A Nonlocal Model H with Nonconstant Mobility

E. Rocca

Università degli Studi di Milano

EQUADIFF 2013

MS13: Coupled Variants of the Cahn-Hilliard Equation

Prague, August 26-30, 2013

joint preprint arXiv:1303.6446 with Sergio Frigeri (Università di Milano) and Maurizio Grasselli (Politecnico di Milano)

Supported by the FP7-IDEAS-ERC-StG Grant "EntroPhase" #256872

• Introduce the model H - diffuse interface model for two phase fluids

- Introduce the model H diffuse interface model for two phase fluids
- Investigate the mathematical meaning of diffusion

- Introduce the model H diffuse interface model for two phase fluids
- Investigate the mathematical meaning of diffusion
- Introduce the nonlocal model H coupling
 - a nonlocal Cahn-Hilliard equation with nonconstant mobility
 - an incompressible Navier-Stokes system including the Korteweg force

- Introduce the model H diffuse interface model for two phase fluids
- Investigate the mathematical meaning of diffusion
- Introduce the nonlocal model H coupling
 - a nonlocal Cahn-Hilliard equation with nonconstant mobility
 - an incompressible Navier-Stokes system including the Korteweg force
- Our main results on the nonlocal model H

- Introduce the model H diffuse interface model for two phase fluids
- Investigate the mathematical meaning of diffusion
- Introduce the nonlocal model H coupling
 - a nonlocal Cahn-Hilliard equation with nonconstant mobility
 - an incompressible Navier-Stokes system including the Korteweg force
- Our main results on the nonlocal model H
 - existence of solutions in the 3D case for the nondegenerate and the degenerate mobility cases

- Introduce the model H diffuse interface model for two phase fluids
- Investigate the mathematical meaning of diffusion
- Introduce the nonlocal model H coupling
 - a nonlocal Cahn-Hilliard equation with nonconstant mobility
 - an incompressible Navier-Stokes system including the Korteweg force
- Our main results on the nonlocal model H
 - existence of solutions in the 3D case for the nondegenerate and the degenerate mobility cases
 - \diamond existence of the global attractor (in the sense of generalized semiflows) in the 2D case

- Introduce the model H diffuse interface model for two phase fluids
- Investigate the mathematical meaning of diffusion
- Introduce the nonlocal model H coupling
 - a nonlocal Cahn-Hilliard equation with nonconstant mobility
 - an incompressible Navier-Stokes system including the Korteweg force
- Our main results on the nonlocal model H
 - existence of solutions in the 3D case for the nondegenerate and the degenerate mobility cases
 - existence of the global attractor (in the sense of generalized semiflows) in the 2D case
- Our results on the 3D convective nonlocal Cahn-Hilliard equation with degenerate mobility

- Introduce the model H diffuse interface model for two phase fluids
- Investigate the mathematical meaning of diffusion
- Introduce the nonlocal model H coupling
 - a nonlocal Cahn-Hilliard equation with nonconstant mobility
 - an incompressible Navier-Stokes system including the Korteweg force
- Our main results on the nonlocal model H
 - existence of solutions in the 3D case for the nondegenerate and the degenerate mobility cases
 - existence of the global attractor (in the sense of generalized semiflows) in the 2D case
- Our results on the 3D convective nonlocal Cahn-Hilliard equation with degenerate mobility
 - well-posedness
 - existence of the global attractor

- A well-known model which describes the evolution of an incompressible isothermal mixture of two immiscible fluids is the so-called model H (cf. [Gurtin, Polignone, Viñals, '96], [Hohenberg, Halperin, '77])
- A fluid-mechanical theory for two-phase mixtures of fluids faces a well known mathematical difficulty:
 - ▶ the movement of the interfaces ⇒ Lagrangian description
 - ▶ the bulk fluid flow ⇒ Eulerian framework

- A well-known model which describes the evolution of an incompressible isothermal mixture of two immiscible fluids is the so-called model H (cf. [Gurtin, Polignone, Viñals, '96], [Hohenberg, Halperin, '77])
- A fluid-mechanical theory for two-phase mixtures of fluids faces a well known mathematical difficulty:
 - ▶ the movement of the interfaces ⇒ Lagrangian description
 - ▶ the bulk fluid flow ⇒ Eulerian framework
- The **phase-field methods** overcome this problem by postulating the existence of a "diffuse" interface spread over a possibly narrow region covering the "real" sharp interface boundary:
 - ightharpoonup an order parameter φ (concentration difference of the two components) is introduced to demarcate the two species and to indicate the location of the interface
 - ightharpoonup mixing energy F is defined in terms of φ and its spatial gradient

- A well-known model which describes the evolution of an incompressible isothermal mixture of two immiscible fluids is the so-called model H (cf. [Gurtin, Polignone, Viñals, '96], [Hohenberg, Halperin, '77])
- A fluid-mechanical theory for two-phase mixtures of fluids faces a well known mathematical difficulty:
 - ▶ the movement of the interfaces ⇒ Lagrangian description
 - ► the bulk fluid flow ⇒ Eulerian framework
- The **phase-field methods** overcome this problem by postulating the existence of a "diffuse" interface spread over a possibly narrow region covering the "real" sharp interface boundary:
 - \blacktriangleright an order parameter φ (concentration difference of the two components) is introduced to demarcate the two species and to indicate the location of the interface
 - ightharpoonup mixing energy F is defined in terms of φ and its spatial gradient
- The time evolution of φ is described by means of a convection-diffusion equation: typically, different variants of **Cahn-Hilliard** or Allen-Cahn or other types of dynamics are used (see [Anderson et al., '98], [Feng, '06])

- A well-known model which describes the evolution of an incompressible isothermal mixture of two immiscible fluids is the so-called model H (cf. [Gurtin, Polignone, Viñals, '96], [Hohenberg, Halperin, '77])
- A fluid-mechanical theory for two-phase mixtures of fluids faces a well known mathematical difficulty:
 - ▶ the movement of the interfaces ⇒ Lagrangian description
 - ▶ the bulk fluid flow ⇒ Eulerian framework
- The **phase-field methods** overcome this problem by postulating the existence of a "diffuse" interface spread over a possibly narrow region covering the "real" sharp interface boundary:
 - \blacktriangleright an order parameter φ (concentration difference of the two components) is introduced to demarcate the two species and to indicate the location of the interface
 - \blacktriangleright mixing energy F is defined in terms of φ and its spatial gradient
- The time evolution of φ is described by means of a convection-diffusion equation: typically, different variants of **Cahn-Hilliard** or Allen-Cahn or other types of dynamics are used (see [Anderson et al., '98], [Feng, '06])
- This parameter influences the (average) fluid velocity ${\bf u}$ through a capillarity force (called Korteweg force) proportional to $\mu\nabla\varphi$, where μ is the chemical potential (cf. [Jasnow, Viñals, '96])

The local model H

The state variables are

- the order parameter φ
- the velocity field **u**

The local model H

The state variables are

- the order parameter arphi
- the velocity field u

and the corresponding initial-boundary value problem (in $\Omega \times (0,T)$) is

$$\mathbf{u}_{t} - \nu \Delta \mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla \pi = \mu \nabla \varphi + \mathbf{h}, \qquad \operatorname{div}(\mathbf{u}) = 0$$
$$\varphi_{t} + \mathbf{u} \cdot \nabla \varphi = \operatorname{div}(m(\varphi)\nabla \mu), \qquad \mu = -\sigma \Delta \varphi + \frac{1}{\sigma}F'(\varphi)$$

where

- m denotes the non-constant mobility
- ullet μ the chemical potential
- F the (density of) potential energy (logarithmic or double-well potential)
- $\mu \nabla \varphi$ is the so-called Korteweg force
- ullet ν the viscosity and π the pressure
- \bullet $\sigma > 0$ is related to the (diffuse) interface thickness

The chemical potential μ represents the first variation of the free energy functionals:

The chemical potential μ represents the first variation of the free energy functionals:

• (in the local case, cf. [Elliott, Garcke '96], [Boyer, '99], [Abels, '09], ...)

$$E(\varphi) = \int_{\Omega} \left(\frac{\sigma}{2} |\nabla \varphi(x)|^2 + \frac{F(\varphi(x))}{\sigma} \right) dx$$

The chemical potential μ represents the first variation of the free energy functionals:

• (in the local case, cf. [Elliott, Garcke '96], [Boyer, '99], [Abels, '09], ...)

$$E(\varphi) = \int_{\Omega} \left(\frac{\sigma}{2} |\nabla \varphi(x)|^2 + \frac{F(\varphi(x))}{\sigma} \right) dx$$

• (in the nonlocal case, cf. [Gajewski, Zacharias, '03], ..., [Colli, Frigeri, Grasselli, '12])

$$E(\varphi) = \frac{1}{4} \int_{\Omega} \int_{\Omega} J(x - y) \left(\varphi(x) - \varphi(y) \right)^{2} dx dy + \int_{\Omega} \eta F(\varphi(x)) dx$$

- ▶ $J: \mathbb{R}^d \to \mathbb{R}$ is a smooth even function, e.g. $J(x) = j_3|x|^{-1}$ in 3D and $J(x) = -j_2 \log |x|$ in 2D
- it is justified as a macroscopic limit of microscopic phase segregation models with particle conserving dynamics (cf. [Giacomin Lebowitz, '97&'98])

Local Ginzburg-Landau potential "=" $\lim_{n\to\infty}$ (Nonlocal van der Waals potential)

Local Ginzburg-Landau potential "=" $\lim_{n\to\infty}$ (Nonlocal van der Waals potential)

Choosing $J(x,y) = n^{d+2}J(|n(x-y)|^2)$, with J nonnegative function supported in [0,1]:

$$\int_{\Omega} n^{d+2} J(|n(x-y)|^2) |\varphi(x) - \varphi(y)|^2 dy = \int_{\Omega_n(x)} J(|z|^2) \left| \frac{\varphi\left(x + \frac{z}{n}\right) - \varphi(x)}{\frac{1}{n}} \right|^2 dz$$

$$\stackrel{n \to \infty}{\longrightarrow} \int_{\mathbb{R}^d} J(|z|^2) \left\langle \nabla \varphi(x), z \right\rangle^2 dz = \frac{\sigma}{2} |\nabla \varphi(x)|^2$$

where we denote

- $\sigma = 2/d \int_{\mathbb{R}^d} J(|z|^2)|z|^2 dz$ and $\Omega_n(x) = n(\Omega x)$ and we have used the identity
- $\int_{\mathbb{R}^d} J(|z|^2) \langle e, z \rangle^2 dz = 1/d \int_{\mathbb{R}^d} J(|z|^2) |z|^2 dz$ for every unit vector $e \in \mathbb{R}^d$

Local Ginzburg-Landau potential "=" $\lim_{n\to\infty}$ (Nonlocal van der Waals potential)

Choosing $J(x,y) = n^{d+2}J(|n(x-y)|^2)$, with J nonnegative function supported in [0,1]:

$$\int_{\Omega} n^{d+2} J(|n(x-y)|^2) |\varphi(x) - \varphi(y)|^2 dy = \int_{\Omega_n(x)} J(|z|^2) \left| \frac{\varphi\left(x + \frac{z}{n}\right) - \varphi(x)}{\frac{1}{n}} \right|^2 dz$$

$$\xrightarrow{n \to \infty} \int_{\mathbb{R}^d} J(|z|^2) \left\langle \nabla \varphi(x), z \right\rangle^2 dz = \frac{\sigma}{2} |\nabla \varphi(x)|^2$$

where we denote

- $\sigma = 2/d \int_{\mathbb{R}^d} J(|z|^2)|z|^2 dz$ and $\Omega_n(x) = n(\Omega x)$ and we have used the identity
- $\int_{\mathbb{R}^d} J(|z|^2) \, \langle e,z \rangle^2 \, dz = 1/d \, \int_{\mathbb{R}^d} J(|z|^2) |z|^2 \, dz$ for every unit vector $e \in \mathbb{R}^d$

Big changes in the model and in the analysis:

- the fourth order equation becames a second order equation
 more chance to get separation property and uniqueness
- the analysis is more challenging due to the less regularity of φ and so of the Korteweg force $\mu\nabla\varphi$

Local Ginzburg-Landau potential "=" $\lim_{n\to\infty}$ (Nonlocal van der Waals potential)

Choosing $J(x,y) = n^{d+2}J(|n(x-y)|^2)$, with J nonnegative function supported in [0,1]:

$$\int_{\Omega} n^{d+2} J(|n(x-y)|^2) |\varphi(x) - \varphi(y)|^2 dy = \int_{\Omega_n(x)} J(|z|^2) \left| \frac{\varphi\left(x + \frac{z}{n}\right) - \varphi(x)}{\frac{1}{n}} \right|^2 dz$$

$$\xrightarrow{n \to \infty} \int_{\mathbb{R}^d} J(|z|^2) \left\langle \nabla \varphi(x), z \right\rangle^2 dz = \frac{\sigma}{2} |\nabla \varphi(x)|^2$$

where we denote

- $\sigma = 2/d \int_{\mathbb{R}^d} J(|z|^2)|z|^2 dz$ and $\Omega_n(x) = n(\Omega x)$ and we have used the identity
- $\int_{\mathbb{R}^d} J(|z|^2) \langle e, z \rangle^2 dz = 1/d \int_{\mathbb{R}^d} J(|z|^2) |z|^2 dz$ for every unit vector $e \in \mathbb{R}^d$

Big changes in the model and in the analysis:

- ullet the fourth order equation becames a second order equation \Longrightarrow more chance to get separation property and uniqueness
- the analysis is more challenging due to the less regularity of φ and so of the Korteweg force $\mu\nabla\varphi$

A philosophical question: is diffusion local or nonlocal?

