A degenerating PDE system for phase transitions and damage: global existence of weak solutions

E. Rocca

Università degli Studi di Milano

Variational Models and Methods for Evolution

Levico Terme (Italy), September 10-12, 2012

joint work with Riccarda Rossi (University of Brescia)

Supported by the FP7-IDEAS-ERC-StG Grant "EntroPhase" #256872

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 二厘

• Introduce the nonlinear PDE system arising in thermomechanics we deal with

- Introduce the nonlinear PDE system arising in thermomechanics we deal with
- The main key ideas in order to handle nonlinearities + degeneracy \implies *entropic formulation* + *generalization of the principle of virtual powers*

< ロ > < 同 > < 回 > < 回 >

- Introduce the nonlinear PDE system arising in thermomechanics we deal with
- The main key ideas in order to handle nonlinearities + degeneracy \implies *entropic formulation* + *generalization of the principle of virtual powers*
- A first application of the *entropic formulation* to a solid-liquid phase transition model [joint work with E. Feireisl, H. Petzeltová, M2AS (2009)]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Introduce the nonlinear PDE system arising in thermomechanics we deal with
- The main key ideas in order to handle nonlinearities + degeneracy \implies *entropic formulation* + *generalization of the principle of virtual powers*
- A first application of the *entropic formulation* to a solid-liquid phase transition model [joint work with E. Feireisl, H. Petzeltová, M2AS (2009)]
- The application of the *generalization of the principle of virtual powers* to the damage phenomena:
 - ◊ the non degenerating case [joint works with R. Rossi, J. Differential Equations and Appl. Math (2008)]
 - ♦ the degenerate case [joint work with R. Rossi, preprint arXiv:1205.3578v1 (2012)]

イロト 不得 トイヨト イヨト 二日

- Introduce the nonlinear PDE system arising in thermomechanics we deal with
- The main key ideas in order to handle nonlinearities + degeneracy \implies *entropic formulation* + *generalization of the principle of virtual powers*
- A first application of the *entropic formulation* to a solid-liquid phase transition model [joint work with E. Feireisl, H. Petzeltová, M2AS (2009)]
- The application of the *generalization of the principle of virtual powers* to the damage phenomena:
 - the non degenerating case [joint works with R. Rossi, J. Differential Equations and Appl. Math (2008)]
 - ◊ the degenerate case [joint work with R. Rossi, preprint arXiv:1205.3578v1 (2012)]
- The potential future perspectives: to apply the *entropic formulation* to damage phenomena

Mathematical problem arising from Thermomechanics

Mathematical problem arising from Thermomechanics

Damage phenomena:

・ロト ・部ト ・モト ・モト

Mathematical problem arising from Thermomechanics

Damage phenomena:

• aim: deal with diffuse interface models in thermoviscoelasticity accounting for

- the absolute temperature heta
- the evolution of the displacement variables \boldsymbol{u}
- the damage parameter χ

where the internal energy balance display nonlinear dissipation and the momentum equation contains χ -dependent elliptic operators, which may degenerate at the *pure phases*

$$c(\theta)\theta_t + \chi_t \theta - \rho \theta \operatorname{div} \mathbf{u}_t - \operatorname{div}(k(\theta)\nabla\theta)) = g + \chi |\varepsilon(\mathbf{u}_t)|^2 + |\chi_t|^2$$
$$\mathbf{u}_{tt} - \operatorname{div}(\chi \varepsilon(\mathbf{u}_t) + \chi \varepsilon(\mathbf{u}) - \rho \theta \mathbf{1}) = \mathbf{f}$$
$$\chi_t + \partial I_{(-\infty,0]}(\chi_t) + A_s \chi + W'(\chi) \ni - \frac{|\varepsilon(\mathbf{u})|^2}{2} + \theta$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

・ロト ・部ト ・モト ・モト

Combining the concept of weak solution satisfying:

Combining the concept of weak solution satisfying:

- **1.** | a suitable *energy conservation* and *entropy inequality* inspired by:
 - 1.1. the works of E. Feireisl and co-authors ([Feireisl, Comput. Math. Appl. (2007)] and [Bulíček, Feireisl, & Málek, Nonlinear Anal. Real World Appl. (2009)]) for heat conduction in fluids

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Combining the concept of weak solution satisfying:

- **1.** | a suitable *energy conservation* and *entropy inequality* inspired by:
 - 1.1. the works of E. Feireisl and co-authors ([Feireisl, Comput. Math. Appl. (2007)] and [Bulíček, Feireisl, & Málek, Nonlinear Anal. Real World Appl. (2009)]) for heat conduction in fluids
- 2. a generalization of the principle of virtual powers inspired by:
 - 2.1. the notion of *energetic solution* A. Mielke and co-authors ([Bouchitté, Mielke, Roubíček, ZAMP. Angew. Math. Phys. (2009) and [Mielke, Roubíček, Zeman, Comput. Methods Appl. Mech. Engrg. (2010)]) for rate-independent processes for damage phenomena and
 - 2.2. a notion of *weak solution* introduced by [Heinemann, Kraus, WIAS preprint 1569 and WIAS preprint 1520, to appear on Adv. Math. Sci. Appl. (2010)] for non-degenerating isothermal diffuse interface models for phase separation and damage

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Entropic formulation: a phase transitions model

In order to show the potential power of this idea we

<ロト < 同ト < ヨト < ヨト

In order to show the potential power of this idea we

... give a description of the method stating more precisely the content of this recent work [E. Feireisl, H. Petzeltovà, E.R., *Existence of solutions to some models of phase changes with microscopic movements*, Math. Meth. Appl. Sci. (2009)] in which this notion of solution has been firstly applied to phase transition models

・ロッ ・ 一 ・ ・ ・ ・

In order to show the potential power of this idea we

... give a description of the method stating more precisely the content of this recent work [E. Feireisl, H. Petzeltovà, E.R., *Existence of solutions to some models of phase changes with microscopic movements*, Math. Meth. Appl. Sci. (2009)] in which this notion of solution has been firstly applied to phase transition models

We consider there a model for solid-liquid phase transitions associated to a nonlinear PDE system

$$\theta_t + \chi_t \theta - \Delta \theta = |\chi_t|^2$$

$$\chi_t - \Delta \chi + W'(\chi) = \theta - \theta_c$$

< ロ > < 同 > < 回 > < 回 >

In order to show the potential power of this idea we

... give a description of the method stating more precisely the content of this recent work [E. Feireisl, H. Petzeltovà, E.R., *Existence of solutions to some models of phase changes with microscopic movements*, Math. Meth. Appl. Sci. (2009)] in which this notion of solution has been firstly applied to phase transition models

We consider there a model for solid-liquid phase transitions associated to a nonlinear PDE system

$$\theta_t + \chi_t \theta - \Delta \theta = |\chi_t|^2$$

$$\chi_t - \Delta \chi + W'(\chi) = \theta - \theta_c$$

• No global-in-time well-posedness result has yet been obtained in the 3D case, even neglecting $|\chi_t|^2$ on the r.h.s.

In order to show the potential power of this idea we

... give a description of the method stating more precisely the content of this recent work [E. Feireisl, H. Petzeltovà, E.R., *Existence of solutions to some models of phase changes with microscopic movements*, Math. Meth. Appl. Sci. (2009)] in which this notion of solution has been firstly applied to phase transition models

We consider there a model for solid-liquid phase transitions associated to a nonlinear PDE system

$$\theta_t + \chi_t \theta - \Delta \theta = |\chi_t|^2$$

$$\chi_t - \Delta \chi + W'(\chi) = \theta - \theta_c$$

- No global-in-time well-posedness result has yet been obtained in the 3D case, even neglecting $|\chi_t|^2$ on the r.h.s.
- A 1D global result is proved in [F. Luterotti and U. Stefanelli, ZAA (2002)]

(日)

In order to show the potential power of this idea we

... give a description of the method stating more precisely the content of this recent work [E. Feireisl, H. Petzeltovà, E.R., *Existence of solutions to some models of phase changes with microscopic movements*, Math. Meth. Appl. Sci. (2009)] in which this notion of solution has been firstly applied to phase transition models

We consider there a model for solid-liquid phase transitions associated to a nonlinear PDE system

$$\theta_t + \chi_t \theta - \Delta \theta = |\chi_t|^2$$

$$\chi_t - \Delta \chi + W'(\chi) = \theta - \theta_c$$

- No global-in-time well-posedness result has yet been obtained in the 3D case, even neglecting $|\chi_t|^2$ on the r.h.s.
- A 1D global result is proved in [F. Luterotti and U. Stefanelli, ZAA (2002)]

 \implies a new notion of solution is needed

(日)

Idea: Start directly from the basic principles of Thermodynamics just assuming that the

Idea: Start directly from the basic principles of Thermodynamics just assuming that the

• entropy of the system is controlled by dissipation

Idea: Start directly from the basic principles of Thermodynamics just assuming that the

• entropy of the system is controlled by dissipation

and

(a)

Idea: Start directly from the basic principles of Thermodynamics just assuming that the

- entropy of the system is controlled by dissipation and
- total energy is conserved during the evolution

Idea: Start directly from the basic principles of Thermodynamics just assuming that the

- entropy of the system is controlled by dissipation and
- total energy is conserved during the evolution

The nonlinear equation for θ (internal energy balance) is replaced by

the entropy inequality + the total energy conservation

(日)

Idea: Start directly from the basic principles of Thermodynamics just assuming that the

- entropy of the system is controlled by dissipation and
- total energy is conserved during the evolution

The nonlinear equation for θ (internal energy balance) is replaced by

the entropy inequality + the total energy conservation

Finally, couple these relations to a suitable phase dynamics.

(日)

Assuming the system is thermally isolated, the entropy balance results

・ロト ・部ト ・モト ・モト

Assuming the system is thermally isolated, the entropy balance results

$$\int_0^T \int_\Omega \mathbf{s}_t \varphi - \int_0^T \int_\Omega \frac{\mathbf{q}}{\theta} \cdot \nabla \varphi = \int_0^T \int_\Omega \mathbf{r} \varphi \quad \forall \varphi \in \mathcal{D}(\overline{Q}_T),$$

r represents the entropy production rate.

