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Outline

Introduce the nonlinear PDE systems arising in thermomechanics we deal with

The main key ideas in order to handle nonlinearities + degeneracy =⇒ entropic
formulation + generalization of the principle of virtual powers

A first application of the entropic formulation to a solid-liquid phase transition
model [joint work with E. Feireisl, H. Petzeltová, M2AS (2009)]

The most recent applications:

� The liquid crystal flows [joint works with: E. Feireisl, G. Schimperna (Nonlinearity,
2011), E. Feireisl, M. Frémond, G. Schimperna, (ARMA, to appear), E. Feireisl, G.
Schimperna, A. Zarnescu (in preparation)]

� The damage phenomena [joint works with: R. Rossi, J. Differential Equations and
Appl. Math (2008) and preprint arXiv:1205.3578v1 (2012)]

The main advantages and the potential future perspectives:

� Non-isothermal mixtures of binary immiscible fluids [with S. Frigeri, G. Schimperna, ...]
� The induction hardening of steel [with D. Hömberg], the SMA with possibility of voids

[with M. Frémond], ...
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2011), E. Feireisl, M. Frémond, G. Schimperna, (ARMA, to appear), E. Feireisl, G.
Schimperna, A. Zarnescu (in preparation)]

� The damage phenomena [joint works with: R. Rossi, J. Differential Equations and
Appl. Math (2008) and preprint arXiv:1205.3578v1 (2012)]

The main advantages and the potential future perspectives:

� Non-isothermal mixtures of binary immiscible fluids [with S. Frigeri, G. Schimperna, ...]
� The induction hardening of steel [with D. Hömberg], the SMA with possibility of voids
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E. Rocca (Università di Milano) Weak formulations of PDEs in thermomechanics June 11–15, 2012 2 / 50



Outline

Introduce the nonlinear PDE systems arising in thermomechanics we deal with

The main key ideas in order to handle nonlinearities + degeneracy =⇒ entropic
formulation + generalization of the principle of virtual powers

A first application of the entropic formulation to a solid-liquid phase transition
model [joint work with E. Feireisl, H. Petzeltová, M2AS (2009)]
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Mathematical problems arising from Thermomechanics

Hydrodynamics of liquid crystals flows:

I a liquid crystal may flow like a liquid, but its molecules may be oriented in a
crystal-like way

I aim: deal with the nematic liquid crystals both in the Oseen-Frank theory, in which
the mean orientation of the rod-like molecules is described by a vector field d and also
in the Landau-de Gennes theory, in which the order parameter describing the
orientation of molecules is a matrix, the so-called Q-tensor

I aim: include velocity and temperature dependence in the model

Damage phenomena:

I aim: deal with diffuse interface models in thermoviscoelasticity accounting for
- the evolution of the displacement variables
- the temperature
- the order (damage) parameter χ

where the momentum equation for contains χ-dependent elliptic operators, which may
degenerate at the pure phases
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E. Rocca (Università di Milano) Weak formulations of PDEs in thermomechanics June 11–15, 2012 3 / 50



Mathematical problems arising from Thermomechanics

Hydrodynamics of liquid crystals flows:

I a liquid crystal may flow like a liquid, but its molecules may be oriented in a
crystal-like way

I aim: deal with the nematic liquid crystals both in the Oseen-Frank theory, in which
the mean orientation of the rod-like molecules is described by a vector field d and also
in the Landau-de Gennes theory, in which the order parameter describing the
orientation of molecules is a matrix, the so-called Q-tensor

I aim: include velocity and temperature dependence in the model

Damage phenomena:

I aim: deal with diffuse interface models in thermoviscoelasticity accounting for
- the evolution of the displacement variables
- the temperature
- the order (damage) parameter χ

where the momentum equation for contains χ-dependent elliptic operators, which may
degenerate at the pure phases
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What do these problems have in common?

=⇒ the nonlinearity and degeneracy of the related PDEs:

Liquid crystals

div v = 0, vt + v · ∇x v +∇xp = div S + div σnd + g

S = ν(θ)
(
∇x v +∇t

x v
)
, σnd = −∇x d�∇x d + (∂dW (d)−∆d)⊗ d

θt + v · θ + div q = S : ∇x v+|∆d− ∂dW (d)|2

dt + v · ∇x d−d · ∇x v = ∆d− ∂dW (d)

Damage

c(θ)θt + χtθ − ρθ div ut − div(k(θ)∇θ)) = g

utt − div(a(χ)ε(ut) + b(χ)ε(u)− ρθ1) = f

χt + ∂I(−∞,0](χt) + Asχ+ W ′(χ) 3 −b′(χ)
|ε(u)|2

2
+ θ
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The main ideas to handle nonlinearities and degeneracy

Combining the concept of weak solution satisfying:

1. a suitable energy conservation and entropy inequality inspired by:

1.1. the works of E. Feireisl and co-authors ([Feireisl, Comput. Math. Appl. (2007)] and
[Buĺıček, Feireisl, & Málek, Nonlinear Anal. Real World Appl. (2009)]) for heat
conduction in fluids

2. a generalization of the principle of virtual powers inspired by:

2.1. the notion of energetic solution - A. Mielke and co-authors ([Bouchitté, Mielke,
Roub́ıček, ZAMP. Angew. Math. Phys. (2009) and [Mielke, Roub́ıček, Zeman,
Comput. Methods Appl. Mech. Engrg. (2010)]) for rate-independent processes for
damage phenomena and

2.2. a notion of weak solution introduced by [Heinemann, Kraus, WIAS preprint 1569 and
WIAS preprint 1520, to appear on Adv. Math. Sci. Appl. (2010)] for
non-degenerating isothermal diffuse interface models for phase separation and damage
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Roub́ıček, ZAMP. Angew. Math. Phys. (2009) and [Mielke, Roub́ıček, Zeman,
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Entropic formulation: a phase transitions model
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A first application of the entropic formulation: solid-liquid phase transitions

In order to show the potential power of this idea we

... give a description of the method stating more precisely
the content of this recent work [E. Feireisl, H. Petzeltovà,

E.R., Existence of solutions to some models of phase changes

with microscopic movements, Math. Meth. Appl. Sci. (2009)]

in which this notion of solution has been firstly applied to
phase transition models

We consider there a model for solid-liquid phase transitions associated to a nonlinear
PDE system

θt + χtθ −∆θ = |χt |2

χt −∆χ+ W ′(χ) = θ − θc

No global-in-time well-posedness result has yet been obtained in the 3D case, even
neglecting |χt |2 on the r.h.s.

A 1D global result is proved in [F. Luterotti and U. Stefanelli, ZAA (2002)]

=⇒ a new notion of solution is needed
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Entropic formulation

Idea: Start directly from the basic principles of Thermodynamics just assuming that the

entropy of the system is controlled by dissipation

and

total energy is conserved during the evolution

The nonlinear equation for θ (internal energy balance) is replaced by

the entropy inequality + the total energy conservation

Finally, couple these relations to a suitable phase dynamics.
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The entropy production

Assuming the system is thermally isolated, the entropy balance results

∫ T

0

∫
Ω

stϕ−
∫ T

0

∫
Ω

q

θ
· ∇ϕ =

∫ T

0

∫
Ω

rϕ ∀ϕ ∈ D(QT ),

r represents the entropy production rate. Then, in order to comply with the
Clausius-Duhem inequality, we assume:

(i) r is a nonnegative measure on [0,T ]× Ω =: QT ;

(ii) r ≥ 1

θ

(
|χt |2 −

q · ∇θ
θ

)
≥ 0.

