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E. Rocca (Università di Milano) Weak solutions for degenerating PDEs June 11–15, 2012 2 / 28



Outline

Introduce the nonlinear PDE system arising in thermomechanics we deal with

The main key ideas in order to handle nonlinearities + degeneracy =⇒ entropic
formulation + generalization of the principle of virtual powers

A first application of the entropic formulation to a solid-liquid phase transition
model [joint work with E. Feireisl, H. Petzeltová, M2AS (2009)]
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Mathematical problem arising from Thermomechanics

Damage phenomena:

aim: deal with diffuse interface models in thermoviscoelasticity accounting for
- the absolute temperature θ
- the evolution of the displacement variables u
- the damage parameter χ

where the internal energy balance display nonlinear dissipation and the momentum
equation contains χ-dependent elliptic operators, which may degenerate at the pure
phases

c(θ)θt + χtθ − ρθ div ut − div(k(θ)∇θ)) = g + χ|ε(ut)|2 + |χt |2

utt − div(χε(ut) + χε(u)− ρθ1) = f

χt + ∂I(−∞,0](χt) + Asχ+ W ′(χ) 3 −|ε(u)|2

2
+ θ
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The main ideas to handle nonlinearities and degeneracy

Combining the concept of weak solution satisfying:

1. a suitable energy conservation and entropy inequality inspired by:

1.1. the works of E. Feireisl and co-authors ([Feireisl, Comput. Math. Appl. (2007)] and
[Buĺıček, Feireisl, & Málek, Nonlinear Anal. Real World Appl. (2009)]) for heat
conduction in fluids

2. a generalization of the principle of virtual powers inspired by:

2.1. the notion of energetic solution - A. Mielke and co-authors ([Bouchitté, Mielke,
Roub́ıček, ZAMP. Angew. Math. Phys. (2009) and [Mielke, Roub́ıček, Zeman,
Comput. Methods Appl. Mech. Engrg. (2010)]) for rate-independent processes for
damage phenomena and

2.2. a notion of weak solution introduced by [Heinemann, Kraus, WIAS preprint 1569 and
WIAS preprint 1520, to appear on Adv. Math. Sci. Appl. (2010)] for
non-degenerating isothermal diffuse interface models for phase separation and damage
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Comput. Methods Appl. Mech. Engrg. (2010)]) for rate-independent processes for
damage phenomena and

2.2. a notion of weak solution introduced by [Heinemann, Kraus, WIAS preprint 1569 and
WIAS preprint 1520, to appear on Adv. Math. Sci. Appl. (2010)] for
non-degenerating isothermal diffuse interface models for phase separation and damage
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Entropic formulation: a phase transitions model
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A first application of the entropic formulation: solid-liquid phase transitions

In order to show the potential power of this idea we

... give a description of the method stating more precisely
the content of this recent work [E. Feireisl, H. Petzeltovà,

E.R., Existence of solutions to some models of phase changes

with microscopic movements, Math. Meth. Appl. Sci. (2009)]

in which this notion of solution has been firstly applied to
phase transition models

We consider there a model for solid-liquid phase transitions associated to a nonlinear
PDE system

θt + χtθ −∆θ = |χt |2

χt −∆χ+ W ′(χ) = θ − θc

No global-in-time well-posedness result has yet been obtained in the 3D case, even
neglecting |χt |2 on the r.h.s.

A 1D global result is proved in [F. Luterotti and U. Stefanelli, ZAA (2002)]

=⇒ a new notion of solution is needed
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E. Rocca (Università di Milano) Weak solutions for degenerating PDEs June 11–15, 2012 6 / 28



A first application of the entropic formulation: solid-liquid phase transitions

In order to show the potential power of this idea we

... give a description of the method stating more precisely
the content of this recent work [E. Feireisl, H. Petzeltovà,
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E.R., Existence of solutions to some models of phase changes

with microscopic movements, Math. Meth. Appl. Sci. (2009)]

in which this notion of solution has been firstly applied to
phase transition models

We consider there a model for solid-liquid phase transitions associated to a nonlinear
PDE system

θt + χtθ −∆θ = |χt |2

χt −∆χ+ W ′(χ) = θ − θc

No global-in-time well-posedness result has yet been obtained in the 3D case, even
neglecting |χt |2 on the r.h.s.