Assuming the system is thermally isolated, the entropy balance results

$$\int_0^T \int_\Omega \mathbf{s}_t \varphi - \int_0^T \int_\Omega \frac{\mathbf{q}}{\theta} \cdot \nabla \varphi = \int_0^T \int_\Omega \mathbf{r} \varphi \quad \forall \varphi \in \mathcal{D}(\overline{Q}_T),$$

r represents the entropy production rate. Then, in order to comply with the Clausius-Duhem inequality, we assume:

(i) *r* is a nonnegative measure on $[0, T] \times \overline{\Omega} =: \overline{Q}_T$;

(ii)
$$r \geq \frac{1}{\theta} \left(|\chi_t|^2 - \frac{\mathbf{q} \cdot \nabla \theta}{\theta} \right) \geq 0.$$

A D > A P > A B > A B >

Assuming the system is thermally isolated, the entropy balance results

$$\int_0^T \int_\Omega \mathbf{s}_t \varphi - \int_0^T \int_\Omega \frac{\mathbf{q}}{\theta} \cdot \nabla \varphi = \int_0^T \int_\Omega \mathbf{r} \varphi \quad \forall \varphi \in \mathcal{D}(\overline{Q}_T),$$

r represents the entropy production rate. Then, in order to comply with the Clausius-Duhem inequality, we assume:

(i)
$$r$$
 is a nonnegative measure on $[0, T] \times \overline{\Omega} =: \overline{Q}_T$;
(ii) $r \ge \frac{1}{\theta} \left(|\chi_t|^2 - \frac{\mathbf{q} \cdot \nabla \theta}{\theta} \right) \ge 0$.
Taking $\mathbf{q} = -\nabla \theta$, $s = \log \theta + \chi$, we get

$$\int_0^T \int_{\Omega} \left((\log \theta + \chi) \partial_t \varphi - \nabla \log \theta \cdot \nabla \varphi \right) dx dt$$

$$\le \int_0^T \int_{\Omega} \frac{1}{\theta} \left(-|\chi_t|^2 - \nabla \log \theta \cdot \nabla \theta \right) \varphi dx dt$$

for every test function $\varphi \in \mathcal{D}(\overline{Q}_{\mathcal{T}}), \ \varphi \geq 0$

(日)

Assuming the system is thermally isolated, the entropy balance results

$$\int_0^T \int_\Omega \mathbf{s}_t \varphi - \int_0^T \int_\Omega \frac{\mathbf{q}}{\theta} \cdot \nabla \varphi = \int_0^T \int_\Omega \mathbf{r} \varphi \quad \forall \varphi \in \mathcal{D}(\overline{Q}_T),$$

r represents the entropy production rate. Then, in order to comply with the Clausius-Duhem inequality, we assume:

(i)
$$r$$
 is a nonnegative measure on $[0, T] \times \overline{\Omega} =: \overline{Q}_T$;
(ii) $r \ge \frac{1}{\theta} \left(|\chi_t|^2 - \frac{\mathbf{q} \cdot \nabla \theta}{\theta} \right) \ge 0$.
Taking $\mathbf{q} = -\nabla \theta$, $s = \log \theta + \chi$, we get

$$\int_0^T \int_\Omega \left((\log \theta + \chi) \partial_t \varphi - \nabla \log \theta \cdot \nabla \varphi \right) dx dt$$

$$\le \int_0^T \int_\Omega \frac{1}{\theta} \left(-|\chi_t|^2 - \nabla \log \theta \cdot \nabla \theta \right) \varphi dx dt$$

for every test function $\varphi \in \mathcal{D}(\overline{Q}_{\mathcal{T}}), \ \varphi \geq 0$

 \Rightarrow the total entropy is controlled by dissipation.

(日)

The energy conservation and phase relation

The total energy has to be preserved. Hence

$$E(t) = E(0)$$
 for a.e. $t \in [0, T]$,

where

$$E \equiv \int_{\Omega} \left(heta + W(\chi) + rac{|
abla \chi|^2}{2}
ight) \, dx \, .$$

The energy conservation and phase relation

The total energy has to be preserved. Hence

$$E(t) = E(0)$$
 for a.e. $t \in [0, T]$

where

$$E\equiv\int_\Omega\left(heta+W(\chi)+rac{|
abla\chi|^2}{2}
ight)\,dx\,.$$

Finally, the phase dynamics results as

$$\chi_t - \Delta \chi + W'(\chi) = \theta - \theta_c$$
 a.e. in $\Omega \times (0, T)$,

where W is a double well or double obstacle potential: $W = \hat{\beta} + \hat{\gamma}$ where $\hat{\beta} : \mathbb{R} \to [0, +\infty]$ is proper, lower semi-continuous, convex function $\hat{\gamma} \in C^2(\mathbb{R}), \, \hat{\gamma}' \in C^{0,1}(\mathbb{R}) : \, \hat{\gamma}''(r) \ge -K$ for all $r \in \mathbb{R}, \, W(r) \ge c_w r^2$ for all $r \in \operatorname{dom}(\hat{\beta})$

$$\operatorname{\mathsf{Examples:}}\,\widehateta(r)=r\ln(r)+(1-r)\ln(1-r) ext{ or }\widehateta(r)=\mathit{I}_{[0,1]}(r).$$

The existence theorem [E. Feireisl, H. Petzeltová, E.R., M2AS (2009)]

Fix T > 0 and take suitable initial data. Let $s \in (1, 2)$ be a proper exponent depending on the space dimension.

<ロト < 同ト < ヨト < ヨト

The existence theorem [E. Feireisl, H. Petzeltová, E.R., M2AS (2009)]

Fix T > 0 and take suitable initial data. Let $s \in (1, 2)$ be a proper exponent depending on the space dimension. Then there exists at least one pair (θ, χ) s.t.

$$\begin{aligned} \theta &\in L^{\infty}(0, T; L^{1}(\Omega)) \cap L^{s}(Q_{T}), \quad \theta(x, t) > 0 \quad \text{a. e. in } Q_{T} \\ \log(\theta) &\in L^{\infty}(0, T; L^{1}(\Omega)) \cap L^{2}(0, T; H^{1}(\Omega)) \cap W^{1,1}(0, T; W^{-2,3/2}(\Omega)) \\ \chi &\in C^{0}([0, T]; H^{1}(\Omega)) \cap L^{s}(0, T; W^{2,s}_{N}(\Omega)), \qquad \chi_{t} \in L^{s}(Q_{T}), \end{aligned}$$

< ロ > < 同 > < 回 > < 回 >
The existence theorem [E. Feireisl, H. Petzeltová, E.R., M2AS (2009)]

Fix T > 0 and take suitable initial data. Let $s \in (1, 2)$ be a proper exponent depending on the space dimension. Then there exists at least one pair (θ, χ) s.t.

$$\begin{aligned} \theta &\in L^{\infty}(0, T; L^{1}(\Omega)) \cap L^{s}(Q_{T}), \quad \theta(x, t) > 0 \quad \text{a. e. in } Q_{T} \\ \log(\theta) &\in L^{\infty}(0, T; L^{1}(\Omega)) \cap L^{2}(0, T; H^{1}(\Omega)) \cap W^{1,1}(0, T; W^{-2,3/2}(\Omega)) \\ \chi &\in C^{0}([0, T]; H^{1}(\Omega)) \cap L^{s}(0, T; W^{2,s}_{N}(\Omega)), \qquad \chi_{t} \in L^{s}(Q_{T}), \end{aligned}$$

satisfying the entropy inequality $(\forall \varphi \in \mathcal{D}(\overline{Q}_T), \varphi \ge 0)$:

$$\begin{split} \int_0^T \int_\Omega \left(\left(\log \theta + \chi \right) \partial_t \varphi - \nabla \log \theta \cdot \nabla \varphi \right) \, dx \, dt \\ & \leq \int_0^T \int_\Omega \frac{1}{\theta} \left(- |\chi_t|^2 - \nabla \log \theta \cdot \nabla \theta \right) \varphi \, dx \, dt \,, \end{split}$$

The existence theorem [E. Feireisl, H. Petzeltová, E.R., M2AS (2009)]

Fix T > 0 and take suitable initial data. Let $s \in (1, 2)$ be a proper exponent depending on the space dimension. Then there exists at least one pair (θ, χ) s.t.

$$\begin{aligned} \theta &\in L^{\infty}(0, T; L^{1}(\Omega)) \cap L^{s}(Q_{T}), \quad \theta(x, t) > 0 \quad \text{a. e. in } Q_{T} \\ \log(\theta) &\in L^{\infty}(0, T; L^{1}(\Omega)) \cap L^{2}(0, T; H^{1}(\Omega)) \cap W^{1,1}(0, T; W^{-2,3/2}(\Omega)) \\ \chi &\in C^{0}([0, T]; H^{1}(\Omega)) \cap L^{s}(0, T; W^{2,s}_{N}(\Omega)), \qquad \chi_{t} \in L^{s}(Q_{T}), \end{aligned}$$

satisfying the entropy inequality $(\forall \varphi \in \mathcal{D}(\overline{Q}_T), \varphi \ge 0)$:

$$\begin{split} \int_0^T \int_\Omega \left(\left(\log \theta + \chi \right) \partial_t \varphi - \nabla \log \theta \cdot \nabla \varphi \right) \, dx \, dt \\ & \leq \int_0^T \int_\Omega \frac{1}{\theta} \left(-|\chi_t|^2 - \nabla \log \theta \cdot \nabla \theta \right) \varphi \, dx \, dt \,, \end{split}$$

the phase equation

$$\chi_t - \Delta \chi + W'(\chi) = \theta - \theta_c$$
 a.e. in Q_T , $\chi(0) = \chi_0$ a.e. in Ω ,

The existence theorem [E. Feireisl, H. Petzeltová, E.R., M2AS (2009)]

Fix T > 0 and take suitable initial data. Let $s \in (1, 2)$ be a proper exponent depending on the space dimension. Then there exists at least one pair (θ, χ) s.t.

$$\begin{aligned} \theta &\in L^{\infty}(0, T; L^{1}(\Omega)) \cap L^{s}(Q_{T}), \quad \theta(x, t) > 0 \quad \text{a. e. in } Q_{T} \\ \log(\theta) &\in L^{\infty}(0, T; L^{1}(\Omega)) \cap L^{2}(0, T; H^{1}(\Omega)) \cap W^{1,1}(0, T; W^{-2,3/2}(\Omega)) \\ \chi &\in C^{0}([0, T]; H^{1}(\Omega)) \cap L^{s}(0, T; W^{2,s}_{N}(\Omega)), \qquad \chi_{t} \in L^{s}(Q_{T}), \end{aligned}$$

satisfying the entropy inequality $(\forall \varphi \in \mathcal{D}(\overline{Q}_T), \varphi \ge 0)$:

$$\begin{split} \int_0^T \int_\Omega \left(\left(\log \theta + \chi \right) \partial_t \varphi - \nabla \log \theta \cdot \nabla \varphi \right) \, dx \, dt \\ & \leq \int_0^T \int_\Omega \frac{1}{\theta} \left(-|\chi_t|^2 - \nabla \log \theta \cdot \nabla \theta \right) \varphi \, dx \, dt \,, \end{split}$$

the phase equation

$$\chi_t - \Delta \chi + W'(\chi) = \theta - heta_c$$
 a.e. in Q_T , $\chi(0) = \chi_0$ a.e. in Ω ,

and the total energy conservation

$$E(t) = E(0)$$
 a.e. in $[0, T]$, $E \equiv \int_{\Omega} \left(\theta + W(\chi) + \frac{|\nabla \chi|^2}{2} \right) dx$.

