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Plan of the Talk

I The objective of our modelling approach: include the temperature dependence in a
model describing the evolution of nematic liquid crystal flows

I Our mathematical results:

I The results: joint work with Eduard Feireisl (Institute of Mathematics, Czech
Academy of Sciences, Prague), Michel Frémond (Università di Roma Tor Vergata)
and Giulio Schimperna (Università di Pavia), preprint arXiv:1104.1339v1 (2011)

I Some future perspectives and open problems
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The motivation

Liquid crystals are a state of matter that have properties between those of a
conventional liquid and those of a solid crystal. A liquid crystal may flow like a
liquid, but its molecules may be oriented in a crystal-like way

Theoretical studies of these types of materials are motivated by real-world
applications: proper functioning of many practical devices relies on optical properties
of certain liquid crystalline substances in the presence or absence of an electric field

At the molecular level, what marks the difference between a liquid crystal and an
ordinary, isotropic fluid is that, while the centers of mass of LC molecules do not
exhibit any long-range correlation, molecular orientations do exhibit orientational
correlations

As a result, in the continuum description of a liquid crystal, at any point in space it
is possible to define a preferred direction along which LC molecules tend to be
aligned: the unit vector d associated with this direction is called the director, with
a term borrowed from optics
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E. Rocca (Università di Milano) Non-isothermal liquid crystal model Berlin, September 2011 3 / 26



The motivation

Liquid crystals are a state of matter that have properties between those of a
conventional liquid and those of a solid crystal. A liquid crystal may flow like a
liquid, but its molecules may be oriented in a crystal-like way

Theoretical studies of these types of materials are motivated by real-world
applications: proper functioning of many practical devices relies on optical properties
of certain liquid crystalline substances in the presence or absence of an electric field

At the molecular level, what marks the difference between a liquid crystal and an
ordinary, isotropic fluid is that, while the centers of mass of LC molecules do not
exhibit any long-range correlation, molecular orientations do exhibit orientational
correlations

As a result, in the continuum description of a liquid crystal, at any point in space it
is possible to define a preferred direction along which LC molecules tend to be
aligned: the unit vector d associated with this direction is called the director, with
a term borrowed from optics
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To the present state of knowledge, three main types of liq-
uid crystals are distinguished, termed smectic, nematic and
cholesteric

The smectic phase forms well-defined layers that can slide one over
another in a manner very similar to that of a soap

The nematic phase appears to be the most common, where the
molecules do not exhibit any positional order. They have long-range
orientational order, but no tendency to the formation of layers.
Their center of mass positions all point in the same direction (within
each specific domain)

Crystals in the cholesteric phase exhibit a twisting of the molecules
perpendicular to the director, with the molecular axis parallel to the
director. The main difference between the nematic and cholesteric
phases is that the former is invariant with respect to certain reflec-
tions while the latter is not
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Our main aim

We consider the range of temperatures typical for the nematic phase .

The nematic liquid crystals are composed of rod-like molecules, with the long axes
of neighboring molecules aligned =⇒ it may be described by means of a
dimensionless unit vector d, the director, that represents the direction of preferred
orientation of molecules in a neighborhood of any point of a reference domain.

The flow velocity u evidently disturbs the alignment of the molecules and also the
converse is true: a change in the alignment will produce a perturbation of the
velocity field u. Hence, both d and u are relevant in the dynamics. But we want to

include in our model also the changes of the temperature θ .
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The modelling literature

There have been numerous attempts to formulate continuum theories describing the
behavior of liquid crystals flows:

A static continuum model was proposed by Frank in the 50s of the past century: it
is a variational model that posits an elastic free-energy obeying suitable constraints.
The corresponding dynamical equations were laid down by Ericksen and Leslie a
decade later [Ericksen, Trans. Soc. Rheol., 1961] and [Leslie, Arch. Ration.
Mech. Anal., 1963]