A 1D global result is proved in [F. Luterotti and U. Stefanelli, ZAA (2002)]

=⇒ a new notion of solution is needed
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Entropic formulation

Idea: Start directly from the basic principles of Thermodynamics just assuming that the

entropy of the system is controlled by dissipation

and

total energy is conserved during the evolution

The nonlinear equation for θ (internal energy balance) is replaced by

the entropy inequality + the total energy conservation

Finally, couple these relations to a suitable phase dynamics.
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The entropy production

Assuming the system is thermally isolated, the entropy balance results

∫ T

0

∫
Ω

stϕ−
∫ T

0

∫
Ω

q

θ
· ∇ϕ =

∫ T

0

∫
Ω

rϕ ∀ϕ ∈ D(QT ),

r represents the entropy production rate. Then, in order to comply with the
Clausius-Duhem inequality, we assume:

(i) r is a nonnegative measure on [0,T ]× Ω =: QT ;

(ii) r ≥ 1

θ

(
|χt |2 −

q · ∇θ
θ

)
≥ 0.

Taking q = −∇θ, s = log θ + χ, we get∫ T

0

∫
Ω

(
(log θ + χ) ∂tϕ−∇ log θ · ∇ϕ

)
dxdt

≤
∫ T

0

∫
Ω

1

θ

(
−|χt |2 −∇ log θ · ∇θ

)
ϕdxdt

for every test function ϕ ∈ D(QT ), ϕ ≥ 0

⇒ the total entropy is controlled by dissipation.
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The energy conservation and phase relation

The total energy has to be preserved. Hence

E(t) = E(0) for a.e. t ∈ [0,T ],

where

E ≡
∫

Ω

(
θ + W (χ) +

|∇χ|2

2

)
dx .

Finally, the phase dynamics results as

χt −∆χ+ W ′(χ) = θ − θc a.e. in Ω× (0,T ),

where W is a double well or double obstacle potential: W = β̂ + γ̂ where

β̂ : R→ [0,+∞] is proper, lower semi-continuous, convex function

γ̂ ∈ C 2(R), γ̂′ ∈ C 0,1(R) : γ̂′′(r) ≥ −K for all r ∈ R, W (r) ≥ cw r 2 for all r ∈ dom(β̂)

Examples: β̂(r) = r ln(r) + (1− r) ln(1− r) or β̂(r) = I[0,1](r).
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β̂ : R→ [0,+∞] is proper, lower semi-continuous, convex function

γ̂ ∈ C 2(R), γ̂′ ∈ C 0,1(R) : γ̂′′(r) ≥ −K for all r ∈ R, W (r) ≥ cw r 2 for all r ∈ dom(β̂)

Examples: β̂(r) = r ln(r) + (1− r) ln(1− r) or β̂(r) = I[0,1](r).

E. Rocca (Università di Milano) Weak solutions for degenerating PDEs June 11–15, 2012 9 / 28



The existence theorem [E. Feireisl, H. Petzeltová, E.R., M2AS (2009)]

Fix T > 0 and take suitable initial data. Let s ∈ (1, 2) be a proper exponent depending
on the space dimension.

Then there exists at least one pair (θ, χ) s.t.