Understand Diffusion by Nonlocality

By Louis Caffarelli, at the "Colloquium Magenes", Pavia, March 20, 2013:

Understand Diffusion by Nonlocality

By Louis Caffarelli, at the "Colloquium Magenes", Pavia, March 20, 2013:

"Diffusion is a process where the variable under consideration, a particle density, a temperature, a population tends to revert to its surrounding average.

The diffusion equation

$$u_t - \Delta u = 0$$

does not seem to say much about diffusion, unless we realize that the "Laplacian" is in fact the limit of an averaging process.

Understand Diffusion by Nonlocality

By Louis Caffarelli, at the "Colloquium Magenes", Pavia, March 20, 2013:

"Diffusion is a process where the variable under consideration, a particle density, a temperature, a population tends to revert to its surrounding average.

The diffusion equation

$$u_t - \Delta u = 0$$

does not seem to say much about diffusion, unless we realize that the "Laplacian" is in fact the limit of an averaging process.

If we consider

$$\Delta u = \lim_{\epsilon \to 0} \frac{c_{\epsilon}}{|B_{\epsilon}(x)|} \int_{B_{\epsilon}(x)} (u(y) - u(x)) dy,$$

the density at the point x compares itself with its values in a tiny surrounding ball. The difference between the surrounding average and the value at x, properly scaled is the "Laplacian".

If the set to which u compares itself is not shrunk to zero, the process is an integral diffusion. More generally, for a positive symmetric kernel, it can be

$$Lu(x) = \int J(x,y)(u(y) - u(x)) dy.$$

Our main aim: deal with the case of Cahn-Hilliard equation with **non constant mobility** *m* and **nonlocal** phase dynamics (cf. [Giacomin Lebowitz, '97&'98])

Our main aim: deal with the case of Cahn-Hilliard equation with **non constant mobility** *m* and **nonlocal** phase dynamics (cf. [Giacomin Lebowitz, '97&'98])

The state variables are

- the order parameter arphi
- the velocity field **u**

Our main aim: deal with the case of Cahn-Hilliard equation with non constant mobility m and nonlocal phase dynamics (cf. [Giacomin Lebowitz, '97&'98])

The state variables are

- the order parameter arphi
- the velocity field ${\boldsymbol u}$

and the corresponding initial-boundary value problem (in $\Omega imes (0,T)$) is

$$\begin{split} & \varphi_t + \mathbf{u} \cdot \nabla \varphi = \text{div}(m(\varphi) \nabla \mu) \\ & \mu = \mathbf{a} \varphi - \mathbf{J} * \varphi + \mathbf{F}'(\varphi) \\ & \mathbf{u}_t - \nu \Delta \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla \pi = \mu \nabla \varphi + \mathbf{h}, \quad \text{div}(\mathbf{u}) = 0 \\ & \frac{\partial \mu}{\partial n} = 0, \quad \mathbf{u} = \mathbf{0} \quad \text{on } \partial \Omega \times (0, T) \\ & \mathbf{u}(0) = \mathbf{u}_0, \quad \varphi(0) = \varphi_0 \quad \text{in } \Omega \end{split}$$

where

- m denotes the non-constant mobility
- ullet μ the chemical potential
- $(J * \varphi)(x) := \int_{\Omega} J(x y)\varphi(y) dy$, $a(x) := \int_{\Omega} J(x y) dy$, $x \in \Omega$ (nonlocal operator)
- F the (density of) potential energy (logarithmic or double-well potential)
- ullet ν the viscosity and π the pressure

• The non degenerate mobility:

- The non degenerate mobility:
 - ▶ assumptions on *m*, *J* and *F*
 - weak solution notion
 - existence of weak solution and energy inequality (3D)/identity (2D)

- The non degenerate mobility:
 - ▶ assumptions on *m*, *J* and *F*
 - weak solution notion
 - existence of weak solution and energy inequality (3D)/identity (2D)
- The degenerate mobility:

- The non degenerate mobility:
 - ▶ assumptions on m, J and F
 - weak solution notion
 - existence of weak solution and energy inequality (3D)/identity (2D)
- The degenerate mobility:
 - assumptions on m and F
 - weak solution notion
 - existence of weak solution and energetic inequality (3D)/identity (2D)

The non degenerate mobility: assumptions

(H1) $m \in C^{0,1}_{loc}(\mathbb{R})$ and there exist $m_1, m_2 > 0$ such that $m_1 \leq m(s) \leq m_2$ for all $s \in \mathbb{R}$;

(H1) $m \in C^{0,1}_{loc}(\mathbb{R})$ and there exist $m_1, m_2 > 0$ such that $m_1 \leq m(s) \leq m_2$ for all $s \in \mathbb{R}$;

(H2)
$$J(\cdot - x) \in W^{1,1}(\Omega)$$
 for a.a $x \in \Omega$, $J(x) = J(-x)$, $a(x) := \int_{\Omega} J(x - y) dy \ge 0$ and

$$a^* := \sup_{x \in \Omega} \int_{\Omega} |J(x-y)| dy < \infty, \ b := \sup_{x \in \Omega} \int_{\Omega} |\nabla J(x-y)| dy < \infty;$$

- **(H1)** $m \in C^{0,1}_{loc}(\mathbb{R})$ and there exist $m_1, m_2 > 0$ such that $m_1 \leq m(s) \leq m_2$ for all $s \in \mathbb{R}$;
- **(H2)** $J(\cdot x) \in W^{1,1}(\Omega)$ for a.a $x \in \Omega$, J(x) = J(-x), $a(x) := \int_{\Omega} J(x y) dy \ge 0$ and

$$a^*:=\sup_{x\in\Omega}\int_{\Omega}|J(x-y)|dy<\infty,\;b:=\sup_{x\in\Omega}\int_{\Omega}|\nabla J(x-y)|dy<\infty;$$

(H3) (quadratic perturbation of a strictly convex function) $F \in C^{2,1}_{loc}(\mathbb{R})$ and there exists $c_0 > 0$ such that

$$F''(s) + a(x) \ge c_0, \quad \forall s \in \mathbb{R}, \text{ a.e. } x \in \Omega;$$

(H4) There exist $c_1 > (a^* - a_*)/2$ $(a_* := \inf_{x \in \Omega} \int_{\Omega} J(x - y) dy)$ and $c_2 \in \mathbb{R}$ such that

$$F(s) \geq c_1 s^2 - c_2, \quad \forall s \in \mathbb{R};$$

(H5) (fulfilled by arbitrary polynomially growing potentials) There exist $c_3 > 0$, $c_4 \ge 0$ and $r \in (1,2]$ such that

$$|F'(s)|^r \leq c_3|F(s)|+c_4, \qquad \forall s \in \mathbb{R}$$

Definition 1: the non degenerate mobility – notion of weak solutions

Definition 1: the non degenerate mobility - notion of weak solutions

Let $u_0 \in (L^2(\Omega))_{div}$, $\varphi_0 \in L^2(\Omega)$ such that $F(\varphi_0) \in L^1(\Omega)$, $\mathbf{h} \in L^2(0, T; H^1(\Omega)^*_{div})$, and $0 < T < \infty$ be given.

Definition 1: the non degenerate mobility - notion of weak solutions

Let $u_0 \in (L^2(\Omega))_{div}$, $\varphi_0 \in L^2(\Omega)$ such that $F(\varphi_0) \in L^1(\Omega)$, $\mathbf{h} \in L^2(0, T; H^1(\Omega)^*_{div})$, and $0 < T < \infty$ be given.

Then, a couple $[\mathbf{u}, \varphi]$ is a *weak solution* to the PDE system on [0, T] if

$$\begin{split} \mathbf{u} &\in L^{\infty}(0,T;L^{2}(\Omega)_{div}) \cap L^{2}(0,T;H^{1}(\Omega)_{div}), \ \varphi \in L^{\infty}(0,T;L^{2}(\Omega)) \cap L^{2}(0,T;H^{1}(\Omega)) \\ \mathbf{u}_{t} &\in L^{4/3}(0,T;H^{1}(\Omega)_{div}^{*}), \qquad \varphi_{t} \in L^{4/3}(0,T;H^{1}(\Omega)^{*}), \quad \text{if } d=3, \\ \mathbf{u}_{t} &\in L^{2-\gamma}(0,T;H^{1}(\Omega)_{div}^{*}), \qquad \varphi_{t} \in L^{2-\delta}(0,T;H^{1}(\Omega)^{*}) \ (\gamma,\delta \in (0,1)), \quad \text{if } d=2 \\ \mu &:= \mathbf{a}\varphi - \mathbf{J} * \varphi + F'(\varphi) \in L^{2}(0,T;H^{1}(\Omega)) \end{split}$$

and the following variational formulation is satisfied for a.a. $t \in (0, T)$

$$\begin{split} \langle \varphi_t, \psi \rangle + (\textit{m}(\varphi) \nabla \mu, \nabla \psi) &= (\mathbf{u} \varphi, \nabla \psi), \qquad \forall \psi \in \textit{H}^1(\Omega) \\ \langle \mathbf{u}_t, \mathbf{v} \rangle + \nu (\nabla \mathbf{u}, \nabla \mathbf{v}) + b(\mathbf{u}, \mathbf{u}, \mathbf{v}) &= -(\varphi \nabla \mu, \mathbf{v}) + \langle \mathbf{h}, \mathbf{v} \rangle, \qquad \forall \mathbf{v} \in \textit{H}^1(\Omega)_{\textit{div}} \end{split}$$

together with the initial conditions $\mathbf{u}(0) = \mathbf{u}_0, \ \varphi(0) = \varphi_0$ in Ω and where

$$b(\mathbf{u}, \mathbf{v}, \mathbf{w}) := \int_{\Omega} (\mathbf{u} \cdot \nabla) \mathbf{v} \cdot \mathbf{w}, \quad \forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in H^{1}(\Omega)_{div}$$

Let $u_0 \in L^2(\Omega)_{div}$, $\varphi_0 \in L^2(\Omega)$ such that $F(\varphi_0) \in L^1(\Omega)$, $\mathbf{h} \in L^2(0, T; H^1(\Omega)^*_{div})$, and suppose that (H1)-(H5) are satisfied.

Let $u_0 \in L^2(\Omega)_{div}$, $\varphi_0 \in L^2(\Omega)$ such that $F(\varphi_0) \in L^1(\Omega)$, $\mathbf{h} \in L^2(0, T; H^1(\Omega)^*_{div})$, and suppose that (H1)-(H5) are satisfied. Then, for every given T > 0, there exists a weak solution $[u, \varphi]$ satisfying the **energy inequality**

$$\mathcal{E}(\mathbf{u}(t), \varphi(t)) + \int_0^t \left(\nu \|\nabla \mathbf{u}\|^2 + \|\sqrt{m(\varphi)}\nabla \mu\|^2\right) d\tau \leq \mathcal{E}(\mathbf{u}_0, \varphi_0) + \int_0^t \langle \mathbf{h}(\tau), \mathbf{u} \rangle d\tau$$

for every t > 0, where we have set

$$\mathcal{E}(\mathbf{u}(t),\varphi(t)) = \frac{1}{2}\|\mathbf{u}(t)\|^2 + \frac{1}{4}\int_{\Omega}\int_{\Omega}J(x-y)(\varphi(x,t)-\varphi(y,t))^2dxdy + \int_{\Omega}F(\varphi(t))dx$$

Let $u_0 \in L^2(\Omega)_{div}$, $\varphi_0 \in L^2(\Omega)$ such that $F(\varphi_0) \in L^1(\Omega)$, $\mathbf{h} \in L^2(0, T; H^1(\Omega)^*_{div})$, and suppose that (H1)-(H5) are satisfied. Then, for every given T > 0, there exists a weak solution $[u, \varphi]$ satisfying the **energy inequality**

$$\mathcal{E}(\mathbf{u}(t),\varphi(t)) + \int_0^t \left(\nu\|\nabla\mathbf{u}\|^2 + \|\sqrt{\textit{m}(\varphi)}\nabla\mu\|^2\right) d\tau \leq \mathcal{E}(\mathbf{u}_0,\varphi_0) + \int_0^t \langle\mathbf{h}(\tau),\mathbf{u}\rangle d\tau$$

for every t > 0, where we have set

$$\mathcal{E}(\mathbf{u}(t),\varphi(t)) = \frac{1}{2}\|\mathbf{u}(t)\|^2 + \frac{1}{4}\int_{\Omega}\int_{\Omega}J(x-y)(\varphi(x,t)-\varphi(y,t))^2dxdy + \int_{\Omega}F(\varphi(t))dx$$

Furthermore, assume that $[(H4): F(s) \ge c_1 s^2 - c_2]$ is replaced by

(H7) (fulfilled by the classical double well) $F \in C^{2,1}_{loc}(\mathbb{R})$ and there exist $c_5 > 0$, $c_6 > 0$ and p > 2 such that

$$F''(s)+a(x)\geq c_5|s|^{p-2}-c_6,\ \forall s\in\mathbb{R},\ \text{a.e.}\ x\in\Omega,\quad a(x):=\int_\Omega J(x-y)dy$$