・ロト ・部ト ・モト ・モト

• It complies with thermodynamical principles and hence it gives for free thermodynamically consistent models

(a)

- It complies with thermodynamical principles and hence it gives for free thermodynamically consistent models
- It gives rise exactly to the previous the PDE system

$$\theta_t + \chi_t \theta - \Delta \theta = |\chi_t|^2$$

$$\chi_t - \Delta \chi + W'(\chi) = \theta - \theta_c$$

at least in case the solution (θ, χ) is sufficiently smooth

・ロッ ・ 一 ・ ・ ・ ・

- It complies with thermodynamical principles and hence it gives for free thermodynamically consistent models
- It gives rise exactly to the previous the PDE system

$$\theta_t + \chi_t \theta - \Delta \theta = |\chi_t|^2$$

$$\chi_t - \Delta \chi + W'(\chi) = \theta - \theta_c$$

at least in case the solution (θ, χ) is sufficiently smooth

• However, in this case and similarly in many other situations, to prove that the solution has this extra regularity is **out of reach**

- It complies with thermodynamical principles and hence it gives for free thermodynamically consistent models
- It gives rise exactly to the previous the PDE system

$$\theta_t + \chi_t \theta - \Delta \theta = |\chi_t|^2$$

$$\chi_t - \Delta \chi + W'(\chi) = \theta - \theta_c$$

at least in case the solution (θ, χ) is sufficiently smooth

- However, in this case and similarly in many other situations, to prove that the solution has this extra regularity is **out of reach**
- It can be suitable also in different applications such as the ones related to phase transitions in viscoelastic materials, SMA, liquid crystal flows, etc.

-

The scope: The analysis of the initial boundary-value problem for the following PDE system:

$$c(\theta)\theta_t + \chi_t \theta - \operatorname{div}(k(\theta)\nabla\theta) = g$$
$$\mathbf{u}_{tt} - \operatorname{div}(\chi_{\varepsilon}(\mathbf{u}_t) + \chi_{\varepsilon}(\mathbf{u})) = \mathbf{f}$$
$$\chi_t + \partial I_{(-\infty,0]}(\chi_t) + A_s \chi + W'(\chi) \ge -\frac{|\varepsilon(\mathbf{u})|^2}{2} + \theta$$

(a)

The scope: The analysis of the initial boundary-value problem for the following PDE system:

$$c(\theta)\theta_t + \chi_t \theta - \operatorname{div}(k(\theta)\nabla\theta) = g$$
$$\mathbf{u}_{tt} - \operatorname{div}(\chi_{\varepsilon}(\mathbf{u}_t) + \chi_{\varepsilon}(\mathbf{u})) = \mathbf{f}$$
$$\chi_t + \partial I_{(-\infty,0]}(\chi_t) + A_s \chi + W'(\chi) \ge -\frac{|\varepsilon(\mathbf{u})|^2}{2} + \theta$$

- $\bullet \ \theta$ is the absolute temperature of the system
- u the vector of *small displacements*
- X is the damage parameter, assessing the soundness of the material in *damage* (for the completely *damaged* X = 0 and the *undamaged* state X = 1, respectively, while 0 < X < 1: partial damage)

[joint works with R. Rossi, J. Differential Equations and Appl. Math (2008) and preprint arXiv:1205.3578v1 (2012)]:

The scope: The analysis of the initial boundary-value problem for the following PDE system:

$$c(\theta)\theta_t + \chi_t \theta - \operatorname{div}(k(\theta)\nabla\theta) = g$$
$$\mathbf{u}_{tt} - \operatorname{div}(\chi_{\varepsilon}(\mathbf{u}_t) + \chi_{\varepsilon}(\mathbf{u})) = \mathbf{f}$$
$$\chi_t + \partial I_{(-\infty,0]}(\chi_t) + A_s \chi + W'(\chi) \ge -\frac{|\varepsilon(\mathbf{u})|^2}{2} + \theta$$

- $\bullet \ \theta$ is the absolute temperature of the system
- u the vector of *small displacements*
- X is the damage parameter, assessing the soundness of the material in *damage* (for the completely *damaged* X = 0 and the *undamaged* state X = 1, respectively, while 0 < X < 1: partial damage)

[joint works with R. Rossi, J. Differential Equations and Appl. Math (2008) and preprint arXiv:1205.3578v1 (2012)]: here we neglect the nonlinear terms $\chi |\varepsilon(\mathbf{u}_t)|^2 + |\chi_t|^2$ on the r.h.s (using the small perturbations assumption) in the first equation

The scope: The analysis of the initial boundary-value problem for the following PDE system:

$$c(\theta)\theta_t + \chi_t \theta - \operatorname{div}(k(\theta)\nabla\theta) = g$$
$$\mathbf{u}_{tt} - \operatorname{div}(\chi_{\varepsilon}(\mathbf{u}_t) + \chi_{\varepsilon}(\mathbf{u})) = \mathbf{f}$$
$$\chi_t + \partial I_{(-\infty,0]}(\chi_t) + A_s \chi + W'(\chi) \ge -\frac{|\varepsilon(\mathbf{u})|^2}{2} + \theta$$

- $\bullet \ \theta$ is the absolute temperature of the system
- u the vector of *small displacements*
- X is the damage parameter, assessing the soundness of the material in *damage* (for the completely *damaged* X = 0 and the *undamaged* state X = 1, respectively, while 0 < X < 1: partial damage)

[joint works with R. Rossi, J. Differential Equations and Appl. Math (2008) and preprint arXiv:1205.3578v1 (2012)]: here we neglect the nonlinear terms $\chi|\varepsilon(\mathbf{u}_t)|^2 + |\chi_t|^2$ on the r.h.s (using the small perturbations assumption) in the first equation

 \implies concentrate first on degeneracy

The aim: deal with the possible degeneracy in the momentum equation

・ロト ・四ト ・ヨト ・ヨト

The aim: deal with the possible degeneracy in the momentum equation

<u>Main aim</u>: We shall let χ vanishes at the threshold value 0, not enforce separation of χ from the threshold value 0, and accordingly we will allow for general initial configurations of χ

<ロト < 同ト < ヨト < ヨト

The aim: deal with the possible degeneracy in the momentum equation

<u>Main aim</u>: We shall let χ vanishes at the threshold value 0, not enforce separation of χ from the threshold value 0, and accordingly we will allow for general initial configurations of χ

 \Longrightarrow We shall approximate the system with a non-degenerating one, where we replace the momentum equation with

 $\mathbf{u}_{tt} - \operatorname{div}((\chi + \delta)\varepsilon(\mathbf{u}_t) + (\chi + \delta)\varepsilon(\mathbf{u})) = \mathbf{f}$ for $\delta > 0$

It seems to us that *both* the coefficients need to be truncated when taking the degenerate limit in the momentum equation. Indeed, on the one hand the truncation in front of $\varepsilon(\mathbf{u}_t)$ allows us to deal with the *main part* of the elliptic operator. On the other hand, in order to pass to the limit in the quadratic term on the right-hand side of χ -eq., we will also need to truncate the coefficient of $\varepsilon(\mathbf{u})$.

Cf. [M. Frémond, Phase Change in Mechanics, Lecture Notes of UMI, Springer-Verlag, 2012]

・ロト ・部ト ・モト ・モト

Cf. [M. Frémond, Phase Change in Mechanics, Lecture Notes of UMI, Springer-Verlag, 2012] The free-energy \mathcal{F} :

$$\mathcal{F} = \int_{\Omega} \left(f(\theta) + \chi \frac{|\varepsilon(\mathbf{u})|^2}{2} + \frac{a_s(\chi, \chi)}{2} + W(\chi) - \theta \chi \right) \mathrm{d}x$$

- f is a concave function
- $a_s(z_1, z_2) := \int_{\Omega} \int_{\Omega} \frac{(\nabla z_1(x) \nabla z_1(y)) \cdot (\nabla z_2(x) \nabla z_2(y))}{|x y|^{d+2(s-1)}} \, \mathrm{d}x \, \mathrm{d}y$ is the bilinear form associated to the fractional *s*-Laplacian *A*_s
- s > d/2: we need the embedding of $H^s(\Omega)$ into $C^0(\overline{\Omega})$
- $W = \widehat{\beta} + \widehat{\gamma}, \ \widehat{\gamma} \in C^2(\mathbb{R}), \ \widehat{\beta} \text{ proper, convex, I.s.c., } \overline{\operatorname{dom}(\widehat{\beta})} = [0,1]$
- we could include the thermal expansion term $\rho\theta$ tr $(\varepsilon(\mathbf{u}))$ (neglect it in this presentation)

Cf. [M. Frémond, Phase Change in Mechanics, Lecture Notes of UMI, Springer-Verlag, 2012] The free-energy \mathcal{F} :

$$\mathcal{F} = \int_{\Omega} \left(f(\theta) + \chi \frac{|\varepsilon(\mathbf{u})|^2}{2} + \frac{a_{\varepsilon}(\chi, \chi)}{2} + W(\chi) - \theta \chi \right) \mathrm{d}x$$

- f is a concave function
- $a_s(z_1, z_2) := \int_{\Omega} \int_{\Omega} \frac{(\nabla z_1(x) \nabla z_1(y)) \cdot (\nabla z_2(x) \nabla z_2(y))}{|x y|^{d+2(s-1)}} \, \mathrm{d}x \, \mathrm{d}y$ is the bilinear form associated to the fractional s-Laplacian A_s
- s > d/2: we need the embedding of $H^s(\Omega)$ into $C^0(\overline{\Omega})$
- $W = \widehat{\beta} + \widehat{\gamma}, \ \widehat{\gamma} \in C^2(\mathbb{R}), \ \widehat{\beta} \text{ proper, convex, l.s.c., } \overline{\operatorname{dom}(\widehat{\beta})} = [0,1]$
- we could include the thermal expansion term $\rho\theta tr(\varepsilon(\mathbf{u}))$ (neglect it in this presentation)

The pseudo-potential \mathcal{P} :

$$\mathcal{P} = \frac{k(\theta)}{2} |\nabla \theta|^2 + \frac{1}{2} |\chi_t|^2 + \chi \frac{|\varepsilon(\mathbf{u}_t)|^2}{2} + I_{(-\infty,0]}(\chi_t)$$

k the heat conductivity: coupled conditions with the specific heat c(θ) = f(θ) - θf'(θ)
I_{(-∞,0]}(X_t) = 0 if X_t ∈ (-∞,0], I_{(-∞,0]}(X_t) = +∞ otherwise