An attempt to posit a set of dynamical equations for liquid crystals on a manifold
was made a few years ago by [Shkoller, Comm. Part. Diff. Eq., 2002]. He
employed the director model proposed by [Lin and Liu, Comm. Pure Appl. Math.,
1995], which implies a drastic simplification of the Ericksen-Leslie equations,
especially in the description of dissipation

Several textbooks have been devoted to the presentation of mathematical LC
models (cf., e.g., Chandrasekhar (1977), de Gennes (1974)). The survey articles
by Ericksen (1976) and Leslie (1978), which present in a very comprehensive
fashion the “classical” continuum theories used for static and flow problems
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The Mathematical literature

The celebrated Leslie-Ericksen model of liquid crystals, introduced by [Ericksen,
Arch. Rational Mech. Anal., 1991] and [Leslie, Arch. Rational Mech. Anal., 1963],
is a system of partial differential equations coupling the Navier-Stokes equations
governing the time evolution of the fluid velocity u = u(t, x) with a
Ginzburg-Landau type equation describing the motion of the director field
d = d(t, x).

A considerably simplified version of the Leslie-Ericksen model was proposed by [Lin
and Liu, Comm. Pure Appl. Math., 1995] and subsequently analyzed by many
authors. The simplified model ignores completely the stretching and rotation
effects of the director field induced by the straining of the fluid, which can be
viewed as a serious violation of the underlying physical principles.

Such a stretching term was subsequently treated by [Coutand and Shkoller, C.R.
Acad. Sci. Paris. Sér. I, 2001], who proved a local well-posedness result for the
corresponding model without thermal effects. The main peculiarity of this model is
that the presence of the stretching term causes the loss of the the total energy
balance, which, indeed, ceases to hold.

In order to prevent this failure, [Sun and Liu, Disc. Conti. Dyna. Sys., 2009]
introduced a variant of the model proposed by Lin and Liu, where the stretching
term is included in the system and a new component added to the stress tensor in
order to save the total energy balance.
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Our recent contributions

In two directions:

the isothermal case

• [Cavaterra, E.R., preprint arXiv:1107.3947v1 (2011)]: global in time existence of weak
solutions in 3D with the stretching term

• [Petzeltová, E.R., Schimperna, preprint arXiv:0901.1751v2 (2011)]: long-time
behaviour of solutions

the non-isothermal case [Feireisl, E.R., Schimperna, Nonlinearity (2011)]: neglect
the stretching effects
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Our new approach

We propose a new approach to the modeling of non-isothermal liquid crystals,
based on the principles of classical Thermodynamics and accounting for stretching
and rotation effects of the director field

To this end, we incorporate the dependence on the temperature into the model,
obtaining a complete energetically closed system, where the total energy is
conserved, while the entropy is being produced as the system evolves in time

We apply the Frémond mechanical methodology, deriving the equations by means of
a generalized variational principle

I The free energy Ψ of the system, depending on the proper state variables, tends to
decrease in a way that is prescribed by the expression of a second functional, called
pseudopotential of dissipation, that depends (in a convex way) on a set of dissipative
variables

I The stress tensor σ, the density of energy vector B and the energy flux tensor H are
decoupled into their non-dissipative and dissipative components, whose precise form is
prescribed by proper constitutive equations

The form of the extra stress in the Navier-Stokes system obtained by this method
coincides with the formula derived from different principles by Sun and Liu in the
isothermal case
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E. Rocca (Università di Milano) Non-isothermal liquid crystal model Berlin, September 2011 9 / 26



Our new approach

We propose a new approach to the modeling of non-isothermal liquid crystals,
based on the principles of classical Thermodynamics and accounting for stretching
and rotation effects of the director field

To this end, we incorporate the dependence on the temperature into the model,
obtaining a complete energetically closed system, where the total energy is
conserved, while the entropy is being produced as the system evolves in time
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E. Rocca (Università di Milano) Non-isothermal liquid crystal model Berlin, September 2011 9 / 26



