A degenerating PDE system for phase transitions and damage: global existence of weak solutions

E. Rocca
Università degli Studi di Milano

Variational Models and Methods for Evolution

Levico Terme (Italy), September 10-12, 2012
joint work with Riccarda Rossi (University of Brescia)

Supported by the FP7-IDEAS-ERC-StG Grant "EntroPhase" \#256872

Outline

Outline

- Introduce the nonlinear PDE system arising in thermomechanics we deal with

Outline

- Introduce the nonlinear PDE system arising in thermomechanics we deal with
- The main key ideas in order to handle nonlinearities + degeneracy \Longrightarrow entropic formulation + generalization of the principle of virtual powers

Outline

- Introduce the nonlinear PDE system arising in thermomechanics we deal with
- The main key ideas in order to handle nonlinearities + degeneracy \Longrightarrow entropic formulation + generalization of the principle of virtual powers
- A first application of the entropic formulation to a solid-liquid phase transition model [joint work with E. Feireisl, H. Petzeltová, M2AS (2009)]

Outline

- Introduce the nonlinear PDE system arising in thermomechanics we deal with
- The main key ideas in order to handle nonlinearities + degeneracy \Longrightarrow entropic formulation + generalization of the principle of virtual powers
- A first application of the entropic formulation to a solid-liquid phase transition model [joint work with E. Feireisl, H. Petzeltová, M2AS (2009)]
- The application of the generalization of the principle of virtual powers to the damage phenomena:
\diamond the non degenerating case [joint works with R. Rossi, J. Differential Equations and Appl. Math (2008)]
\diamond the degenerate case [joint work with R. Rossi, preprint arXiv:1205.3578v1 (2012)]

Outline

- Introduce the nonlinear PDE system arising in thermomechanics we deal with
- The main key ideas in order to handle nonlinearities + degeneracy \Longrightarrow entropic formulation + generalization of the principle of virtual powers
- A first application of the entropic formulation to a solid-liquid phase transition model [joint work with E. Feireisl, H. Petzeltová, M2AS (2009)]
- The application of the generalization of the principle of virtual powers to the damage phenomena:
\diamond the non degenerating case [joint works with R. Rossi, J. Differential Equations and Appl. Math (2008)]
\diamond the degenerate case [joint work with R. Rossi, preprint arXiv:1205.3578v1 (2012)]
- The potential future perspectives: to apply the entropic formulation to damage phenomena

Mathematical problem arising from Thermomechanics

Mathematical problem arising from Thermomechanics

Damage phenomena:

Mathematical problem arising from Thermomechanics

Damage phenomena:

- aim: deal with diffuse interface models in thermoviscoelasticity accounting for
- the absolute temperature θ
- the evolution of the displacement variables \mathbf{u}
- the damage parameter χ
where the internal energy balance display nonlinear dissipation and the momentum equation contains χ-dependent elliptic operators, which may degenerate at the pure phases

$$
\begin{aligned}
& \left.\mathrm{c}(\theta) \theta_{t}+\chi_{t} \theta-\rho \theta \operatorname{div} \mathbf{u}_{t}-\operatorname{div}(k(\theta) \nabla \theta)\right)=g+\chi\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+\left|\chi_{t}\right|^{2} \\
& \mathbf{u}_{t t}-\operatorname{div}\left(\chi \varepsilon\left(\mathbf{u}_{t}\right)+\chi \varepsilon(\mathbf{u})-\rho \theta \mathbf{1}\right)=\mathbf{f} \\
& \chi_{t}+\partial I_{(-\infty, 0]}\left(\chi_{t}\right)+A_{s} \chi+W^{\prime}(\chi) \ni-\frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta
\end{aligned}
$$

The main ideas to handle nonlinearities and degeneracy

The main ideas to handle nonlinearities and degeneracy

Combining the concept of weak solution satisfying:

The main ideas to handle nonlinearities and degeneracy

Combining the concept of weak solution satisfying:

1. a suitable energy conservation and entropy inequality inspired by:
1.1. the works of E. Feireisl and co-authors ([Feireisl, Comput. Math. Appl. (2007)] and [Bulíček, Feireisl, \& Málek, Nonlinear Anal. Real World Appl. (2009)]) for heat conduction in fluids

The main ideas to handle nonlinearities and degeneracy

Combining the concept of weak solution satisfying:

1. a suitable energy conservation and entropy inequality inspired by:
1.1. the works of E. Feireisl and co-authors ([Feireisl, Comput. Math. Appl. (2007)] and [Bulíček, Feireisl, \& Málek, Nonlinear Anal. Real World Appl. (2009)]) for heat conduction in fluids
2. a generalization of the principle of virtual powers inspired by:
2.1. the notion of energetic solution - A. Mielke and co-authors ([Bouchitté, Mielke, Roubíček, ZAMP. Angew. Math. Phys. (2009) and [Mielke, Roubíček, Zeman, Comput. Methods Appl. Mech. Engrg. (2010)]) for rate-independent processes for damage phenomena and
2.2. a notion of weak solution introduced by [Heinemann, Kraus, WIAS preprint 1569 and WIAS preprint 1520, to appear on Adv. Math. Sci. Appl. (2010)] for non-degenerating isothermal diffuse interface models for phase separation and damage

Entropic formulation: a phase transitions model

A first application of the entropic formulation: solid-liquid phase transitions
In order to show the potential power of this idea we

A first application of the entropic formulation: solid-liquid phase transitions

In order to show the potential power of this idea we

> ... give a description of the method stating more precisely the content of this recent work [E. Feireisl, H. Petzeltovà, E.R., Existence of solutions to some models of phase changes with microscopic movements, Math. Meth. Appl. Sci. (2009)] in which this notion of solution has been firstly applied to phase transition models

A first application of the entropic formulation: solid-liquid phase transitions

In order to show the potential power of this idea we

> ... give a description of the method stating more precisely the content of this recent work [E. Feireisl, H. Petzeltovà, E.R., Existence of solutions to some models of phase changes with microscopic movements, Math. Meth. Appl. Sci. (2009)] in which this notion of solution has been firstly applied to phase transition models