The modelling

The momentum equation

$$\mathbf{u}_{tt} - \operatorname{div} \sigma = \mathbf{f} \quad \left(\sigma = \sigma^{nd} + \sigma^{d} = \frac{\partial \mathcal{F}}{\partial \varepsilon(\mathbf{u})} + \frac{\partial \mathcal{P}}{\partial \varepsilon(\mathbf{u}_{t})} \right) \quad \text{becomes}$$
$$\boxed{\mathbf{u}_{tt} - \operatorname{div}(\chi \varepsilon(\mathbf{u}_{t}) + \chi \varepsilon(\mathbf{u})) = \mathbf{f}}$$

・ロト ・回ト ・モト ・モト

The modelling

The momentum equation

$$\mathbf{u}_{tt} - \operatorname{div} \sigma = \mathbf{f} \quad \left(\sigma = \sigma^{nd} + \sigma^{d} = \frac{\partial \mathcal{F}}{\partial \varepsilon(\mathbf{u})} + \frac{\partial \mathcal{P}}{\partial \varepsilon(\mathbf{u}_{t})} \right) \quad \text{becomes}$$
$$\boxed{\mathbf{u}_{tt} - \operatorname{div}(\chi \varepsilon(\mathbf{u}_{t}) + \chi \varepsilon(\mathbf{u})) = \mathbf{f}}$$

The principle of virtual powers

$$B - \operatorname{div} \mathbf{H} = 0 \quad \left(B = \frac{\partial \mathcal{F}}{\partial \chi} + \frac{\partial \mathcal{P}}{\partial \chi_t}, \mathbf{H} = \frac{\partial \mathcal{F}}{\partial \nabla \chi} \right) \quad \text{becomes}$$
$$\boxed{\chi_t + \partial I_{(-\infty,0]}(\chi_t) + A_s \chi + W'(\chi) \ni - \frac{|\varepsilon(\mathbf{u})|^2}{2} + \theta}$$

・ロト ・四ト ・ヨト ・ヨト

The modelling

The momentum equation

$$\mathbf{u}_{tt} - \operatorname{div} \sigma = \mathbf{f} \quad \left(\sigma = \sigma^{nd} + \sigma^{d} = \frac{\partial \mathcal{F}}{\partial \varepsilon(\mathbf{u})} + \frac{\partial \mathcal{P}}{\partial \varepsilon(\mathbf{u}_{t})} \right) \quad \text{becomes}$$
$$\boxed{\mathbf{u}_{tt} - \operatorname{div}(\chi \varepsilon(\mathbf{u}_{t}) + \chi \varepsilon(\mathbf{u})) = \mathbf{f}}$$

The principle of virtual powers

$$B - \operatorname{div} \mathbf{H} = 0 \quad \left(B = \frac{\partial \mathcal{F}}{\partial \chi} + \frac{\partial \mathcal{P}}{\partial \chi_t}, \mathbf{H} = \frac{\partial \mathcal{F}}{\partial \nabla \chi} \right) \quad \text{becomes}$$
$$\chi_t + \partial I_{(-\infty,0]}(\chi_t) + A_s \chi + W'(\chi) \ni -\frac{|\varepsilon(\mathbf{u})|^2}{2} + \theta$$

The internal energy balance

$$\mathbf{e}_t + \operatorname{div} \mathbf{q} = \mathbf{g} + \sigma : \varepsilon(\mathbf{u}_t) + B\chi_t + \mathbf{H} \cdot \nabla \chi_t \quad \left(\mathbf{e} = \mathcal{F} - \theta \frac{\partial \mathcal{F}}{\partial \theta}, \quad \mathbf{q} = \frac{\partial \mathcal{P}}{\partial \nabla \theta}\right)$$

becomes

$$\left| c(\theta)\theta_t + \chi_t \theta - \operatorname{div}(k(\theta)\nabla\theta) = g + |\chi_t|^2 + \chi|\varepsilon(\mathbf{u}_t)|^2 \right|$$

э

・ロト ・ 日 ・ ・ 日 ・ ・ 日

・ロト ・四ト ・ヨト ・ヨト

• We replace the momentum equation with a non-degenerating one

$$\mathbf{u}_{tt} - \operatorname{div}((\chi + \delta)\varepsilon(\mathbf{u}_t) + (\chi + \delta)\varepsilon(\mathbf{u})) = \mathbf{f}, \quad \delta > 0$$
(1)

・ロト ・四ト ・ヨト ・ヨト

• We replace the momentum equation with a non-degenerating one

$$\mathbf{u}_{tt} - \operatorname{div}((\chi + \delta)\varepsilon(\mathbf{u}_t) + (\chi + \delta)\varepsilon(\mathbf{u})) = \mathbf{f}, \quad \delta > 0$$
(1)

• We have to handle the *nonlinear coupling* between the single equations: in the heat equation (even with the *small perturbation assumption*)

$$\mathsf{c}(\theta)\theta_t + \frac{\chi_t \theta}{\theta} - \mathsf{div}(k(\theta)\nabla\theta) = g$$

and in the phase equation

$$\chi_t + \partial I_{(-\infty,0]}(\chi_t) + A_s \chi + W'(\chi) \ni -\frac{|\varepsilon(\mathbf{u})|^2}{2} + \theta$$
⁽²⁾

(日) (四) (三) (三)

• We replace the momentum equation with a non-degenerating one

$$\mathbf{u}_{tt} - \operatorname{div}((\chi + \delta)\varepsilon(\mathbf{u}_t) + (\chi + \delta)\varepsilon(\mathbf{u})) = \mathbf{f}, \quad \delta > 0$$
(1)

• We have to handle the *nonlinear coupling* between the single equations: in the heat equation (even with the *small perturbation assumption*)

$$c(\theta) heta_t + \chi_t heta - div(k(heta)
abla heta) = g$$

and in the phase equation

$$\chi_t + \partial I_{(-\infty,0]}(\chi_t) + A_s \chi + W'(\chi) \ni -\frac{|\varepsilon(\mathbf{u})|^2}{2} + \theta$$
(2)

A major difficulty stems from the simultaneous presence in (2) of ∂l_{(-∞,0]}(X_t) and W'(X) and from the low regularities of - ^{|ε(u)|²}/₂ + θ on the r.h.s. ⇒ follow the approach of [Heinemann, Kraus, WIAS preprints (2010)] and consider a suitable weak formulation of (2) consisting of a one-sided variational inequality + an energy inequality ⇒ generalized principle of virtual powers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• We replace the momentum equation with a non-degenerating one

$$\mathbf{u}_{tt} - \operatorname{div}((\chi + \delta)\varepsilon(\mathbf{u}_t) + (\chi + \delta)\varepsilon(\mathbf{u})) = \mathbf{f}, \quad \delta > 0$$
(1)

• We have to handle the *nonlinear coupling* between the single equations: in the heat equation (even with the *small perturbation assumption*)

$$\mathsf{c}(\theta)\theta_t + \chi_t \theta - \mathsf{div}(k(\theta)\nabla\theta) = g$$

and in the phase equation

$$\chi_t + \partial I_{(-\infty,0]}(\chi_t) + A_s \chi + W'(\chi) \ni -\frac{|\varepsilon(\mathbf{u})|^2}{2} + \theta$$
(2)

- A major difficulty stems from the simultaneous presence in (2) of ∂l_{(-∞,0]}(X_t) and W'(X) and from the low regularities of ^{|ε(u)|²}/₂ + θ on the r.h.s. ⇒ follow the approach of [Heinemann, Kraus, WIAS preprints (2010)] and consider a suitable weak formulation of (2) consisting of a one-sided variational inequality + an energy inequality ⇒ generalized principle of virtual powers
- For the analysis of the degenerate limit δ > 0 we have carefully adapted techniques from [Bouchitté, Mielke, Roubíček, ZAMP (2009)] and [Mielke, Roubíček, Zeman, Comput. Methods Appl. Mech. Engrg. (2011)] to the case of a *rate-dependent* equation for *χ*, also coupled with the temperature equation.

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

Energy vs Enthalpy

In order to deal with the low regularity of θ , rewrite the internal energy equation

$$c(\theta)\theta_t + \chi_t\theta - \operatorname{div}(k(\theta)\nabla\theta) = g$$

as the enthalpy equation

$$w_t + \chi_t \Theta(w) - \operatorname{div}(\mathcal{K}(w) \nabla w) = g \quad \text{where}$$
$$w = h(\theta) := \int_0^\theta \mathsf{c}(s) \, \mathrm{d}s, \quad \Theta(w) := \begin{cases} h^{-1}(w) & \text{if } w \ge 0, \\ 0 & \text{if } w < 0, \end{cases} \quad \mathcal{K}(w) := \frac{k(\Theta(w))}{\mathsf{c}(\Theta(w))}$$

・ロト ・四ト ・ヨト ・ヨト

Energy vs Enthalpy

In order to deal with the low regularity of θ , rewrite the internal energy equation

$$c(\theta)\theta_t + \chi_t\theta - \operatorname{div}(k(\theta)\nabla\theta) = g$$

as the enthalpy equation

$$w_t + \chi_t \Theta(w) - \operatorname{div}(\mathcal{K}(w)\nabla w) = g \quad \text{where}$$
$$w = h(\theta) := \int_0^\theta \mathsf{c}(s) \, \mathrm{d}s, \quad \Theta(w) := \begin{cases} h^{-1}(w) & \text{if } w \ge 0, \\ 0 & \text{if } w < 0, \end{cases} \quad \mathcal{K}(w) := \frac{k(\Theta(w))}{\mathsf{c}(\Theta(w))}$$

We assume that

•
$$c \in C^0([0, +\infty); [0, +\infty))$$

• $\exists \sigma_1 \ge \sigma > \frac{2d}{d+2} : c_0(1+\theta)^{\sigma-1} \le c(\theta) \le c_1(1+\theta)^{\sigma_1-1} \Longrightarrow h$ is strictly increasing
• the function $k : [0, +\infty) \to [0, +\infty)$ is continuous, and

$$\exists c_2, c_3 > 0 \ \, orall heta \in [0, +\infty): \quad c_2 \mathsf{c}(heta) \leq k(heta) \leq c_3(\mathsf{c}(heta) + 1)$$

(a)

Energy vs Enthalpy

In order to deal with the low regularity of θ , rewrite the internal energy equation

$$c(\theta)\theta_t + \chi_t\theta - \operatorname{div}(k(\theta)\nabla\theta) = g$$

as the enthalpy equation

$$w_t + \chi_t \Theta(w) - \operatorname{div}(\mathcal{K}(w)\nabla w) = g \quad \text{where}$$
$$w = h(\theta) := \int_0^\theta \mathsf{c}(s) \, \mathrm{d}s, \quad \Theta(w) := \begin{cases} h^{-1}(w) & \text{if } w \ge 0, \\ 0 & \text{if } w < 0, \end{cases} \quad \mathcal{K}(w) := \frac{k(\Theta(w))}{\mathsf{c}(\Theta(w))}$$

