

for any ϕ ∈ C∞c ([0,T ]× T 3; R3), divxϕ = 0;[∫
Ω

Q : ϕ dx
]t=τ

t=0

=

∫ τ

0

∫
Ω

[Q : ∂tϕ + (v ⊗ Q) : ∇xϕ + P : ϕ] dx dt for any ϕ ∈ C∞c ([0,T ]× T 3; R3×3
0,sym);[∫

Ω

P : ϕ dx
]t=τ

t=0

=

∫ τ

0

∫
Ω

[
P : ∂tϕ + (v ⊗ P) : ∇xϕ−

∂F(Q)

∂Q
: ϕ−∇xQ : ∇xϕ

]
dx +

〈
R2;∇xϕ

〉
dt

for any ϕ ∈ C∞c ([0,T ]× T 3; R3×3
0,sym);

for certain R1, R2, and the energy balance for any τ ∈ [0,T ]:[∫
Ω

[
1

2
|v|2 +

1

2
|P|2 +

1

2
|∇xQ|2 + G(Q)

]
dx
]t=τ

t=0

+D(τ) = 2Λ

∫ τ

0

∫
Ω

Q : P dx dt

for certain D ∈ L∞(0,T ) (dissipation defect), where∫ τ

0

[
‖R1(t, ·)‖M(T 3) + ‖R2(t, ·)‖M(T 3)

]
dt ≤ c

∫ τ

0

D(t) dt, τ ∈ [0,T ]
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E. Rocca (Università degli Studi di Pavia) Hyperbolic system in LCs modeling May 7–11, 2018 28 / 48



We name by dissipative solutions the trio of functions [v ,P,Q] such that

v ∈ Cweak([0,T ]; L2(T 3; R3)), P ∈ Cweak([0,T ]; L2(T 3; R3×3)),

Q ∈ Cweak([0,T ]; W 1,2(T 3; R3×3)) ∩ C([0,T ]; L2(T 3; R3×3)),

they satisfy the relations:∫
Ω

v(τ, ·) · ∇xϕ dx = 0 for any ϕ ∈ C∞c (T 3),[∫
Ω

v · ϕ dx
]t=τ

t=0

=

∫ τ

0

∫
Ω

v · ∂tϕ + (v ⊗ v) : ∇xϕ + (∇xQ�∇xQ) : ∇xϕ dx +
〈
R1;∇xϕ

〉
dt

for any ϕ ∈ C∞c ([0,T ]× T 3; R3), divxϕ = 0;[∫
Ω

Q : ϕ dx
]t=τ

t=0

=

∫ τ

0

∫
Ω

[Q : ∂tϕ + (v ⊗ Q) : ∇xϕ + P : ϕ] dx dt for any ϕ ∈ C∞c ([0,T ]× T 3; R3×3
0,sym);[∫

Ω

P : ϕ dx
]t=τ

t=0

=

∫ τ

0

∫
Ω

[
P : ∂tϕ + (v ⊗ P) : ∇xϕ−

∂F(Q)

∂Q
: ϕ−∇xQ : ∇xϕ

]
dx +

〈
R2;∇xϕ

〉
dt

for any ϕ ∈ C∞c ([0,T ]× T 3; R3×3
0,sym);

for certain R1, R2, and the energy balance for any τ ∈ [0,T ]:[∫
Ω

[
1

2
|v|2 +

1

2
|P|2 +

1

2
|∇xQ|2 + G(Q)

]
dx
]t=τ

t=0

+D(τ) = 2Λ

∫ τ

0

∫
Ω

Q : P dx dt

for certain D ∈ L∞(0,T ) (dissipation defect), where∫ τ

0

[
‖R1(t, ·)‖M(T 3) + ‖R2(t, ·)‖M(T 3)

]
dt ≤ c

∫ τ

0

D(t) dt, τ ∈ [0,T ]
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Theorem 2: dissipative solutions

Let F ∈ C2(R3×3
0,sym;R) satisfy assumptions (A1)-(A3).