We consider there a model for solid-liquid phase transitions associated to a nonlinear PDE system

$$
\begin{aligned}
& \theta_{t}+\chi_{t} \theta-\Delta \theta=\left|\chi_{t}\right|^{2} \\
& \chi_{t}-\Delta \chi+W^{\prime}(\chi)=\theta-\theta_{c}
\end{aligned}
$$

A first application of the entropic formulation: solid-liquid phase transitions

In order to show the potential power of this idea we
\ldots give a description of the method stating more precisely
the content of this recent work [E. Feireisl, H. Petzeltovà,
E.R., Existence of solutions to some models of phase changes
with microscopic movements, Math. Meth. Appl. Sci. (2009)]
in which this notion of solution has been firstly applied to
phase transition models

We consider there a model for solid-liquid phase transitions associated to a nonlinear PDE system

$$
\begin{aligned}
& \theta_{t}+\chi_{t} \theta-\Delta \theta=\left|\chi_{t}\right|^{2} \\
& \chi_{t}-\Delta \chi+W^{\prime}(\chi)=\theta-\theta_{c}
\end{aligned}
$$

- No global-in-time well-posedness result has yet been obtained in the 3D case, even neglecting $\left|\chi_{t}\right|^{2}$ on the r.h.s.

A first application of the entropic formulation: solid-liquid phase transitions

In order to show the potential power of this idea we

> ... give a description of the method stating more precisely the content of this recent work [E. Feireisl, H. Petzeltovà, E.R., Existence of solutions to some models of phase changes with microscopic movements, Math. Meth. Appl. Sci. (2009)] in which this notion of solution has been firstly applied to phase transition models

We consider there a model for solid-liquid phase transitions associated to a nonlinear PDE system

$$
\begin{aligned}
& \theta_{t}+\chi_{t} \theta-\Delta \theta=\left|\chi_{t}\right|^{2} \\
& \chi_{t}-\Delta \chi+W^{\prime}(\chi)=\theta-\theta_{c}
\end{aligned}
$$

- No global-in-time well-posedness result has yet been obtained in the 3D case, even neglecting $\left|\chi_{t}\right|^{2}$ on the r.h.s.
- A 1D global result is proved in [F. Luterotti and U. Stefanelli, ZAA (2002)]

A first application of the entropic formulation: solid-liquid phase transitions

In order to show the potential power of this idea we

> ... give a description of the method stating more precisely the content of this recent work [E. Feireisl, H. Petzeltovà, E.R., Existence of solutions to some models of phase changes with microscopic movements, Math. Meth. Appl. Sci. (2009)] in which this notion of solution has been firstly applied to phase transition models

We consider there a model for solid-liquid phase transitions associated to a nonlinear PDE system

$$
\begin{aligned}
& \theta_{t}+\chi_{t} \theta-\Delta \theta=\left|\chi_{t}\right|^{2} \\
& \chi_{t}-\Delta \chi+W^{\prime}(\chi)=\theta-\theta_{c}
\end{aligned}
$$

- No global-in-time well-posedness result has yet been obtained in the 3D case, even neglecting $\left|\chi_{t}\right|^{2}$ on the r.h.s.
- A 1D global result is proved in [F. Luterotti and U. Stefanelli, ZAA (2002)]
\Longrightarrow a new notion of solution is needed

Entropic formulation

Idea: Start directly from the basic principles of Thermodynamics just assuming that the

Entropic formulation

Idea: Start directly from the basic principles of Thermodynamics just assuming that the

- entropy of the system is controlled by dissipation

Entropic formulation

Idea: Start directly from the basic principles of Thermodynamics just assuming that the

- entropy of the system is controlled by dissipation and

Entropic formulation

Idea: Start directly from the basic principles of Thermodynamics just assuming that the

- entropy of the system is controlled by dissipation and
- total energy is conserved during the evolution

Entropic formulation

Idea: Start directly from the basic principles of Thermodynamics just assuming that the

- entropy of the system is controlled by dissipation and
- total energy is conserved during the evolution

The nonlinear equation for θ (internal energy balance) is replaced by

$$
\text { the entropy inequality }+ \text { the total energy conservation }
$$

Entropic formulation

Idea: Start directly from the basic principles of Thermodynamics just assuming that the

- entropy of the system is controlled by dissipation and
- total energy is conserved during the evolution

The nonlinear equation for θ (internal energy balance) is replaced by
the entropy inequality + the total energy conservation

Finally, couple these relations to a suitable phase dynamics.

The entropy production

Assuming the system is thermally isolated, the entropy balance results

The entropy production

Assuming the system is thermally isolated, the entropy balance results

$$
\int_{0}^{T} \int_{\Omega} s_{t} \varphi-\int_{0}^{T} \int_{\Omega} \frac{\mathbf{q}}{\theta} \cdot \nabla \varphi=\int_{0}^{T} \int_{\Omega} r \varphi \quad \forall \varphi \in \mathcal{D}\left(\bar{Q}_{T}\right)
$$

r represents the entropy production rate.

The entropy production

Assuming the system is thermally isolated, the entropy balance results

$$
\int_{0}^{T} \int_{\Omega} s_{t} \varphi-\int_{0}^{T} \int_{\Omega} \frac{\mathbf{q}}{\theta} \cdot \nabla \varphi=\int_{0}^{T} \int_{\Omega} r \varphi \quad \forall \varphi \in \mathcal{D}\left(\bar{Q}_{T}\right),
$$

r represents the entropy production rate. Then, in order to comply with the Clausius-Duhem inequality, we assume:
(i) r is a nonnegative measure on $[0, T] \times \bar{\Omega}=: \bar{Q}_{T}$;
(ii) $r \geq \frac{1}{\theta}\left(\left|\chi_{t}\right|^{2}-\frac{\mathbf{q} \cdot \nabla \theta}{\theta}\right) \geq 0$.