Let $u_0 \in L^2(\Omega)_{div}$, $\varphi_0 \in L^2(\Omega)$ such that $F(\varphi_0) \in L^1(\Omega)$, $\mathbf{h} \in L^2(0, T; H^1(\Omega)^*_{div})$, and suppose that (H1)-(H5) are satisfied. Then, for every given T > 0, there exists a weak solution $[u, \varphi]$ satisfying the energy inequality

$$\mathcal{E}(\mathbf{u}(t),\varphi(t)) + \int_0^t \Big(\nu\|\nabla\mathbf{u}\|^2 + \|\sqrt{\textit{m}(\varphi)}\nabla\mu\|^2\Big)d\tau \leq \mathcal{E}(\mathbf{u}_0,\varphi_0) + \int_0^t \langle\mathbf{h}(\tau),\mathbf{u}\rangle d\tau$$

for every t > 0, where we have set

$$\mathcal{E}(\mathbf{u}(t),\varphi(t)) = \frac{1}{2}\|\mathbf{u}(t)\|^2 + \frac{1}{4}\int_{\Omega}\int_{\Omega}J(x-y)(\varphi(x,t)-\varphi(y,t))^2dxdy + \int_{\Omega}F(\varphi(t))dx$$

Furthermore, assume that $[(H4): F(s) > c_1 s^2 - c_2]$ is replaced by

(H7) (fulfilled by the classical double well) $F \in C^{2,1}_{loc}(\mathbb{R})$ and there exist $c_5 > 0$, $c_6 > 0$ and p > 2 such that

$$F''(s)+a(x)\geq c_5|s|^{p-2}-c_6,\ \forall s\in\mathbb{R},\ a.e.\ x\in\Omega,\quad a(x):=\int_\Omega J(x-y)dy$$

Then, for every T > 0 there exists a weak solution $[u, \varphi]$ satisfying

$$\varphi \in L^{\infty}(0, T; L^{p}(\Omega)),$$

$$\varphi_t \in L^2(0, T; H^1(\Omega)^*), \quad \text{if} \quad d = 2 \quad \text{or} \quad (d = 3 \text{ and } p \ge 3),$$

$$\mathbf{u}_t \in L^2(0, T; H^1(\Omega)^*_{div}), \quad \text{if} \quad d = 2$$

The proof follows the line of [Colli, Frigeri, Grasselli, '12]

Assume that d=2 and $[(H4): F(s) \ge c_1 s^2 - c_2]$ is replaced by

(H7) $F\in C^{2,1}_{loc}(\mathbb{R})$ and there exist $c_5>0$, $c_6>0$ and p>2 such that

$$F''(s) + a(x) \ge c_5 |s|^{p-2} - c_6, \quad \forall s \in \mathbb{R}, \text{ a.e. } x \in \Omega$$

Assume that d=2 and $[(H4): F(s) \geq c_1 s^2 - c_2]$ is replaced by

(H7) $F \in C^{2,1}_{loc}(\mathbb{R})$ and there exist $c_5 > 0$, $c_6 > 0$ and p > 2 such that

$$F''(s) + a(x) \ge c_5 |s|^{p-2} - c_6, \qquad \forall s \in \mathbb{R}, \quad \text{a.e. } x \in \Omega$$

Then,

• any weak solution satisfies the energy identity

$$\frac{d}{dt}\mathcal{E}(\mathbf{u},\varphi) + \nu \|\nabla \mathbf{u}\|^2 + \|\sqrt{m(\varphi)}\nabla \mu\|^2 = \langle \mathbf{h}(t), \mathbf{u} \rangle, \qquad t > 0$$

Assume that d=2 and $[(H4): F(s) > c_1 s^2 - c_2]$ is replaced by

(H7) $F \in C^{2,1}_{loc}(\mathbb{R})$ and there exist $c_5 > 0$, $c_6 > 0$ and p > 2 such that

$$F''(s) + a(x) \ge c_5 |s|^{p-2} - c_6, \qquad \forall s \in \mathbb{R}, \quad \text{a.e. } x \in \Omega$$

Then,

any weak solution satisfies the energy identity

$$\frac{d}{dt}\mathcal{E}(\mathbf{u},\varphi) + \nu \|\nabla \mathbf{u}\|^2 + \|\sqrt{m(\varphi)}\nabla \mu\|^2 = \langle \mathbf{h}(t), \mathbf{u} \rangle, \qquad t > 0$$

In particular we have

$$\mathbf{u} \in C([0,\infty); L^2(\Omega)_{div}), \quad \varphi \in C([0,\infty); L^2(\Omega)), \quad \int_{\Omega} F(\varphi) \in C([0,\infty))$$

• If in addition $\mathbf{h} \in L^2_{tb}(0,\infty;H^1(\Omega)^*_{div})$, then any weak solution satisfies also the dissipative estimate

$$\mathcal{E}(\mathbf{u}(t), \varphi(t)) \leq \mathcal{E}(\mathbf{u}_0, \varphi_0)e^{-kt} + F(m_0)|\Omega| + K, \quad \forall t \geq 0,$$

where $m_0 = (\varphi_0, 1)$ and k, K are two positive constants which are independent of the initial data, with K depending on Ω , ν , J, F and $\|\mathbf{h}\|_{L^2_{L^1}(0,\infty;H^1(\Omega)^*_{r_r})}$

The proof follows the line of [Colli, Frigeri, Grasselli, '12]

Nonlocal Cahn-Hilliard-Navier-Stokes

August 27, 2013

We shall now suppose that the mobility m is degenerate and that the double-well potential F is singular in (-1,1) with 1 and -1 as singular points.

We shall now suppose that the mobility m is degenerate and that the double-well potential F is singular in (-1,1) with 1 and -1 as singular points.

More precisely, we assume that (cf. [Elliott, Garcke, '96], [Gajewski, Zacharias, '03], [Giacomin, Lebowitz, '97&'98]) :

(D1)
$$m \in C^1([-1,1])$$
, $m \ge 0$ and that $m(s) = 0$ if and only if $s = -1$ or $s = 1$, $F \in C^2(-1,1)$ and

$$\textit{mF}'' \in \textit{C}([-1,1])$$

We shall now suppose that the mobility m is degenerate and that the double-well potential F is singular in (-1,1) with 1 and -1 as singular points.

More precisely, we assume that (cf. [Elliott, Garcke, '96], [Gajewski, Zacharias, '03], [Giacomin, Lebowitz, '97&'98]) :

(D1) $m \in C^1([-1,1])$, $m \ge 0$ and that m(s) = 0 if and only if s = -1 or s = 1, $F \in C^2(-1,1)$ and

$$\mathit{mF}'' \in \mathit{C}([-1,1])$$

(D2) $F = F_1 + F_2$, $F_2 \in C^2([-1,1])$ and there exists $a_2 > 4(a^* - a_* - b_2)$, where $b_2 = \min F_2''$ and $\varepsilon_0 > 0$ such that

$$F_1^{"}(s) \geq a_2, \qquad \forall s \in (-1, -1 + \varepsilon_0] \cup [1 - \varepsilon_0, 1)$$

- (D3) There exists $\varepsilon_0 > 0$ such that $F_1^{''}$ is non-decreasing in $[1 \varepsilon_0, 1)$ and non-increasing in $(-1, -1 + \varepsilon_0]$
- (D4) There exists $c_0 > 0$ such that

$$F^{''}(s) + a(x) \ge c_0, \qquad \forall s \in (-1,1), \qquad \text{a.e. } x \in \Omega$$

Examples of m and F

It is easy to see that (D1)–(D4) are satisfied in the physically relevant case where the mobility and the double-well potential are given by

$$m(s) = k_1(1-s^2), \qquad F(s) = -\frac{\theta_c}{2}s^2 + \frac{\theta}{2}((1+s)\log(1+s) + (1-s)\log(1-s))$$

where $0<\theta<\theta_c$. Indeed, setting $F_1(s):=(\theta/2)\big((1+s)\log(1+s)+(1-s)\log(1-s)\big)$ and $F_2(s)=-(\theta_c/2)s^2$, then we have

$$mF_1^{\prime\prime}=k_1\theta>0$$

and so (D1) is fulfilled, while (D4) holds if and only if $\inf_{\Omega} a > \theta_c - \theta$.

Examples of m and F

It is easy to see that (D1)–(D4) are satisfied in the physically relevant case where the mobility and the double-well potential are given by

$$m(s) = k_1(1-s^2), \qquad F(s) = -\frac{\theta_c}{2}s^2 + \frac{\theta}{2}\big((1+s)\log(1+s) + (1-s)\log(1-s)\big)$$

where $0 < \theta < \theta_c$. Indeed, setting $F_1(s) := (\theta/2) \big((1+s) \log(1+s) + (1-s) \log(1-s) \big)$ and $F_2(s) = -(\theta_c/2) s^2$, then we have

$$mF_1^{\prime\prime}=k_1\theta>0$$

and so (D1) is fulfilled, while (D4) holds if and only if $\inf_{\Omega} a > \theta_c - \theta$.

Another example is given by

$$m(s) = k(s)(1-s^2)^m$$
, $F(s) = -k_2s^2 + F_1(s)$

where $k \in C^1([-1,1])$ such that $0 < k_3 \le k(s) \le k_4$ for all $s \in [-1,1]$, and F_1 is a $C^2(-1,1)$ convex function such that

$$F_1''(s) = \ell(s)(1-s^2)^{-m}, \quad \forall s \in (-1,1)$$

where $m \geq 1$ and $\ell \in \mathcal{C}^1([-1,1])$

Definition 2: The degenerate mobility – notion of weak solutions

Definition 2: The degenerate mobility - notion of weak solutions

In the case the mobility degenerates we are not able to control the gradient of the chemical potential μ in some L^{ρ} space \Longrightarrow we shall have to suitably reformulate a new definition of weak solution in such a way that μ does not appear any more

Definition 2: The degenerate mobility – notion of weak solutions

In the case the mobility degenerates we are not able to control the gradient of the chemical potential μ in some L^{ρ} space \Longrightarrow we shall have to suitably reformulate a new definition of weak solution in such a way that μ does not appear any more

Let $u_0 \in L^2(\Omega)_{div}$, $\varphi_0 \in L^2(\Omega)$ with $F(\varphi_0) \in L^1(\Omega)$ and $0 < T < +\infty$ be given.

Definition 2: The degenerate mobility - notion of weak solutions

In the case the mobility degenerates we are not able to control the gradient of the chemical potential μ in some L^ρ space \Longrightarrow we shall have to suitably reformulate a new definition of weak solution in such a way that μ does not appear any more

Let $u_0 \in L^2(\Omega)_{div}$, $\varphi_0 \in L^2(\Omega)$ with $F(\varphi_0) \in L^1(\Omega)$ and $0 < T < +\infty$ be given. A couple $[u, \varphi]$ is a *weak solution* on [0, T] corresponding to $[u_0, \varphi_0]$ if

ullet u, arphi satisfy

$$\begin{split} & \mathbf{u} \in L^{\infty}(0,T;L^{2}(\Omega)_{\textit{div}}) \cap L^{2}(0,T;H^{1}(\Omega)_{\textit{div}}) \\ & \mathbf{u}_{t} \in L^{4/3}(0,T;H^{1}(\Omega)_{\textit{div}}^{*}) \; (\text{if} \quad d=3), \, \mathbf{u}_{t} \in L^{2}(0,T;H^{1}(\Omega)_{\textit{div}}^{*}) \; (\text{if} \quad d=2) \\ & \varphi \in L^{\infty}(0,T;L^{2}(\Omega)) \cap L^{2}(0,T;H^{1}(\Omega)), \; \varphi_{t} \in L^{2}(0,T;H^{1}(\Omega)^{*}) \\ & \varphi \in L^{\infty}(Q_{T}), \qquad |\varphi(x,t)| \leq 1 \quad \text{a.e.} \; (x,t) \in Q_{T} := \Omega \times (0,T) \end{split}$$

• for every $\psi \in H^1(\Omega)$, every $\mathbf{v} \in H^1(\Omega)_{div}$ and for almost any $t \in (0, T)$ we have

$$\begin{split} \langle \varphi_t, \psi \rangle + \int_{\Omega} m(\varphi) F''(\varphi) \nabla \varphi \cdot \nabla \psi + \int_{\Omega} m(\varphi) a \nabla \varphi \cdot \nabla \psi \\ + \int_{\Omega} m(\varphi) (\varphi \nabla a - \nabla J * \varphi) \cdot \nabla \psi = (\mathbf{u} \varphi, \nabla \psi) \\ \langle \mathbf{u}_t, \mathbf{v} \rangle + \nu (\nabla \mathbf{u}, \nabla \mathbf{v}) + b(\mathbf{u}, \mathbf{u}, \mathbf{v}) = ((a \varphi - J * \varphi) \nabla \varphi, \mathbf{v}) + \langle \mathbf{h}, \mathbf{v} \rangle \end{split}$$

 $\mathbf{u}(0) = \mathbf{u}_0, \ \varphi(0) = \varphi_0$

Introduce the function $M \in C^2(-1,1)$ defined by m(s)M''(s)=1, M(0)=M'(0)=0 Assume (D1)–(D4), (H2). Let $\mathbf{h} \in L^2(0,T;H^1(\Omega)^*_{div})$, $\mathbf{u}_0 \in L^2(\Omega)_{div}$, $\varphi_0 \in L^\infty(\Omega)$ such that $F(\varphi_0) \in L^1(\Omega)$ and $M(\varphi_0) \in L^1(\Omega)$

17 / 32

that $F(\varphi_0) \in L^1(\Omega)$ and $M(\varphi_0) \in L^1(\Omega)$

Introduce the function $M \in C^2(-1,1)$ defined by m(s)M''(s) = 1, M(0) = M'(0) = 0Assume (D1)–(D4), (H2). Let $\mathbf{h} \in L^2(0,T;H^1(\Omega)^*_{div})$, $\mathbf{u}_0 \in L^2(\Omega)_{div}$, $\varphi_0 \in L^\infty(\Omega)$ such