θ ∈ L∞(0,T ; L1(Ω)) ∩ Ls(QT ), θ(x , t) > 0 a. e. in QT

log(θ) ∈ L∞(0,T ; L1(Ω)) ∩ L2(0,T ; H1(Ω)) ∩W 1,1(0,T ; W−2,3/2(Ω))

χ ∈ C 0([0,T ]; H1(Ω)) ∩ Ls(0,T ; W 2,s
N (Ω)), χt ∈ Ls(QT ) ,

satisfying the entropy inequality (∀ϕ ∈ D(QT ), ϕ ≥ 0):∫ T

0

∫
Ω

((log θ + χ) ∂tϕ−∇ log θ · ∇ϕ) dx dt

≤
∫ T

0

∫
Ω

1

θ

(
−|χt |2 −∇ log θ · ∇θ

)
ϕ dx dt ,

the phase equation

χt −∆χ+ W ′(χ) = θ − θc a.e. in QT , χ(0) = χ0 a.e. in Ω,

and the total energy conservation

E(t) = E(0) a.e. in [0,T ], E ≡
∫

Ω

(
θ + W (χ) +

|∇χ|2

2

)
dx .
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The main advantages of this approach

It complies with thermodynamical principles and hence it gives for free
thermodynamically consistent models

It gives rise exactly to the previous the PDE system

θt + χtθ −∆θ = |χt |2

χt −∆χ+ W ′(χ) = θ − θc

at least in case the solution (θ, χ) is sufficiently smooth

However, in this case and similarly in many other situations, to prove that the
solution has this extra regularity is out of reach

It can be suitable also in different applications such as the ones related to phase
transitions in viscoelastic materials, SMA, liquid crystal flows, etc.
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The generalized principle of virtual powers: damage phenomena
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The generalized principle of virtual powers in damage phenomena

The scope: The analysis of the initial boundary-value problem for the following PDE
system:

c(θ)θt + χtθ − div(k(θ)∇θ) = g

utt − div(χε(ut) + χε(u)) = f

χt + ∂I(−∞,0](χt)+Asχ+ W ′(χ) 3 −|ε(u)|2

2
+ θ

θ is the absolute temperature of the system

u the vector of small displacements

χ is the damage parameter, assessing the soundness of the material in damage (for
the completely damaged χ = 0 and the undamaged state χ = 1, respectively, while
0 < χ < 1: partial damage)

[joint works with R. Rossi, J. Differential Equations and Appl. Math (2008) and preprint

arXiv:1205.3578v1 (2012)]: here we neglect the nonlinear terms χ|ε(ut)|2 + |χt |2 on the
r.h.s (using the small perturbations assumption) in the first equation

=⇒ concentrate first on degeneracy
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The aim: deal with the possible degeneracy in the momentum equation

Main aim: We shall let χ vanishes at the threshold value 0 , not enforce separation of χ

from the threshold value 0, and accordingly we will allow for general initial configurations
of χ

=⇒ We shall approximate the system with a non-degenerating one, where we replace the
momentum equation with

utt − div((χ+ δ)ε(ut) + (χ+ δ)ε(u)) = f for δ > 0

It seems to us that both the coefficients need to be truncated when taking the
degenerate limit in the momentum equation. Indeed, on the one hand the truncation in
front of ε(ut) allows us to deal with the main part of the elliptic operator. On the other
hand, in order to pass to the limit in the quadratic term on the right-hand side of χ-eq.,
we will also need to truncate the coefficient of ε(u).
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Cf. [M. Frémond, Phase Change in Mechanics, Lecture Notes of UMI, Springer-Verlag, 2012]

The free-energy F :

F =

∫
Ω

(
f (θ) + χ

|ε(u)|2

2
+

as(χ, χ)

2
+ W (χ)− θχ

)
dx

f is a concave function

as(z1, z2) :=

∫
Ω

∫
Ω

(
∇z1(x)−∇z1(y)

)
·
(
∇z2(x)−∇z2(y)

)
|x − y |d+2(s−1)

dx dy is the bilinear form

associated to the fractional s−Laplacian As

s > d/2: we need the embedding of Hs(Ω) into C0(Ω)

W = β̂ + γ̂, γ̂ ∈ C2(R), β̂ proper, convex, l.s.c., dom(β̂) = [0, 1]

we could include the thermal expansion term ρθtr(ε(u)) (neglect it in this presentation)