The entropy production

Assuming the system is thermally isolated, the entropy balance results

$$
\int_{0}^{T} \int_{\Omega} s_{t} \varphi-\int_{0}^{T} \int_{\Omega} \frac{\mathbf{q}}{\theta} \cdot \nabla \varphi=\int_{0}^{T} \int_{\Omega} r \varphi \quad \forall \varphi \in \mathcal{D}\left(\bar{Q}_{T}\right)
$$

r represents the entropy production rate. Then, in order to comply with the Clausius-Duhem inequality, we assume:
(i) r is a nonnegative measure on $[0, T] \times \bar{\Omega}=: \bar{Q}_{T}$;
(ii) $r \geq \frac{1}{\theta}\left(\left|\chi_{t}\right|^{2}-\frac{\mathbf{q} \cdot \nabla \theta}{\theta}\right) \geq 0$.

Taking $\mathbf{q}=-\nabla \theta, s=\log \theta+\chi$, we get

$$
\begin{aligned}
\int_{0}^{T} \int_{\Omega}\left((\log \theta+\chi) \partial_{t} \varphi\right. & -\nabla \log \theta \cdot \nabla \varphi) d x d t \\
& \leq \int_{0}^{T} \int_{\Omega} \frac{1}{\theta}\left(-\left|\chi_{t}\right|^{2}-\nabla \log \theta \cdot \nabla \theta\right) \varphi d x d t
\end{aligned}
$$

for every test function $\varphi \in \mathcal{D}\left(\bar{Q}_{T}\right), \varphi \geq 0$

The entropy production

Assuming the system is thermally isolated, the entropy balance results

$$
\int_{0}^{T} \int_{\Omega} s_{t} \varphi-\int_{0}^{T} \int_{\Omega} \frac{\mathbf{q}}{\theta} \cdot \nabla \varphi=\int_{0}^{T} \int_{\Omega} r \varphi \quad \forall \varphi \in \mathcal{D}\left(\bar{Q}_{T}\right)
$$

r represents the entropy production rate. Then, in order to comply with the Clausius-Duhem inequality, we assume:
(i) r is a nonnegative measure on $[0, T] \times \bar{\Omega}=: \bar{Q}_{T}$;
(ii) $r \geq \frac{1}{\theta}\left(\left|\chi_{t}\right|^{2}-\frac{\mathbf{q} \cdot \nabla \theta}{\theta}\right) \geq 0$.

Taking $\mathbf{q}=-\nabla \theta, s=\log \theta+\chi$, we get

$$
\begin{aligned}
\int_{0}^{T} \int_{\Omega}\left((\log \theta+\chi) \partial_{t} \varphi\right. & -\nabla \log \theta \cdot \nabla \varphi) d x d t \\
& \leq \int_{0}^{T} \int_{\Omega} \frac{1}{\theta}\left(-\left|\chi_{t}\right|^{2}-\nabla \log \theta \cdot \nabla \theta\right) \varphi d x d t
\end{aligned}
$$

for every test function $\varphi \in \mathcal{D}\left(\bar{Q}_{T}\right), \varphi \geq 0$
\Rightarrow the total entropy is controlled by dissipation.

The energy conservation and phase relation

The total energy has to be preserved. Hence

$$
E(t)=E(0) \text { for a.e. } t \in[0, T],
$$

where

$$
E \equiv \int_{\Omega}\left(\theta+W(\chi)+\frac{|\nabla \chi|^{2}}{2}\right) d x .
$$

The energy conservation and phase relation

The total energy has to be preserved. Hence

$$
E(t)=E(0) \text { for a.e. } t \in[0, T],
$$

where

$$
E \equiv \int_{\Omega}\left(\theta+W(\chi)+\frac{|\nabla \chi|^{2}}{2}\right) d x .
$$

Finally, the phase dynamics results as

$$
\chi_{t}-\Delta \chi+W^{\prime}(\chi)=\theta-\theta_{c} \quad \text { a.e. in } \Omega \times(0, T),
$$

where W is a double well or double obstacle potential: $W=\widehat{\beta}+\widehat{\gamma}$ where
$\widehat{\beta}: \mathbb{R} \rightarrow[0,+\infty]$ is proper, lower semi-continuous, convex function
$\widehat{\gamma} \in C^{2}(\mathbb{R}), \widehat{\gamma}^{\prime} \in C^{0,1}(\mathbb{R}): \widehat{\gamma}^{\prime \prime}(r) \geq-K$ for all $r \in \mathbb{R}, W(r) \geq c_{w} r^{2}$ for all $r \in \operatorname{dom}(\widehat{\beta})$

Examples: $\widehat{\beta}(r)=r \ln (r)+(1-r) \ln (1-r)$ or $\widehat{\beta}(r)=I_{[0,1]}(r)$.

The existence theorem [E. Feireisl, H. Petzeltová, E.R., M2AS (2009)]
Fix $T>0$ and take suitable initial data. Let $s \in(1,2)$ be a proper exponent depending on the space dimension.

The existence theorem [E. Feireisl, H. Petzeltová, E.R., M2AS (2009)]
Fix $T>0$ and take suitable initial data. Let $s \in(1,2)$ be a proper exponent depending on the space dimension. Then there exists at least one pair (θ, χ) s.t.

$$
\begin{aligned}
& \theta \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right) \cap L^{s}\left(Q_{T}\right), \quad \theta(x, t)>0 \quad \text { a. e. in } Q_{T} \\
& \log (\theta) \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right) \cap L^{2}\left(0, T ; H^{1}(\Omega)\right) \cap W^{1,1}\left(0, T ; W^{-2,3 / 2}(\Omega)\right) \\
& \chi \in C^{0}\left([0, T] ; H^{1}(\Omega)\right) \cap L^{s}\left(0, T ; W_{N}^{2, s}(\Omega)\right), \quad \chi_{t} \in L^{s}\left(Q_{T}\right),
\end{aligned}
$$

The existence theorem [E. Feireisl, H. Petzeltová, E.R., M2AS (2009)]
Fix $T>0$ and take suitable initial data. Let $s \in(1,2)$ be a proper exponent depending on the space dimension. Then there exists at least one pair (θ, χ) s.t.