Taking q = −∇θ, s = log θ + χ, we get∫ T

0

∫
Ω

(
(log θ + χ) ∂tϕ−∇ log θ · ∇ϕ

)
dxdt

≤
∫ T

0

∫
Ω

1

θ

(
−|χt |2 −∇ log θ · ∇θ

)
ϕdxdt

for every test function ϕ ∈ D(QT ), ϕ ≥ 0

⇒ the total entropy is controlled by dissipation.
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The energy conservation and phase relation

The total energy has to be preserved. Hence

E(t) = E(0) for a.e. t ∈ [0,T ],

where

E ≡
∫

Ω

(
θ + W (χ) +

|∇χ|2

2

)
dx .

Finally, the phase dynamics results as

χt −∆χ+ W ′(χ) = θ − θc a.e. in Ω× (0,T ),

where W is a double well or double obstacle potential: W = β̂ + γ̂ where

β̂ : R→ [0,+∞] is proper, lower semi-continuous, convex function

γ̂ ∈ C 2(R), γ̂′ ∈ C 0,1(R) : γ̂′′(r) ≥ −K for all r ∈ R, W (r) ≥ cw r 2 for all r ∈ dom(β̂)

Examples: β̂(r) = r ln(r) + (1− r) ln(1− r) or β̂(r) = I[0,1](r).
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The existence theorem [E. Feireisl, H. Petzeltová, E.R., M2AS (2009)]

Fix T > 0 and take suitable initial data. Let s ∈ (1, 2) be a proper exponent depending
on the space dimension.

Then there exists at least one pair (θ, χ) s.t.

θ ∈ L∞(0,T ; L1(Ω)) ∩ Ls(QT ), θ(x , t) > 0 a. e. in QT

log(θ) ∈ L∞(0,T ; L1(Ω)) ∩ L2(0,T ; H1(Ω)) ∩W 1,1(0,T ; W−2,3/2(Ω))

χ ∈ C 0([0,T ]; H1(Ω)) ∩ Ls(0,T ; W 2,s
N (Ω)), χt ∈ Ls(QT ) ,

satisfying the entropy inequality (∀ϕ ∈ D(QT ), ϕ ≥ 0):∫ T

0

∫
Ω

((log θ + χ) ∂tϕ−∇ log θ · ∇ϕ) dx dt

≤
∫ T

0

∫
Ω

1

θ

(
−|χt |2 −∇ log θ · ∇θ

)
ϕ dx dt ,

the phase equation

χt −∆χ+ W ′(χ) = θ − θc a.e. in QT , χ(0) = χ0 a.e. in Ω,

and the total energy conservation

E(t) = E(0) a.e. in [0,T ], E ≡
∫

Ω

(
θ + W (χ) +

|∇χ|2

2

)
dx .
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The main advantages of this approach

It complies with thermodynamical principles and hence it gives for free
thermodynamically consistent models

It gives rise exactly to the previous the PDE system

θt + χtθ −∆θ = |χt |2

χt −∆χ+ W ′(χ) = θ − θc

at least in case the solution (θ, χ) is sufficiently smooth

However, in this case and similarly in many other situations, to prove that the
solution has this extra regularity is out of reach

It can be suitable also in different applications such as the ones related to phase
transitions in viscoelastic materials, SMA, liquid crystal flows, etc.
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Entropic formulation: the hydrodynamics of liquid crystal flows
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A recent application: non-isothermal liquid crystals

I The motivations:

I Theoretical studies of these types of materials are motivated by real-world
applications: proper functioning of many practical devices relies on optical properties
of certain liquid crystalline substances in the presence or absence of an electric field: a
multi-billion dollar industry

I At the molecular level, what marks the difference between a liquid crystal and an
ordinary, isotropic fluid is that, while the centers of mass of LC molecules do not
exhibit any long-range correlation, molecular orientations do exhibit orientational
correlations

I The objective: include the temperature dependence in models describing the
evolution of nematic liquid crystal flows within both the Oseen-Frank and
Landau-De Gennes theories.

I Our most recent results:

1. E. Feireisl, M. Frémond, E. R., G. Schimperna, A new approach to non-isothermal
models for nematic liquid crystals, ARMA to appear, preprint arXiv:1104.1339v1
(2011)

2. E. Feireisl, E.R., G. Schimperna, A. Zarnescu, Evolution of non-isothermal Landau-de
Gennes nematic liquid crystals flows, paper in preparation
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To the present state of knowledge, three main types of liquid crystals are distinguished,
termed smectic, nematic and cholesteric

http://www.laynetworks.com/Molecular-Orientation-in-Liquid-Crystal-Phases.htm

The smectic phase forms well-defined layers that can slide one over another in a manner very
similar to that of a soap

The nematic phase: the molecules have long-range orientational order, but no tendency to the
formation of layers. Their center of mass positions all point in the same direction (within each
specific domain)

Crystals in the cholesteric phase exhibit a twisting of the molecules perpendicular to the director,
with the molecular axis parallel to the director
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Our main aim

We consider the range of temperatures typical for the nematic phase

http://www.netwalk.com/ laserlab/lclinks.html

The nematic liquid crystals are composed of rod-like molecules, with the long axes
of neighboring molecules aligned

Most mathematical work has been done on the Oseen-Frank theory, in which the
mean orientation of the rod-like molecules is described by a vector field d. However,
more popular among physicists is the Landau-de Gennes theory, in which the order
parameter describing the orientation of molecules is a matrix, the so-called Q-tensor

I The flow velocity u evidently disturbs the alignment of the molecules and also the
converse is true: a change in the alignment will produce a perturbation of the
velocity field u. Moreover, we want to include in our model also the changes of the
temperature θ
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I The flow velocity u evidently disturbs the alignment of the molecules and also the
converse is true: a change in the alignment will produce a perturbation of the
velocity field u. Moreover, we want to include in our model also the changes of the
temperature θ
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The Landau-de Gennes theory: the molecular orientation

Consider a nematic liquid crystal filling a bounded connected container Ω in R3 with
“regular” boundary

The distribution of molecular orientations in a ball B(x0, δ), x0 ∈ Ω can be
represented as a probability measure µ on the unit sphere S2 satisfying
µ(E) = µ(−E) for E ⊂ S2

For a continuously distributed measure we have dµ(p) = ρ(p)dp where dp is an
element of the surface area on S2 and ρ ≥ 0,

∫
S2 ρ(p)dp = 1, ρ(p) = ρ(−p)
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The Landau-de Gennes theory: the Q-tensor