The pseudo-potential P:

P =
k(θ)

2
|∇θ|2 +

1

2
|χt |2 + χ

|ε(ut)|2

2
+ I(−∞,0](χt)

k the heat conductivity: coupled conditions with the specific heat c(θ) = f (θ)− θf ′(θ)

I(−∞,0](χt) = 0 if χt ∈ (−∞, 0], I(−∞,0](χt) = +∞ otherwise
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Cf. [M. Frémond, Phase Change in Mechanics, Lecture Notes of UMI, Springer-Verlag, 2012]

The free-energy F :

F =

∫
Ω

(
f (θ) + χ

|ε(u)|2

2
+

as(χ, χ)

2
+ W (χ)− θχ

)
dx

f is a concave function

as(z1, z2) :=

∫
Ω

∫
Ω

(
∇z1(x)−∇z1(y)

)
·
(
∇z2(x)−∇z2(y)

)
|x − y |d+2(s−1)

dx dy is the bilinear form

associated to the fractional s−Laplacian As

s > d/2: we need the embedding of Hs(Ω) into C0(Ω)

W = β̂ + γ̂, γ̂ ∈ C2(R), β̂ proper, convex, l.s.c., dom(β̂) = [0, 1]

we could include the thermal expansion term ρθtr(ε(u)) (neglect it in this presentation)

The pseudo-potential P:

P =
k(θ)

2
|∇θ|2 +

1

2
|χt |2 + χ

|ε(ut)|2

2
+ I(−∞,0](χt)

k the heat conductivity: coupled conditions with the specific heat c(θ) = f (θ)− θf ′(θ)

I(−∞,0](χt) = 0 if χt ∈ (−∞, 0], I(−∞,0](χt) = +∞ otherwise
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E. Rocca (Università di Milano) Weak solutions for degenerating PDEs June 11–15, 2012 15 / 28



The modelling

The momentum equation

utt − div σ = f
(
σ = σnd + σd = ∂F

∂ε(u)
+ ∂P
∂ε(ut )

)
becomes

utt − div(χε(ut) + χε(u)) = f

The principle of virtual powers

B − div H = 0
(
B = ∂F

∂χ + ∂P
∂χt

,H = ∂F
∂∇χ

)
becomes

χt + ∂I(−∞,0](χt)+Asχ+ W ′(χ) 3 − |ε(u)|2
2

+ θ

The internal energy balance

et + div q = g + σ : ε(ut) + Bχt + H · ∇χt

(
e = F − θ ∂F

∂θ
, q = ∂P

∂∇θ

)
becomes

c(θ)θt + χtθ − div(k(θ)∇θ) = g+|χt |2 + χ|ε(ut)|2
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Main difficulties and weak formulation

We replace the momentum equation with a non-degenerating one

utt − div((χ+ δ)ε(ut) + (χ+ δ)ε(u)) = f, δ > 0 (1)

We have to handle the nonlinear coupling between the single equations: in the heat
equation (even with the small perturbation assumption)

c(θ)θt + χtθ − div(k(θ)∇θ) = g

and in the phase equation

χt + ∂I(−∞,0](χt) + Asχ+ W ′(χ) 3 − |ε(u)|2
2

+ θ (2)

A major difficulty stems from the simultaneous presence in (2) of ∂I(−∞,0](χt) and W ′(χ)

and from the low regularities of − |ε(u)|2
2

+ θ on the r.h.s. =⇒ follow the approach of

[Heinemann, Kraus, WIAS preprints (2010)] and consider a suitable weak formulation of (2)
consisting of a one-sided variational inequality + an energy inequality =⇒ generalized
principle of virtual powers

For the analysis of the degenerate limit δ ↘ 0 we have carefully adapted techniques from
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Energy vs Enthalpy