Then, for every T>0 there exists a *weak solution* $z:=[\mathbf{u},\varphi]$ on [0,T] such that $\overline{\varphi}(t)=\overline{\varphi_0}$ for all $t\in[0,T]$ and $\varphi\in L^\infty(0,T;L^p(\Omega))$, where $p\leq 6$ for d=3 and $2\leq p<\infty$ for d=2

Introduce the function $M \in C^2(-1,1)$ defined by m(s)M''(s) = 1, M(0) = M'(0) = 0

Assume (D1)–(D4), (H2). Let $\mathbf{h} \in L^2(0,T;H^1(\Omega)^*_{div})$, $\mathbf{u}_0 \in L^2(\Omega)_{div}$, $\varphi_0 \in L^\infty(\Omega)$ such that $F(\varphi_0) \in L^1(\Omega)$ and $M(\varphi_0) \in L^1(\Omega)$

Then, for every T>0 there exists a *weak solution* $z:=[\mathbf{u},\varphi]$ on [0,T] such that $\overline{\varphi}(t)=\overline{\varphi_0}$ for all $t\in[0,T]$ and $\varphi\in L^\infty(0,T;L^p(\Omega))$, where $p\leq 6$ for d=3 and $2\leq p<\infty$ for d=2

In addition, if d=2, the weak solution $z:=[\mathbf{u},\varphi]$ satisfies the the energetic equality

$$\frac{1}{2} \frac{d}{dt} (\|\mathbf{u}\|^2 + \|\varphi\|^2) + \int_{\Omega} m(\varphi) F''(\varphi) |\nabla \varphi|^2 + \int_{\Omega} a m(\varphi) |\nabla \varphi|^2 + \nu \|\nabla \mathbf{u}\|^2$$

$$= \int_{\Omega} m(\varphi) (\nabla J * \varphi - \varphi \nabla a) \cdot \nabla \varphi + \int_{\Omega} (a \varphi - J * \varphi) \mathbf{u} \cdot \nabla \varphi + \langle \mathbf{h}, \mathbf{u} \rangle$$

Introduce the function $M \in C^2(-1,1)$ defined by m(s)M''(s) = 1, M(0) = M'(0) = 0

Assume (D1)–(D4), (H2). Let $\mathbf{h} \in L^2(0,T;H^1(\Omega)^*_{div})$, $\mathbf{u}_0 \in L^2(\Omega)_{div}$, $\varphi_0 \in L^\infty(\Omega)$ such that $F(\varphi_0) \in L^1(\Omega)$ and $M(\varphi_0) \in L^1(\Omega)$

Then, for every T>0 there exists a *weak solution* $z:=[\mathbf{u},\varphi]$ on [0,T] such that $\overline{\varphi}(t)=\overline{\varphi_0}$ for all $t\in[0,T]$ and $\varphi\in L^\infty(0,T;L^p(\Omega))$, where $p\leq 6$ for d=3 and $2\leq p<\infty$ for d=2

In addition, if d=2, the weak solution $z:=[\mathbf{u},\varphi]$ satisfies the *the energetic equality*

$$\begin{split} &\frac{1}{2}\frac{d}{dt}\big(\|\mathbf{u}\|^2 + \|\varphi\|^2\big) + \int_{\Omega} m(\varphi)F''(\varphi)|\nabla\varphi|^2 + \int_{\Omega} am(\varphi)|\nabla\varphi|^2 + \nu\|\nabla\mathbf{u}\|^2 \\ &= \int_{\Omega} m(\varphi)(\nabla J * \varphi - \varphi\nabla a) \cdot \nabla\varphi + \int_{\Omega} (a\varphi - J * \varphi)\mathbf{u} \cdot \nabla\varphi + \langle \mathbf{h}, \mathbf{u} \rangle \end{split}$$

If d=3 and if (H7) is satisfied with $p \ge 3$, z satisfies the following energetic inequality

$$\frac{1}{2} (\|\mathbf{u}(t)\|^{2} + \|\varphi(t)\|^{2}) + \int_{0}^{t} \int_{\Omega} m(\varphi) F''(\varphi) |\nabla \varphi|^{2} + \int_{0}^{t} \int_{\Omega} am(\varphi) |\nabla \varphi|^{2} \\
+ \nu \int_{0}^{t} \|\nabla \mathbf{u}\|^{2} \leq \frac{1}{2} (\|\mathbf{u}_{0}\|^{2} + \|\varphi_{0}\|^{2}) + \int_{0}^{t} \int_{\Omega} m(\varphi) (\nabla J * \varphi - \varphi \nabla a) \cdot \nabla \varphi \\
+ \int_{0}^{t} \int_{\Omega} (a\varphi - J * \varphi) \mathbf{u} \cdot \nabla \varphi + \int_{0}^{t} \langle \mathbf{h}, \mathbf{u} \rangle d\tau \qquad \forall t > 0$$

• Approximate with a regular potential F_{ε} and a non degenerate mobility m_{ε}

- ullet Approximate with a regular potential $F_{arepsilon}$ and a non degenerate mobility $m_{arepsilon}$
- Due to **Theorem 1** we have an energy estimate:

$$\mathbf{u} \in L^{\infty}(0, T; L^{2}(\Omega)_{div}) \cap L^{2}(0, T; H^{1}(\Omega)_{div})$$

$$\varphi \in L^{\infty}(0, T; L^{2}(\Omega))$$

$$\sqrt{m}\nabla \mu \in L^{2}(0, T; L^{2}(\Omega))$$

- Approximate with a regular potential F_{ε} and a non degenerate mobility m_{ε}
- Due to Theorem 1 we have an energy estimate:

$$\mathbf{u} \in L^{\infty}(0, T; L^{2}(\Omega)_{div}) \cap L^{2}(0, T; H^{1}(\Omega)_{div})$$

$$\varphi \in L^{\infty}(0, T; L^{2}(\Omega))$$

$$\sqrt{m} \nabla \mu \in L^{2}(0, T; L^{2}(\Omega))$$

• Take $\psi = M'(\varphi)$, where m(s)M''(s) = 1, M(0) = M'(0) = 0, in the approximated Cahn-Hilliard equation

$$\langle \varphi_t, \psi \rangle + (\mathbf{m}(\varphi)\nabla \mu, \nabla \psi) = (\mathbf{u}\varphi, \nabla \psi)$$

getting from $\mu = a\varphi - J * \varphi + F'(\varphi)$ the term

$$\int_{\Omega} m(\varphi) M''(\varphi) \nabla \mu \nabla \varphi = \int_{\Omega} (a + F''(\varphi)) |\nabla \varphi|^2 + \varphi \nabla a \nabla \varphi - \nabla J * \varphi \nabla \varphi$$

on the left hand side. Using the assumption: $a + F'' \ge c_0$, we get

$$\varphi \in L^2(0,T;H^1(\Omega))$$

- Approximate with a regular potential F_{ε} and a non degenerate mobility m_{ε}
- Due to Theorem 1 we have an energy estimate:

$$\mathbf{u} \in L^{\infty}(0, T; L^{2}(\Omega)_{div}) \cap L^{2}(0, T; H^{1}(\Omega)_{div})$$

$$\varphi \in L^{\infty}(0, T; L^{2}(\Omega))$$

$$\sqrt{m} \nabla \mu \in L^{2}(0, T; L^{2}(\Omega))$$

• Take $\psi = M'(\varphi)$, where m(s)M''(s) = 1, M(0) = M'(0) = 0, in the approximated Cahn-Hilliard equation

$$\langle \varphi_t, \psi \rangle + (\mathbf{m}(\varphi) \nabla \mu, \nabla \psi) = (\mathbf{u}\varphi, \nabla \psi)$$

getting from $\mu = a\varphi - J*\varphi + F'(\varphi)$ the term

$$\int_{\Omega} m(\varphi) M''(\varphi) \nabla \mu \nabla \varphi = \int_{\Omega} (a + F''(\varphi)) |\nabla \varphi|^2 + \varphi \nabla a \nabla \varphi - \nabla J * \varphi \nabla \varphi$$

on the left hand side. Using the assumption: $a + F'' \ge c_0$, we get

$$\varphi \in L^2(0,T;H^1(\Omega))$$

• By comparison then we get in 3D

$$\varphi_t,\, \mu\nabla\varphi\in L^{4/3}(0,\,T;H^1(\Omega)^*) \text{ and so } \mathbf{u}_t\in L^{4/3}(0,\,T;H^1(\Omega)^*_{\textit{div}})$$

- ullet Approximate with a regular potential $F_{arepsilon}$ and a non degenerate mobility $m_{arepsilon}$
- Due to Theorem 1 we have an energy estimate:

$$\mathbf{u} \in L^{\infty}(0, T; L^{2}(\Omega)_{div}) \cap L^{2}(0, T; H^{1}(\Omega)_{div})$$

$$\varphi \in L^{\infty}(0, T; L^{2}(\Omega))$$

$$\sqrt{m} \nabla \mu \in L^{2}(0, T; L^{2}(\Omega))$$

• Take $\psi = M'(\varphi)$, where m(s)M''(s) = 1, M(0) = M'(0) = 0, in the approximated Cahn-Hilliard equation

$$\langle \varphi_t, \psi \rangle + (\mathbf{m}(\varphi) \nabla \mu, \nabla \psi) = (\mathbf{u}\varphi, \nabla \psi)$$

getting from $\mu = a\varphi - J * \varphi + F'(\varphi)$ the term

$$\int_{\Omega} m(\varphi) M''(\varphi) \nabla \mu \nabla \varphi = \int_{\Omega} (a + F''(\varphi)) |\nabla \varphi|^2 + \varphi \nabla a \nabla \varphi - \nabla J * \varphi \nabla \varphi$$

on the left hand side. Using the assumption: $a + F'' \ge c_0$, we get

$$\varphi \in L^2(0,T;H^1(\Omega))$$

• By comparison then we get in 3D

$$\varphi_t$$
, $\mu \nabla \varphi \in L^{4/3}(0, T; H^1(\Omega)^*)$ and so $\mathbf{u}_t \in L^{4/3}(0, T; H^1(\Omega)^*_{div})$

ullet We pass to the limit as $\varepsilon \searrow 0$ obtaining the weak formulation stated in Theorem 2

Theorem 3: The case of strongly degenerate mobility

Assume, in addition to the previous hypotheses, that m'(1) = m'(-1) = 0

Theorem 3: The case of strongly degenerate mobility

Assume, in addition to the previous hypotheses, that m'(1) = m'(-1) = 0

Then, the weak solution $z = [\mathbf{u}, \varphi]$ fulfills also the following integral inequality

$$\mathcal{E}\big(z(t)\big) + \int_0^t \Big(\nu \|\nabla \mathbf{u}\|^2 + \Big\|\frac{\mathcal{J}}{\sqrt{m(\varphi)}}\Big\|^2\Big) d\tau \leq \mathcal{E}(z_0) + \int_0^t \langle \mathbf{h}, \mathbf{u} \rangle d\tau$$

for all t > 0, where the mass flux \mathcal{J} is such that

$$\mathcal{J} \in L^2(Q_T), \qquad \frac{\mathcal{J}}{\sqrt{m(\varphi)}} \in L^2(Q_T)$$

and is given by

$$\mathcal{J} = -m(\varphi)\nabla(a\varphi - J*\varphi) - m(\varphi)F''(\varphi)\nabla\varphi$$

Theorem 3: The case of strongly degenerate mobility

Assume, in addition to the previous hypotheses, that m'(1) = m'(-1) = 0

Then, the weak solution $z = [\mathbf{u}, \varphi]$ fulfills also the following integral inequality

$$\mathcal{E}(z(t)) + \int_0^t \left(\nu \|\nabla \mathbf{u}\|^2 + \left\|\frac{\mathcal{J}}{\sqrt{m(\varphi)}}\right\|^2\right) d\tau \leq \mathcal{E}(z_0) + \int_0^t \langle \mathbf{h}, \mathbf{u} \rangle d\tau$$

for all t > 0, where the mass flux \mathcal{J} is such that

$$\mathcal{J} \in L^2(Q_T), \qquad \frac{\mathcal{J}}{\sqrt{m(\varphi)}} \in L^2(Q_T)$$

and is given by

$$\mathcal{J} = -m(\varphi)\nabla(a\varphi - J*\varphi) - m(\varphi)F''(\varphi)\nabla\varphi$$

Note that in this case it can be proved that the sets $\{x \in \Omega : \varphi(x,t) = 1\}$ and $\{x \in \Omega : \varphi(x,t) = -1\}$ have both measure zero for a.a. t > 0

• Theorem 2, in comparison with the analogous result for the case of constant mobility (cf. [Frigeri, Grasselli, '12]) does not require the condition $|\overline{\varphi}_0| < 1!!$

- Theorem 2, in comparison with the analogous result for the case of constant mobility (cf. [Frigeri, Grasselli, '12]) does not require the condition $|\overline{\varphi}_0| < 1!!$
- The assumptions on φ_0 imply only the less strict condition $|\overline{\varphi}_0| \leq 1$
- This is due due to the different weak solution formulation with respect to the case of constant mobility