We assume that

•
$$c \in C^{0}([0, +\infty); [0, +\infty))$$

• $\exists \sigma_{1} \ge \sigma > \frac{2d}{d+2} : c_{0}(1+\theta)^{\sigma-1} \le c(\theta) \le c_{1}(1+\theta)^{\sigma_{1}-1} \Longrightarrow h$ is strictly increasing
• the function $k : [0, +\infty) \to [0, +\infty)$ is continuous, and
 $\exists c_{2}, c_{3} > 0 \quad \forall \theta \in [0, +\infty) : c_{2}c(\theta) \le k(\theta) \le c_{3}(c(\theta) + 1)$
 $\Longrightarrow \exists \bar{c} > 0 \quad \forall w \in \mathbb{R} : c_{2} \le K(w) \le \bar{c}$
 \Longrightarrow for every $s \in (1, \infty) \exists C_{s} > 0 \quad \forall w \in L^{1}(\Omega) : \|\Theta(w)\|_{L^{s}(\Omega)} \le C_{s}(\|w\|_{L^{s/\sigma}(\Omega)}^{1/\sigma} + 1)$

The approximating non-degenerate Problem $[P_{\delta}]$

Given $\delta > 0$, take $W' = \partial I_{[0,+\infty)} + \gamma$, $\gamma \in C^1(\mathbb{R})$, find (measurable) functions $w \in L^r(0, T; W^{1,r}(\Omega)) \cap L^{\infty}(0, T; L^1(\Omega)) \cap BV([0, T]; W^{1,r'}(\Omega)^*)$ $\mathbf{u} \in H^1(0, T; H^2(\Omega; \mathbb{R}^d)) \cap W^{1,\infty}(0, T; H^1_0(\Omega)) \cap H^2(0, T; L^2(\Omega; \mathbb{R}^d))$ $\chi \in L^{\infty}(0, T; H^s(\Omega)) \cap H^1(0, T; L^2(\Omega))$

for every $1 \le r < \frac{d+2}{d+1}$, fulfilling the initial conditions

$$\begin{split} & \mathbf{u}(0,x) = \mathbf{u}_0(x), \quad \mathbf{u}_t(0,x) = \mathbf{v}_0(x) & \text{for a.e. } x \in \Omega \\ & \chi(0,x) = \chi_0(x) & \text{for a.e. } x \in \Omega \end{split}$$

the equations (for every $\varphi \in \mathrm{C}^0([0, T]; W^{1,r'}(\Omega)) \cap W^{1,r'}(0, T; L^{r'}(\Omega))$ and $t \in (0, T])$

$$\int_{\Omega} \varphi(t) w(t) (\mathrm{d}x) - \int_{0}^{t} \int_{\Omega} w\varphi_{t} \,\mathrm{d}x + \int_{0}^{t} \int_{\Omega} \chi_{t} \Theta(w) \varphi \,\mathrm{d}x + \int_{0}^{t} \int_{\Omega} K(w) \nabla w \nabla \varphi \,\mathrm{d}x$$
$$= \int_{0}^{t} \int_{\Omega} g\varphi + \int_{\Omega} w_{0} \varphi(0) \,\mathrm{d}x$$
$$\mathbf{u}_{tt} - \operatorname{div} \left((\chi + \delta) \varepsilon(\mathbf{u}_{t}) + (\chi + \delta) \varepsilon(\mathbf{u}) \right) = \mathbf{f} \text{ in } H^{-1}(\Omega; \mathbb{R}^{d}) \text{ a.e. in } (0, T)$$

and the subdifferential inclusion "in a suitable sense"

$$\chi_t + \partial I_{(-\infty,0]}(\chi_t) + A_s \chi + \partial I_{[0,+\infty)}(\chi) + \gamma(\chi) \ni -\frac{|\varepsilon(\mathbf{u})|^2}{2} + \Theta(w) \quad \text{in } H^{-s}(\Omega) \text{ and a.e. in } (0,T)$$

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

[Theorem 1] ($\delta > 0$) Under the previous assumptions on the data, then,

[1.] Problem $[P_{\delta}]$ admits a *weak solution* (w, \mathbf{u}, χ) , which, beside fulfilling the enthalpy and momentum equations, satisfies $\chi_t(x, t) \leq 0$ for almost all $t \in (0, T)$, and $(\forall \varphi \in L^2(0, T; H^s_+(\Omega)) \cap L^{\infty}(Q))$ the *one-sided* inequality

$$\int_0^T \int_\Omega \chi_t \varphi + a_s(\chi, \varphi) + \xi \varphi + \gamma(\chi) \varphi + \frac{|\varepsilon(\mathbf{u})|^2}{2} \varphi - \Theta(w) \varphi \leq 0$$

with $\xi \in \partial I_{[0,+\infty)}(\chi)$ in the following sense:

$$\xi \in L^1(0, T; L^1(\Omega)), \ \langle \xi(t), \varphi - \chi(t)
angle_{H^s(\Omega)} \leq 0 \ \ \forall \varphi \in H^s_+(\Omega), \text{ a.e. } t \in (0, T)$$

[Theorem 1] ($\delta > 0$) Under the previous assumptions on the data, then,

[1.] Problem $[P_{\delta}]$ admits a *weak solution* (w, \mathbf{u}, χ) , which, beside fulfilling the enthalpy and momentum equations, satisfies $\chi_t(x, t) \leq 0$ for almost all $t \in (0, T)$, and $(\forall \varphi \in L^2(0, T; H^s_+(\Omega)) \cap L^{\infty}(Q))$ the *one-sided* inequality

$$\int_0^T \int_\Omega \chi_t \varphi + \mathbf{a}_s(\chi, \varphi) + \xi \varphi + \gamma(\chi) \varphi + \frac{|\varepsilon(\mathbf{u})|^2}{2} \varphi - \Theta(w) \varphi \leq 0$$

with $\xi \in \partial I_{[0,+\infty)}(\chi)$ in the following sense:

$$\xi \in L^1(0, T; L^1(\Omega)), \ \left\langle \xi(t), \varphi - \chi(t) \right\rangle_{H^s(\Omega)} \leq 0 \ \forall \varphi \in H^s_+(\Omega), \text{ a.e. } t \in (0, T)$$

and the energy inequality for all $t \in (0, T]$, for s = 0, and for almost all $0 < s \le t$:

$$\begin{split} &\int_{s}^{t} \int_{\Omega} |\chi_{t}|^{2} \,\mathrm{d}x \,\mathrm{d}r + \frac{1}{2} a_{s}(\chi(t), \chi(t)) + \int_{\Omega} W(\chi(t)) \,\mathrm{d}x \\ &\leq \frac{1}{2} a_{s}(\chi(s), \chi(s)) + \int_{\Omega} W(\chi(s)) \,\mathrm{d}x + \int_{s}^{t} \int_{\Omega} \chi_{t} \left(-\frac{|\varepsilon(\mathbf{u})|^{2}}{2} + \Theta(w) \right) \,\mathrm{d}x \,\mathrm{d}r \end{split}$$

[Theorem 1] ($\delta > 0$) Under the previous assumptions on the data, then,

[1.] Problem $[P_{\delta}]$ admits a *weak solution* (w, \mathbf{u}, χ) , which, beside fulfilling the enthalpy and momentum equations, satisfies $\chi_t(x, t) \leq 0$ for almost all $t \in (0, T)$, and $(\forall \varphi \in L^2(0, T; H^s_+(\Omega)) \cap L^{\infty}(Q))$ the *one-sided* inequality

$$\int_0^T \int_\Omega \chi_t \varphi + \mathbf{a}_s(\chi, \varphi) + \xi \varphi + \gamma(\chi) \varphi + \frac{|\varepsilon(\mathbf{u})|^2}{2} \varphi - \Theta(w) \varphi \leq 0$$

with $\xi \in \partial I_{[0,+\infty)}(\chi)$ in the following sense:

$$\xi \in L^1(0, T; L^1(\Omega)), \ \langle \xi(t), \varphi - \chi(t) \rangle_{H^s(\Omega)} \leq 0 \ \forall \varphi \in H^s_+(\Omega), \text{ a.e. } t \in (0, T)$$

and the energy inequality for all $t \in (0, T]$, for s = 0, and for almost all $0 < s \le t$:

$$\begin{split} &\int_{s}^{t} \int_{\Omega} |\chi_{t}|^{2} \,\mathrm{d}x \,\mathrm{d}r + \frac{1}{2} a_{s}(\chi(t), \chi(t)) + \int_{\Omega} W(\chi(t)) \,\mathrm{d}x \\ &\leq \frac{1}{2} a_{s}(\chi(s), \chi(s)) + \int_{\Omega} W(\chi(s)) \,\mathrm{d}x + \int_{s}^{t} \int_{\Omega} \chi_{t} \left(-\frac{|\varepsilon(\mathbf{u})|^{2}}{2} + \Theta(w) \right) \,\mathrm{d}x \,\mathrm{d}r \end{split}$$

[2.] Suppose in addition that $g(x, t) \ge 0$, $\theta_0 > \underline{\theta}_0 \ge 0$ a.e. Then $\theta(x, t) := \Theta(w(x, t)) \ge \underline{\theta}_0 \ge 0$ a.e.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

[Theorem 1] ($\delta > 0$) Under the previous assumptions on the data, then,

[1.] Problem $[P_{\delta}]$ admits a *weak solution* (w, \mathbf{u}, χ) , which, beside fulfilling the enthalpy and momentum equations, satisfies $\chi_t(x, t) \leq 0$ for almost all $t \in (0, T)$, and $(\forall \varphi \in L^2(0, T; H^s_+(\Omega)) \cap L^{\infty}(Q))$ the *one-sided* inequality

$$\int_0^T \int_\Omega \chi_t \varphi + \mathbf{a}_s(\chi, \varphi) + \xi \varphi + \gamma(\chi) \varphi + \frac{|\varepsilon(\mathbf{u})|^2}{2} \varphi - \Theta(w) \varphi \leq 0$$

with $\xi \in \partial I_{[0,+\infty)}(\chi)$ in the following sense:

$$\xi \in L^1(0, T; L^1(\Omega)), \ \langle \xi(t), \varphi - \chi(t) \rangle_{H^s(\Omega)} \leq 0 \ \forall \varphi \in H^s_+(\Omega), \text{ a.e. } t \in (0, T)$$

and the energy inequality for all $t \in (0, T]$, for s = 0, and for almost all $0 < s \le t$:

$$\begin{split} &\int_{s}^{t} \int_{\Omega} |\chi_{t}|^{2} \, \mathrm{d}x \, \mathrm{d}r + \frac{1}{2} a_{s}(\chi(t), \chi(t)) + \int_{\Omega} W(\chi(t)) \, \mathrm{d}x \\ &\leq \frac{1}{2} a_{s}(\chi(s), \chi(s)) + \int_{\Omega} W(\chi(s)) \, \mathrm{d}x + \int_{s}^{t} \int_{\Omega} \chi_{t} \left(-\frac{|\varepsilon(\mathbf{u})|^{2}}{2} + \Theta(w) \right) \, \mathrm{d}x \, \mathrm{d}r \end{split}$$

[2.] Suppose in addition that $g(x,t) \ge 0$, $\theta_0 > \underline{\theta}_0 \ge 0$ a.e. Then $\theta(x,t) := \Theta(w(x,t)) \ge \underline{\theta}_0 \ge 0$ a.e.