The first moment
∫
S2 p dµ(p) = 0, the second moment M =

∫
S2 p ⊗ p dµ(p) is a

symmetric non-negative 3× 3 matrix (for every v ∈ S2,
v ·M · v =

∫
S2 (v · p)2 dµ(p) =< cos2 θ >, where θ is the angle between p and v)

satisfying tr(M) = 1

If the orientation of molecules is equally distributed in all directions (the distribution
is isotropic) and then µ = µ0, where dµ0(p) = 1

4π
dS . In this case the second

moment tensor is M0 = 1
4π

∫
S2 p ⊗ p dS = 1

3
1, because

∫
S2 p1p2 dS = 0,∫

S2 p2
1 dS =

∫
S2 p2

2 dS , etc., and tr(M0) = 1

I The de Gennes Q-tensor measures the deviation of M from its isotropic value

Q = M −M0 =

∫
S2

(
p ⊗ p − 1

3
1

)
dµ(p)

I Note that (cf. [Ball, Majumdar, Molecular Crystals and Liquid Crystals (2010)])

1. Q = QT

2. tr(Q) = 0

3. Q ≥ − 1
3

1

1.+2. implies Q = λ1n1 ⊗ n1 + λ2n2 ⊗ n2 + λ3n3 ⊗ n3, where {ni} is an othonormal basis of
eigenvectors of Q with corresponding eigenvalues λi such that λ1 + λ2 + λ3 = 0

2.+3. implies − 1
3
≤ λi ≤ 2

3

I Q = 0 does not imply µ = µ0 (e.g. µ = 1
6

∑3
i=1(δei + δ−ei ))
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The reduction to the Oseen-Frank model

If the eigenvalues of Q are all distinct then Q is said to be biaxial (biaxiality implies
the existence of more than one preferred direction of molecular alignment)

If two λi are equal then Q is said to be uniaxial (liquid crystal materials with a single
preferred direction of molecular alignment)

Reduction to the Oseen-Frank (1925, 1952) model (Ericksen model, 1991): the
uniaxial case: λ1 = λ2 = − s

3
, λ3 = 2s

3
, setting n3 = d where ni is an orthonormal basis of

eigenvectors of Q corresponding to λi , we have

Q = − s

3
(1− d⊗ d) +

2s

3
d⊗ d = s

(
d⊗ d− 1

3
1

)
,

where − 1
2
≤ s ≤ 1.

Here s ∈ R is a real scalar order parameter that measures the degree of orientational
ordering and d is a vector representing the direction of preferred molecular alignment:
the director field.
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The Landau-de Gennes free energy

Suppose (for the moment) that the material is incompressible, homogeneous and at a
constant temperature T in Ω. At each x ∈ Ω we have an order parameter tensor Q(x)
and the Landau-de Gennes free energy (defined in the space of traceless symmetric
3× 3 matrixes) is

FLG (Q) =

∫
Ω

(
L

2
|∇Q(x)|2 + fB(Q(x))

)
dx ,

where

|∇Q|2 =
∑3

i,j,k=1 Qij,kQij,k is the elastic energy density that penalizes spatial
inhomogeneities and L > 0 is a material-dependent elastic constant

fB(Q) is the bulk free energy density, e.g., (following [de Gennes, Prost (1995)])

fB(Q) =
α(T − T ∗)

2
tr(Q2)− b

3
tr(Q3) +

c

4
(tr(Q2))2

where α, b, c are material-dependent positive constants, T is the absolute
temperature and T ∗ is a characteristic liquid crystal temperature. Call
a = α(T − T ∗)
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The Oseen-Frank free energy

It can be shown (cf. [Majumdar, Zarnescu, ARMA (2010)]) that, if L is small in

FLG (Q) =

∫
Ω

(
L

2
|∇Q(x)|2 + fB(Q(x))

)
dx ,

it is reasonable to consider a theory where Q is required to be uniaxial with constant
scalar order parameter s > 0, i.e.

Q = s

(
d⊗ d− 1

3
1

)
.

Here d = d(x) ∈ S2 represents the preferred direction of molecular alignment

In this case fB is constant and we can consider only the elastic energy and
calculating it in terms of d we obtain the simplest form of the Oseen-Frank free
energy (1925, 1958)

FOF = Ls2

∫
Ω

|∇d(x)|2 dx
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The Ball-Majumdar singular potential

In the Landau-de Gennes free energy there is no a-priori bound on the eigenvalues

In order to naturally enforce the physical constraints in the eigenvalues of the
symmetric, traceless tensors Q, Ball and Majumdar have recently introduced in [Ball,

Majumdar, Molecular Crystals and Liquid Crystals (2010)] a singular component

f (Q) =


infρ∈AQ

∫
S2 ρ(p) log(ρ(p)) dp if λi [Q] ∈ (−1/3, 2/3), i = 1, 2, 3,

∞ otherwise,

AQ =

{
ρ : S2 → [0,∞)

∣∣∣ ∫
S2

ρ(p) dp = 1; Q =

∫
S2

(
p⊗ p− 1

3
I
)
ρ(p) dp

}
.

to the bulk free-energy fB enforcing the eigenvalues to stay in the interval (− 1
3
, 2

3
).
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E. Rocca (Università di Milano) Weak formulations of PDEs in thermomechanics June 11–15, 2012 22 / 50



The hydrodynamic theories in the isothermal case

⇒ The hydrodynamic theory corresponding to the Oseen-Frank free energy has been
developed by Ericksen (1961) and Leslie (1968) (the celebrated Leslie-Ericksen
model)

⇒ The Lin-Liu model (1995) is obtained by replacing the unit-vector constraint on d
with a Ginzburg-Landau penalization W (d) = 1

4ε2 (|d|2 − 1)2, on the director field d,
which should formally converge to the Leslie-Ericksen model when ε→ 0, but this is
an important open issue

⇒ For the Landau-de Gennes free energy with “regular” potential, the hydrodynamic
theory has been developed in [Paicu, Zarnescu, SIAM (2011) and ARMA (2012)]
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Our main aims

We study the evolutionary system for nematic liquid crystals including the temperature
θ and the velocity u.

We deal with two type of models:

1. [E. Feireisl, M. Frémond, E.R., G. Schimperna, ARMA, to appear]: a variant of the
Lin-Liu model, introduced by Sun and Liu (2009), for vectorial director field d

2. [E. Feireisl, E.R., G. Schimperna, A. Zarnescu, paper in preparation]: a recent
Ball-Majumdar Q-tensorial model preserving the physical eigenvalue constraint on
the traceless and symmetric matrices Q
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the traceless and symmetric matrices Q
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Model 1: the d-vectorial Lin-Liu model

• The time evolution of the velocity field u is governed by the incompressible
Navier-Stokes system, with a non-isotropic stress tensor depending on the gradients
of the velocity and of the director field d, where the transport (viscosity) coefficients
vary with temperature

• The dynamics of d is described by means of a parabolic equation of Ginzburg-Landau
type, with a suitable penalization term to relax the constraint |d| = 1

• The entropic formulation: A total energy balance together with an entropy
inequality, governing the dynamics of the absolute temperature θ of the system