Then our problem

divxv = 0

∂tv + v · ∇xv +∇xΠ = −divx (∇xQ�∇xQ)

∂tQ + v · ∇xQ = P

∂tP + v · ∇xP = −
∂F
∂Q

+ ∆Q− λI

admits a dissipative solution [v ,P,Q] in (0,T )× T 3 for any initial data

v0 ∈ L2(T 3;R3), divxv0 = 0, P0 ∈ L2(T 3;R3×3
0,sym), Q0 ∈W 1,2(T 3;R3×3

0,sym).
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Remark on the correctors

Apparently no information about the specific form of the correctors R1, R2 in[∫
Ω

v · ϕ dx
]t=τ

t=0

=

∫ τ

0

∫
Ω

v · ∂tϕ + (v ⊗ v) : ∇xϕ + (∇xQ�∇xQ) : ∇xϕ dx +
〈
R1;∇xϕ

〉
dt[∫

Ω

P : ϕ dx
]t=τ

t=0

=

∫ τ

0

∫
Ω

[
P : ∂tϕ + (v ⊗ P) : ∇xϕ−

∂F(Q)

∂Q
: ϕ−∇xQ : ∇xϕ

]
dx +

〈
R2;∇xϕ

〉
dt

but, actually:

R1 is the tensor of measures whose (i, j)-entry is Ri,j
1,1 +Ri,j

1,2 with

I v i
nv

j
n − v iv j → Ri,j

1,1 weakly-(*) in L∞(0,T ;M(T 3)) and∑
i,j

‖Ri,j
1,1‖M(T 3) ≤ 3

∫
Ω

(
|v |2 − |v |2

)
dx.

I
∑
α,β

(
∂iQ

α,β
n ∂jQ

α,β
n − ∂iQα,β∂jQα,β

)
→ Ri,j

1,2 weakly-(*) in L∞(0,T ;M(T 3)) and

∑
i,j

‖Ri,j
1,2‖M(T 3) ≤ c

∫
Ω

(
|∇xQ|2 − |∇xQ|2

)
dx,

R2 is the tensor of measures whose (i, j, k)-entry is Ri,j,k
2 with

v i
nP

k,j
n − v iPk,j → Ri,j,k

2 weakly-(*) in L∞(0,T ;M(T 3))

and ∑
i,j

∫ τ

0

‖Ri,j,k
2 ‖M(T 3) dt ≤ c

∫ τ

0

∫
Ω

(
|v|2 − |v|2

)
dx dt + c

∫ τ

0

∫
Ω

(
|P|2 − |P|2

)
dx dt.
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Remark on the dissipation

The nonnegative function D ∈ L∞(0,T ) in the energy balance:[∫
Ω

[
1

2
|v|2 +

1

2
|P|2 +

1

2
|∇xQ|2 + G(Q)

]
dx
]t=τ

t=0

+D(τ) = 2Λ

∫ τ

0

∫
Ω
Q : P dx dt

is obtained as the limit of the difference in square brackets in

E [v(τ),P(τ),Q(τ)] +
[
E [vn(τ),Pn(τ),Qn(τ)]− E [v(τ),P(τ),Q(τ)]

]
= E [vn(0),Pn(0),Qn(0)] + 2Λ

∫ t

0

∫
Ω
Qn : Pn dx dt

where the modified energy functional is:

E [v ,P,Q] :=

∫
Ω

[
1

2
|v|2 +

1

2
|P|2 +

1

2
|∇xQ|2 + G(Q)

]
dx

Notice that it actually represents a dissipation defect
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Relative energy

The dissipative solutions may seem rather weak as we have apparently no information about the
specific form of neither the dissipation defect D nor the correctors R1, R2. Nevertheless, we show
that a dissipative solution coincides with the strong solution emanating from the same initial data
as long as the latter exists. We consider the modified energy functional

E(v ,P,Q) =

∫
Ω

[
1

2
|v |2 +

1

2
|P|2 +

1

2
|∇xQ|2 + G(Q)

]
dx

along with the associated relative energy functional

E
(
v ,P,Q

∣∣∣ṽ , P̃, Q̃)
=

1

2

∫
Ω

[
|v − ṽ |2 + |P− P̃|2 + |∇xQ−∇x Q̃|2

]
+ G(Q)− ∂G(Q̃) : (Q− Q̃)− G(Q̃) dx

= E(v ,P,Q) + E(ṽ , P̃, Q̃)−
∫

Ω

[
v · ṽ + P : P̃ +∇xQ : ∇x Q̃

]
−
[
∂G(Q̃) : (Q− Q̃) + 2G(Q̃)

]
dx

defined for any trio of smooth function [ṽ , P̃, Q̃]. The functional E plays a role of a “distance”
between a solution [v ,P,Q] and a generic triplet [ṽ , P̃, Q̃].

Our goal is to derive the relative entropy inequality - an explicit formula for[
E
(
v ,P,Q

∣∣∣ṽ , P̃, Q̃)]t=τ

t=0
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Theorem 3: Weak-strong uniqueness

Our ultimate goal is to show that any dissipative solution necessarily coincides with a strong
solution originating from the same initial data on the existence interval of the latter. A simple
idea is to take the strong solution [ṽ , P̃, Q̃] as “test functions” in the relative energy inequality
and to use a Gronwall-type argument.