Uniqueness of solutions for the irreversible system, even in the isothermal case, is still an open problem. This is mainly due to the doubly nonlinear character of the χ equation.

E. Rocca (Università di Milano)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Generalized principle of virtual powers vs classical phase inclusion

・ロト ・四ト ・ヨト ・ヨト
Generalized principle of virtual powers vs classical phase inclusion

Any weak solution (w, u, X) fulfills the total energy inequality for all t ∈ (0, T], for s = 0, and for almost all 0 < s ≤ t

$$\begin{split} &\int_{\Omega} w(t)(\mathrm{d}x) + \frac{1}{2} \int_{\Omega} |\mathbf{u}_{t}(t)|^{2} \,\mathrm{d}x + \int_{s}^{t} \int_{\Omega} |\chi_{t}|^{2} \,\mathrm{d}x + \int_{s}^{t} (\chi + \delta) |\varepsilon(\mathbf{u}_{t})|^{2} \\ &+ \frac{1}{2} (\chi(t) + \delta) |\varepsilon(\mathbf{u}(t))|^{2} + \frac{1}{2} a_{s}(\chi(t), \chi(t)) + \int_{\Omega} W(\chi(t)) \,\mathrm{d}x \\ &\leq \int_{\Omega} w(s)(\mathrm{d}x) + \frac{1}{2} \int_{\Omega} |\mathbf{u}_{t}(s)|^{2} \,\mathrm{d}x + \frac{1}{2} (\chi(s) + \delta) |\varepsilon(\mathbf{u}(s))|^{2} + \frac{1}{2} a_{s}(\chi(s), \chi(s)) \\ &+ \int_{\Omega} W(\chi(s)) \,\mathrm{d}x + \int_{s}^{t} \int_{\Omega} \mathbf{f} \cdot \mathbf{u}_{t} \,\mathrm{d}x + \int_{s}^{t} \int_{\Omega} \mathbf{g} \,\mathrm{d}x \end{split}$$

Generalized principle of virtual powers vs classical phase inclusion

Any weak solution (w, u, X) fulfills the total energy inequality for all t ∈ (0, T], for s = 0, and for almost all 0 < s ≤ t

$$\begin{split} &\int_{\Omega} w(t)(\mathrm{d}x) + \frac{1}{2} \int_{\Omega} |\mathbf{u}_{t}(t)|^{2} \,\mathrm{d}x + \int_{s}^{t} \int_{\Omega} |\chi_{t}|^{2} \,\mathrm{d}x + \int_{s}^{t} (\chi + \delta) |\varepsilon(\mathbf{u}_{t})|^{2} \\ &+ \frac{1}{2} (\chi(t) + \delta) |\varepsilon(\mathbf{u}(t))|^{2} + \frac{1}{2} a_{s}(\chi(t), \chi(t)) + \int_{\Omega} W(\chi(t)) \,\mathrm{d}x \\ &\leq \int_{\Omega} w(s)(\mathrm{d}x) + \frac{1}{2} \int_{\Omega} |\mathbf{u}_{t}(s)|^{2} \,\mathrm{d}x + \frac{1}{2} (\chi(s) + \delta) |\varepsilon(\mathbf{u}(s))|^{2} + \frac{1}{2} a_{s}(\chi(s), \chi(s)) \\ &+ \int_{\Omega} W(\chi(s)) \,\mathrm{d}x + \int_{s}^{t} \int_{\Omega} \mathbf{f} \cdot \mathbf{u}_{t} \,\mathrm{d}x + \int_{s}^{t} \int_{\Omega} \mathbf{g} \,\mathrm{d}x \end{split}$$

 If (w, u, X) are "more regular" and satisfy the notion of weak solution, then, differentiating the energy inequality and using the chain rule, we conclude that (w, u, X, ξ) comply with

$$\langle \chi_t(t) + A_s(\chi(t)) + \xi(t) + \gamma(\chi(t)) + rac{|arepsilon(\mathbf{u})|^2}{2} - \Theta(w(t)), \chi_t(t)
angle_{H^s(\Omega)} \leq 0 ext{ for a.e.} t$$

Using the *one-sided* inequality we obtain the classical phase inclusion:

$$\exists \zeta \in L^2(0, T; L^2(\Omega)) \text{ with } \zeta(x, t) \in \partial I_{(-\infty, 0]}(\chi_t(x, t)) \text{ a.e. s.t.}$$
$$\chi_t + \zeta + A_s \chi + \xi + \gamma(\chi) = -\frac{|\varepsilon(\mathbf{u})|^2}{2} + \Theta(w) \text{ a.e.}$$

(日)

・ロト ・部ト ・モト ・モト

• We pass to the limit in a carefully designed time-discretization scheme

(a)

- We pass to the limit in a carefully designed time-discretization scheme
- The presence of the s-Laplacian with s > d/2 ⇒ an estimate for X in L[∞](0, T; H^s(Ω)) (from the total energy balance) ⇒ a suitable regularity estimate on the displacement variable u ⇒ an L[∞](0, T; L²(Ω))-bound on the quadratic nonlinearity |ε(u)|² on the right-hand side of

$$\chi_t + \partial I_{(-\infty,0]}(\chi_t) + A_s \chi + W'(\chi) \ni -\frac{|\varepsilon(\mathbf{u})|^2}{2} + \Theta(w)$$

- We pass to the limit in a carefully designed time-discretization scheme
- The presence of the s-Laplacian with s > d/2 ⇒ an estimate for X in L[∞](0, T; H^s(Ω)) (from the total energy balance) ⇒ a suitable regularity estimate on the displacement variable u ⇒ an L[∞](0, T; L²(Ω))-bound on the quadratic nonlinearity |ε(u)|² on the right-hand side of

$$\chi_t + \partial I_{(-\infty,0]}(\chi_t) + A_s \chi + W'(\chi) \ni -\frac{|\varepsilon(\mathbf{u})|^2}{2} + \Theta(w)$$

 A BOCCARDO-GALLOUËT-type estimates combined with the Gagliardo-Nirenberg inequality applied to the enthalpy equation in order to obtain an L^r(0, T; W^{1,r}(Ω))-estimate on the enthalpy w (and hence on Θ(w))

$$w_t + \chi_t \Theta(w) - \operatorname{div}(K(w)\nabla w)) = g$$

The total energy inequality in the degenerating case $\delta\searrow 0$

Rewrite the momentum equation

$$\partial_t^2 \mathbf{u}_{\delta} - \operatorname{div}((\chi + \delta)\varepsilon(\partial_t \mathbf{u}_{\delta})) - \operatorname{div}((\chi + \delta)\varepsilon(\mathbf{u}_{\delta})) = \mathbf{f}$$

using the new variables (quasi-stresses) $\mu_{\delta} := \sqrt{\chi_{\delta} + \delta} \varepsilon(\partial_t \mathbf{u}_{\delta})$, and $\eta_{\delta} := \sqrt{\chi_{\delta} + \delta} \varepsilon(\mathbf{u}_{\delta})$:

$$\partial_t^2 \mathbf{u}_\delta - \operatorname{div}(\sqrt{\chi + \delta} \, \boldsymbol{\mu}_\delta) - \operatorname{div}(\sqrt{\chi + \delta} \, \boldsymbol{\eta}_\delta) = \mathbf{f}$$

A D > A P > A B > A B >

The total energy inequality in the degenerating case $\delta \searrow 0$

Rewrite the momentum equation

$$\partial_t^2 \mathbf{u}_{\delta} - \mathsf{div}((\chi + \delta)\varepsilon(\partial_t \mathbf{u}_{\delta})) - \mathsf{div}((\chi + \delta)\varepsilon(\mathbf{u}_{\delta})) = \mathbf{f}$$

using the new variables (quasi-stresses) $\mu_{\delta} := \sqrt{\chi_{\delta} + \delta} \varepsilon(\partial_t \mathbf{u}_{\delta})$, and $\eta_{\delta} := \sqrt{\chi_{\delta} + \delta} \varepsilon(\mathbf{u}_{\delta})$:

$$\partial_t^2 \mathbf{u}_\delta - \operatorname{div}(\sqrt{\chi + \delta} \, \boldsymbol{\mu}_\delta) - \operatorname{div}(\sqrt{\chi + \delta} \, \boldsymbol{\eta}_\delta) = \mathbf{f}$$

The total energy inequality for $(w_{\delta}, \mathbf{u}_{\delta}, \chi_{\delta})$ is

$$\begin{split} &\int_{\Omega} w_{\delta}(t)(\mathrm{d}x) + \frac{1}{2} \int_{\Omega} |\partial_{t} \mathbf{u}_{\delta}(t)|^{2} \,\mathrm{d}x + \int_{s}^{t} \int_{\Omega} |\partial_{t} \chi_{\delta}|^{2} \,\mathrm{d}x + \frac{1}{2} \int_{s}^{t} |\boldsymbol{\mu}_{\delta}(r)|^{2} \\ &+ \frac{|\boldsymbol{\eta}_{\delta}(t)|^{2}}{2} + \frac{1}{2} a_{s}(\chi_{\delta}(t), \chi_{\delta}(t)) + \int_{\Omega} W(\chi_{\delta}(t)) \,\mathrm{d}x \\ &\leq \int_{\Omega} w_{\delta}(s)(\mathrm{d}x) + \frac{1}{2} \int_{\Omega} |\partial_{t} \mathbf{u}_{\delta}(s)|^{2} \,\mathrm{d}x + \frac{|\boldsymbol{\eta}_{\delta}(s)|^{2}}{2} + \frac{1}{2} a_{s}(\chi_{\delta}(s), \chi_{\delta}(s)) \\ &+ \int_{\Omega} W(\chi_{\delta}(s)) \,\mathrm{d}x + \int_{s}^{t} \int_{\Omega} \mathbf{f} \cdot \partial_{t} \mathbf{u}_{\delta} \,\mathrm{d}x + \int_{s}^{t} \int_{\Omega} \mathbf{g} \,\mathrm{d}x \end{split}$$

(a)

・ロト ・四ト ・ヨト ・ヨト

[Theorem 2] ($\delta = 0$) Under the previous assumptions, there exist $\mathbf{u} \in W^{1,\infty}(0, T; L^2(\Omega)) \cap H^2(0, T; H^{-1}(\Omega)), \ \mu \in L^2(0, T; L^2(\Omega)), \ \eta \in L^{\infty}(0, T; L^2(\Omega)),$ $w \in L^r(0, T; W^{1,r}(\Omega)) \cap L^{\infty}(0, T; L^1(\Omega)) \cap BV([0, T]; W^{1,r'}(\Omega)^*)$ $\chi \in L^{\infty}(0, T; H^s(\Omega)) \cap H^1(0, T; L^2(\Omega)), \ \chi(x, t) \ge 0, \ \chi_t(x, t) \le 0$ a.e.