- Theorem 2, in comparison with the analogous result for the case of constant mobility (cf. [Frigeri, Grasselli, '12]) does not require the condition $|\overline{\varphi}_0| < 1!!$
- ullet The assumptions on $arphi_0$ imply only the less strict condition $|\overline{arphi}_0| \leq 1$
- This is due due to the different weak solution formulation with respect to the case of constant mobility
- Therefore, if F is bounded (e.g. F is the logarithmic potential) and at t=0 the fluid is in a pure phase, i.e. $\varphi_0=1$ a.e. in Ω , and furthermore $\mathbf{u}_0=\mathbf{u}(0)$ is given in $L^2(\Omega)_{div}$, then the couple

$$\mathbf{u} = \mathbf{u}(x, t), \qquad \varphi = \varphi(x, t) = 1,$$
 a.e. in Ω , a.a. t ,

where **u** is solution of the Navier-Stokes equations with non-slip boundary condition **explicitly satisfies the weak formulation**

• This possibility is excluded in the model with constant mobility since in such model the chemical potential μ (and hence $F'(\varphi)$) appears explicitly

The degenerate vs. the strongly degenerate mobility case

• If $m(\pm 1)=0$ with order $\in [1,2)$, then both F and M (s.t. m(s)M''(s)=1, M(0)=M'(0)=0) are bounded in $[-1,1]\Longrightarrow$ the conditions $F(\varphi_0)\in L^1(\Omega)$ and $M(\varphi_0)\in L^1(\Omega)$ of Theorem 2 are satisfied by every initial datum φ_0 such that $|\varphi_0|\leq 1$ in $\Omega\Longrightarrow$ the existence of pure phases is allowed

The degenerate vs. the strongly degenerate mobility case

- If $m(\pm 1)=0$ with order $\in [1,2)$, then both F and M (s.t. m(s)M''(s)=1, M(0)=M'(0)=0) are bounded in $[-1,1]\Longrightarrow$ the conditions $F(\varphi_0)\in L^1(\Omega)$ and $M(\varphi_0)\in L^1(\Omega)$ of Theorem 2 are satisfied by every initial datum φ_0 such that $|\varphi_0|\leq 1$ in $\Omega\Longrightarrow$ the existence of pure phases is allowed
- If $m(\pm 1)=0$ with order ≥ 2 (in this case we say that m is strongly degenerate), then it can be proved that the conditions $F(\varphi_0)\in L^1(\Omega)$ and $M(\varphi_0)\in L^1(\Omega)$ imply that the sets $\{x\in\Omega:\varphi_0(x)=1\}$ and $\{x\in\Omega:\varphi_0(x)=-1\}$ have both measure zero $\Longrightarrow |\overline{\varphi}_0|<1$ and furthermore it can be seen that also the sets $\{x\in\Omega:\varphi(x,t)=1\}$ and $\{x\in\Omega:\varphi(x,t)=-1\}$ have both measure zero for a.a. $t>0\Longrightarrow$ pure phases are not allowed (even on subsets of Ω of positive measure)

(Cf. [Gajewski, Zacharias, '03])

Take the assumptions of Theorem 2 with J such that

$$N_d := \left(\sup_{x \in \Omega} \int_{\Omega} |\nabla J(x-y)|^{\kappa} dy\right)^{1/\kappa} < \infty,$$

where $\kappa = 6/5$ if d = 3 and $\kappa > 1$ if d = 2.

(Cf. [Gajewski, Zacharias, '03])

Take the assumptions of Theorem 2 with J such that

$$N_d := \left(\sup_{x \in \Omega} \int_{\Omega} |\nabla J(x-y)|^{\kappa} dy\right)^{1/\kappa} < \infty,$$

where $\kappa=6/5$ if d=3 and $\kappa>1$ if d=2. In addition, assume that $F_1\in C^3(-1,1)$ and that the following conditions are fulfilled for some $\alpha_0,\ \beta_0\geq 0$ and $\rho\in[0,1)$

$$\begin{split} & m(s)F_1''(s) \geq \alpha_0 > 0, \qquad |m^2(s)F_1'''(s)| \leq \beta_0, \qquad \forall s \in [-1,1] \\ & F_1'(s)F_1'''(s) \geq 0 \qquad \forall s \in (-1,1) \\ & \rho F_1''(s) + F_2''(s) + \textit{a}(x) \geq 0 \quad \forall s \in (-1,1), \quad \text{for a.e. } x \in \Omega \end{split}$$

Let φ_0 be such that

$$F'(\varphi_0) \in L^2(\Omega)$$

(Cf. [Gajewski, Zacharias, '03])

Take the assumptions of Theorem 2 with J such that

$$N_d := \left(\sup_{x \in \Omega} \int_{\Omega} |\nabla J(x-y)|^{\kappa} dy\right)^{1/\kappa} < \infty,$$

where $\kappa=6/5$ if d=3 and $\kappa>1$ if d=2. In addition, assume that $F_1\in C^3(-1,1)$ and that the following conditions are fulfilled for some $\alpha_0,\ \beta_0\geq 0$ and $\rho\in[0,1)$

$$\begin{split} & m(s)F_1''(s) \geq \alpha_0 > 0, \qquad |m^2(s)F_1'''(s)| \leq \beta_0, \qquad \forall s \in [-1,1] \\ & F_1'(s)F_1'''(s) \geq 0 \qquad \forall s \in (-1,1) \\ & \rho F_1''(s) + F_2''(s) + a(x) \geq 0 \quad \forall s \in (-1,1), \quad \text{for a.e. } x \in \Omega \end{split}$$

Let φ_0 be such that

$$F'(\varphi_0) \in L^2(\Omega)$$

Then, the weak solution $z = [u, \varphi]$ of Theorem 2 satisfies

$$\mu \in L^{\infty}(0, T; L^2(\Omega))$$
 $\nabla \mu \in L^2(0, T; L^2(\Omega))$

(Cf. [Gajewski, Zacharias, '03])

Take the assumptions of Theorem 2 with J such that

$$N_d := \left(\sup_{x \in \Omega} \int_{\Omega} |\nabla J(x-y)|^{\kappa} dy\right)^{1/\kappa} < \infty,$$

where $\kappa=6/5$ if d=3 and $\kappa>1$ if d=2. In addition, assume that $F_1\in C^3(-1,1)$ and that the following conditions are fulfilled for some $\alpha_0,\ \beta_0\geq 0$ and $\rho\in[0,1)$

$$\begin{split} & m(s)F_1''(s) \geq \alpha_0 > 0, \qquad |m^2(s)F_1'''(s)| \leq \beta_0, \qquad \forall s \in [-1,1] \\ & F_1'(s)F_1'''(s) \geq 0 \qquad \forall s \in (-1,1) \\ & \rho F_1''(s) + F_2''(s) + a(x) \geq 0 \quad \forall s \in (-1,1), \quad \text{for a.e. } x \in \Omega \end{split}$$

Let φ_0 be such that

$$F'(\varphi_0) \in L^2(\Omega)$$

Then, the weak solution $z = [u, \varphi]$ of Theorem 2 satisfies

$$\mu \in L^{\infty}(0, T; L^2(\Omega))$$
 $\nabla \mu \in L^2(0, T; L^2(\Omega))$

As a consequence, $z=[u,\varphi]$ now also satisfies the **Definition 1 of weak solutions**, the energy inequality and, for d=2, the energy identity

Write the weak formulation of approximated the Cahn-Hilliard equation as

$$\begin{split} \langle \varphi', \psi \rangle + \left(m_{\varepsilon}(\varphi) \nabla (F'_{1\varepsilon}(\varphi)), \nabla \psi \right) - \left(m_{\varepsilon}(\varphi) \nabla (J * \varphi), \nabla \psi \right) \\ + \left(m_{\varepsilon}(\varphi) \nabla (a\varphi + F'_{2\varepsilon}(\varphi)), \nabla \psi \right) = (\mathbf{u}\varphi, \nabla \psi), \quad \forall \psi \in H^{1}(\Omega) \end{split}$$

Write the weak formulation of approximated the Cahn-Hilliard equation as

$$\begin{split} \langle \varphi', \psi \rangle + \left(m_{\varepsilon}(\varphi) \nabla (F'_{1\varepsilon}(\varphi)), \nabla \psi \right) - \left(m_{\varepsilon}(\varphi) \nabla (J * \varphi), \nabla \psi \right) \\ + \left(m_{\varepsilon}(\varphi) \nabla (a\varphi + F'_{2\varepsilon}(\varphi)), \nabla \psi \right) = (\mathbf{u}\varphi, \nabla \psi), \quad \forall \psi \in H^{1}(\Omega) \end{split}$$

Take

$$\psi = F_{1\varepsilon}'(\varphi)F_{1\varepsilon}''(\varphi) \in H^1(\Omega)$$

as test function in (w-CH).

Write the weak formulation of approximated the Cahn-Hilliard equation as

$$\begin{split} \langle \varphi', \psi \rangle + \left(m_{\varepsilon}(\varphi) \nabla (F'_{1\varepsilon}(\varphi)), \nabla \psi \right) - \left(m_{\varepsilon}(\varphi) \nabla (J * \varphi), \nabla \psi \right) \\ + \left(m_{\varepsilon}(\varphi) \nabla (a\varphi + F'_{2\varepsilon}(\varphi)), \nabla \psi \right) = \left(\mathbf{u}\varphi, \nabla \psi \right), \quad \forall \psi \in H^{1}(\Omega) \end{split}$$

Take

$$\psi = F_{1\varepsilon}'(\varphi)F_{1\varepsilon}''(\varphi) \in H^1(\Omega)$$

as test function in (w-CH). By the incompressibility condition we deduce

$$\int_{\Omega} (\mathbf{u} \cdot \nabla \varphi) F_{1\varepsilon}'(\varphi) F_{1\varepsilon}''(\varphi) = \int_{\Omega} \mathbf{u} \cdot \nabla \left(\frac{F_{1\varepsilon}'^2(\varphi)}{2} \right) = 0$$

Write the weak formulation of approximated the Cahn-Hilliard equation as

$$\begin{split} \langle \varphi', \psi \rangle + \left(m_{\varepsilon}(\varphi) \nabla (F'_{1\varepsilon}(\varphi)), \nabla \psi \right) - \left(m_{\varepsilon}(\varphi) \nabla (J * \varphi), \nabla \psi \right) \\ + \left(m_{\varepsilon}(\varphi) \nabla (a\varphi + F'_{2\varepsilon}(\varphi)), \nabla \psi \right) = (\mathbf{u}\varphi, \nabla \psi), \quad \forall \psi \in H^{1}(\Omega) \end{split}$$

Take

$$\psi = F_{1\varepsilon}'(\varphi)F_{1\varepsilon}''(\varphi) \in H^1(\Omega)$$

as test function in (w-CH). By the incompressibility condition we deduce

$$\int_{\Omega} (\mathbf{u} \cdot \nabla \varphi) F_{1\varepsilon}'(\varphi) F_{1\varepsilon}''(\varphi) = \int_{\Omega} \mathbf{u} \cdot \nabla \left(\frac{F_{1\varepsilon}'^2(\varphi)}{2} \right) = 0$$

Furthermore, by applying a chain rule formula to the convex function $G_arepsilon:=F_{1arepsilon}'^2$, we have

$$\langle \varphi', F'_{1\varepsilon}(\varphi) F''_{1\varepsilon}(\varphi) \rangle = \frac{1}{2} \frac{d}{dt} \int_{\Omega} \left| F'_{1\varepsilon}(\varphi) \right|^2$$

Write the weak formulation of approximated the Cahn-Hilliard equation as

$$\begin{split} \langle \varphi', \psi \rangle + \left(m_{\varepsilon}(\varphi) \nabla (F'_{1\varepsilon}(\varphi)), \nabla \psi \right) - \left(m_{\varepsilon}(\varphi) \nabla (J * \varphi), \nabla \psi \right) \\ + \left(m_{\varepsilon}(\varphi) \nabla (a\varphi + F'_{2\varepsilon}(\varphi)), \nabla \psi \right) = (\mathbf{u}\varphi, \nabla \psi), \quad \forall \psi \in H^{1}(\Omega) \end{split}$$

Take

$$\psi = F_{1\varepsilon}'(\varphi)F_{1\varepsilon}''(\varphi) \in H^1(\Omega)$$

as test function in (w-CH). By the incompressibility condition we deduce

$$\int_{\Omega} (\mathbf{u} \cdot \nabla \varphi) F_{1\varepsilon}'(\varphi) F_{1\varepsilon}''(\varphi) = \int_{\Omega} \mathbf{u} \cdot \nabla \left(\frac{F_{1\varepsilon}'^2(\varphi)}{2} \right) = 0$$

Furthermore, by applying a chain rule formula to the convex function $G_arepsilon:=F_{1arepsilon}'^2$, we have

$$\langle \varphi', F'_{1\varepsilon}(\varphi) F''_{1\varepsilon}(\varphi) \rangle = \frac{1}{2} \frac{d}{dt} \int_{\Omega} \left| F'_{1\varepsilon}(\varphi) \right|^2$$

Using then the condition $m_{\varepsilon}F_{1\varepsilon}''\geq\alpha_0$, from the second term in (w-CH), we get

$$\alpha_0 \int_{\Omega} |\nabla F_{1\varepsilon}'(\varphi)|^2 \leq \int_{\Omega} m_{\varepsilon}(\varphi) F_{1\varepsilon}''(\varphi) |\nabla F_{1\varepsilon}(\varphi)|^2$$