In order to deal with the low regularity of θ, rewrite the internal energy equation

c(θ)θt + χtθ − div(k(θ)∇θ) = g

as the enthalpy equation

wt + χtΘ(w)− div(K(w)∇w) = g where

w = h(θ) :=

∫ θ

0
c(s) ds, Θ(w) :=

{
h−1(w) if w ≥ 0,

0 if w < 0,
K(w) :=

k(Θ(w))

c(Θ(w))

We assume that

c ∈ C 0([0,+∞); [0,+∞))

∃σ1 ≥ σ > 2d
d+2

: c0(1+θ)σ−1 ≤ c(θ) ≤ c1(1+θ)σ1−1 =⇒ h is strictly increasing

the function k : [0,+∞)→ [0,+∞) is continuous, and

∃c2, c3 > 0 ∀θ ∈ [0,+∞) : c2c(θ) ≤ k(θ) ≤ c3(c(θ) + 1)

=⇒ ∃ c̄ > 0 ∀w ∈ R : c2 ≤ K(w) ≤ c̄

=⇒ for every s ∈ (1,∞) ∃Cs > 0 ∀w ∈ L1(Ω) : ‖Θ(w)‖Ls (Ω) ≤ Cs(‖w‖1/σ

Ls/σ(Ω)
+ 1)
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The approximating non-degenerate Problem [Pδ]

Given δ > 0, take W ′ = ∂I[0,+∞) + γ, γ ∈ C1(R), find (measurable) functions

w ∈ Lr (0,T ; W 1,r (Ω)) ∩ L∞(0,T ; L1(Ω)) ∩ BV([0,T ]; W 1,r′ (Ω)∗)

u ∈ H1(0,T ; H2(Ω; Rd )) ∩W 1,∞(0,T ; H1
0 (Ω)) ∩ H2(0,T ; L2(Ω; Rd ))

χ ∈ L∞(0,T ; Hs(Ω)) ∩ H1(0,T ; L2(Ω))

for every 1 ≤ r < d+2
d+1

, fulfilling the initial conditions

u(0, x) = u0(x), ut(0, x) = v0(x) for a.e. x ∈ Ω

χ(0, x) = χ0(x) for a.e. x ∈ Ω

the equations (for every ϕ ∈ C0([0,T ]; W 1,r′ (Ω)) ∩W 1,r′ (0,T ; Lr′ (Ω)) and t ∈ (0,T ])∫
Ω
ϕ(t) w(t)(dx)−

∫ t

0

∫
Ω

wϕt dx +

∫ t

0

∫
Ω

χtΘ(w)ϕ dx +

∫ t

0

∫
Ω

K(w)∇w∇ϕdx

=

∫ t

0

∫
Ω

gϕ+

∫
Ω

w0ϕ(0) dx

utt − div ((χ+ δ)ε(ut) + (χ+ δ)ε(u)) = f in H−1(Ω; Rd ) a.e. in (0,T )

and the subdifferential inclusion “in a suitable sense”

χt +∂I(−∞,0](χt) +Asχ+∂I[0,+∞)(χ) +γ(χ) 3 −
|ε(u)|2

2
+ Θ(w) in H−s(Ω) and a.e. in (0,T )
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Generalized principle of virtual powers for δ > 0 [E.R., R. Rossi, preprint

arXiv:1205.3578v1 (2012)]

[Theorem 1] (δ > 0) Under the previous assumptions on the data, then,

[1.] Problem [Pδ] admits a weak solution (w , u, χ), which, beside fulfilling the enthalpy and
momentum equations, satisfies χt(x , t) ≤ 0 for almost all t ∈ (0,T ), and
(∀ϕ ∈ L2(0,T ; Hs

+(Ω)) ∩ L∞(Q)) the one-sided inequality∫ T

0

∫
Ω

χtϕ+ as(χ, ϕ) + ξϕ+ γ(χ)ϕ+
|ε(u)|2

2
ϕ−Θ(w)ϕ≤ 0

with ξ ∈ ∂I[0,+∞)(χ) in the following sense:

ξ ∈ L1(0,T ; L1(Ω)), 〈ξ(t), ϕ− χ(t)〉Hs (Ω) ≤ 0 ∀ϕ ∈ Hs
+(Ω), a.e. t ∈ (0,T )

and the energy inequality for all t ∈ (0,T ], for s = 0, and for almost all 0 < s ≤ t:∫ t

s

∫
Ω
|χt |2 dx dr +

1

2
as(χ(t), χ(t)) +

∫
Ω

W (χ(t)) dx

≤
1

2
as(χ(s), χ(s)) +

∫
Ω

W (χ(s)) dx +

∫ t

s

∫
Ω

χt

(
−
|ε(u)|2

2
+ Θ(w)

)
dx dr

[2.] Suppose in addition that g(x , t) ≥ 0, θ0 > θ0 ≥ 0 a.e. Then θ(x , t) := Θ(w(x , t)) ≥ θ0 ≥ 0
a.e.

Uniqueness of solutions for the irreversible system, even in the isothermal case, is still an open

problem. This is mainly due to the doubly nonlinear character of the χ equation.
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Generalized principle of virtual powers vs classical phase inclusion

Any weak solution (w , u, χ) fulfills the total energy inequality for all t ∈ (0,T ], for s = 0,
and for almost all 0 < s ≤ t∫

Ω
w(t)(dx) +

1

2

∫
Ω
|ut(t)|2 dx +

∫ t

s

∫
Ω
|χt |2 dx +

∫ t

s
(χ+ δ)|ε(ut)|2

+
1

2
(χ(t) + δ)|ε(u(t))|2 +

1

2
as(χ(t), χ(t)) +

∫
Ω

W (χ(t)) dx

≤
∫

Ω
w(s)(dx) +

1

2

∫
Ω
|ut(s)|2 dx +

1

2
(χ(s) + δ)|ε(u(s))|2 +

1

2
as(χ(s), χ(s))

+

∫
Ω

W (χ(s)) dx +

∫ t

s

∫
Ω

f · ut dx +

∫ t

s

∫
Ω

g dx

If (w , u, χ) are “more regular” and satisfy the notion of weak solution, then, differentiating
the energy inequality and using the chain rule, we conclude that (w , u, χ, ξ) comply with

〈χt(t) + As(χ(t)) + ξ(t) + γ(χ(t)) +
|ε(u)|2

2
−Θ(w(t)), χt(t)〉

Hs (Ω)
≤ 0 for a.e.t

Using the one-sided inequality we obtain the classical phase inclusion:

∃ ζ ∈ L2(0,T ; L2(Ω)) with ζ(x , t)∈ ∂I(−∞,0](χt(x , t)) a.e. s.t.

χt + ζ + Asχ+ ξ + γ(χ) = −
|ε(u)|2

2
+ Θ(w) a.e.
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+ Θ(w) a.e.
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The techniques used in the proof of Thm. 1 (δ > 0)

We pass to the limit in a carefully designed time-discretization scheme

The presence of the s-Laplacian with s > d/2 =⇒ an estimate for χ in
L∞(0,T ; Hs(Ω)) (from the total energy balance) =⇒ a suitable regularity estimate
on the displacement variable u =⇒ an L∞(0,T ; L2(Ω))-bound on the quadratic
nonlinearity |ε(u)|2 on the right-hand side of

χt + ∂I(−∞,0](χt)+Asχ+ W ′(χ) 3 −|ε(u)|2

2
+ Θ(w)

A Boccardo-Gallouët-type estimates combined with the Gagliardo-Nirenberg
inequality applied to the enthalpy equation in order to obtain an
Lr (0,T ; W 1,r (Ω))-estimate on the enthalpy w (and hence on Θ(w))

wt + χtΘ(w)− div(K(w)∇w)) = g
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The total energy inequality in the degenerating case δ ↘ 0