Under the hypotheses of Theorem 2 let the initial data enjoy the regularity properties:

v(0, ·) = v0 ∈W s,2(T 3;R3), P(0, ·) = P0 ∈W s,2(T 3;R3×3
0,sym),

Q(0, ·) = Q0 ∈W s+1,2(T 3;R3×3
0,sym)

such that divxv0 = 0. Let [v ,P,Q] be a dissipative solution of our problem

divxv = 0

∂tv + v · ∇xv +∇xΠ = −divx (∇xQ�∇xQ)

∂tQ + v · ∇xQ = P

∂tP + v · ∇xP = −
∂F
∂Q

+ ∆Q− λI

and let [ṽ , P̃, Q̃] a the strong solution of the same problem belonging to the regularity class
specified in Theorem 1 in the space-time cylinder (0,T )× T 3. Then we have

v = ṽ , P = P̃, Q = Q̃ a.a. in (0,T )× T 3.
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E. Rocca (Università degli Studi di Pavia) Hyperbolic system in LCs modeling May 7–11, 2018 34 / 48



An idea of the proof

Using the weak formulation, the energy balance, and the bounds for the correctors and taking now
as test functions the strong solutions [ṽ , P̃, Q̃], the relative energy inequality takes the final form

E
(
v ,P,Q

∣∣∣ṽ , P̃, Q̃) (τ) +D(τ)

≤ 2Λ

∫ τ

0

∫
Ω

(Q− Q̃) : (P− P̃) dx dt −
∫ τ

0

∫
Ω

(v − ṽ) · ∇x ṽ · (v − ṽ) dx dt

+

∫ τ

0

∫
Ω

(ṽ − v) · ∇x P̃ · (P− P̃) dx dt +

∫ τ

0

∫
Ω

(ṽ − v) · ∇x∂G(Q̃) · (Q− Q̃) dx dt

+

∫ τ

0

∫
Ω
P̃ :
(
∂G(Q)− ∂2G(Q̃)(Q− Q̃)− ∂G(Q̃)

)
dx dt

+

∫ τ

0

∫
Ω

[
(∇x Q̃−∇xQ) ·∆x Q̃ · (v − ṽ)− (∇xQ−∇x Q̃) · ∇x ṽ · (∇xQ−∇x Q̃)

]
dx dt

+ c

∫ τ

0

(
‖∇x P̃‖C(T 3) + ‖∇x ṽ‖C(T 3)

)
D(·) dt.

Applying Gronwall’s lemma we get the desired conclusion.
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as test functions the strong solutions [ṽ , P̃, Q̃], the relative energy inequality takes the final form

E
(
v ,P,Q
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+

∫ τ

0

∫
Ω
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]
dx dt

+ c

∫ τ

0

(
‖∇x P̃‖C(T 3) + ‖∇x ṽ‖C(T 3)
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A corollary

Combining Theorem 3 with the local existence result established in Theorem 2 we immediately
get the following corollary:

Let [v ,P,Q] be a dissipative solution of our problem

divxv = 0

∂tv + v · ∇xv +∇xΠ = −divx (∇xQ�∇xQ)

∂tQ + v · ∇xQ = P

∂tP + v · ∇xP = −
∂F
∂Q

+ ∆Q− λI

in (0,T )× T 3 enjoying the regularity specified in Theorem 1.

Then [v ,P,Q] is a strong solution, in particular, the dissipation defect D as well as the defect
measures R1, R2 vanish identically in [0,T ]× T 3.
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The study of more refined models

We should include more effects in the model, like:

1. changes of the temperature (we have results for the Landau-de Gennes nematic liquid
crystals flows)

2. effects of magnetic and electric fields (this is only a work in progress):
LCs behave differently depending on what direction electric or magnetic fields are applied
relative to the director and so the introduction of the dependence on the magnetic and
electric field in the mathematical models and analysis would be particularly challenging and
usefull in view of applications
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E. Rocca (Università degli Studi di Pavia) Hyperbolic system in LCs modeling May 7–11, 2018 38 / 48



Point 1. Our main contributions in the Landau-de Gennes case

We study the non-isothermal evolutionary system for nematic liquid crystals within the recent
Ball-Majumdar Q-tensorial model preserving the physical eigenvalue constraint on the traceless
and symmetric matrices Q:

1. [E. Feireisl, E. R., G. Schimperna, A. Zarnescu], Evolution of non-isothermal Landau-de
Gennes nematic liquid crystals flows with singular potential, Comm. Math. Sci., 12 (2014)

2. [E. Feireisl, E. R., G. Schimperna, A. Zarnescu], Nonisothermal nematic liquid crystal flows
with the Ball-Majumdar free energy, Annali di Matematica, 194 (2015)

We still work in the three-dimensional torus Ω ⊂ R3 in order to avoid complications connected
with boundary conditions. We consider the evolution of the following variables:

the mean velocity field v
the tensor field Q, representing preferred (local) orientation of the crystals

the absolute temperature θ
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The free energy and the Q-tensor equation

The free energy density takes the form

F =
1

2
|∇Q|2 + fB(θ,Q)−θ log θ − aθm

where

fB(θ,Q) = θf (Q) + G(Q) is bulk the configuration potential

f is the convex l.s.c. and singular Ball-Majumdar potential, G is a smooth function of Q
aθm prescribes a power-like specific heat

We assume that the driving force governing the dynamics of the director Q is of “gradient type”
∂QF :

∂tQ + v · ∇Q− S(∇v ,Q) = Γ(θ)H, (eq-Q)

The left hand side is the “generalized material derivative” DtQ = ∂tQ + v · ∇Q− S(∇v ,Q)

S represents deformation and stretching effects of the crystal director along the flow

The right hand side is of “gradient type” −H = ∂QF , i.e.

H = ∆Q− θ ∂f (Q)

∂Q − ∂G(Q)

∂Q = ∆Q− θ ∂f (Q)

∂Q + λQ, λ ≥ 0

Γ(θ) represents a collective rotational viscosity coefficient
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Equation of momentum

In the context of nematic liquid crystals, we have the incompressibility constraint

div v = 0

By virtue of Newton’s second law, the balance of momentum reads

∂tv + div(v ⊗ v) = div σ + g (eq-v)

The stress σ is given by

σ =
ν(θ)

2
(∇v +∇tv)− pI + T

The coupling term (or “extra-stress”) T depends both on θ and Q

T = 2ξ (H : Q)

(
Q +

1

3
I
)
− ξ
[
H
(
Q +

1

3
I
)

+

(
Q +

1

3
I
)

H
]

+ (QH− HQ)−∇Q�∇Q

where ξ is a fixed scalar parameter
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Entropy inequality

The evolution of temperature is prescribed by stating the entropy inequality

st + v · ∇s − div

(
κ(θ)

θ
∇θ
)

(eq-θ)

≥
1

θ

(
ν(θ)

2

∣∣∇v +∇tv
∣∣2 + Γ(θ)|H|2 +

κ(θ)

θ
|∇θ|2

)
where s“ = −∂θF ′′ = −f (Q) + 1 + log θ + maθm−1

The viscosity ν is smooth and bounded - without any growth condition

κ(r) = A0 + Ak r
k , A0, Ak > 0, 3k+2m

3
> 9, 3

2
< m ≤ 6k

5

Γ(r) = Γ0 + Γ1r , Γ0, Γ1 > 0

The “heat” balance can be recovered by (formally) multiplying by θ

Due to the quadratic terms, we can only interpret (eq-θ) as an inequality
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E. Rocca (Università degli Studi di Pavia) Hyperbolic system in LCs modeling May 7–11, 2018 42 / 48



Entropy inequality

The evolution of temperature is prescribed by stating the entropy inequality

st + v · ∇s − div

(
κ(θ)

θ
∇θ
)

(eq-θ)

≥
1

θ

(
ν(θ)

2

∣∣∇v +∇tv
∣∣2 + Γ(θ)|H|2 +

κ(θ)

θ
|∇θ|2

)
where s“ = −∂θF ′′ = −f (Q) + 1 + log θ + maθm−1

The viscosity ν is smooth and bounded - without any growth condition

κ(r) = A0 + Ak r
k , A0, Ak > 0, 3k+2m

3
> 9, 3

2
< m ≤ 6k

5

Γ(r) = Γ0 + Γ1r , Γ0, Γ1 > 0

The “heat” balance can be recovered by (formally) multiplying by θ

Due to the quadratic terms, we can only interpret (eq-θ) as an inequality
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Total energy balance

Passing from the heat equation to the entropy inequality gives rise to some information loss

Following an idea by [Buĺıček, Feireisl, & Málek (2009)], we can complement the system
with the total energy balance

∂t

(
1

2
|v |2 + e

)
+ div

(
(

1

2
|v |2 + e)v

)
+ div q (eq-bal)