$$
\begin{aligned}
& \theta \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right) \cap L^{s}\left(Q_{T}\right), \quad \theta(x, t)>0 \quad \text { a. e. in } Q_{T} \\
& \log (\theta) \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right) \cap L^{2}\left(0, T ; H^{1}(\Omega)\right) \cap W^{1,1}\left(0, T ; W^{-2,3 / 2}(\Omega)\right) \\
& \chi \in C^{0}\left([0, T] ; H^{1}(\Omega)\right) \cap L^{s}\left(0, T ; W_{N}^{2, s}(\Omega)\right), \quad \chi_{t} \in L^{s}\left(Q_{T}\right),
\end{aligned}
$$

satisfying the entropy inequality $\left(\forall \varphi \in \mathcal{D}\left(\bar{Q}_{T}\right), \varphi \geq 0\right)$:

$$
\begin{aligned}
\int_{0}^{T} \int_{\Omega}((\log \theta+\chi) & \left.\partial_{t} \varphi-\nabla \log \theta \cdot \nabla \varphi\right) d x d t \\
& \leq \int_{0}^{T} \int_{\Omega} \frac{1}{\theta}\left(-\left|\chi_{t}\right|^{2}-\nabla \log \theta \cdot \nabla \theta\right) \varphi d x d t
\end{aligned}
$$

The existence theorem [E. Feireisl, H. Petzeltová, E.R., M2AS (2009)]
Fix $T>0$ and take suitable initial data. Let $s \in(1,2)$ be a proper exponent depending on the space dimension. Then there exists at least one pair (θ, χ) s.t.

$$
\begin{aligned}
& \theta \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right) \cap L^{s}\left(Q_{T}\right), \quad \theta(x, t)>0 \quad \text { a. e. in } Q_{T} \\
& \log (\theta) \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right) \cap L^{2}\left(0, T ; H^{1}(\Omega)\right) \cap W^{1,1}\left(0, T ; W^{-2,3 / 2}(\Omega)\right) \\
& \chi \in C^{0}\left([0, T] ; H^{1}(\Omega)\right) \cap L^{s}\left(0, T ; W_{N}^{2, s}(\Omega)\right), \quad \chi_{t} \in L^{s}\left(Q_{T}\right),
\end{aligned}
$$

satisfying the entropy inequality $\left(\forall \varphi \in \mathcal{D}\left(\bar{Q}_{T}\right), \varphi \geq 0\right)$:

$$
\begin{aligned}
\int_{0}^{T} \int_{\Omega}((\log \theta+\chi) & \left.\partial_{t} \varphi-\nabla \log \theta \cdot \nabla \varphi\right) d x d t \\
& \leq \int_{0}^{T} \int_{\Omega} \frac{1}{\theta}\left(-\left|\chi_{t}\right|^{2}-\nabla \log \theta \cdot \nabla \theta\right) \varphi d x d t
\end{aligned}
$$

the phase equation

$$
\chi_{t}-\Delta \chi+W^{\prime}(\chi)=\theta-\theta_{c} \quad \text { a.e. in } Q_{T}, \quad \chi(0)=\chi_{0} \quad \text { a.e. in } \Omega
$$

The existence theorem [E. Feireisl, H. Petzeltová, E.R., M2AS (2009)]
Fix $T>0$ and take suitable initial data. Let $s \in(1,2)$ be a proper exponent depending on the space dimension. Then there exists at least one pair (θ, χ) s.t.

$$
\begin{aligned}
& \theta \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right) \cap L^{s}\left(Q_{T}\right), \quad \theta(x, t)>0 \quad \text { a. e. in } Q_{T} \\
& \log (\theta) \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right) \cap L^{2}\left(0, T ; H^{1}(\Omega)\right) \cap W^{1,1}\left(0, T ; W^{-2,3 / 2}(\Omega)\right) \\
& \chi \in C^{0}\left([0, T] ; H^{1}(\Omega)\right) \cap L^{s}\left(0, T ; W_{N}^{2, s}(\Omega)\right), \quad \chi_{t} \in L^{s}\left(Q_{T}\right),
\end{aligned}
$$

satisfying the entropy inequality $\left(\forall \varphi \in \mathcal{D}\left(\bar{Q}_{T}\right), \varphi \geq 0\right)$:

$$
\begin{aligned}
\int_{0}^{T} \int_{\Omega}((\log \theta+\chi) & \left.\partial_{t} \varphi-\nabla \log \theta \cdot \nabla \varphi\right) d x d t \\
& \leq \int_{0}^{T} \int_{\Omega} \frac{1}{\theta}\left(-\left|\chi_{t}\right|^{2}-\nabla \log \theta \cdot \nabla \theta\right) \varphi d x d t
\end{aligned}
$$

the phase equation

$$
\chi_{t}-\Delta \chi+W^{\prime}(\chi)=\theta-\theta_{c} \quad \text { a.e. in } Q_{T}, \quad \chi(0)=\chi_{0} \quad \text { a.e. in } \Omega,
$$

and the total energy conservation

$$
E(t)=E(0) \quad \text { a.e. in }[0, T], \quad E \equiv \int_{\Omega}\left(\theta+W(\chi)+\frac{|\nabla x|^{2}}{2}\right) d x .
$$

The main advantages of this approach

The main advantages of this approach

- It complies with thermodynamical principles and hence it gives for free thermodynamically consistent models