Rewrite the momentum equation

∂2
t uδ − div((χ+ δ)ε(∂tuδ))− div((χ+ δ)ε(uδ)) = f

using the new variables (quasi-stresses) µδ :=
√
χδ + δ ε(∂tuδ), and

ηδ :=
√
χδ + δ ε(uδ):

∂2
t uδ − div(

√
χ+ δµδ)− div(

√
χ+ δ ηδ) = f

The total energy inequality for (wδ, uδ, χδ) is∫
Ω

wδ(t)(dx) +
1

2

∫
Ω
|∂tuδ(t)|2 dx +

∫ t

s

∫
Ω
|∂tχδ|2 dx +

1

2

∫ t

s
|µδ(r)|2

+
|ηδ(t)|2

2
+

1

2
as(χδ(t), χδ(t)) +

∫
Ω

W (χδ(t)) dx

≤
∫

Ω
wδ(s)(dx) +

1

2

∫
Ω
|∂tuδ(s)|2 dx +

|ηδ(s)|2

2
+

1

2
as(χδ(s), χδ(s))

+

∫
Ω

W (χδ(s)) dx +

∫ t

s

∫
Ω

f · ∂tuδ dx +

∫ t

s

∫
Ω

g dx
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The degenerate problem (δ = 0): the existence theorem [E.R., R. Rossi, preprint

arXiv:1205.3578v1 (2012)]

[Theorem 2] (δ = 0) Under the previous assumptions, there exist

u ∈W 1,∞(0,T ; L2(Ω)) ∩ H2(0,T ; H−1(Ω)), µ ∈ L2(0,T ; L2(Ω)), η ∈ L∞(0,T ; L2(Ω)),

w ∈ Lr (0,T ; W 1,r (Ω)) ∩ L∞(0,T ; L1(Ω)) ∩ BV([0,T ]; W 1,r′ (Ω)∗)

χ ∈ L∞(0,T ; Hs(Ω)) ∩ H1(0,T ; L2(Ω)), χ(x , t) ≥ 0, χt(x , t) ≤ 0 a.e.

such that it holds true (a.e. in any open set A ⊂ Ω× (0,T ): χ > 0 a.e. in A)

µ =
√
χ ε(ut), η =

√
χ ε(u) ,

the weak enthalpy equation and the weak momentum and phase relations

∂2
t u− div(

√
χµ)− div(

√
χη)) = f in H−1(Ω; Rd ), a.e. in (0,T ) ,∫ T

0

∫
Ω

(∂tχ+ γ(χ))ϕdx +

∫ T

0
as(χ, ϕ) ≤

∫ T

0

∫
Ω

(
−

1

2χ
|η|2 + Θ(w)

)
ϕ dx

for all ϕ ∈ L2(0,T ; Hs
+(Ω)) ∩ L∞(Q) with supp(ϕ) ⊂ {χ > 0},

together with the total energy inequality (for almost all t ∈ (0,T ])∫
Ω

w(t)(dx) +

∫ t

0

∫
Ω
|χt |2 dx +

1

2

∫ t

0
|µ(r)|2 +

∫
Ω

W (χ(t)) dx + J (t) =

∫
Ω

w0 dx

+
1

2

∫
Ω
|v0|2 dx +

1

2
χ0|ε(u0)|2 +

1

2
as(χ0, χ0) +

∫
Ω

W (χ0) dx +

∫ t

0

∫
Ω

f · ut dxdr +

∫ t

0

∫
Ω

g dx

with

∫ t

0
J (r) dr ≥

1

2

∫ t

0

(∫
Ω
|ut(r)|2 dx + |η(r)|2 + as(χ(r), χ(r))

)
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A comparison between the solution notions

Weak solution to the degenerating irreversible full system (δ = 0) ⇐⇒ weak solution to
the non-degenerating irreversible full system (δ > 0)

Suppose that the solution is more regular and χ > 0 a.e. Then the following identities hold true:

µ =
√
χ ε(ut), η =

√
χ ε(u) a.e. in Ω× (0,T ) .