=⇒ The proposed model is shown compatible with First and Second laws of
thermodynamics, and the existence of global-in-time weak solutions for the
resulting PDE system is established, without any essential restriction on the size of
the data, or on the space dimension, or on the viscosity coefficient
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The director field dynamics

We assume that the driving force governing the dynamics of the director d is of
“gradient type” ∂dF , where the free-energy functional F is given by

F =
|∇xd|2

2
+ W (d)− θ log θ

W penalizes the deviation of the length |d| from its natural value 1; generally, W is
assumed to be a sum of a dominating convex (and possibly non smooth) part and a
smooth non-convex perturbation of controlled growth. E.g. W (d) = (|d|2 − 1)2

Consequently, d satisfies the following equation

dt + u · ∇xd−d · ∇xu = ∆d− ∂dW (d)

where the last term accounts for stretching of the director field induced by the
straining of the fluid

The presence of the stretching term d · ∇xu in the d-equation prevents us from
applying any maximum principle. Hence, we cannot find any L∞ bound on d (useful
in order to handle the nonlinearities)
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The momentum balance

♦ In the context of nematic liquid crystals, we have the incompressibility constraint

div u = 0

♦ By virtue of Newton’s second law, the balance of momentum reads

ut + u · ∇xu +∇xp = div S + div σnd + g

where p is the pressure, and

• the stress tensors are

S =
µ(θ)

2

(
∇xu +∇t

xu
)
, σnd = −∇xd�∇xd + (∂dW (d)−∆d)⊗ d

where ∇xd�∇xd :=
∑

k ∂i dk∂jdk , µ is a temperature-dependent viscosity
coefficient

• The presence of the stretching term d · ∇xu in the d-equation prevents us from
applying any maximum principle. Hence, we cannot find any L∞ bound on d. We
will need a weak formulation of the momentum balance
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E. Rocca (Università di Milano) Weak formulations of PDEs in thermomechanics June 11–15, 2012 27 / 50



The momentum balance

♦ In the context of nematic liquid crystals, we have the incompressibility constraint

div u = 0

♦ By virtue of Newton’s second law, the balance of momentum reads

ut + u · ∇xu +∇xp = div S + div σnd + g

where p is the pressure, and

• the stress tensors are

S =
µ(θ)

2

(
∇xu +∇t

xu
)
, σnd = −∇xd�∇xd + (∂dW (d)−∆d)⊗ d

where ∇xd�∇xd :=
∑

k ∂i dk∂jdk , µ is a temperature-dependent viscosity
coefficient

• The presence of the stretching term d · ∇xu in the d-equation prevents us from
applying any maximum principle. Hence, we cannot find any L∞ bound on d. We
will need a weak formulation of the momentum balance
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The total energy balance

∂t

(
1

2
|u|2 + e

)
+ u · ∇x

(
1

2
|u|2 + e

)
+ div

(
pu + qd+qnd − Su− σndu

)
= g · u+ div

(
∇xd · (∆d− ∂dW (d))

)
with the internal energy

e =
|∇xd|2

2
+ W (d) + θ

and the flux

q = qd + qnd = −k(θ)∇xθ − h(θ)(d · ∇xθ)d−∇xd · ∇xu · d

together with

The entropy inequality

H(θ)t + u · ∇xH(θ) + div(H ′(θ)qd)

≥ H ′(θ)
(

S : ∇xu+|∆d− ∂dW (d)|2
)

+ H ′′(θ)qd · ∇xθ

holding for any smooth, non-decreasing and concave function H.
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The initial and boundary conditions

In order to avoid the occurrence of boundary layers, we suppose that the boundary is
impermeable and perfectly smooth imposing the complete slip boundary conditions:

u · n|∂Ω = 0, [(S + σnd)n]× n|∂Ω = 0

together with the no-flux boundary condition for the temperature

qd · n|∂Ω = 0

and the Neumann boundary condition for the director field

∇xdi · n|∂Ω = 0 for i = 1, 2, 3

The last relation accounts for the fact that there is no contribution to the surface force
from the director d. It is also suitable for implementation of a numerical scheme.
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A weak solution is a triple (u, d, θ) satisfying:

the momentum equations (ϕ ∈ C∞0 ([0,T )× Ω; R3), ϕ · n|∂Ω = 0):

∫ T

0

∫
Ω

(
u · ∂tϕ+ u⊗ u : ∇xϕ+ p divϕ

)
=

∫ T

0

∫
Ω

(S + σnd ) : ∇xϕ−
∫

Ω
g · ϕ−

∫
Ω

u0 · ϕ(0, ·) ;

the director equation: ∂td + u · ∇x d− d · ∇x u = ∆d− ∂dW (d) a.e., ∇x di · n|∂Ω = 0;

the total energy balance (ϕ ∈ C∞0 ([0,T )× Ω), e0 = λ
2
|∇xd0|2 + λW (d0) + θ0):∫ T

0

∫
Ω

((
1

2
|u|2 + e

)
∂tϕ

)
+

∫ T

0

∫
Ω

((
1

2
|u|2 + e

)
u · ∇xϕ

)
+

∫ T

0

∫
Ω

(
pu + q− Su− σnd u

)
· ∇xϕ

=

∫ T

0

∫
Ω

(
∇x d · (∆d− ∂dW (d))

)
· ∇xϕ−

∫ T

0

∫
Ω

g · uϕ−
∫

Ω

(
1

2
|u0|2 + e0

)
ϕ(0, ·) ;

the entropy production inequality (ϕ ∈ C∞0 ([0,T )× Ω), ϕ ≥ 0):∫ T

0

∫
Ω

H(θ)∂tϕ+

∫ T

0

∫
Ω

(
H(θ)u + H′(θ)qd

)
· ∇xϕ

≤ −
∫ T

0

∫
Ω

(
H′(θ)

(
S : ∇x u + |∆d− ∂dW (d)|2

)
+ H′′(θ)qd · ∇xθ

)
ϕ−

∫
Ω

H(θ0)ϕ(0, ·)

for any smooth, non-decreasing and concave function H.
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2
|u0|2 + e0

)
ϕ(0, ·) ;

the entropy production inequality (ϕ ∈ C∞0 ([0,T )× Ω), ϕ ≥ 0):

∫ T

0

∫
Ω

H(θ)∂tϕ+

∫ T

0

∫
Ω

(
H(θ)u + H′(θ)qd

)
· ∇xϕ

≤ −
∫ T

0

∫
Ω

(
H′(θ)

(
S : ∇x u + |∆d− ∂dW (d)|2

)
+ H′′(θ)qd · ∇xθ

)
ϕ−

∫
Ω

H(θ0)ϕ(0, ·)

for any smooth, non-decreasing and concave function H.
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The existence theorem [E. Feireisl, M. Frémond, E. R., G. Schimperna, ARMA, to

appear]

Assume that Ω ⊂ R3 is a bounded domain of class C 2+ν , g ∈ L2((0,T )× Ω; R3),

W ∈ C 2(R3), W ≥ 0, W convex for all |d| ≥ D0, lim|d|→∞W (d) =∞
The transport coefficients µ, k, and h are continuously differentiable functions
satisfying

0 < µ ≤ µ(θ) ≤ µ, 0 < k ≤ k(θ), h(θ) ≤ k for all θ ≥ 0

and the initial data satisfy

u0 ∈ L2(Ω; R3), div u0 = 0, d0 ∈W 1,2(Ω; R3), W (d0) ∈ L1(Ω),

θ0 ∈ L1(Ω), ess infΩ θ0 > 0.