such that

[Theorem 2] ($\delta = 0$) Under the previous assumptions, there exist $\mathbf{u} \in W^{1,\infty}(0, T; L^2(\Omega)) \cap H^2(0, T; H^{-1}(\Omega)), \ \mu \in L^2(0, T; L^2(\Omega)), \ \eta \in L^{\infty}(0, T; L^2(\Omega)), \ w \in L^r(0, T; W^{1,r}(\Omega)) \cap L^{\infty}(0, T; L^1(\Omega)) \cap BV([0, T]; W^{1,r'}(\Omega)^*)$ $\chi \in L^{\infty}(0, T; H^s(\Omega)) \cap H^1(0, T; L^2(\Omega)), \ \chi(x, t) \ge 0, \ \chi_t(x, t) \le 0 \text{ a.e.}$ such that it holds true (a.e. in any open set $A \subset \Omega \times (0, T)$: $\chi > 0$ a.e. in A) $\mu = \sqrt{\chi} \varepsilon(\mathbf{u}_t), \ \eta = \sqrt{\chi} \varepsilon(\mathbf{u}),$

[Theorem 2] ($\delta = 0$) Under the previous assumptions, there exist $\mathbf{u} \in W^{1,\infty}(0, T; L^2(\Omega)) \cap H^2(0, T; H^{-1}(\Omega)), \ \boldsymbol{\mu} \in L^2(0, T; L^2(\Omega)), \ \boldsymbol{\eta} \in L^\infty(0, T; L^2(\Omega)),$ $w \in L^r(0, T; W^{1,r}(\Omega)) \cap L^\infty(0, T; L^1(\Omega)) \cap BV([0, T]; W^{1,r'}(\Omega)^*)$ $\chi \in L^\infty(0, T; H^s(\Omega)) \cap H^1(0, T; L^2(\Omega)), \ \chi(x, t) \ge 0, \ \chi_t(x, t) \le 0$ a.e. such that it holds true (a.e. in any open set $A \subseteq \Omega \times (0, T)$: $\chi > 0$ a.e. in A)

 $\boldsymbol{\mu} = \sqrt{\chi} \, \varepsilon(\mathbf{u}_t), \ \boldsymbol{\eta} = \sqrt{\chi} \, \varepsilon(\mathbf{u}) \,,$

the weak enthalpy equation and the weak momentum and phase relations

$$\begin{split} \partial_t^2 \mathbf{u} &-\operatorname{div}(\sqrt{\chi}\,\boldsymbol{\mu}) - \operatorname{div}(\sqrt{\chi}\,\boldsymbol{\eta})) = \mathbf{f} \quad \text{in } H^{-1}(\Omega; \mathbb{R}^d), \text{ a.e. in } (0, T) \,, \\ \int_0^T \int_\Omega \left(\partial_t \chi + \gamma(\chi)\right) \varphi \, \mathrm{d}x + \int_0^T \mathsf{a}_s(\chi, \varphi) &\leq \int_0^T \int_\Omega \left(-\frac{1}{2\chi}|\boldsymbol{\eta}|^2 + \Theta(w)\right) \varphi \, \mathrm{d}x \\ \text{ for all } \varphi \in L^2(0, T; H^s_+(\Omega)) \cap L^\infty(Q) \text{ with } \operatorname{supp}(\varphi) \subset \{\chi > 0\}, \end{split}$$

[Theorem 2] $(\delta = 0)$ Under the previous assumptions, there exist $\mathbf{u} \in W^{1,\infty}(0, T; L^2(\Omega)) \cap H^2(0, T; H^{-1}(\Omega)), \ \mu \in L^2(0, T; L^2(\Omega)), \ \eta \in L^\infty(0, T; L^2(\Omega)), \ w \in L^r(0, T; W^{1,r}(\Omega)) \cap L^\infty(0, T; L^1(\Omega)) \cap BV([0, T]; W^{1,r'}(\Omega)^*) \ \chi \in L^\infty(0, T; H^s(\Omega)) \cap H^1(0, T; L^2(\Omega)), \ \chi(x, t) \ge 0, \ \chi_t(x, t) \le 0 \text{ a.e.}$

such that it holds true (a.e. in any open set $A \subset \Omega \times (0, T)$: $\chi > 0$ a.e. in A)

$$\boldsymbol{\mu} = \sqrt{\chi} \, \varepsilon(\mathbf{u}_t), \ \boldsymbol{\eta} = \sqrt{\chi} \, \varepsilon(\mathbf{u}) \, ,$$

the weak enthalpy equation and the weak momentum and phase relations

$$\begin{aligned} \partial_t^2 \mathbf{u} - \operatorname{div}(\sqrt{\chi}\,\boldsymbol{\mu}) - \operatorname{div}(\sqrt{\chi}\,\boldsymbol{\eta})) &= \mathbf{f} \quad \text{in } H^{-1}(\Omega; \mathbb{R}^d), \text{ a.e. in } (0, T) \,, \\ \int_0^T \int_\Omega \left(\partial_t \chi + \gamma(\chi)\right) \varphi \, \mathrm{d}x + \int_0^T a_s(\chi, \varphi) &\leq \int_0^T \int_\Omega \left(-\frac{1}{2\chi}|\boldsymbol{\eta}|^2 + \Theta(w)\right) \varphi \, \mathrm{d}x \\ \text{ for all } \varphi \in L^2(0, T; H^s_+(\Omega)) \cap L^\infty(Q) \text{ with } \operatorname{supp}(\varphi) \subset \{\chi > 0\}, \end{aligned}$$

together with the total energy inequality (for almost all $t \in (0, T]$)

$$\int_{\Omega} w(t)(\mathrm{d}x) + \int_{0}^{t} \int_{\Omega} |\chi_{t}|^{2} \,\mathrm{d}x + \frac{1}{2} \int_{0}^{t} |\boldsymbol{\mu}(r)|^{2} + \int_{\Omega} W(\chi(t)) \,\mathrm{d}x + \mathcal{J}(t) = \int_{\Omega} w_{0} \,\mathrm{d}x$$
$$+ \frac{1}{2} \int_{\Omega} |\mathbf{v}_{0}|^{2} \,\mathrm{d}x + \frac{1}{2} \chi_{0} |\varepsilon(\mathbf{u}_{0})|^{2} + \frac{1}{2} a_{s}(\chi_{0}, \chi_{0}) + \int_{\Omega} W(\chi_{0}) \,\mathrm{d}x + \int_{0}^{t} \int_{\Omega} \mathbf{f} \cdot \mathbf{u}_{t} \,\mathrm{d}x \,\mathrm{d}r + \int_{0}^{t} \int_{\Omega} \mathbf{g} \,\mathrm{d}x$$
$$\text{with } \int_{0}^{t} \mathcal{J}(r) \,\mathrm{d}r \geq \frac{1}{2} \int_{0}^{t} \left(\int_{\Omega} |\mathbf{u}_{t}(r)|^{2} \,\mathrm{d}x + |\boldsymbol{\eta}(r)|^{2} + a_{s}(\chi(r), \chi(r)) \right)$$

Weak solution to the *degenerating* irreversible full system ($\delta = 0$) \iff weak solution to the *non-degenerating* irreversible full system ($\delta > 0$)

Weak solution to the *degenerating* irreversible full system ($\delta = 0$) \iff weak solution to the *non-degenerating* irreversible full system ($\delta > 0$)

Suppose that the solution is more regular and $\chi > 0$ a.e.

< ロ > < 同 > < 回 > < 回 >

Weak solution to the *degenerating* irreversible full system ($\delta = 0$) \iff weak solution to the *non-degenerating* irreversible full system ($\delta > 0$)

Suppose that the solution is more regular and $\chi > 0$ a.e. Then the following identities hold true:

$$\boldsymbol{\mu} = \sqrt{\chi} \, \varepsilon(\mathbf{u}_t), \ \boldsymbol{\eta} = \sqrt{\chi} \, \varepsilon(\mathbf{u}) \text{ a.e. in } \Omega \times (0, T).$$

Hence

< ロ > < 同 > < 回 > < 回 >

Weak solution to the *degenerating* irreversible full system ($\delta = 0$) \iff weak solution to the *non-degenerating* irreversible full system ($\delta > 0$)

Suppose that the solution is more regular and $\chi > 0$ a.e. Then the following identities hold true:

$$\boldsymbol{\mu} = \sqrt{\chi} \, \varepsilon(\mathbf{u}_t), \ \boldsymbol{\eta} = \sqrt{\chi} \, \varepsilon(\mathbf{u}) \text{ a.e. in } \Omega imes (0, T) \, .$$

Hence

$$\int_0^T \int_\Omega \left(\partial_t \chi + \gamma(\chi)\right) \varphi \, \mathrm{d}x + \int_0^T \mathsf{a}_s(\chi, \varphi) \le \int_0^T \int_\Omega \left(-\frac{1}{2\chi} |\boldsymbol{\eta}|^2 \varphi + \Theta(w)\varphi\right) \, \mathrm{d}x$$

for all $\varphi \in L^2(0, T; H^s_+(\Omega)) \cap L^\infty(Q)$ with $\operatorname{supp}(\varphi) \subset \{\chi > 0\},$

coincides with

$$\int_0^T \int_\Omega \chi_t \varphi + a_s(\chi, \varphi) + \xi \varphi + \gamma(\chi) \varphi + \frac{|\varepsilon(\mathbf{u})|^2}{2} \varphi - \Theta(w) \varphi \leq 0$$

 $\forall \varphi \in L^2(0, T; H^s_+(\Omega)) \cap L^\infty(Q) \text{ and with } \xi \in \partial I_{[0, +\infty)}(\chi).$

(日)

Weak solution to the *degenerating* irreversible full system ($\delta = 0$) \iff weak solution to the *non-degenerating* irreversible full system ($\delta > 0$)

Suppose that the solution is more regular and $\chi > 0$ a.e. Then the following identities hold true:

$$\boldsymbol{\mu} = \sqrt{\chi} \, \varepsilon(\mathbf{u}_t), \ \boldsymbol{\eta} = \sqrt{\chi} \, \varepsilon(\mathbf{u}) \text{ a.e. in } \Omega imes (0, T) \, .$$