Hence ∫ T

0

∫
Ω

(∂tχ+ γ(χ))ϕdx +

∫ T

0
as(χ, ϕ) ≤

∫ T

0

∫
Ω

(
−

1

2χ
|η|2ϕ+ Θ(w)ϕ

)
dx

for all ϕ ∈ L2(0,T ; Hs
+(Ω)) ∩ L∞(Q) with supp(ϕ) ⊂ {χ > 0},

coincides with ∫ T

0

∫
Ω

χtϕ+ as(χ, ϕ) + ξϕ+ γ(χ)ϕ+
|ε(u)|2

2
ϕ−Θ(w)ϕ ≤ 0

∀ϕ ∈ L2(0,T ; Hs
+(Ω)) ∩ L∞(Q) and with ξ ∈ ∂I[0,+∞)(χ). Subtracting from the degenerate

total energy inequality the weak enthalpy equation tested by 1, we recover (a.e. in (0,T ]) the
energy inequality:∫ t

0

∫
Ω
|χt |2 dx dr +

1

2
as(χ(t), χ(t)) +

∫
Ω

W (χ(t)) dx

≤
1

2
as(χ0, χ0) +

∫
Ω

W (χ0) dx +

∫ t

0

∫
Ω

χt

(
−
|ε(u)|2

2
+ Θ(w)

)
dx dr
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∫
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Work in progress: an entropic formulation for the damage phenomena

We worked here with the small perturbation assumption, i.e. neglecting the quadratic
contribution on the r.h.s in the internal energy balance:

θt + χtθ −∆θ = |χt |2 + χ|ε(ut)|2

Our next aim: to couple the weak equations for u and χ with

X the entropy production∫ T

0

∫
Ω

(
(log θ + χ) ∂tϕ−∇ log θ · ∇ϕ

)
dxdt

≤
∫ T

0

∫
Ω

1

θ

(
−|χt |2 − χ|ε(ut)|2 −∇ log θ · ∇θ

)
ϕdxdt

for every test function ϕ ∈ D(QT ), ϕ ≥ 0 and

X the energy conservation

E(t) = E(0) for a.e. t ∈ [0,T ],

where

E ≡
∫

Ω

(
θ + W (χ) +

1

2
as(χ, χ) +

|ut |2

2
+ χ |ε(u)|2

2

)
dx .

This is still a work in progress (with R. Rossi)...
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Possible further application

A fluid-mechanical theory for two-phase mixtures of fluids faces a well known mathematical
difficulty:

I the movement of the interfaces =⇒ Lagrangian description

I the bulk fluid flow =⇒ Eulerian framework

The phase-field methods overcome this problem by postulating the existence of a “diffuse”
interface spread over a possibly narrow region covering the “real” sharp interface boundary:

I a phase variable χ (concentration difference of the two components) is introduced to
demarcate the two species and to indicate the location of the interface

I mixing energy f is defined in terms of χ and its spatial gradient

The time evolution of χ =⇒ convection-diffusion equation: variants of Cahn-Hilliard or
Allen-Cahn or other types of dynamics (cf. [Hohenberg, Halperin (1977)], [Anderson,
McFadden, Wheeler (1998)], [Gurtin, Polignone, Vinals (1996)], etc.)

We aim to consider the non-isothermal version of [H. Abels, ARMA (2009)]:

div v = 0 , ∂tv + div(v ⊗ v) +∇p = div S−µ∇xχ , S = ν(θ, χ)
(
∇x v +∇t

x v
)

(1)

∂tθ + div (θv) + div q = S : ∇x v+|∇xµ|2 (2)

∂tχ+ v · ∇xχ = ∆µ , µ = −∆χ+ W ′(χ)− λ(θ) (3)

Entropic notion of solution is needed in order to interpret the internal energy balance (2) ...
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Thanks for your attention!

cf. http://www.mat.unimi.it/users/rocca/
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