Then our problem possesses a weak solution (u, d, θ) belonging to the class

u ∈ L∞(0,T ; L2(Ω; R3)) ∩ L2(0,T ; W 1,2(Ω; R3)),

d ∈ L∞(0,T ; W 1,2(Ω; R3)) ∩ L2(0,T ; W 2,2(Ω; R3)),

W (d) ∈ L∞(0,T ; L1(Ω)) ∩ L5/3((0,T )× Ω),

θ ∈ L∞(0,T ; L1(Ω)) ∩ Lp(0,T ; W 1,p(Ω)), 1 ≤ p < 5/4, θ > 0 a.e. in (0,T )× Ω,

with the pressure p
p ∈ L5/3((0,T )× Ω).
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An idea of the proof

We perform suitable a-priori estimates which coincide with the regularity class
stated in the Theorem

It can be shown that the solution set of our problem is weakly stable (compact)
with respect to these bounds, namely, any sequence of (weak) solutions that
complies with the uniform bounds established above has a subsequence that
converges to some limit

Hence, we construct a suitable family of approximate problems (via
Faedo-Galerkin scheme + regularizing terms in the momentum equation)
whose solutions weakly converge (up to subsequences) to limit functions which solve
the problem in the weak sense
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Model 2: the Q-tensorial Ball-Majumdar model

We work in the three-dimensional torus Ω ⊂ R3 in order to avoid complications connected with
boundary conditions.

The free energy density takes the form

F =
1

2
|∇Q|2 + fB(θ,Q)−θ log θ

where fB is bulk the configuration potential:

fB(θ,Q) = f (Q)− U(θ)G(Q)

f is the convex l.s.c. and singular Ball-Majumdar potential

U changes in sign at a critical temperature: U(θ) = α(θ − θ∗) for θ ∼ θ∗ with a controlled
growth for large θ

e.g. G(Q) = tr(Q2)

Theorem [E. Feireisl, E.R., G. Schimperna, A. Zarnescu, paper in preparation] There exists at
least one weak solution to a system coupling

a weak momentum equation for u

a gradient-type equation for Q
an entropy inequality+total energy balance for θ

for finite-energy initial data.
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The generalized principle of virtual powers: damage phenomena
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The generalized principle of virtual powers in damage phenomena

The scope: The analysis of the initial boundary-value problem for the following PDE
system:

c(θ)θt + χtθ − div(k(θ)∇θ) = g

utt − div(χε(ut) + χε(u)) = f

χt + ∂I(−∞,0](χt)+Asχ+ W ′(χ) 3 −|ε(u)|2

2
+ θ

θ is the absolute temperature of the system

u the vector of small displacements

χ is the damage parameter, assessing the soundness of the material in damage (for
the completely damaged χ = 0 and the undamaged state χ = 1, respectively, while
0 < χ < 1: partial damage)

[joint works with R. Rossi, J. Differential Equations and Appl. Math (2008) and preprint

arXiv:1205.3578v1 (2012)]
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E. Rocca (Università di Milano) Weak formulations of PDEs in thermomechanics June 11–15, 2012 35 / 50



The aim: deal with the possible degeneracy in the momentum equation

Main aim: We shall let χ vanishes at the threshold value 0 , not enforce separation of χ

from the threshold value 0, and accordingly we will allow for general initial configurations
of χ

=⇒ We shall approximate the system with a non-degenerating one, where we replace the
momentum equation with

utt − div((χ+ δ)ε(ut) + (χ+ δ)ε(u)) = f for δ > 0

It seems to us that both the coefficients need to be truncated when taking the
degenerate limit in the momentum equation. Indeed, on the one hand the truncation in
front of ε(ut) allows us to deal with the main part of the elliptic operator. On the other
hand, in order to pass to the limit in the quadratic term on the right-hand side of χ-eq.,
we will also need to truncate the coefficient of ε(u).
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Free energy and Dissipation, cf. [M. Frémond, Phase Change in Mechanics, Lecture

Notes of the Unione Matematica Italiana 13, Springer-Verlag, Berlin, 2012]

The free-energy F :

F =

∫
Ω

(
f (θ) + χ

|ε(u)|2

2
+

as(χ, χ)

2
+ W (χ)− θχ

)
dx

f is a concave function

as(z1, z2) :=

∫
Ω

∫
Ω

(
∇z1(x)−∇z1(y)

)
·
(
∇z2(x)−∇z2(y)

)
|x − y |d+2(s−1)

dx dy is the bilinear form

associated to the fractional s−Laplacian As

s > d/2: we need the embedding of Hs(Ω) into C0(Ω)

W = β̂ + γ̂, γ̂ ∈ C2(R), β̂ proper, convex, l.s.c., dom(β̂) = [0, 1]

The pseudo-potential P:

P =
k(θ)

2
|∇θ|2 +

1

2
|χt |2 + χ

|ε(ut)|2

2
+ I(−∞,0](χt)

k the heat conductivity: coupled conditions with the specific heat c(θ) = f (θ)− θf ′(θ)

I(−∞,0](χt) = 0 if χt ∈ (−∞, 0], I(−∞,0](χt) = +∞ otherwise
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The modelling

The momentum equation

utt − div σ = f
(
σ = σnd + σd = ∂F

∂ε(u)
+ ∂P
∂ε(ut )

)
becomes

utt − div(χε(ut) + χε(u)) = f

The principle of virtual powers

B − div H = 0
(
B = ∂F

∂χ + ∂P
∂χt

,H = ∂F
∂∇χ

)
becomes

χt + ∂I(−∞,0](χt)+Asχ+ W ′(χ) 3 − |ε(u)|2
2

+ θ

The internal energy balance

et + div q = g + σ : ε(ut) + Bχt + H · ∇χt

(
e = F − θ ∂F

∂θ
, q = ∂P

∂∇θ

)
becomes

c(θ)θt + χtθ − div(k(θ)∇θ) = g+|χt |2 + χ|ε(ut)|2
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Main difficulties and weak formulation

We replace the momentum equation with a non-degenerating one

utt − div((χ+ δ)ε(ut) + (χ+ δ)ε(u)) = f, δ > 0 (1)

We have to handle the nonlinear coupling between the single equations: in the heat
equation (even with the small perturbation assumption)

c(θ)θt + χtθ − div(k(θ)∇θ) = g

and in the phase equation

χt + ∂I(−∞,0](χt) + Asχ+ W ′(χ) 3 − |ε(u)|2
2

+ θ (2)

A major difficulty stems from the simultaneous presence in (2) of ∂I(−∞,0](χt) and W ′(χ)

and from the low regularities of − |ε(u)|2
2

+ θ on the r.h.s. =⇒ follow the approach of

[Heinemann, Kraus, WIAS preprints (2010)] and consider a suitable weak formulation of (2)
consisting of a one-sided variational inequality + an energy inequality =⇒ generalized
principle of virtual powers