Hence

$$\int_0^T \int_\Omega \left(\partial_t \chi + \gamma(\chi)\right) \varphi \, \mathrm{d}x + \int_0^T \mathsf{a}_s(\chi, \varphi) \le \int_0^T \int_\Omega \left(-\frac{1}{2\chi} |\boldsymbol{\eta}|^2 \varphi + \Theta(w)\varphi\right) \, \mathrm{d}x$$

for all $\varphi \in L^2(0, T; H^s_+(\Omega)) \cap L^\infty(Q)$ with $\operatorname{supp}(\varphi) \subset \{\chi > 0\},$

coincides with

$$\int_0^T \int_\Omega \chi_t \varphi + a_s(\chi, \varphi) + \xi \varphi + \gamma(\chi) \varphi + \frac{|\varepsilon(\mathbf{u})|^2}{2} \varphi - \Theta(w) \varphi \leq 0$$

 $\forall \varphi \in L^2(0, T; H^s_+(\Omega)) \cap L^\infty(Q)$ and with $\xi \in \partial I_{[0,+\infty)}(\chi)$. Subtracting from the degenerate total energy inequality the weak enthalpy equation tested by 1, we recover (a.e. in (0, T]) the energy inequality:

$$\begin{split} &\int_0^t \int_\Omega |\chi_t|^2 \,\mathrm{d}x \,\mathrm{d}r + \frac{1}{2} a_s(\chi(t), \chi(t)) + \int_\Omega W(\chi(t)) \,\mathrm{d}x \\ &\leq \frac{1}{2} a_s(\chi_0, \chi_0) + \int_\Omega W(\chi_0) \,\mathrm{d}x + \int_0^t \int_\Omega \chi_t \left(-\frac{|\varepsilon(\mathbf{u})|^2}{2} + \Theta(w) \right) \,\mathrm{d}x \,\mathrm{d}r \end{split}$$

Work in progress: an entropic formulation for the damage phenomena

We worked here with the small perturbation assumption, i.e. neglecting the quadratic contribution on the r.h.s in the internal energy balance:

$$\theta_t + \chi_t \theta - \Delta \theta = |\chi_t|^2 + \chi |\varepsilon(\mathbf{u}_t)|^2$$

< ロ > < 同 > < 回 > < 回 >

Work in progress: an entropic formulation for the damage phenomena

We worked here with the small perturbation assumption, i.e. neglecting the quadratic contribution on the r.h.s in the internal energy balance:

$$\theta_t + \chi_t \theta - \Delta \theta = |\chi_t|^2 + \chi |\varepsilon(\mathbf{u}_t)|^2$$

Our **next aim**: to couple the weak equations for **u** and χ with

 \checkmark the entropy production

$$\int_{0}^{T} \int_{\Omega} \left(\left(\log \theta + \chi \right) \partial_{t} \varphi - \nabla \log \theta \cdot \nabla \varphi \right) dx dt$$

$$\leq \int_{0}^{T} \int_{\Omega} \frac{1}{\theta} \left(-|\chi_{t}|^{2} - \chi|\varepsilon(\mathbf{u}_{t})|^{2} - \nabla \log \theta \cdot \nabla \theta \right) \varphi dx dt$$

for every test function $\varphi \in \mathcal{D}(\overline{Q}_T)$, $\varphi \geq 0$

< ロ > < 同 > < 回 > < 回 >

Work in progress: an entropic formulation for the damage phenomena

We worked here with the small perturbation assumption, i.e. neglecting the quadratic contribution on the r.h.s in the internal energy balance:

$$\theta_t + \chi_t \theta - \Delta \theta = |\chi_t|^2 + \chi |\varepsilon(\mathbf{u}_t)|^2$$

Our **next aim**: to couple the weak equations for **u** and χ with

 $\checkmark\,$ the entropy production

$$\int_{0}^{T} \int_{\Omega} \left(\left(\log \theta + \chi \right) \partial_{t} \varphi - \nabla \log \theta \cdot \nabla \varphi \right) dx dt$$
$$\leq \int_{0}^{T} \int_{\Omega} \frac{1}{\theta} \left(-|\chi_{t}|^{2} - \chi|\varepsilon(\mathbf{u}_{t})|^{2} - \nabla \log \theta \cdot \nabla \theta \right) \varphi dx dt$$

for every test function $arphi \in \mathcal{D}(\overline{Q}_{\mathcal{T}})$, $arphi \geq 0$ and

✓ the energy conservation

$$E(t) = E(0)$$
 for a.e. $t \in [0, T]$,

where

$$E \equiv \int_{\Omega} \left(\theta + W(\chi) + \frac{1}{2} a_s(\chi, \chi) + \frac{|\mathbf{u}_t|^2}{2} + \chi \frac{|\varepsilon(\mathbf{u})|^2}{2} \right) \, dx \, .$$

This is still a work in progress (with R. Rossi)...

(日)

- A fluid-mechanical theory for two-phase mixtures of fluids faces a well known mathematical difficulty:
 - ▶ the movement of the interfaces ⇒ Lagrangian description
 - the bulk fluid flow => Eulerian framework

- A fluid-mechanical theory for two-phase mixtures of fluids faces a well known mathematical difficulty:
 - ▶ the movement of the interfaces ⇒ Lagrangian description
 - the bulk fluid flow => Eulerian framework
- The **phase-field methods** overcome this problem by postulating the existence of a "diffuse" interface spread over a possibly narrow region covering the "real" sharp interface boundary:
 - a phase variable X (concentration difference of the two components) is introduced to demarcate the two species and to indicate the location of the interface
 - mixing energy f is defined in terms of χ and its spatial gradient

- A fluid-mechanical theory for two-phase mixtures of fluids faces a well known mathematical difficulty:
 - ▶ the movement of the interfaces ⇒ Lagrangian description
 - the bulk fluid flow => Eulerian framework
- The **phase-field methods** overcome this problem by postulating the existence of a "diffuse" interface spread over a possibly narrow region covering the "real" sharp interface boundary:
 - a phase variable X (concentration difference of the two components) is introduced to demarcate the two species and to indicate the location of the interface
 - mixing energy f is defined in terms of χ and its spatial gradient
- The time evolution of $\chi \Longrightarrow$ convection-diffusion equation: variants of Cahn-Hilliard or Allen-Cahn or other types of dynamics (cf. [Hohenberg, Halperin (1977)], [Anderson, McFadden, Wheeler (1998)], [Gurtin, Polignone, Vinals (1996)], etc.)

- A fluid-mechanical theory for two-phase mixtures of fluids faces a well known mathematical difficulty:
 - ▶ the movement of the interfaces ⇒ Lagrangian description
 - the bulk fluid flow => Eulerian framework
- The **phase-field methods** overcome this problem by postulating the existence of a "diffuse" interface spread over a possibly narrow region covering the "real" sharp interface boundary:
 - a phase variable X (concentration difference of the two components) is introduced to demarcate the two species and to indicate the location of the interface
 - mixing energy f is defined in terms of χ and its spatial gradient
- The time evolution of $\chi \Longrightarrow$ convection-diffusion equation: variants of Cahn-Hilliard or Allen-Cahn or other types of dynamics (cf. [Hohenberg, Halperin (1977)], [Anderson, McFadden, Wheeler (1998)], [Gurtin, Polignone, Vinals (1996)], etc.)
- We aim to consider the non-isothermal version of [H. Abels, ARMA (2009)]:

- A fluid-mechanical theory for two-phase mixtures of fluids faces a well known mathematical difficulty:
 - ▶ the movement of the interfaces ⇒ Lagrangian description
 - the bulk fluid flow => Eulerian framework
- The **phase-field methods** overcome this problem by postulating the existence of a "diffuse" interface spread over a possibly narrow region covering the "real" sharp interface boundary:
 - a phase variable X (concentration difference of the two components) is introduced to demarcate the two species and to indicate the location of the interface
 - mixing energy f is defined in terms of χ and its spatial gradient
- The time evolution of $\chi \implies$ convection-diffusion equation: variants of Cahn-Hilliard or Allen-Cahn or other types of dynamics (cf. [Hohenberg, Halperin (1977)], [Anderson, McFadden, Wheeler (1998)], [Gurtin, Polignone, Vinals (1996)], etc.)
- We aim to consider the non-isothermal version of [H. Abels, ARMA (2009)]:

$$\mathsf{div}\,\mathbf{v} = 0\,,\quad \partial_t \mathbf{v} + \mathsf{div}(\mathbf{v}\otimes\mathbf{v}) + \nabla p = \mathsf{div}\,\mathbb{S} - \mu \nabla_x \chi\,,\quad \mathbb{S} = \nu(\theta,\chi)\left(\nabla_x \mathbf{v} + \nabla_x^t \mathbf{v}\right) \tag{1}$$

$$\partial_t \theta + \operatorname{div}(\theta \mathbf{v}) + \operatorname{div} \mathbf{q} = \mathbb{S} : \nabla_x \mathbf{v} + |\nabla_x \mu|^2$$
(2)

$$\partial_t \chi + \mathbf{v} \cdot \nabla_x \chi = \Delta \mu, \quad \mu = -\Delta \chi + W'(\chi) - \lambda(\theta)$$
 (3)

- A fluid-mechanical theory for two-phase mixtures of fluids faces a well known mathematical difficulty:
 - ▶ the movement of the interfaces ⇒ Lagrangian description
 - the bulk fluid flow => Eulerian framework
- The **phase-field methods** overcome this problem by postulating the existence of a "diffuse" interface spread over a possibly narrow region covering the "real" sharp interface boundary:
 - a phase variable X (concentration difference of the two components) is introduced to demarcate the two species and to indicate the location of the interface
 - mixing energy f is defined in terms of χ and its spatial gradient
- The time evolution of $\chi \implies$ convection-diffusion equation: variants of Cahn-Hilliard or Allen-Cahn or other types of dynamics (cf. [Hohenberg, Halperin (1977)], [Anderson, McFadden, Wheeler (1998)], [Gurtin, Polignone, Vinals (1996)], etc.)
- We aim to consider the non-isothermal version of [H. Abels, ARMA (2009)]:

$$\operatorname{div} \mathbf{v} = \mathbf{0}, \quad \partial_t \mathbf{v} + \operatorname{div}(\mathbf{v} \otimes \mathbf{v}) + \nabla p = \operatorname{div} \mathbb{S} - \mu \nabla_x \chi, \quad \mathbb{S} = \nu(\theta, \chi) \left(\nabla_x \mathbf{v} + \nabla_x^t \mathbf{v} \right)$$
(1)

$$\partial_t \theta + \operatorname{div}(\theta \mathbf{v}) + \operatorname{div} \mathbf{q} = \mathbb{S} : \nabla_x \mathbf{v} + |\nabla_x \mu|^2$$
⁽²⁾

$$\partial_t \chi + \mathbf{v} \cdot \nabla_x \chi = \Delta \mu \,, \quad \mu = -\Delta \chi + W'(\chi) - \lambda(\theta) \tag{3}$$

Entropic notion of solution is needed in order to interpret the internal energy balance (2) ...

Thanks for your attention!

cf. http://www.mat.unimi.it/users/rocca/

・ロト ・回 ト ・ ヨト ・ ヨ