Our new approach

We propose a new approach to the modeling of non-isothermal liquid crystals,
based on the principles of classical Thermodynamics and accounting for stretching
and rotation effects of the director field

To this end, we incorporate the dependence on the temperature into the model,
obtaining a complete energetically closed system, where the total energy is
conserved, while the entropy is being produced as the system evolves in time
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The state variables

the mean velocity field u

the director field d, representing preferred orientation of molecules in a
neighborhood of any point of a reference domain

the absolute temperature θ
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The evolution

• The time evolution of the velocity field is governed by the incompressible
Navier-Stokes system, with a non-isotropic stress tensor depending on the gradients
of the velocity and of the director field d, where the transport (viscosity) coefficients
vary with temperature

• The dynamics of d is described by means of a parabolic equation of
Ginzburg-Landau type, with a suitable penalization term to relax the constraint
|d| = 1

• A total energy balance together with an entropy inequality, governing the
dynamics of the absolute temperature θ of the system

=⇒ The proposed model is shown compatible with First and Second laws of
thermodynamics, and the existence of global-in-time weak solutions for the
resulting PDE system is established, without any essential restriction on the size of
the data, or on the space dimension, or on the viscosity coefficient.
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The main difficulties

The existence of weak solutions to the standard incompressible Navier-Stokes system
was established in the celebrated paper by [Leray, Acta Math., 1934]

One of the major open problems is to clarify whether or not the weak solutions
also satisfy the corresponding total energy balance, more precisely, if the kinetic
energy of the system dissipates at the rate given by the viscous stress

To avoid this apparent difficulty, we use the idea proposed in [Feireisl, Málek,
Differ. Equ. Nonlinear Mech., 2006] replacing the heat equation by the total
energy balance and an entropy inequality. Of course, the price to pay is the
explicit appearance of the pressure in the total energy balance that must be handled
by refined arguments

Apart from the fact that the resulting system is mathematically tractable, such an
approach seems much closer to the physical background of the problem, being an
exact formulation of the First and Second Laws of thermodynamics
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The director field dynamics

We assume that the driving force governing the dynamics of the director d is of
“gradient type” ∂dΨ, where the free-energy functional Ψ is given by

Ψ =
λ

2
|∇xd|2 + λF (d)− θ log θ

Here λ is a positive constant, F penalizes the deviation of the length |d| from its
natural value 1; generally, F is assumed to be a sum of a dominating convex (and
possibly non smooth) part and a smooth non-convex perturbation of controlled
growth. E.g. F (d) = (|d|2 − 1)2

Consequently, d satisfies the following equation

dt + u · ∇xd−d · ∇xu =
λ

η
(∆d− f(d))

where f(d) = ∂dF (d) and the last term accounts for stretching of the director field
induced by the straining of the fluid and η is a positive coefficient

The presence of the stretching term d · ∇xu in the d-equation prevents us from
applying any maximum principle. Hence, we cannot find any L∞ bound on d
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The momentum balance

♦ In the context of nematic liquid crystals, we have the incompressibility constraint

div u = 0

♦ By virtue of Newton’s second law, the balance of momentum reads

ut + u · ∇xu +∇xp = div S + div σnd + g

where p is the pressure, and

• the stress tensors are

S =
µ(θ)

2

(
∇xu +∇t

xu
)
, σnd = −λ∇xd�∇xd + λ(f(d)−∆d)⊗ d

where ∇xd�∇xd :=
∑

k ∂idk∂jdk , µ is a temperature-dependent viscosity
coefficient and

• f(d) = ∂dF (d), F being e.g. F (d) = (|d|2 − 1)2

• The presence of the stretching term d · ∇xu in the d-equation prevents us from
applying any maximum principle. Hence, we cannot find any L∞ bound on d. We
will need a weak formulation of the momentum balance
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The total energy balance