= div(σv) + div

(
Γ(θ)∇Q :

(
∆Q− θ

∂f (Q)

∂Q
+ λθ

))
+ g · v

where e = F + sθ is the internal energy

Note the explicit occurrence of the pressure p “hidden” inside

σ =
ν(θ)

2
(∇v +∇tv)− pI + T

To control it, assuming periodic b.c.’s is essential
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Main result: the “Entropic formulation”

Theorem: existence of global in time “Entropic solutions”

We can prove existence of at least one “Entropic solution” to
system (eq-v)+(eq-Q)+(eq-θ)+(eq-bal) for finite-energy initial data , namely

θ0 ∈ L∞(Ω), essinfx∈Ω θ0(x) = θ > 0,

Q0 ∈ H1(Ω), f (Q0) ∈ L1(Ω),

v0 ∈ L2(Ω), div v0 = 0.

Notice that, if the solution is more regular, the entropy inequality becomes an equality and,
multiplying it by θ we just get the standard internal energy balance

ϑt + v · ∇xϑ+ div q =ϑ
(
∂t f (Q) + v · ∇x f (Q)

)
+ ν(θ)

∣∣∇xv +∇t
xv
∣∣2 + Γ(ϑ)|H|2

However, this regularity is out of reach for this model: that is why this solution notion is
significative
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Open problems for the QS-model

Include the temperature dependence

Deal with the singular potential case

. . .
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Many thanks to all of you for the attention!

http://matematica.unipv.it/rocca/
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Convergences of the defect measures
Examining the difference

v i
nv

j
n − v iv j = (v i

n − v i )(v j
n − v j )− v i (v j − v j

n)− v j (v i − v i
n), (7.1)

we find out that
v i
nv

j
n − v iv j →Ri,j

1,1 weakly-(*) in L∞(0,T ;M(T 3)).

Let now ζ ∈ C(T 3) with ‖ζ‖∞ ≤ 1. Then, testing (7.1) by ζ, we obtain∫
Ω

(v i
nv

j
n − v iv j )ζ dx ≤

1

2

∫
Ω

(v i
n − v i )2|ζ| dx +

1

2

∫
Ω

(v j
n − v j )2|ζ| dx (7.2)

−
∫

Ω

(
v i (v j − v j

n) + v j (v i − v i
n)
)
ζ dx

Hence, letting n↗∞, we obtain∫
Ω
Ri,j

1,1ζ dx ≤
1

2
lim

n↗∞

∫
Ω

(v i
n − v i )2|ζ| dx +

1

2
lim

n↗∞

∫
Ω

(v j
n − v j )2|ζ| dx ,

where the first integral has in fact to be intended as the integral of the function ζ with respect to

the measure Ri,j
1,1. This convention will be extensively used also in the sequel.

Hence, passing to the supremum with respect to ζ, and summing over i , j , we arrive at∑
i,j

‖Ri,j
1,1‖M(T 3) ≤ 3

∫
Ω

(
|v |2 − |v |2

)
dx . (7.3)
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The existence of local-in-time smooth solutions

We establish the existence of local-in-time solutions in the Sobolev framework W s,2(T N) of
functions with derivatives up to order s square integrable in T N .

Let us start by recalling the following nowadays standard results (see e.g. [A. Majda (1984)]):

1. For u, v ∈W s,2 ∩ L∞(T 3) and α a multi-index with |α| ≤ s

‖∂αx (uv)‖L2(T 3) ≤ cs
(
‖u‖L∞(T 3)‖∇

s
xv‖L2(T 3) + ‖v‖L∞(T 3)‖∇

s
xu‖L2(T 3)

)
.

Here and below ∇s
xv denotes the tensor of the partial derivatives of v of order equal to s.

2. For u ∈W s,2(T 3), ∇xu ∈ L∞(T 3), v ∈W s−1,2 ∩ L∞(T 3) and |α| ≤ s

‖∂αx (uv)− u∂αx v‖L2(T 3) ≤ cs‖∇xu‖L∞(T 3)‖∇
s−1
x v‖L2(T 3)

+cs‖∇s
xu‖L2(T 3)‖v‖L∞(T 3).

3. For u ∈W s,2 ∩ C(T 3), and F s-times continuously differentiable function on an open
neighborhood of the compact set G = range[u], 1 ≤ |α| ≤ s,

‖∂αx F (u)‖L2(T 3) ≤ cs‖∂uF‖C s−1(G)‖u‖
|α|−1

L∞(T 3)
‖∂αx u‖L2(T 3).
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