The main advantages of this approach

- It complies with thermodynamical principles and hence it gives for free thermodynamically consistent models
- It gives rise exactly to the previous the PDE system

$$
\begin{aligned}
& \theta_{t}+\chi_{t} \theta-\Delta \theta=\left|\chi_{t}\right|^{2} \\
& \chi_{t}-\Delta \chi+W^{\prime}(\chi)=\theta-\theta_{c}
\end{aligned}
$$

at least in case the solution (θ, χ) is sufficiently smooth

The main advantages of this approach

- It complies with thermodynamical principles and hence it gives for free thermodynamically consistent models
- It gives rise exactly to the previous the PDE system

$$
\begin{aligned}
& \theta_{t}+\chi_{t} \theta-\Delta \theta=\left|\chi_{t}\right|^{2} \\
& \chi_{t}-\Delta \chi+W^{\prime}(\chi)=\theta-\theta_{c}
\end{aligned}
$$

at least in case the solution (θ, χ) is sufficiently smooth

- However, in this case and similarly in many other situations, to prove that the solution has this extra regularity is out of reach

The main advantages of this approach

- It complies with thermodynamical principles and hence it gives for free thermodynamically consistent models
- It gives rise exactly to the previous the PDE system

$$
\begin{aligned}
& \theta_{t}+\chi_{t} \theta-\Delta \theta=\left|\chi_{t}\right|^{2} \\
& \chi_{t}-\Delta \chi+W^{\prime}(\chi)=\theta-\theta_{c}
\end{aligned}
$$

at least in case the solution (θ, χ) is sufficiently smooth

- However, in this case and similarly in many other situations, to prove that the solution has this extra regularity is out of reach
- It can be suitable also in different applications such as the ones related to phase transitions in viscoelastic materials, SMA, liquid crystal flows, etc.

The generalized principle of virtual powers: damage phenomena

The generalized principle of virtual powers in damage phenomena
The scope: The analysis of the initial boundary-value problem for the following PDE system:

$$
\begin{aligned}
& c(\theta) \theta_{t}+\chi_{t} \theta-\operatorname{div}(k(\theta) \nabla \theta)=g \\
& \mathbf{u}_{t t}-\operatorname{div}\left(\chi \varepsilon\left(\mathbf{u}_{t}\right)+\chi \varepsilon(\mathbf{u})\right)=\mathbf{f} \\
& \chi_{t}+\partial I_{(-\infty, 0]}\left(\chi_{t}\right)+A_{s} \chi+W^{\prime}(\chi) \ni-\frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta
\end{aligned}
$$

The generalized principle of virtual powers in damage phenomena
The scope: The analysis of the initial boundary-value problem for the following PDE system:

$$
\begin{aligned}
& c(\theta) \theta_{t}+\chi_{t} \theta-\operatorname{div}(k(\theta) \nabla \theta)=g \\
& \mathbf{u}_{t t}-\operatorname{div}\left(\chi \varepsilon\left(\mathbf{u}_{t}\right)+\chi \varepsilon(\mathbf{u})\right)=\mathbf{f} \\
& \chi_{t}+\partial I_{(-\infty, 0]}\left(\chi_{t}\right)+A_{s} \chi+W^{\prime}(\chi) \ni-\frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta
\end{aligned}
$$

- θ is the absolute temperature of the system
- \mathbf{u} the vector of small displacements
- χ is the damage parameter, assessing the soundness of the material in damage (for the completely damaged $\chi=0$ and the undamaged state $\chi=1$, respectively, while $0<\chi<1$: partial damage)
[joint works with R. Rossi, J. Differential Equations and Appl. Math (2008) and preprint arXiv:1205.3578v1 (2012)]:

The generalized principle of virtual powers in damage phenomena
The scope: The analysis of the initial boundary-value problem for the following PDE system:

$$
\begin{aligned}
& c(\theta) \theta_{t}+\chi_{t} \theta-\operatorname{div}(k(\theta) \nabla \theta)=g \\
& \mathbf{u}_{t t}-\operatorname{div}\left(\chi \varepsilon\left(\mathbf{u}_{t}\right)+\chi \varepsilon(\mathbf{u})\right)=\mathbf{f} \\
& \chi_{t}+\partial I_{(-\infty, 0]}\left(\chi_{t}\right)+A_{s} \chi+W^{\prime}(\chi) \ni-\frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta
\end{aligned}
$$

- θ is the absolute temperature of the system
- \mathbf{u} the vector of small displacements
- χ is the damage parameter, assessing the soundness of the material in damage (for the completely damaged $\chi=0$ and the undamaged state $\chi=1$, respectively, while $0<\chi<1$: partial damage)
[joint works with R. Rossi, J. Differential Equations and Appl. Math (2008) and preprint arXiv:1205.3578v1 (2012)]: here we neglect the nonlinear terms $\chi\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+\left|\chi_{t}\right|^{2}$ on the r.h.s (using the small perturbations assumption) in the first equation

The generalized principle of virtual powers in damage phenomena
The scope: The analysis of the initial boundary-value problem for the following PDE system:

$$
\begin{aligned}
& c(\theta) \theta_{t}+\chi_{t} \theta-\operatorname{div}(k(\theta) \nabla \theta)=g \\
& \mathbf{u}_{t t}-\operatorname{div}\left(\chi \varepsilon\left(\mathbf{u}_{t}\right)+\chi \varepsilon(\mathbf{u})\right)=\mathbf{f} \\
& \chi_{t}+\partial I_{(-\infty, 0]}\left(\chi_{t}\right)+A_{s} \chi+W^{\prime}(\chi) \ni-\frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta
\end{aligned}
$$

- θ is the absolute temperature of the system
- \mathbf{u} the vector of small displacements
- χ is the damage parameter, assessing the soundness of the material in damage (for the completely damaged $\chi=0$ and the undamaged state $\chi=1$, respectively, while $0<\chi<1$: partial damage)
[joint works with R. Rossi, J. Differential Equations and Appl. Math (2008) and preprint arXiv:1205.3578v1 (2012)]: here we neglect the nonlinear terms $\chi\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}+\left|\chi_{t}\right|^{2}$ on the r.h.s (using the small perturbations assumption) in the first equation

$$
\Longrightarrow \text { concentrate first on degeneracy }
$$

The aim: deal with the possible degeneracy in the momentum equation

The aim: deal with the possible degeneracy in the momentum equation

Main aim: We shall let χ vanishes at the threshold value 0 , not enforce separation of χ from the threshold value 0 , and accordingly we will allow for general initial configurations of χ