For the analysis of the degenerate limit δ ↘ 0 we have carefully adapted techniques from
[Bouchitté, Mielke, Roub́ıček, ZAMP (2009)] and [Mielke, Roub́ıček, Zeman, Comput.
Methods Appl. Mech. Engrg. (2011)] to the case of a rate-dependent equation for χ, also
coupled with the temperature equation.
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Energy vs Enthalpy

In order to deal with the low regularity of θ, rewrite the internal energy equation

c(θ)θt + χtθ − div(k(θ)∇θ) = g

as the enthalpy equation

wt + χtΘ(w)− div(K(w)∇w) = g where

w = h(θ) :=

∫ θ

0
c(s) ds, Θ(w) :=

{
h−1(w) if w ≥ 0,

0 if w < 0,
K(w) :=

k(Θ(w))

c(Θ(w))

We assume that

c ∈ C 0([0,+∞); [0,+∞))

∃σ1 ≥ σ > 2d
d+2

: c0(1+θ)σ−1 ≤ c(θ) ≤ c1(1+θ)σ1−1 =⇒ h is strictly increasing

the function k : [0,+∞)→ [0,+∞) is continuous, and

∃c2, c3 > 0 ∀θ ∈ [0,+∞) : c2c(θ) ≤ k(θ) ≤ c3(c(θ) + 1)

=⇒ ∃ c̄ > 0 ∀w ∈ R : c2 ≤ K(w) ≤ c̄

=⇒ for every s ∈ (1,∞) ∃Cs > 0 ∀w ∈ L1(Ω) : ‖Θ(w)‖Ls (Ω) ≤ Cs(‖w‖1/σ

Ls/σ(Ω)
+ 1)
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The approximating non-degenerate Problem [Pδ]

Given δ > 0, take W ′ = ∂I[0,+∞) + γ, γ ∈ C1(R), find (measurable) functions

w ∈ Lr (0,T ; W 1,r (Ω)) ∩ L∞(0,T ; L1(Ω)) ∩ BV([0,T ]; W 1,r′ (Ω)∗)

u ∈ H1(0,T ; H2(Ω; Rd )) ∩W 1,∞(0,T ; H1
0 (Ω)) ∩ H2(0,T ; L2(Ω; Rd ))

χ ∈ L∞(0,T ; Hs(Ω)) ∩ H1(0,T ; L2(Ω))

for every 1 ≤ r < d+2
d+1

, fulfilling the initial conditions

u(0, x) = u0(x), ut(0, x) = v0(x) for a.e. x ∈ Ω

χ(0, x) = χ0(x) for a.e. x ∈ Ω

the equations (for every ϕ ∈ C0([0,T ]; W 1,r′ (Ω)) ∩W 1,r′ (0,T ; Lr′ (Ω)) and t ∈ (0,T ])∫
Ω
ϕ(t) w(t)(dx)−

∫ t

0

∫
Ω

wϕt dx +

∫ t

0

∫
Ω

χtΘ(w)ϕ dx +

∫ t

0

∫
Ω

K(w)∇w∇ϕdx

=

∫ t

0

∫
Ω

gϕ+

∫
Ω

w0ϕ(0) dx

utt − div ((χ+ δ)ε(ut) + (χ+ δ)ε(u)) = f in H−1(Ω; Rd ) a.e. in (0,T )

and the subdifferential inclusion “in a suitable sense”

χt +∂I(−∞,0](χt) +Asχ+∂I[0,+∞)(χ) +γ(χ) 3 −
|ε(u)|2

2
+ Θ(w) in H−s(Ω) and a.e. in (0,T )
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Generalized principle of virtual powers for δ > 0 [E.R., R. Rossi, preprint

arXiv:1205.3578v1 (2012)]

[Theorem 1] (δ > 0) Under the previous assumptions on the data, then,

[1.] Problem [Pδ] admits a weak solution (w , u, χ), which, beside fulfilling the enthalpy and
momentum equations, satisfies χt(x , t) ≤ 0 for almost all t ∈ (0,T ), and
(∀ϕ ∈ L2(0,T ; Hs

+(Ω)) ∩ L∞(Q)) the one-sided inequality∫ T

0

∫
Ω

χtϕ+ as(χ, ϕ) + ξϕ+ γ(χ)ϕ+
|ε(u)|2

2
ϕ−Θ(w)ϕ≤ 0

with ξ ∈ ∂I[0,+∞)(χ) in the following sense:

ξ ∈ L1(0,T ; L1(Ω)), 〈ξ(t), ϕ− χ(t)〉Hs (Ω) ≤ 0 ∀ϕ ∈ Hs
+(Ω), a.e. t ∈ (0,T )

and the energy inequality for all t ∈ (0,T ], for s = 0, and for almost all 0 < s ≤ t:∫ t

s

∫
Ω
|χt |2 dx dr +

1

2
as(χ(t), χ(t)) +

∫
Ω

W (χ(t)) dx

≤
1

2
as(χ(s), χ(s)) +

∫
Ω

W (χ(s)) dx +

∫ t

s

∫
Ω

χt

(
−
|ε(u)|2

2
+ Θ(w)

)
dx dr

[2.] Suppose in addition that g(x , t) ≥ 0, θ0 > θ0 ≥ 0 a.e. Then θ(x , t) := Θ(w(x , t)) ≥ θ0 ≥ 0
a.e.

Uniqueness of solutions for the irreversible system, even in the isothermal case, is still an open

problem. This is mainly due to the doubly nonlinear character of the χ equation.
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Generalized principle of virtual powers vs classical phase inclusion

Any weak solution (w , u, χ) fulfills the total energy inequality for all t ∈ (0,T ], for s = 0,
and for almost all 0 < s ≤ t∫

Ω
w(t)(dx) +

1

2

∫
Ω
|ut(t)|2 dx +

∫ t

s

∫
Ω
|χt |2 dx +

∫ t

s
(χ+ δ)|ε(ut)|2

+
1

2
(χ(t) + δ)|ε(u(t))|2 +

1

2
as(χ(t), χ(t)) +

∫
Ω

W (χ(t)) dx

≤
∫

Ω
w(s)(dx) +

1

2

∫
Ω
|ut(s)|2 dx +

1

2
(χ(s) + δ)|ε(u(s))|2 +

1

2
as(χ(s), χ(s))

+

∫
Ω

W (χ(s)) dx +

∫ t

s

∫
Ω

f · ut dx +

∫ t

s

∫
Ω

g dx

If (w , u, χ) are “more regular” and satisfy the notion of weak solution, then, differentiating
the energy inequality and using the chain rule, we conclude that (w , u, χ, ξ) comply with

〈χt(t) + As(χ(t)) + ξ(t) + γ(χ(t)) +
|ε(u)|2

2
−Θ(w(t)), χt(t)〉

Hs (Ω)
≤ 0 for a.e.t

Using the one-sided inequality we obtain the classical phase inclusion:

∃ ζ ∈ L2(0,T ; L2(Ω)) with ζ(x , t)∈ ∂I(−∞,0](χt(x , t)) a.e. s.t.