Write the weak formulation of approximated the Cahn-Hilliard equation as

$$\begin{split} \langle \varphi', \psi \rangle + \left(m_{\varepsilon}(\varphi) \nabla (F'_{1\varepsilon}(\varphi)), \nabla \psi \right) - \left(m_{\varepsilon}(\varphi) \nabla (J * \varphi), \nabla \psi \right) \\ + \left(m_{\varepsilon}(\varphi) \nabla (a\varphi + F'_{2\varepsilon}(\varphi)), \nabla \psi \right) = (\mathbf{u}\varphi, \nabla \psi), \quad \forall \psi \in H^{1}(\Omega) \end{split}$$

Take

$$\psi = F_{1\varepsilon}'(\varphi)F_{1\varepsilon}''(\varphi) \in H^1(\Omega)$$

as test function in (w-CH). By the incompressibility condition we deduce

$$\int_{\Omega} (\mathbf{u} \cdot \nabla \varphi) F'_{1\varepsilon}(\varphi) F''_{1\varepsilon}(\varphi) = \int_{\Omega} \mathbf{u} \cdot \nabla \left(\frac{F'^{2}_{1\varepsilon}(\varphi)}{2} \right) = 0$$

Furthermore, by applying a chain rule formula to the convex function $G_arepsilon:=F_{1arepsilon}'^2$, we have

$$\langle \varphi', F'_{1\varepsilon}(\varphi) F''_{1\varepsilon}(\varphi) \rangle = \frac{1}{2} \frac{d}{dt} \int_{\Omega} |F'_{1\varepsilon}(\varphi)|^2$$

Using then the condition $m_{\varepsilon}F_{1\varepsilon}''\geq\alpha_0$, from the second term in (w-CH), we get

$$\alpha_0 \int_{\Omega} |\nabla F_{1\varepsilon}'(\varphi)|^2 \leq \int_{\Omega} m_{\varepsilon}(\varphi) F_{1\varepsilon}''(\varphi) |\nabla F_{1\varepsilon}(\varphi)|^2$$

By means of some technical arguments and using the assumptions on F and, in particular, the condition $F'(\varphi_0) \in L^2(\Omega)$, we get

$$F'(\varphi) \in L^{\infty}(0,T;L^{2}(\Omega)) \cap L^{2}(0,T;H^{1}(\Omega)) \Longrightarrow \mu \in L^{\infty}(0,T;L^{2}(\Omega)) \cap L^{2}(0,T;H^{1}(\Omega))$$

Second part: The global attractor in 2D for the degenerate case

Let d=2 and supppose that the external force is time-independent, i.e. $\mathbf{h}\in H^1(\Omega)^*_{\mathit{div}}$

Second part: The global attractor in 2D for the degenerate case

Let ${f d}={f 2}$ and supppose that the external force is time-independent, i.e. ${f h}\in H^1(\Omega)^*_{\emph{div}}$

Introduce the set \mathcal{G}_{m_0} of all *weak solutions* (in the sense of **Definition 2**) corresponding to all initial data $z_0 = [\mathbf{u}_0, \varphi_0] \in \mathcal{X}_{m_0}$, where the phase space \mathcal{X}_{m_0} is the metric space defined by

$$\mathcal{X}_{m_0} := L^2(\Omega)_{div} \times \mathcal{Y}_{m_0}$$

with \mathcal{Y}_{m_0} given by

$$\mathcal{Y}_{m_0}:=\big\{\varphi\in L^\infty(\Omega): |\varphi|\leq 1 \ \text{ a.e. in } \Omega, \ F(\varphi)\in L^1(\Omega), \ |\overline{\varphi}|\leq m_0\big\},$$

and $m_0 \in [0,1]$ is fixed. The metric on \mathcal{X}_{m_0} is

$$d(z_2, z_1) := \|\mathbf{u}_2 - \mathbf{u}_1\| + \|\varphi_2 - \varphi_1\|,$$

for every $z_1 := [\mathbf{u}_1, \varphi_1]$ and $z_2 := [\mathbf{u}_2, \varphi_2]$ in \mathcal{X}_{m_0} .

Second part: The global attractor in 2D for the degenerate case

Let ${f d}={f 2}$ and supppose that the external force is time-independent, i.e. ${f h}\in H^1(\Omega)^*_{\emph{div}}$

Introduce the set \mathcal{G}_{m_0} of all *weak solutions* (in the sense of **Definition 2**) corresponding to all initial data $z_0 = [\mathbf{u}_0, \varphi_0] \in \mathcal{X}_{m_0}$, where the phase space \mathcal{X}_{m_0} is the metric space defined by

$$\mathcal{X}_{m_0} := L^2(\Omega)_{\text{div}} \times \mathcal{Y}_{m_0}$$

with \mathcal{Y}_{m_0} given by

$$\mathcal{Y}_{m_0}:=\big\{\varphi\in L^\infty(\Omega): |\varphi|\leq 1 \ \text{ a.e. in } \Omega, \ F(\varphi)\in L^1(\Omega), \ |\overline{\varphi}|\leq m_0\big\},$$

and $m_0 \in [0,1]$ is fixed. The metric on \mathcal{X}_{m_0} is

$$d(z_2, z_1) := \|\mathbf{u}_2 - \mathbf{u}_1\| + \|\varphi_2 - \varphi_1\|,$$

for every $z_1 := [\mathbf{u}_1, \varphi_1]$ and $z_2 := [\mathbf{u}_2, \varphi_2]$ in \mathcal{X}_{m_0} . Assume moreover that **(D5)** m, F satisfy (A1) and there exists $\alpha_0 > 0$ and $\rho \in [0, 1)$ such that

$$m(s)F_1''(s) \ge \alpha_0, \qquad \forall s \in [-1,1]$$

 $\rho F_1''(s) + F_2''(s) + a(x) \ge 0, \qquad \forall s \in (-1,1) \quad \text{a.e. in } \Omega$

Let d=2, $\mathbf{h}\in H^1(\Omega)^*_{div}$, and suppose that (D2)–(D5) hold. Then

- $\mathcal{G}_{m_0} = \{g: [0,\infty) \to \mathcal{X}_{m_0}\}$ is a generalized semiflow on \mathcal{X}_{m_0} , i.e. a "solution in the sense of Ball" satisfying:
 - existence $(\forall z \in \mathcal{X}_{m_0}$ there exists at least one $g \in \mathcal{G}_{m_0}$: g(0) = z)
 - translated of solutions are solutions
 - concatenation: if ϕ , $\psi \in \mathcal{G}_{m_0}$, $t \geq 0$, with $\psi(0) = \phi(t)$ then $\theta \in \mathcal{G}_{m_0}$ where

$$heta(au) := egin{cases} \phi(au) & ext{for } au \in [0,t] \ \psi(au-t) & ext{for } t < au \end{cases}$$

▶ upper semicontinuity with respect to initial data (if $g_j \in \mathcal{G}_{m_0}$, $g_j(0) \to z$ then there exists a subsequence g_{j_k} and $g \in \mathcal{G}_{m_0}$ s.t. g(0) = z and $g_{j_k}(t) \to g(t)$ for each $t \ge 0$)

- $\mathcal{G}_{m_0} = \{g: [0,\infty) \to \mathcal{X}_{m_0}\}$ is a generalized semiflow on \mathcal{X}_{m_0} , i.e. a "solution in the sense of Ball" satisfying:
 - existence $(\forall z \in \mathcal{X}_{m_0}$ there exists at least one $g \in \mathcal{G}_{m_0}$: g(0) = z)
 - translated of solutions are solutions
 - concatenation: if ϕ , $\psi \in \mathcal{G}_{m_0}$, $t \geq 0$, with $\psi(0) = \phi(t)$ then $\theta \in \mathcal{G}_{m_0}$ where

$$heta(au) := egin{cases} \phi(au) & ext{for } au \in [0,t] \ \psi(au-t) & ext{for } t < au \end{cases}$$

- ▶ upper semicontinuity with respect to initial data (if $g_j \in \mathcal{G}_{m_0}$, $g_j(0) \to z$ then there exists a subsequence g_{j_k} and $g \in \mathcal{G}_{m_0}$ s.t. g(0) = z and $g_{j_k}(t) \to g(t)$ for each $t \ge 0$)
- \mathcal{G}_{m_0} is point dissipative (there is a bdd set B_0 such that for any $g \in \mathcal{G}_{m_0}$ $g(t) \in B_0$ for t sufficiently large),

- $\mathcal{G}_{m_0} = \{g : [0, \infty) \to \mathcal{X}_{m_0}\}$ is a **generalized semiflow on** \mathcal{X}_{m_0} , i.e. a "solution in the sense of Ball" satisfying:
 - existence $(\forall z \in \mathcal{X}_{m_0}$ there exists at least one $g \in \mathcal{G}_{m_0}$: g(0) = z)
 - translated of solutions are solutions
 - concatenation: if ϕ , $\psi \in \mathcal{G}_{m_0}$, $t \geq 0$, with $\psi(0) = \phi(t)$ then $\theta \in \mathcal{G}_{m_0}$ where

$$heta(au) := egin{cases} \phi(au) & ext{for } au \in [0,t] \ \psi(au-t) & ext{for } t < au \end{cases}$$

- ▶ upper semicontinuity with respect to initial data (if $g_j \in \mathcal{G}_{m_0}$, $g_j(0) \to z$ then there exists a subsequence g_{j_k} and $g \in \mathcal{G}_{m_0}$ s.t. g(0) = z and $g_{j_k}(t) \to g(t)$ for each $t \ge 0$)
- \mathcal{G}_{m_0} is point dissipative (there is a bdd set B_0 such that for any $g \in \mathcal{G}_{m_0}$ $g(t) \in B_0$ for t sufficiently large), eventually bounded (given any bdd $B \subset \mathcal{X}_{m_0}$ there exists $\tau \geq 0$ with $g^{\tau}(B)$ bdd, with $g^{\tau}(t) := g(t + \tau)$),

- $\mathcal{G}_{m_0} = \{g : [0, \infty) \to \mathcal{X}_{m_0}\}$ is a **generalized semiflow on** \mathcal{X}_{m_0} , i.e. a "solution in the sense of Ball" satisfying:
 - existence $(\forall z \in \mathcal{X}_{m_0}$ there exists at least one $g \in \mathcal{G}_{m_0}$: g(0) = z)
 - translated of solutions are solutions
 - concatenation: if ϕ , $\psi \in \mathcal{G}_{m_0}$, $t \geq 0$, with $\psi(0) = \phi(t)$ then $\theta \in \mathcal{G}_{m_0}$ where

$$heta(au) := egin{cases} \phi(au) & ext{for } au \in [0,t] \ \psi(au-t) & ext{for } t < au \end{cases}$$

- ▶ upper semicontinuity with respect to initial data (if $g_j \in \mathcal{G}_{m_0}$, $g_j(0) \to z$ then there exists a subsequence g_{j_k} and $g \in \mathcal{G}_{m_0}$ s.t. g(0) = z and $g_{j_k}(t) \to g(t)$ for each $t \ge 0$)
- \mathcal{G}_{m_0} is point dissipative (there is a bdd set B_0 such that for any $g \in \mathcal{G}_{m_0}$ $g(t) \in B_0$ for t sufficiently large), eventually bounded (given any bdd $B \subset \mathcal{X}_{m_0}$ there exists $\tau \geq 0$ with $g^{\tau}(B)$ bdd, with $g^{\tau}(t) := g(t + \tau)$), and compact

- $\mathcal{G}_{m_0} = \{g: [0,\infty) \to \mathcal{X}_{m_0}\}$ is a **generalized semiflow on** \mathcal{X}_{m_0} , i.e. a "solution in the sense of Ball" satisfying:
 - existence $(\forall z \in \mathcal{X}_{m_0}$ there exists at least one $g \in \mathcal{G}_{m_0}$: g(0) = z)
 - translated of solutions are solutions
 - concatenation: if ϕ , $\psi \in \mathcal{G}_{m_0}$, $t \geq 0$, with $\psi(0) = \phi(t)$ then $\theta \in \mathcal{G}_{m_0}$ where

$$heta(au) := egin{cases} \phi(au) & ext{for } au \in [0,t] \ \psi(au-t) & ext{for } t < au \end{cases}$$

- ▶ upper semicontinuity with respect to initial data (if $g_j \in \mathcal{G}_{m_0}$, $g_j(0) \to z$ then there exists a subsequence g_{j_k} and $g \in \mathcal{G}_{m_0}$ s.t. g(0) = z and $g_{j_k}(t) \to g(t)$ for each $t \ge 0$)
- \mathcal{G}_{m_0} is point dissipative (there is a bdd set B_0 such that for any $g \in \mathcal{G}_{m_0}$ $g(t) \in B_0$ for t sufficiently large), eventually bounded (given any bdd $B \subset \mathcal{X}_{m_0}$ there exists $\tau \geq 0$ with $g^{\tau}(B)$ bdd, with $g^{\tau}(t) := g(t+\tau)$), and compact
- As a consequence of [Ball, '97&'98], we have: \mathcal{G}_{m_0} possesses a global attractor (compact, invariant set that *attracts* all bounded sets)

Let d = 2, $\mathbf{h} \in H^1(\Omega)^*_{div}$, and suppose that (D2)–(D5) hold. Then

- $\mathcal{G}_{m_0} = \{g: [0, \infty) \to \mathcal{X}_{m_0}\}$ is a **generalized semiflow on** \mathcal{X}_{m_0} , i.e. a "solution in the sense of Ball" satisfying:
 - existence $(\forall z \in \mathcal{X}_{m_0}$ there exists at least one $g \in \mathcal{G}_{m_0}$: g(0) = z)
 - translated of solutions are solutions
 - lacktriangledown concatenation: if $\phi,\,\psi\in\mathcal{G}_{m_0}$, $t\geq 0$, with $\psi(0)=\phi(t)$ then $\theta\in\mathcal{G}_{m_0}$ where

$$heta(au) := egin{cases} \phi(au) & ext{for } au \in [0,t] \ \psi(au-t) & ext{for } t < au \end{cases}$$