∂t

(
1

2
|u|2 + e

)
+ u · ∇x

(
1

2
|u|2 + e

)
+ div

(
pu + qd+qnd − Su− σndu

)
= g · u+λγ div

(
∇xd · (∆d− f(d))

)
with the internal energy

e =
λ

2
|∇xd|2 + λF (d) + θ

and the flux

q = qd + qnd = −k(θ)∇xθ − h(θ)(d · ∇xθ)d−λ∇xd · ∇xu · d

together with

The entropy inequality

H(θ)t + u · ∇xH(θ) + div(H ′(θ)qd)

≥ H ′(θ)
(
S : ∇xu+λγ|∆d− f(d)|2

)
+ H ′′(θ)qd · ∇xθ

holding for any smooth, non-decreasing and concave function H.
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The initial and boundary conditions

In order to avoid the occurrence of boundary layers, we suppose that the boundary is
impermeable and perfectly smooth imposing the complete slip boundary conditions:

u · n|∂Ω = 0, [(S + σnd)n]× n|∂Ω = 0

together with the no-flux boundary condition for the temperature

qd · n|∂Ω = 0

and the Neumann boundary condition for the director field

∇xdi · n|∂Ω = 0 for i = 1, 2, 3

The last relation accounts for the fact that there is no contribution to the surface force
from the director d. It is also suitable for implementation of a numerical scheme.
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A weak solution is a triple (u, d, θ) satisfying:

the momentum equations (ϕ ∈ C∞0 ([0,T )× Ω; R3), ϕ · n|∂Ω = 0):

∫ T

0

∫
Ω

(
u · ∂tϕ+ u⊗ u : ∇xϕ+ p divϕ

)
=

∫ T

0

∫
Ω

(S + σnd ) : ∇xϕ−
∫

Ω
g · ϕ−

∫
Ω

u0 · ϕ(0, ·) ;

the director equation: ∂td + u · ∇x d− d · ∇x u = γ
(

∆d− f(d)
)

a.e., ∇x di · n|∂Ω = 0;

the total energy balance (ϕ ∈ C∞0 ([0,T )× Ω), e0 = λ
2
|∇xd0|2 + λF (d0) + θ0):∫ T

0

∫
Ω

((
1

2
|u|2 + e

)
∂tϕ

)
+

∫ T

0

∫
Ω

((
1

2
|u|2 + e

)
u · ∇xϕ

)
+

∫ T

0

∫
Ω

(
pu + q− Su− σnd u

)
· ∇xϕ

= λγ

∫ T

0

∫
Ω

(
∇x d · (∆d− f(d))

)
· ∇xϕ−

∫ T

0

∫
Ω

g · uϕ−
∫

Ω

(
1

2
|u0|2 + e0

)
ϕ(0, ·) ;

the entropy production inequality (ϕ ∈ C∞0 ([0,T )× Ω), ϕ ≥ 0):∫ T

0

∫
Ω

H(θ)∂tϕ+

∫ T

0

∫
Ω

(
H(θ)u + H′(θ)qd

)
· ∇xϕ

≤ −
∫ T

0

∫
Ω

(
H′(θ)

(S : ∇x u + λγ|∆d− f(d)|2
)

+ H′′(θ)qd · ∇xθ
)
ϕ−

∫
Ω

H(θ0)ϕ(0, ·)

for any smooth, non-decreasing and concave function H.
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E. Rocca (Università di Milano) Non-isothermal liquid crystal model Berlin, September 2011 17 / 26



A weak solution is a triple (u, d, θ) satisfying:

the momentum equations (ϕ ∈ C∞0 ([0,T )× Ω; R3), ϕ · n|∂Ω = 0):∫ T

0

∫
Ω

(
u · ∂tϕ+ u⊗ u : ∇xϕ+ p divϕ

)
=

∫ T

0

∫
Ω

(S + σnd ) : ∇xϕ−
∫

Ω
g · ϕ−

∫
Ω

u0 · ϕ(0, ·) ;

the director equation: ∂td + u · ∇x d− d · ∇x u = γ
(

∆d− f(d)
)

a.e., ∇x di · n|∂Ω = 0;

the total energy balance (ϕ ∈ C∞0 ([0,T )× Ω), e0 = λ
2
|∇xd0|2 + λF (d0) + θ0):