χt + ζ + Asχ+ ξ + γ(χ) = −
|ε(u)|2

2
+ Θ(w) a.e.
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the energy inequality and using the chain rule, we conclude that (w , u, χ, ξ) comply with

〈χt(t) + As(χ(t)) + ξ(t) + γ(χ(t)) +
|ε(u)|2

2
−Θ(w(t)), χt(t)〉

Hs (Ω)
≤ 0 for a.e.t

Using the one-sided inequality we obtain the classical phase inclusion:

∃ ζ ∈ L2(0,T ; L2(Ω)) with ζ(x , t)∈ ∂I(−∞,0](χt(x , t)) a.e. s.t.

χt + ζ + Asχ+ ξ + γ(χ) = −
|ε(u)|2

2
+ Θ(w) a.e.
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The techniques used in the proof of Thm. 1 (δ > 0)

We pass to the limit in a carefully designed time-discretization scheme

The presence of the s-Laplacian with s > d/2 =⇒ an estimate for χ in
L∞(0,T ; Hs(Ω)) (from the total energy balance) =⇒ a suitable regularity estimate
on the displacement variable u =⇒ an L∞(0,T ; L2(Ω))-bound on the quadratic
nonlinearity |ε(u)|2 on the right-hand side of

χt + ∂I(−∞,0](χt)+Asχ+ W ′(χ) 3 −|ε(u)|2

2
+ Θ(w)

A Boccardo-Gallouët-type estimates combined with the Gagliardo-Nirenberg
inequality applied to the enthalpy equation in order to obtain an
Lr (0,T ; W 1,r (Ω))-estimate on the enthalpy w (and hence on Θ(w))

wt + χtΘ(w)− div(K(w)∇w)) = g

E. Rocca (Università di Milano) Weak formulations of PDEs in thermomechanics June 11–15, 2012 44 / 50



The techniques used in the proof of Thm. 1 (δ > 0)

We pass to the limit in a carefully designed time-discretization scheme

The presence of the s-Laplacian with s > d/2 =⇒ an estimate for χ in
L∞(0,T ; Hs(Ω)) (from the total energy balance) =⇒ a suitable regularity estimate
on the displacement variable u =⇒ an L∞(0,T ; L2(Ω))-bound on the quadratic
nonlinearity |ε(u)|2 on the right-hand side of

χt + ∂I(−∞,0](χt)+Asχ+ W ′(χ) 3 −|ε(u)|2

2
+ Θ(w)
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The total energy inequality in the degenerating case δ ↘ 0

Rewrite the momentum equation

∂2
t uδ − div((χ+ δ)ε(∂tuδ))− div((χ+ δ)ε(uδ)) = f

using the new variables (quasi-stresses) µδ :=
√
χδ + δ ε(∂tuδ), and

ηδ :=
√
χδ + δ ε(uδ):

∂2
t uδ − div(

√
χ+ δµδ)− div(

√
χ+ δ ηδ) = f

The total energy inequality for (wδ, uδ, χδ) is∫
Ω

wδ(t)(dx) +
1

2

∫
Ω
|∂tuδ(t)|2 dx +

∫ t

s

∫
Ω
|∂tχδ|2 dx +

1

2

∫ t

s
|µδ(r)|2

+
|ηδ(t)|2

2
+

1

2
as(χδ(t), χδ(t)) +

∫
Ω

W (χδ(t)) dx

≤
∫

Ω
wδ(s)(dx) +

1

2

∫
Ω
|∂tuδ(s)|2 dx +

|ηδ(s)|2

2
+

1

2
as(χδ(s), χδ(s))

+

∫
Ω

W (χδ(s)) dx +

∫ t

s

∫
Ω

f · ∂tuδ dx +

∫ t

s

∫
Ω

g dx
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E. Rocca (Università di Milano) Weak formulations of PDEs in thermomechanics June 11–15, 2012 45 / 50



The degenerate problem (δ = 0): the existence theorem [E.R., R. Rossi, preprint

arXiv:1205.3578v1 (2012)]

[Theorem 2] (δ = 0) Under the previous assumptions, there exist

u ∈W 1,∞(0,T ; L2(Ω)) ∩ H2(0,T ; H−1(Ω)), µ ∈ L2(0,T ; L2(Ω)), η ∈ L∞(0,T ; L2(Ω)),

w ∈ Lr (0,T ; W 1,r (Ω)) ∩ L∞(0,T ; L1(Ω)) ∩ BV([0,T ]; W 1,r′ (Ω)∗)

χ ∈ L∞(0,T ; Hs(Ω)) ∩ H1(0,T ; L2(Ω)), χ(x , t) ≥ 0, χt(x , t) ≤ 0 a.e.

such that it holds true (a.e. in any open set A ⊂ Ω× (0,T ): χ > 0 a.e. in A)

µ =
√
χ ε(ut), η =

√
χ ε(u) ,

the weak enthalpy equation and the weak momentum and phase relations

∂2
t u− div(

√
χµ)− div(

√
χη)) = f in H−1(Ω; Rd ), a.e. in (0,T ) ,∫ T

0

∫
Ω

(∂tχ+ γ(χ))ϕdx +

∫ T

0
as(χ, ϕ) ≤

∫ T

0

∫
Ω

(
−

1

2χ
|η|2 + Θ(w)

)
ϕ dx

for all ϕ ∈ L2(0,T ; Hs
+(Ω)) ∩ L∞(Q) with supp(ϕ) ⊂ {χ > 0},

together with the total energy inequality (for almost all t ∈ (0,T ])∫
Ω

w(t)(dx) +

∫ t

0

∫
Ω
|χt |2 dx +

1

2

∫ t

0
|µ(r)|2 +

∫
Ω

W (χ(t)) dx + J (t) =

∫
Ω

w0 dx

+
1

2

∫
Ω
|v0|2 dx +

1

2
χ0|ε(u0)|2 +

1

2
as(χ0, χ0) +

∫
Ω

W (χ0) dx +

∫ t

0

∫
Ω

f · ut dxdr +

∫ t

0

∫
Ω

g dx

with

∫ t

0
J (r) dr ≥

1

2

∫ t

0

(∫
Ω
|ut(r)|2 dx + |η(r)|2 + as(χ(r), χ(r))

)

E. Rocca (Università di Milano) Weak formulations of PDEs in thermomechanics June 11–15, 2012 46 / 50



The degenerate problem (δ = 0): the existence theorem [E.R., R. Rossi, preprint

arXiv:1205.3578v1 (2012)]

[Theorem 2] (δ = 0) Under the previous assumptions, there exist

u ∈W 1,∞(0,T ; L2(Ω)) ∩ H2(0,T ; H−1(Ω)), µ ∈ L2(0,T ; L2(Ω)), η ∈ L∞(0,T ; L2(Ω)),

w ∈ Lr (0,T ; W 1,r (Ω)) ∩ L∞(0,T ; L1(Ω)) ∩ BV([0,T ]; W 1,r′ (Ω)∗)

χ ∈ L∞(0,T ; Hs(Ω)) ∩ H1(0,T ; L2(Ω)), χ(x , t) ≥ 0, χt(x , t) ≤ 0 a.e.