- ▶ upper semicontinuity with respect to initial data (if $g_j \in \mathcal{G}_{m_0}$, $g_j(0) \to z$ then there exists a subsequence g_{j_k} and $g \in \mathcal{G}_{m_0}$ s.t. g(0) = z and $g_{j_k}(t) \to g(t)$ for each $t \ge 0$)
- \mathcal{G}_{m_0} is point dissipative (there is a bdd set B_0 such that for any $g \in \mathcal{G}_{m_0}$ $g(t) \in B_0$ for t sufficiently large), eventually bounded (given any bdd $B \subset \mathcal{X}_{m_0}$ there exists $\tau \geq 0$ with $g^{\tau}(B)$ bdd, with $g^{\tau}(t) := g(t + \tau)$), and compact
- As a consequence of [Ball, '97&'98], we have: \mathcal{G}_{m_0} possesses a global attractor (compact, invariant set that *attracts* all bounded sets)

We point out that the existence of the global attractor is established without the restriction $|\overline{\varphi}|<1$ on the generalized semiflow. In particular, this result does not require the separation property

1) Upper semicontinuity with respect to initial data:

- 1) Upper semicontinuity with respect to initial data: take then $z_j = [\mathbf{u}_j, \varphi_j] \in \mathcal{G}_{m_0}$ such that $z_j(0) \to z_0$ in \mathcal{X}_{m_0} . Our aim is to prove that
 - $\exists z \in \mathcal{G}_{m_0}$ with $z(0) = z_0$ and a subsequence $\{z_{j_k}\}: z_{j_k}(t) \to z(t)$ in \mathcal{X}_{m_0} for all $t \geq 0$

1) Upper semicontinuity with respect to initial data: take then $z_j = [\mathbf{u}_j, \varphi_j] \in \mathcal{G}_{m_0}$ such that $z_j(0) \to z_0$ in \mathcal{X}_{m_0} . Our aim is to prove that

 $\exists\,z\in\mathcal{G}_{m_0}$ with $z(0)=z_0$ and a subsequence $\{z_{j_k}\}\,:\,z_{j_k}(t) o z(t)$ in \mathcal{X}_{m_0} for all $t\geq 0$

Each weak solution $z_j = [\mathbf{u}_j, \varphi_j]$ satisfies the energy equation which implies

$$\frac{d}{dt} \left(\|\mathbf{u}_j\|^2 + \|\varphi_j\|^2 \right) + (1 - \rho)\alpha_0 \|\nabla \varphi_j\|^2 + \nu \|\nabla \mathbf{u}_j\|^2 \le c + c \|\mathbf{u}_j\|^2 + \frac{1}{2\nu} \|\mathbf{h}\|_{H^1(\Omega)_{d\nu}^*}^2,$$

1) Upper semicontinuity with respect to initial data: take then $z_j = [\mathbf{u}_j, \varphi_j] \in \mathcal{G}_{m_0}$ such that $z_j(0) \to z_0$ in \mathcal{X}_{m_0} . Our aim is to prove that

 $\exists\,z\in\mathcal{G}_{m_0}$ with $z(0)=z_0$ and a subsequence $\{z_{j_k}\}\,:\,z_{j_k}(t) o z(t)$ in \mathcal{X}_{m_0} for all $t\geq 0$

Each weak solution $z_i = [\mathbf{u}_i, \varphi_i]$ satisfies the energy equation which implies

$$\frac{d}{dt} \Big(\|\mathbf{u}_j\|^2 + \|\varphi_j\|^2 \Big) + (1 - \rho)\alpha_0 \|\nabla \varphi_j\|^2 + \nu \|\nabla \mathbf{u}_j\|^2 \le c + c \|\mathbf{u}_j\|^2 + \frac{1}{2\nu} \|\mathbf{h}\|_{H^1(\Omega)_{div}^*}^2,$$

By comparison, we also get $\|\mathbf{u}_j'\|_{L^2(0,T;H^1(\Omega)_{div}^*)}$, $\|\varphi_j'\|_{L^2(0,T;H^1(\Omega)^*)} \leq C$

1) Upper semicontinuity with respect to initial data: take then $z_j = [\mathbf{u}_j, \varphi_j] \in \mathcal{G}_{m_0}$ such that $z_j(0) \to z_0$ in \mathcal{X}_{m_0} . Our aim is to prove that

$$\exists\,z\in\mathcal{G}_{m_0}\text{ with }z(0)=z_0\text{ and a subsequence }\{z_{j_k}\}\,:\,z_{j_k}(t)\to z(t)\text{ in }\mathcal{X}_{m_0}\text{ for all }t\geq0$$

Each weak solution $z_i = [\mathbf{u}_i, \varphi_i]$ satisfies the energy equation which implies

$$\frac{d}{dt} \Big(\|\mathbf{u}_j\|^2 + \|\varphi_j\|^2 \Big) + (1 - \rho)\alpha_0 \|\nabla \varphi_j\|^2 + \nu \|\nabla \mathbf{u}_j\|^2 \le c + c \|\mathbf{u}_j\|^2 + \frac{1}{2\nu} \|\mathbf{h}\|_{H^1(\Omega)_{div}^*}^2,$$

By comparison, we also get $\|\mathbf{u}_j'\|_{L^2(0,T;H^1(\Omega)_{div}^*)}, \|\varphi_j'\|_{L^2(0,T;H^1(\Omega)^*)} \leq C$ and hence for a.e. $t \geq 0$

$$\mathbf{u}_j(t)
ightarrow \mathbf{u}(t)$$
 strongly in $L^2(\Omega)_{ extit{div}}$

$$arphi_j(t)
ightarrow arphi(t)$$
 strongly in $L^2(\Omega)$

1) Upper semicontinuity with respect to initial data: take then $z_j = [\mathbf{u}_j, \varphi_j] \in \mathcal{G}_{m_0}$ such that $z_j(0) \to z_0$ in \mathcal{X}_{m_0} . Our aim is to prove that

$$\exists\,z\in\mathcal{G}_{m_0}\text{ with }z(0)=z_0\text{ and a subsequence }\{z_{j_k}\}\,:\,z_{j_k}(t)\to z(t)\text{ in }\mathcal{X}_{m_0}\text{ for all }t\geq0$$

Each weak solution $z_j = [\mathbf{u}_j, \varphi_j]$ satisfies the energy equation which implies

$$\frac{d}{dt} \Big(\|\mathbf{u}_j\|^2 + \|\varphi_j\|^2 \Big) + (1 - \rho)\alpha_0 \|\nabla \varphi_j\|^2 + \nu \|\nabla \mathbf{u}_j\|^2 \le c + c \|\mathbf{u}_j\|^2 + \frac{1}{2\nu} \|\mathbf{h}\|_{H^1(\Omega)_{div}^*}^2,$$

By comparison, we also get $\|\mathbf{u}_j'\|_{L^2(0,T;H^1(\Omega)_{div}^*)}$, $\|\varphi_j'\|_{L^2(0,T;H^1(\Omega)^*)} \leq C$ and hence for a.e. $t \geq 0$

$$egin{aligned} \mathbf{u}_j(t) &
ightarrow \mathbf{u}(t) & & ext{strongly in} & L^2(\Omega)_{\mathit{div}} \ & & arphi_j(t) &
ightarrow arphi(t) & & ext{strongly in} & L^2(\Omega) \end{aligned}$$

By standard compactness results, we deduce that $z:=[\mathbf{u},\varphi]\in\mathcal{G}_{m_0}$ and $z(0)=z_0$. We can also see that $z_j(t)\to z(t)$ in \mathcal{X}_{m_0} for all $t\geq 0$ by using the energy equality and the continuity in $[0,\infty)$ of $E(z(t))=\|\mathbf{u}(t)\|^2+\|\varphi(t)\|^2$.

1) Upper semicontinuity with respect to initial data: take then $z_j = [\mathbf{u}_j, \varphi_j] \in \mathcal{G}_{m_0}$ such that $z_j(0) \to z_0$ in \mathcal{X}_{m_0} . Our aim is to prove that

$$\exists\,z\in\mathcal{G}_{m_0}\text{ with }z(0)=z_0\text{ and a subsequence }\{z_{j_k}\}\,:\,z_{j_k}(t)\to z(t)\text{ in }\mathcal{X}_{m_0}\text{ for all }t\geq0$$

Each weak solution $z_i = [\mathbf{u}_i, \varphi_i]$ satisfies the energy equation which implies

$$\frac{d}{dt} \Big(\|\mathbf{u}_j\|^2 + \|\varphi_j\|^2 \Big) + (1 - \rho)\alpha_0 \|\nabla \varphi_j\|^2 + \nu \|\nabla \mathbf{u}_j\|^2 \le c + c \|\mathbf{u}_j\|^2 + \frac{1}{2\nu} \|\mathbf{h}\|_{H^1(\Omega)_{div}^*}^2,$$

By comparison, we also get $\|\mathbf{u}_j'\|_{L^2(0,T;H^1(\Omega)_{div}^*)}, \|\varphi_j'\|_{L^2(0,T;H^1(\Omega)^*)} \leq C$ and hence for a.e. $t \geq 0$

$$\mathbf{u}_j(t) o \mathbf{u}(t)$$
 strongly in $L^2(\Omega)_{div}$ $\varphi_j(t) o \varphi(t)$ strongly in $L^2(\Omega)$

By standard compactness results, we deduce that $z:=[\mathbf{u},\varphi]\in\mathcal{G}_{m_0}$ and $z(0)=z_0$. We can also see that $z_j(t)\to z(t)$ in \mathcal{X}_{m_0} for all $t\geq 0$ by using the energy equality and the continuity in $[0,\infty)$ of $E(z(t))=\|\mathbf{u}(t)\|^2+\|\varphi(t)\|^2$.

2) Dissipativity and eventual boundedness: From the energy identity and by means of Poincaré inequality we get

$$\frac{d}{dt} \big(\|\mathbf{u}\|^2 + \|\varphi - \overline{\varphi}_0\|^2 \big) + (1 - \rho)\alpha_0 C_P \|\varphi - \overline{\varphi}_0\|^2 + \nu \lambda_1 \|\mathbf{u}\|^2 \leq C_2 + \frac{1}{\nu} \|\mathbf{h}\|_{H^1(\Omega)'_{div}}^2$$

An idea of the proof

1) Upper semicontinuity with respect to initial data: take then $z_j = [\mathbf{u}_j, \varphi_j] \in \mathcal{G}_{m_0}$ such that $z_j(0) \to z_0$ in \mathcal{X}_{m_0} . Our aim is to prove that

$$\exists\,z\in\mathcal{G}_{m_0}\text{ with }z(0)=z_0\text{ and a subsequence }\{z_{j_k}\}\,:\,z_{j_k}(t)\to z(t)\text{ in }\mathcal{X}_{m_0}\text{ for all }t\geq0$$

Each weak solution $z_j = [\mathbf{u}_j, \varphi_j]$ satisfies the energy equation which implies

$$\frac{d}{dt} \Big(\|\mathbf{u}_j\|^2 + \|\varphi_j\|^2 \Big) + (1 - \rho)\alpha_0 \|\nabla \varphi_j\|^2 + \nu \|\nabla \mathbf{u}_j\|^2 \le c + c \|\mathbf{u}_j\|^2 + \frac{1}{2\nu} \|\mathbf{h}\|_{H^1(\Omega)_{div}^*}^2,$$

By comparison, we also get $\|\mathbf{u}_j'\|_{L^2(0,T;H^1(\Omega)_{div}^*)}, \|\varphi_j'\|_{L^2(0,T;H^1(\Omega)^*)} \leq C$ and hence for a.e. $t\geq 0$

By standard compactness results, we deduce that $z:=[\mathbf{u},\varphi]\in\mathcal{G}_{m_0}$ and $z(0)=z_0$. We can also see that $z_j(t)\to z(t)$ in \mathcal{X}_{m_0} for all $t\geq 0$ by using the energy equality and the continuity in $[0,\infty)$ of $E(z(t))=\|\mathbf{u}(t)\|^2+\|\varphi(t)\|^2$.