The aim: deal with the possible degeneracy in the momentum equation

Main aim: We shall let χ vanishes at the threshold value 0 , not enforce separation of χ from the threshold value 0 , and accordingly we will allow for general initial configurations of χ
\Longrightarrow We shall approximate the system with a non-degenerating one, where we replace the momentum equation with

$$
\mathbf{u}_{t t}-\operatorname{div}\left((\chi+\delta) \varepsilon\left(\mathbf{u}_{t}\right)+(\chi+\delta) \varepsilon(\mathbf{u})\right)=\mathbf{f} \quad \text { for } \delta>0
$$

It seems to us that both the coefficients need to be truncated when taking the degenerate limit in the momentum equation. Indeed, on the one hand the truncation in front of $\varepsilon\left(\mathbf{u}_{t}\right)$ allows us to deal with the main part of the elliptic operator. On the other hand, in order to pass to the limit in the quadratic term on the right-hand side of χ-eq., we will also need to truncate the coefficient of $\varepsilon(\mathbf{u})$.

Cf. [M. Frémond, Phase Change in Mechanics, Lecture Notes of UMI, Springer-Verlag, 2012]

Cf. [M. Frémond, Phase Change in Mechanics, Lecture Notes of UMI, Springer-Verlag, 2012]

The free-energy \mathcal{F} :

$$
\mathcal{F}=\int_{\Omega}\left(f(\theta)+\chi \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\frac{a_{s}(\chi, \chi)}{2}+W(\chi)-\theta \chi\right) \mathrm{d} x
$$

- f is a concave function
- $a_{s}\left(z_{1}, z_{2}\right):=\int_{\Omega} \int_{\Omega} \frac{\left(\nabla z_{1}(x)-\nabla z_{1}(y)\right) \cdot\left(\nabla z_{2}(x)-\nabla z_{2}(y)\right)}{|x-y|^{d+2(s-1)}} \mathrm{d} x \mathrm{~d} y$ is the bilinear form associated to the fractional s-Laplacian A_{s}
- $s>d / 2$: we need the embedding of $H^{s}(\Omega)$ into $C^{0}(\bar{\Omega})$
- $W=\widehat{\beta}+\widehat{\gamma}, \widehat{\gamma} \in C^{2}(\mathbb{R}), \widehat{\beta}$ proper, convex, I.s.c., $\overline{\operatorname{dom}(\widehat{\beta})}=[0,1]$
- we could include the thermal expansion term $\rho \theta \operatorname{tr}(\varepsilon(\mathbf{u}))$ (neglect it in this presentation)

Cf. [M. Frémond, Phase Change in Mechanics, Lecture Notes of UMI, Springer-Verlag, 2012]

The free-energy \mathcal{F} :

$$
\mathcal{F}=\int_{\Omega}\left(f(\theta)+\chi \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\frac{a_{s}(\chi, \chi)}{2}+W(\chi)-\theta \chi\right) \mathrm{d} x
$$

- f is a concave function
- $a_{s}\left(z_{1}, z_{2}\right):=\int_{\Omega} \int_{\Omega} \frac{\left(\nabla z_{1}(x)-\nabla z_{1}(y)\right) \cdot\left(\nabla z_{2}(x)-\nabla z_{2}(y)\right)}{|x-y|^{d+2(s-1)}} \mathrm{d} x \mathrm{~d} y$ is the bilinear form associated to the fractional s-Laplacian A_{s}
- $s>d / 2$: we need the embedding of $H^{s}(\Omega)$ into $C^{0}(\bar{\Omega})$
- $W=\widehat{\beta}+\widehat{\gamma}, \widehat{\gamma} \in C^{2}(\mathbb{R}), \widehat{\beta}$ proper, convex, l.s.c., $\overline{\operatorname{dom}(\widehat{\beta})}=[0,1]$
- we could include the thermal expansion term $\rho \theta \operatorname{tr}(\varepsilon(\mathbf{u}))$ (neglect it in this presentation)

The pseudo-potential \mathcal{P} :

$$
\mathcal{P}=\frac{k(\theta)}{2}|\nabla \theta|^{2}+\frac{1}{2}\left|\chi_{t}\right|^{2}+\chi \frac{\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}}{2}+I_{(-\infty, 0]}\left(\chi_{t}\right)
$$

- k the heat conductivity: coupled conditions with the specific heat $c(\theta)=f(\theta)-\theta f^{\prime}(\theta)$
- $I_{(-\infty, 0]}\left(\chi_{t}\right)=0$ if $\chi_{t} \in(-\infty, 0], I_{(-\infty, 0]}\left(\chi_{t}\right)=+\infty$ otherwise

The modelling

The momentum equation

$$
\begin{gathered}
\mathbf{u}_{t t}-\operatorname{div} \sigma=\mathbf{f} \quad\left(\sigma=\sigma^{n d}+\sigma^{d}=\frac{\partial \mathcal{F}}{\partial \varepsilon(\mathbf{u})}+\frac{\partial \mathcal{P}}{\partial \varepsilon\left(\mathbf{u}_{t}\right)}\right) \quad \text { becomes } \\
\mathbf{u}_{t t}-\operatorname{div}\left(\chi \varepsilon\left(\mathbf{u}_{t}\right)+\chi \varepsilon(\mathbf{u})\right)=\mathbf{f}
\end{gathered}
$$

The modelling

The momentum equation

$$
\begin{gathered}
\mathbf{u}_{t t}-\operatorname{div} \sigma=\mathbf{f} \quad\left(\sigma=\sigma^{n d}+\sigma^{d}=\frac{\partial \mathcal{F}}{\partial \varepsilon(\mathbf{u})}+\frac{\partial \mathcal{P}}{\partial \varepsilon\left(\mathbf{u}_{t}\right)}\right) \quad \text { becomes } \\
\mathbf{u}_{t t}-\operatorname{div}\left(\chi \varepsilon\left(\mathbf{u}_{t}\right)+\chi \varepsilon(\mathbf{u})\right)=\mathbf{f}
\end{gathered}
$$