such that

it holds true (a.e. in any open set A ⊂ Ω× (0,T ): χ > 0 a.e. in A)

µ =
√
χ ε(ut), η =

√
χ ε(u) ,

the weak enthalpy equation and the weak momentum and phase relations

∂2
t u− div(

√
χµ)− div(

√
χη)) = f in H−1(Ω; Rd ), a.e. in (0,T ) ,∫ T

0

∫
Ω

(∂tχ+ γ(χ))ϕdx +

∫ T

0
as(χ, ϕ) ≤

∫ T

0

∫
Ω

(
−

1

2χ
|η|2 + Θ(w)

)
ϕ dx

for all ϕ ∈ L2(0,T ; Hs
+(Ω)) ∩ L∞(Q) with supp(ϕ) ⊂ {χ > 0},

together with the total energy inequality (for almost all t ∈ (0,T ])∫
Ω

w(t)(dx) +

∫ t

0

∫
Ω
|χt |2 dx +

1

2

∫ t

0
|µ(r)|2 +

∫
Ω

W (χ(t)) dx + J (t) =

∫
Ω

w0 dx

+
1

2

∫
Ω
|v0|2 dx +

1

2
χ0|ε(u0)|2 +

1

2
as(χ0, χ0) +

∫
Ω

W (χ0) dx +

∫ t

0

∫
Ω

f · ut dxdr +

∫ t

0

∫
Ω

g dx

with

∫ t

0
J (r) dr ≥

1

2

∫ t

0

(∫
Ω
|ut(r)|2 dx + |η(r)|2 + as(χ(r), χ(r))

)
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A comparison between the solution notions

Weak solution to the degenerating irreversible full system (δ = 0) ⇐⇒ weak solution to
the non-degenerating irreversible full system (δ > 0)

Suppose that the solution is more regular and χ > 0 a.e. Then the following identities hold true:

µ =
√
χ ε(ut), η =

√
χ ε(u) a.e. in Ω× (0,T ) .

Hence ∫ T

0

∫
Ω

(∂tχ+ γ(χ))ϕdx +

∫ T

0
as(χ, ϕ) ≤

∫ T

0

∫
Ω

(
−

1

2χ
|η|2ϕ+ Θ(w)ϕ

)
dx

for all ϕ ∈ L2(0,T ; Hs
+(Ω)) ∩ L∞(Q) with supp(ϕ) ⊂ {χ > 0},

coincides with ∫ T

0

∫
Ω

χtϕ+ as(χ, ϕ) + ξϕ+ γ(χ)ϕ+
|ε(u)|2

2
ϕ−Θ(w)ϕ ≤ 0

∀ϕ ∈ L2(0,T ; Hs
+(Ω)) ∩ L∞(Q) and with ξ ∈ ∂I[0,+∞)(χ). Subtracting from the degenerate

total energy inequality the weak enthalpy equation tested by 1, we recover (a.e. in (0,T ]) the
energy inequality:∫ t

0

∫
Ω
|χt |2 dx dr +

1

2
as(χ(t), χ(t)) +

∫
Ω

W (χ(t)) dx

≤
1

2
as(χ0, χ0) +

∫
Ω

W (χ0) dx +

∫ t

0

∫
Ω

χt

(
−
|ε(u)|2

2
+ Θ(w)

)
dx dr
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∫ T

0
as(χ, ϕ) ≤

∫ T

0

∫
Ω

(
−

1

2χ
|η|2ϕ+ Θ(w)ϕ

)
dx

for all ϕ ∈ L2(0,T ; Hs
+(Ω)) ∩ L∞(Q) with supp(ϕ) ⊂ {χ > 0},

coincides with ∫ T

0

∫
Ω

χtϕ+ as(χ, ϕ) + ξϕ+ γ(χ)ϕ+
|ε(u)|2

2
ϕ−Θ(w)ϕ ≤ 0

∀ϕ ∈ L2(0,T ; Hs
+(Ω)) ∩ L∞(Q) and with ξ ∈ ∂I[0,+∞)(χ). Subtracting from the degenerate

total energy inequality the weak enthalpy equation tested by 1, we recover (a.e. in (0,T ]) the
energy inequality:∫ t

0

∫
Ω
|χt |2 dx dr +

1

2
as(χ(t), χ(t)) +

∫
Ω

W (χ(t)) dx

≤
1

2
as(χ0, χ0) +

∫
Ω

W (χ0) dx +

∫ t

0

∫
Ω

χt

(
−
|ε(u)|2

2
+ Θ(w)

)
dx dr
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Work in progress: an entropic formulation for the damage phenomena

We worked here with the small perturbation assumption, i.e. neglecting the quadratic
contribution on the r.h.s in the internal energy balance:

θt + χtθ −∆θ = |χt |2 + χ|ε(ut)|2

Is should be possible to couple the weak equations for u and χ with

X the entropy production∫ T

0

∫
Ω

(
(log θ + χ) ∂tϕ−∇ log θ · ∇ϕ

)
dxdt

≤
∫ T

0

∫
Ω

1

θ

(
−|χt |2 − χ|ε(ut)|2 −∇ log θ · ∇θ

)
ϕdxdt

for every test function ϕ ∈ D(QT ), ϕ ≥ 0 and

X the energy conservation

E(t) = E(0) for a.e. t ∈ [0,T ],

where

E ≡
∫

Ω

(
θ + W (χ) +

1

2
as(χ, χ) +

|ut |2

2
+ χ |ε(u)|2

2

)
dx .

This is still a work in progress (with R. Rossi)...
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Possible further application

A fluid-mechanical theory for two-phase mixtures of fluids faces a well known mathematical
difficulty:

I the movement of the interfaces =⇒ Lagrangian description

I the bulk fluid flow =⇒ Eulerian framework

The phase-field methods overcome this problem by postulating the existence of a “diffuse”
interface spread over a possibly narrow region covering the “real” sharp interface boundary:

I a phase variable χ (concentration difference of the two components) is introduced to
demarcate the two species and to indicate the location of the interface

I mixing energy f is defined in terms of χ and its spatial gradient

The time evolution of χ =⇒ convection-diffusion equation: variants of Cahn-Hilliard or
Allen-Cahn or other types of dynamics (cf. [Hohenberg, Halperin (1977)], [Anderson,
McFadden, Wheeler (1998)], [Gurtin, Polignone, Vinals (1996)], etc.)

We aim to consider the non-isothermal version of [H. Abels, ARMA (2009)]:

div v = 0 , ∂tv + div(v ⊗ v) +∇p = div S−µ∇xϕ , S = ν(θ, ϕ)
(
∇x v +∇t

x v
)

(1)

∂tθ + div (θv) + div q = S : ∇x v+|∇xµ|2 (2)

∂tϕ+ v · ∇xϕ = ∆µ , µ = −∆ϕ+ W ′(ϕ)− λ(θ) (3)

Entropic notion of solution is needed in order to interpret the internal energy balance (2) ...
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Thanks for your attention!

cf. http://www.mat.unimi.it/users/rocca/
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