∫ T

0

∫
Ω

((
1

2
|u|2 + e

)
∂tϕ

)
+

∫ T

0

∫
Ω

((
1

2
|u|2 + e

)
u · ∇xϕ

)
+

∫ T

0

∫
Ω

(
pu + q− Su− σnd u

)
· ∇xϕ

= λγ

∫ T

0

∫
Ω

(
∇x d · (∆d− f(d))

)
· ∇xϕ−

∫ T

0

∫
Ω

g · uϕ−
∫

Ω

(
1

2
|u0|2 + e0

)
ϕ(0, ·) ;

the entropy production inequality (ϕ ∈ C∞0 ([0,T )× Ω), ϕ ≥ 0):∫ T

0

∫
Ω

H(θ)∂tϕ+

∫ T

0

∫
Ω

(
H(θ)u + H′(θ)qd

)
· ∇xϕ

≤ −
∫ T

0

∫
Ω

(
H′(θ)

(S : ∇x u + λγ|∆d− f(d)|2
)

+ H′′(θ)qd · ∇xθ
)
ϕ−

∫
Ω

H(θ0)ϕ(0, ·)

for any smooth, non-decreasing and concave function H.

E. Rocca (Università di Milano) Non-isothermal liquid crystal model Berlin, September 2011 17 / 26



A weak solution is a triple (u, d, θ) satisfying:

the momentum equations (ϕ ∈ C∞0 ([0,T )× Ω; R3), ϕ · n|∂Ω = 0):∫ T

0

∫
Ω

(
u · ∂tϕ+ u⊗ u : ∇xϕ+ p divϕ

)
=

∫ T

0

∫
Ω

(S + σnd ) : ∇xϕ−
∫

Ω
g · ϕ−

∫
Ω

u0 · ϕ(0, ·) ;

the director equation: ∂td + u · ∇x d− d · ∇x u = γ
(

∆d− f(d)
)

a.e., ∇x di · n|∂Ω = 0;

the total energy balance (ϕ ∈ C∞0 ([0,T )× Ω), e0 = λ
2
|∇xd0|2 + λF (d0) + θ0):∫ T

0

∫
Ω

((
1

2
|u|2 + e

)
∂tϕ

)
+

∫ T

0

∫
Ω

((
1

2
|u|2 + e

)
u · ∇xϕ

)
+

∫ T

0

∫
Ω

(
pu + q− Su− σnd u

)
· ∇xϕ

= λγ

∫ T

0

∫
Ω

(
∇x d · (∆d− f(d))

)
· ∇xϕ−

∫ T

0

∫
Ω

g · uϕ−
∫

Ω

(
1

2
|u0|2 + e0

)
ϕ(0, ·) ;

the entropy production inequality (ϕ ∈ C∞0 ([0,T )× Ω), ϕ ≥ 0):

∫ T

0

∫
Ω

H(θ)∂tϕ+

∫ T

0

∫
Ω

(
H(θ)u + H′(θ)qd

)
· ∇xϕ

≤ −
∫ T

0

∫
Ω

(
H′(θ)

(S : ∇x u + λγ|∆d− f(d)|2
)

+ H′′(θ)qd · ∇xθ
)
ϕ−

∫
Ω

H(θ0)ϕ(0, ·)

for any smooth, non-decreasing and concave function H.
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The assumptions

We assume that

F ∈ C 2(R3), F ≥ 0, F convex for all |d| ≥ D0, lim|d|→∞ F (d) =∞, for a
certain D0 > 0