The principle of virtual powers

$$
B-\operatorname{div} \mathbf{H}=0 \quad\left(B=\frac{\partial \mathcal{F}}{\partial X}+\frac{\partial \mathcal{P}}{\partial X_{t}}, \mathbf{H}=\frac{\partial \mathcal{F}}{\partial \nabla X}\right) \quad \text { becomes }
$$

$$
\chi_{t}+\partial I_{(-\infty, 0]}\left(\chi_{t}\right)+A_{s} \chi+W^{\prime}(\chi) \ni-\frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta
$$

The modelling

The momentum equation

$$
\begin{gathered}
\mathbf{u}_{t t}-\operatorname{div} \sigma=\mathbf{f} \quad\left(\sigma=\sigma^{n d}+\sigma^{d}=\frac{\partial \mathcal{F}}{\partial \varepsilon(\mathbf{u})}+\frac{\partial \mathcal{P}}{\partial \varepsilon\left(\mathbf{u}_{t}\right)}\right) \quad \text { becomes } \\
\mathbf{u}_{t t}-\operatorname{div}\left(\chi \varepsilon\left(\mathbf{u}_{t}\right)+\chi \varepsilon(\mathbf{u})\right)=\mathbf{f}
\end{gathered}
$$

The principle of virtual powers

$$
B-\operatorname{div} \mathbf{H}=0 \quad\left(B=\frac{\partial \mathcal{F}}{\partial X}+\frac{\partial \mathcal{P}}{\partial X_{t}}, \mathbf{H}=\frac{\partial \mathcal{F}}{\partial \nabla X}\right) \quad \text { becomes }
$$

$$
\chi_{t}+\partial I_{(-\infty, 0]}\left(\chi_{t}\right)+A_{s} \chi+W^{\prime}(\chi) \ni-\frac{|\varepsilon(\mathrm{u})|^{2}}{2}+\theta
$$

The internal energy balance

$$
e_{t}+\operatorname{div} \mathbf{q}=g+\sigma: \varepsilon\left(\mathbf{u}_{t}\right)+B \chi_{t}+\mathbf{H} \cdot \nabla \chi_{t} \quad\left(e=\mathcal{F}-\theta \frac{\partial \mathcal{F}}{\partial \theta}, \quad \mathbf{q}=\frac{\partial \mathcal{P}}{\partial \nabla \theta}\right)
$$

becomes

$$
c(\theta) \theta_{t}+\chi_{t} \theta-\operatorname{div}(k(\theta) \nabla \theta)=g+\left|\chi_{t}\right|^{2}+\chi\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}
$$

Main difficulties and weak formulation

Main difficulties and weak formulation

- We replace the momentum equation with a non-degenerating one

$$
\begin{equation*}
\mathbf{u}_{t t}-\operatorname{div}\left((\chi+\delta) \varepsilon\left(\mathbf{u}_{t}\right)+(\chi+\delta) \varepsilon(\mathbf{u})\right)=\mathbf{f}, \quad \delta>0 \tag{1}
\end{equation*}
$$

Main difficulties and weak formulation

- We replace the momentum equation with a non-degenerating one

$$
\begin{equation*}
\mathbf{u}_{t t}-\operatorname{div}\left((\chi+\delta) \varepsilon\left(\mathbf{u}_{t}\right)+(\chi+\delta) \varepsilon(\mathbf{u})\right)=\mathbf{f}, \quad \delta>0 \tag{1}
\end{equation*}
$$

- We have to handle the nonlinear coupling between the single equations: in the heat equation (even with the small perturbation assumption)

$$
\mathrm{c}(\theta) \theta_{t}+\chi_{t} \theta-\operatorname{div}(k(\theta) \nabla \theta)=g
$$

and in the phase equation

$$
\begin{equation*}
\chi_{t}+\partial I_{(-\infty, 0]}\left(\chi_{t}\right)+A_{s} \chi+W^{\prime}(\chi) \ni-\frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta \tag{2}
\end{equation*}
$$

Main difficulties and weak formulation

- We replace the momentum equation with a non-degenerating one

$$
\begin{equation*}
\mathbf{u}_{t t}-\operatorname{div}\left((\chi+\delta) \varepsilon\left(\mathbf{u}_{t}\right)+(\chi+\delta) \varepsilon(\mathbf{u})\right)=\mathbf{f}, \quad \delta>0 \tag{1}
\end{equation*}
$$

- We have to handle the nonlinear coupling between the single equations: in the heat equation (even with the small perturbation assumption)

$$
\mathrm{c}(\theta) \theta_{t}+\chi_{t} \theta-\operatorname{div}(k(\theta) \nabla \theta)=g
$$

and in the phase equation

$$
\begin{equation*}
\chi_{t}+\partial I_{(-\infty, 0]}\left(\chi_{t}\right)+A_{s} \chi+W^{\prime}(\chi) \ni-\frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta \tag{2}
\end{equation*}
$$

- A major difficulty stems from the simultaneous presence in (2) of $\partial I_{(-\infty, 0]}\left(\chi_{t}\right)$ and $W^{\prime}(\chi)$ and from the low regularities of $-\frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta$ on the r.h.s. \Longrightarrow follow the approach of [Heinemann, Kraus, WIAS preprints (2010)] and consider a suitable weak formulation of (2) consisting of a one-sided variational inequality + an energy inequality \Longrightarrow generalized principle of virtual powers

Main difficulties and weak formulation

- We replace the momentum equation with a non-degenerating one

$$
\begin{equation*}
\mathbf{u}_{t t}-\operatorname{div}\left((\chi+\delta) \varepsilon\left(\mathbf{u}_{t}\right)+(\chi+\delta) \varepsilon(\mathbf{u})\right)=\mathbf{f}, \quad \delta>0 \tag{1}
\end{equation*}
$$