2) Dissipativity and eventual boundedness: From the energy identity and by means of Poincaré inequality we get

$$\frac{d}{dt} (\|\mathbf{u}\|^2 + \|\varphi - \overline{\varphi}_0\|^2) + (1 - \rho)\alpha_0 C_P \|\varphi - \overline{\varphi}_0\|^2 + \nu \lambda_1 \|\mathbf{u}\|^2 \leq C_2 + \frac{1}{\nu} \|\mathbf{h}\|_{H^1(\Omega)'_{div}}^2$$

This estimate easily yields

$$d^2(z(t),0) \leq d^2(z_0,0)e^{-\eta t} + \frac{2C_3}{\eta} + |\overline{\varphi}_0|^2|\Omega|, \qquad \forall t \geq 0$$

where $d(z_2, z_1) := \|\mathbf{u}_2 - \mathbf{u}_1\| + \|\varphi_2 - \varphi_1\|$

Third part: The convective nonlocal Cahn-Hilliard equation with degenerate mobility

Assume that (D1)–(D4) are satisfied. Let $\mathbf{u} \in L^2_{loc}([0,\infty); H^1(\Omega)_{div} \cap L^\infty(\Omega)^d)$ be given and let $\mathbf{h} \in H^1(\Omega)^*_{div}$, $\varphi_0 \in L^\infty(\Omega)$ such that $F(\varphi_0) \in L^1(\Omega)$ and $M(\varphi_0) \in L^1(\Omega)$

Third part: The convective nonlocal Cahn-Hilliard equation with degenerate mobility

Assume that (D1)–(D4) are satisfied. Let $\mathbf{u} \in L^2_{loc}([0,\infty); H^1(\Omega)_{div} \cap L^\infty(\Omega)^d)$ be given and let $\mathbf{h} \in H^1(\Omega)^*_{div}$, $\varphi_0 \in L^\infty(\Omega)$ such that $F(\varphi_0) \in L^1(\Omega)$ and $M(\varphi_0) \in L^1(\Omega)$

Then, for every T>0 there exists a weak solution φ to

$$\begin{split} \langle \varphi_t, \psi \rangle + \int_{\Omega} \textit{m}(\varphi) \textit{F}''(\varphi) \nabla \varphi \cdot \nabla \psi + \int_{\Omega} \textit{m}(\varphi) \textit{a} \nabla \varphi \cdot \nabla \psi \\ + \int_{\Omega} \textit{m}(\varphi) (\varphi \nabla \textit{a} - \nabla \textit{J} * \varphi) \cdot \nabla \psi = (\textbf{u}\varphi, \nabla \psi) \end{split}$$

and such that $\overline{\varphi}(t)=\overline{\varphi_0}$ for all $t\in[0,T]$

Third part: The convective nonlocal Cahn-Hilliard equation with degenerate mobility

Assume that (D1)–(D4) are satisfied. Let $\mathbf{u} \in L^2_{loc}([0,\infty); H^1(\Omega)_{div} \cap L^\infty(\Omega)^d)$ be given and let $\mathbf{h} \in H^1(\Omega)^*_{div}$, $\varphi_0 \in L^\infty(\Omega)$ such that $F(\varphi_0) \in L^1(\Omega)$ and $M(\varphi_0) \in L^1(\Omega)$

Then, for every T>0 there exists a weak solution φ to

$$\begin{split} \langle \varphi_t, \psi \rangle + \int_{\Omega} \textit{m}(\varphi) \textit{F}''(\varphi) \nabla \varphi \cdot \nabla \psi + \int_{\Omega} \textit{m}(\varphi) \textit{a} \nabla \varphi \cdot \nabla \psi \\ + \int_{\Omega} \textit{m}(\varphi) (\varphi \nabla \textit{a} - \nabla \textit{J} * \varphi) \cdot \nabla \psi = (\mathbf{u}\varphi, \nabla \psi) \end{split}$$

and such that $\overline{\varphi}(t)=\overline{\varphi_0}$ for all $t\in[0,T]$

Furthermore, $\varphi \in L^{\infty}(0, T; L^{p}(\Omega))$, where $p \leq 6$ for d = 3 and $2 \leq p < \infty$ for d = 2. In addition, the following energy identity holds

$$\frac{1}{2}\frac{d}{dt}\|\varphi\|^2 + \int_{\Omega} m(\varphi)F''(\varphi)|\nabla\varphi|^2 + \int_{\Omega} am(\varphi)|\nabla\varphi|^2 + \int_{\Omega} m(\varphi)\big(\varphi\nabla a - \nabla J * \varphi\big) \cdot \nabla\varphi = 0$$

for a.a. t > 0 and in $\mathcal{D}'(0, \infty)$

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Let the hypotheses of the previous Theorem be satisfied and the following conditions (cf. (D5)) are fulfilled for some $\alpha_0 > 0$ and $\rho \in [0,1)$

$$m(s)F_1''(s) \ge \alpha_0 > 0 \qquad \forall s \in [-1,1]$$

 $\rho F_1''(s) + F_2''(s) + a(x) \ge 0 \quad \forall s \in (-1,1), \quad \text{for a.e. } x \in \Omega$

Let the hypotheses of the previous Theorem be satisfied and the following conditions (cf. (D5)) are fulfilled for some $\alpha_0 > 0$ and $\rho \in [0,1)$

$$m(s)F_1''(s) \ge \alpha_0 > 0 \qquad \forall s \in [-1,1] \
ho F_1''(s) + F_2''(s) + a(x) \ge 0 \quad \forall s \in (-1,1), \quad \text{for a.e. } x \in \Omega$$

Then, the weak solution is unique.

Let the hypotheses of the previous Theorem be satisfied and the following conditions (cf. (D5)) are fulfilled for some $\alpha_0 > 0$ and $\rho \in [0,1)$

$$m(s)F_1''(s) \ge \alpha_0 > 0 \qquad \forall s \in [-1,1] \
ho F_1''(s) + F_2''(s) + a(x) \ge 0 \quad \forall s \in (-1,1), \quad \text{for a.e. } x \in \Omega$$

Then, the weak solution is unique.

Hence, we can define a semiflow S(t) on \mathcal{Y}_{m_0} , $m_0 \in [0,1]$, endowed with the metric induced by the L^2 -norm.

Let the hypotheses of the previous Theorem be satisfied and the following conditions (cf. (D5)) are fulfilled for some $\alpha_0 > 0$ and $\rho \in [0,1)$

$$m(s)F_1''(s) \ge \alpha_0 > 0 \qquad \forall s \in [-1,1]$$
 $ho F_1''(s) + F_2''(s) + a(x) \ge 0 \quad \forall s \in (-1,1), \quad \text{for a.e. } x \in \Omega$

Then, the weak solution is unique.

Hence, we can define a semiflow S(t) on \mathcal{Y}_{m_0} , $m_0 \in [0,1]$, endowed with the metric induced by the L^2 -norm.

It is then immediate to check that the arguments used in the proofs of the previous results can be adapted to the present situation. Hence we have that: given $\mathbf{u} \in L^\infty(\Omega)^d$ independent of time, then, the dynamical system $(\mathcal{Y}_{m_0}, S(t))$ possesses a connected global attractor

Note that: up to our knowledge uniqueness of solutions is an open issue for the local case.

Conclusions

Conclusions

We have proved in [Frigeri, Grasselli, E.R., preprint arXiv:1303.6446, 2013]

- Existence of solutions for the nonlocal 3D Navier-Stokes Cahn-Hilliard model with nondegenerate and with degenerate mobility
- Existence of the attractor in the 2D case
- Well-posedness and existence of the attractor for the 3D nonlocal convective Cahn-Hilliard equation

Conclusions

We have proved in [Frigeri, Grasselli, E.R., preprint arXiv:1303.6446, 2013]

- Existence of solutions for the nonlocal 3D Navier-Stokes Cahn-Hilliard model with nondegenerate and with degenerate mobility
- Existence of the attractor in the 2D case
- Well-posedness and existence of the attractor for the 3D nonlocal convective Cahn-Hilliard equation

There are still a lot of open problems like

- The uniqueness result for the 2D Navier-Stokes Cahn-Hilliard system (cf. [Gal, Grasselli, Frigeri, work in progress])
- ullet The case of non-smooth potentials like $F(arphi)=I_{[-1,1]}(arphi)$
- The case of unmatched densities (cf. [Abels, Depner, Garcke, 2013] for the local case) or of compressible fluids (cf. [Abels, Feireisl, 2008] for the local case)
- The control problem associated to the convective Cahn-Hilliard with degenerate mobility (cf. [E.R., Sprekels, work in progress])
- The non isothermal case (cf. [Eleuteri, E.R., Schimperna, work in progress] for the local case)

• ...

Thanks for your attention!

cf. http://www.mat.unimi.it/users/rocca/

Rewrite the Cahn-Hilliard equation as

$$\langle \varphi_t, \psi \rangle + \left(\nabla \Lambda(\cdot, \varphi), \nabla \psi \right) - \left(\Gamma(\varphi) \nabla a, \nabla \psi \right) + \left(m(\varphi) (\varphi \nabla a - \nabla J * \varphi), \nabla \psi \right) = \left(\mathbf{u} \varphi, \nabla \psi \right),$$

for all $\psi \in H^1(\Omega)$, where $\Lambda(x,s) := \Lambda_1(s) + \Lambda_2(s) + a(x)\Gamma(s)$ and

$$\Lambda_1(s) := \int_0^s m(\sigma) F_1''(\sigma) d\sigma, \qquad \Lambda_2(s) := \int_0^s m(\sigma) F_2''(\sigma) d\sigma, \qquad \Gamma(s) := \int_0^s m(\sigma) d\sigma,$$

for all $s \in [-1, 1]$.

Rewrite the Cahn-Hilliard equation as

$$\langle \varphi_t, \psi \rangle + \left(\nabla \Lambda(\cdot, \varphi), \nabla \psi \right) - \left(\Gamma(\varphi) \nabla a, \nabla \psi \right) + \left(m(\varphi) (\varphi \nabla a - \nabla J * \varphi), \nabla \psi \right) = \left(\mathbf{u} \varphi, \nabla \psi \right),$$

for all $\psi \in H^1(\Omega)$, where $\Lambda(x,s) := \Lambda_1(s) + \Lambda_2(s) + a(x)\Gamma(s)$ and

$$\Lambda_1(s):=\int_0^s m(\sigma)F_1''(\sigma)d\sigma, \qquad \Lambda_2(s):=\int_0^s m(\sigma)F_2''(\sigma)d\sigma, \qquad \Gamma(s):=\int_0^s m(\sigma)d\sigma,$$

for all $s \in [-1,1]$. Take the difference between the two identities, set $\varphi := \varphi_1 - \varphi_2$ and $\psi = \mathcal{N}\varphi$ (notice that $\overline{\varphi} = 0$):

$$\begin{split} &\frac{1}{2}\frac{d}{dt}\|\mathcal{N}^{1/2}\varphi\|^2 + \left(\Lambda(\varphi_2) - \Lambda(\varphi_1), \varphi\right) - \left(\left(\Gamma(\varphi_2) - \Gamma(\varphi_1)\right)\nabla a, \nabla \mathcal{N}\varphi\right) \\ &+ \left(\left(m(\varphi_2) - m(\varphi_1)\right)(\varphi_2\nabla a - \nabla J * \varphi_2) + m(\varphi_1)(\varphi\nabla a - \nabla J * \varphi), \nabla \mathcal{N}\varphi\right) \\ &= \left(\mathbf{u}\varphi, \nabla \mathcal{N}\varphi\right) \end{split}$$

Rewrite the Cahn-Hilliard equation as

$$\langle \varphi_t, \psi \rangle + \left(\nabla \Lambda(\cdot, \varphi), \nabla \psi \right) - \left(\Gamma(\varphi) \nabla a, \nabla \psi \right) + \left(m(\varphi) (\varphi \nabla a - \nabla J * \varphi), \nabla \psi \right) = \left(\mathbf{u} \varphi, \nabla \psi \right),$$

for all $\psi \in H^1(\Omega)$, where $\Lambda(x,s) := \Lambda_1(s) + \Lambda_2(s) + a(x)\Gamma(s)$ and

$$\Lambda_1(s):=\int_0^s m(\sigma)F_1''(\sigma)d\sigma, \qquad \Lambda_2(s):=\int_0^s m(\sigma)F_2''(\sigma)d\sigma, \qquad \Gamma(s):=\int_0^s m(\sigma)d\sigma,$$

for all $s \in [-1,1]$. Take the difference between the two identities, set $\varphi := \varphi_1 - \varphi_2$ and $\psi = \mathcal{N}\varphi$ (notice that $\overline{\varphi} = 0$):

$$\begin{split} &\frac{1}{2}\frac{d}{dt}\|\mathcal{N}^{1/2}\varphi\|^2 + \left(\Lambda(\varphi_2) - \Lambda(\varphi_1), \varphi\right) - \left(\left(\Gamma(\varphi_2) - \Gamma(\varphi_1)\right)\nabla a, \nabla \mathcal{N}\varphi\right) \\ &+ \left(\left(m(\varphi_2) - m(\varphi_1)\right)(\varphi_2\nabla a - \nabla J * \varphi_2) + m(\varphi_1)(\varphi\nabla a - \nabla J * \varphi), \nabla \mathcal{N}\varphi\right) \\ &= \left(\mathbf{u}\varphi, \nabla \mathcal{N}\varphi\right) \end{split}$$

On account of $m(s)F_1''(s) \ge \alpha_0 > 0$, $\rho F_1''(s) + F_2''(s) + a(x) \ge 0$, we find

$$egin{aligned} \left(egin{aligned} \left(egin{alig$$

and the other terms can be estimated in order to apply Gronwall.

Some comparisons with other results: local vs nonlocal

Results	Local CH	Nonlocal CH	Local CHNS	Nonlocal CHNS
Uniqueness	3D: True for non-degenerate mobility (e.g. [Elliott, '89, Novick Cohen, '9, [Elliott, Luckhaus, '91])	3D: True for constant mobility (e.g. [Colli, Krejčí, E.R., Sprekels, '04])	2D: True for nondegenerate mobility [Abels, '09, Boyer, '99]	Open even in 2D
	Open for degenerate mobility and singular potential	3D: True for degenerate mobility and singular potential [Gajewski, Zacharias, '03, [Grasselli, Frigeri, E.R., '13]	Open for degenerate mobility and singular potential	Open even in 2D
Separation	2D: True with logaritmich potential and constant mobility [Miranville, Zelik, '04] , 3D: Open for the logarithmic potential	3D: true for degenerate mobility and singular potential [Londen, Petzeltovà, '11]	Open	3D: true for degenerate mobility and singular potential