The transport coefficients µ, k, and h are continuously differentiable functions of the
absolute temperature satisfying

0 < µ ≤ µ(θ) ≤ µ, 0 < k ≤ k(θ), h(θ) ≤ k for all θ ≥ 0

for suitable constants k, k, µ, µ

Ω ⊂ R3 is a bounded domain of class C 2+ν for some ν > 0, g ∈ L2((0,T )× Ω; R3)
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The existence theorem

Assume that the previous hypotheses are satisfied. Finally, let the initial data be such that

u0 ∈ L2(Ω; R3), div u0 = 0, d0 ∈W 1,2(Ω; R3), F (d0) ∈ L1(Ω),

θ0 ∈ L1(Ω), ess infΩ θ0 > 0.

Then our problem possesses a weak solution (u, d, θ) in (0,T )× Ω belonging to the
class

u ∈ L∞(0,T ; L2(Ω; R3)) ∩ L2(0,T ; W 1,2(Ω; R3)),

d ∈ L∞(0,T ; W 1,2(Ω; R3)) ∩ L2(0,T ; W 2,2(Ω; R3)),

F (d) ∈ L∞(0,T ; L1(Ω)) ∩ L5/3((0,T )× Ω),

θ ∈ L∞(0,T ; L1(Ω)) ∩ Lp(0,T ; W 1,p(Ω)), 1 ≤ p < 5/4, θ > 0 a.e. in (0,T )× Ω,

with the pressure p,
p ∈ L5/3((0,T )× Ω).
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An idea of the proof

We perform suitable a-priori estimates which coincide with the regularity class
stated in the Theorem

It can be shown that the solution set of our problem is weakly stable (compact)
with respect to these bounds, namely, any sequence of (weak) solutions that
complies with the uniform bounds established above has a subsequence that
converges to some limit

Hence, we construct a suitable family of approximate problems (via
Faedo-Galerkin scheme + regularizing terms in the momentum equation)
whose solutions weakly converge (up to subsequences) to limit functions which solve
the problem in the weak sense
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A priori bounds (formal)

Integrating over Ω the energy balance (with e = λ
2
|∇xd|2 + λF (d) + θ)

∂t

(
1

2
|u|2 + e

)
+ u · ∇x

(
1

2
|u|2 + e

)
+ div

(
pu + q− Su− σnd u

)
= g · u + λγ div

(
∇x d · (∆d− f(d))

)
,

and using the Gronwall lemma, we get immediately the following bounds:

u ∈ L∞(0,T ; L2(Ω; R3)), θ ∈ L∞(0,T ; L1(Ω)),

d ∈ L∞(0,T ; W 1,2(Ω; R3)), F (d) ∈ L∞(0,T ; L1(Ω)).

Similarly, choosing H(θ) = θ in the entropy balance∫ T

0

∫
Ω

H(θ)∂tϕ+

∫ T

0

∫
Ω

(
H(θ)u + H′(θ)qd

)
· ∇xϕ

≤ −
∫ T

0

∫
Ω

(
H′(θ)

(S : ∇x u + λγ|∆d− f(d)|2
)

+ H′′(θ)qd · ∇xθ
)
ϕ−

∫
Ω

H(θ0)ϕ(0, ·),

we obtain

ε(u) ∈ L2((0,T )× Ω,R3×3), ∆d− f(d) ∈ L2((0,T )× Ω; R3).

yielding, by virtue of Korn’s inequality,

u ∈ L2(0,T ; W 1,2(Ω; R3)) ∩ L10/3((0,T )× Ω; R3).
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Interpolation

It follows from the previous estimate ∆d− f(d) ∈ L2((0,T )× Ω) and the convexity of F
that

f(d) ∈ L2((0,T )× Ω; R3);

therefore,
d ∈ L2(0,T ; W 2,2(Ω; R3)).

Interpolating, we get

d ∈ L10((0,T )× Ω; R3), ∇xd ∈ L10/3((0,T )× Ω; R3×3),

whence

σnd(= −λ∇xd�∇xd + λ(f(d)−∆d)⊗ d) ∈ L5/3((0,T )× Ω; R3×3).

By the same token, by means of convexity of F , we have

|F (d)| ≤ c(1 + |f(d)||d|),

yielding
F (d) ∈ L5/3((0,T )× Ω).
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E. Rocca (Università di Milano) Non-isothermal liquid crystal model Berlin, September 2011 22 / 26



Pressure estimate

Thanks to our choice of the slip boundary conditions for the velocity, the pressure p can
be “computed” directly from our equations as the unique solution of the elliptic
problem

∆p = div div
(
S + σnd − u⊗ u

)
+ div g,

supplemented with the boundary condition

∇xp · n =
(

div
(
S + σnd − u⊗ u

)
+ g
)
· n on ∂Ω .

To be precise, the last two relations have to be interpreted in a “very weak” sense.
Namely, the pressure p is determined through a family of integral identities∫

Ω

p∆ϕ =

∫
Ω

(
S + σnd − u⊗ u

)
: ∇2

xϕ−
∫

Ω

g · ∇xϕ,

for any test function ϕ ∈ C∞(Ω), ∇xϕ · n|∂Ω = 0. Consequently, the bounds already
established may be used, together with the standard elliptic regularity results, to conclude
that

p ∈ L5/3((0,T )× Ω) .
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Entropy estimate

The choice H(θ) = (1 + θ)η, η ∈ (0, 1), in the entropy equation yields

∇x(1 + θ)ν ∈ L2((0,T )× Ω; R3) for any 0 < ν <
1

2
.

Now, we apply an interpolation argument we immediately get

θ ∈ Lq((0,T )× Ω) for any 1 ≤ q < 5/3 .

Furthermore, seeing that

∫
(0,T )×Ω

|∇xθ|p ≤

(∫
(0,T )×Ω

|∇xθ|2θν−1

) p
2
(∫

(0,T )×Ω

θ
(1−ν) p

2−p

) 2−p
2

for all p ∈ [1, 5/4) and ν > 0, we conclude that

∇xθ ∈ Lp((0,T )× Ω; R3) for any 1 ≤ p < 5/4.

Finally, the same argument and H(θ) = log θ give rise to

log θ ∈ L2((0,T ); W 1,2(Ω)) ∩ L∞(0,T ; L1(Ω)) .
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Remarks

Our results can be seen as a generalization of those obtained in Sun and Liu in 2009:
we get global existence of weak solutions without imposing any restriction on
the space dimension, on the size of the initial data or on the viscosity
coefficient µ (taken by Sun and Liu, in an isothermal model closely related to ours)

The key point of this approach is replacing the heat equation, commonly used in
models of heat conducting fluids, by the total energy balance+the entropy
inequality: the resulting system of equations is free of dissipative terms that are
difficult to handle, due to the low regularity of the weak solutions

The price we have to pay: we have to control the pressure appearing explicitly in
the total energy flux =⇒ we need to assume the complete slip boundary
conditions on u
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Future perspectives and open problems

The isothermal liquid crystal model accounting for the stretching contribution has
also recently been analyzed in [Petzeltová, E.R., Schimperna, preprint

arXiv:1107.5445v1, 2011], where the long time behaviour of solutions is

investigated in the 3D case:

I we show that any solution trajectory admits a non-empty ω-limit set containing only
stationary solutions,

I we give a number of sufficient conditions in order that the ω-limit set contains a single
point

I These results generalize the ones obtained in [Wu, Xu, Liu, preprint
arXiv:0901.1751v2, 2010]

An open problem could be to investigate the existence of the global attractor for
this system at least in the isothermal case (work in progess with Sergio Frigeri
(postdoc at the Università degli Studi di Milano – ERC-StG project “EntroPhase”))
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