- We have to handle the nonlinear coupling between the single equations: in the heat equation (even with the small perturbation assumption)

$$
\mathrm{c}(\theta) \theta_{t}+\chi_{t} \theta-\operatorname{div}(k(\theta) \nabla \theta)=g
$$

and in the phase equation

$$
\begin{equation*}
\chi_{t}+\partial I_{(-\infty, 0]}\left(\chi_{t}\right)+A_{s} \chi+W^{\prime}(\chi) \ni-\frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta \tag{2}
\end{equation*}
$$

- A major difficulty stems from the simultaneous presence in (2) of $\partial I_{(-\infty, 0]}\left(\chi_{t}\right)$ and $W^{\prime}(\chi)$ and from the low regularities of $-\frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\theta$ on the r.h.s. \Longrightarrow follow the approach of [Heinemann, Kraus, WIAS preprints (2010)] and consider a suitable weak formulation of (2) consisting of a one-sided variational inequality + an energy inequality \Longrightarrow generalized principle of virtual powers
- For the analysis of the degenerate limit $\delta \searrow 0$ we have carefully adapted techniques from [Bouchitté, Mielke, Roubíček, ZAMP (2009)] and [Mielke, Roubíček, Zeman, Comput. Methods Appl. Mech. Engrg. (2011)] to the case of a rate-dependent equation for χ, also coupled with the temperature equation.

Energy vs Enthalpy

In order to deal with the low regularity of θ, rewrite the internal energy equation

$$
c(\theta) \theta_{t}+\chi_{t} \theta-\operatorname{div}(k(\theta) \nabla \theta)=g
$$

as the enthalpy equation

$$
\begin{gathered}
w_{t}+\chi_{t} \Theta(w)-\operatorname{div}(K(w) \nabla w)=g \quad \text { where } \\
w=h(\theta):=\int_{0}^{\theta} c(s) \mathrm{d} s, \quad \Theta(w):=\left\{\begin{array}{ll}
h^{-1}(w) & \text { if } w \geq 0, \\
0 & \text { if } w<0,
\end{array} \quad K(w):=\frac{k(\Theta(w))}{c(\Theta(w))}\right.
\end{gathered}
$$

Energy vs Enthalpy

In order to deal with the low regularity of θ, rewrite the internal energy equation

$$
c(\theta) \theta_{t}+\chi_{t} \theta-\operatorname{div}(k(\theta) \nabla \theta)=g
$$

as the enthalpy equation

$$
\begin{gathered}
w_{t}+\chi_{t} \Theta(w)-\operatorname{div}(K(w) \nabla w)=g \quad \text { where } \\
w=h(\theta):=\int_{0}^{\theta} c(s) \mathrm{d} s, \quad \Theta(w):=\left\{\begin{array}{ll}
h^{-1}(w) & \text { if } w \geq 0, \\
0 & \text { if } w<0,
\end{array} \quad K(w):=\frac{k(\Theta(w))}{c(\Theta(w))}\right.
\end{gathered}
$$

We assume that

- c $\in C^{0}([0,+\infty) ;[0,+\infty))$
- $\exists \sigma_{1} \geq \sigma>\frac{2 d}{d+2}: \quad c_{0}(1+\theta)^{\sigma-1} \leq \mathrm{c}(\theta) \leq c_{1}(1+\theta)^{\sigma_{1}-1} \Longrightarrow h$ is strictly increasing
- the function $k:[0,+\infty) \rightarrow[0,+\infty)$ is continuous, and

$$
\exists c_{2}, c_{3}>0 \quad \forall \theta \in[0,+\infty): \quad c_{2} c(\theta) \leq k(\theta) \leq c_{3}(c(\theta)+1)
$$

Energy vs Enthalpy

In order to deal with the low regularity of θ, rewrite the internal energy equation

$$
c(\theta) \theta_{t}+\chi_{t} \theta-\operatorname{div}(k(\theta) \nabla \theta)=g
$$

as the enthalpy equation

$$
\begin{gathered}
w_{t}+\chi_{t} \Theta(w)-\operatorname{div}(K(w) \nabla w)=g \quad \text { where } \\
w=h(\theta):=\int_{0}^{\theta} c(s) \mathrm{d} s, \quad \Theta(w):=\left\{\begin{array}{ll}
h^{-1}(w) & \text { if } w \geq 0, \\
0 & \text { if } w<0,
\end{array} \quad K(w):=\frac{k(\Theta(w))}{c(\Theta(w))}\right.
\end{gathered}
$$

We assume that

- c $\in C^{0}([0,+\infty) ;[0,+\infty))$
- $\exists \sigma_{1} \geq \sigma>\frac{2 d}{d+2}: \quad c_{0}(1+\theta)^{\sigma-1} \leq \mathrm{c}(\theta) \leq c_{1}(1+\theta)^{\sigma_{1}-1} \Longrightarrow h$ is strictly increasing
- the function $k:[0,+\infty) \rightarrow[0,+\infty)$ is continuous, and

$$
\exists c_{2}, c_{3}>0 \quad \forall \theta \in[0,+\infty): \quad c_{2} c(\theta) \leq k(\theta) \leq c_{3}(c(\theta)+1)
$$

$\Longrightarrow \exists \bar{c}>0 \quad \forall w \in \mathbb{R}: c_{2} \leq K(w) \leq \bar{c}$
\Longrightarrow for every $s \in(1, \infty) \exists C_{s}>0 \quad \forall w \in L^{1}(\Omega):\|\Theta(w)\|_{L^{s}(\Omega)} \leq C_{s}\left(\|w\|_{L^{s / \sigma}(\Omega)}^{1 / \sigma}+1\right)$

The approximating non-degenerate Problem $\left[\mathbf{P}_{\delta}\right]$

Given $\delta>0$, take $W^{\prime}=\partial I_{[0,+\infty)}+\gamma, \gamma \in C^{1}(\mathbb{R})$, find (measurable) functions

$$
\begin{aligned}
& w \in L^{r}\left(0, T ; W^{1, r}(\Omega)\right) \cap L^{\infty}\left(0, T ; L^{1}(\Omega)\right) \cap \operatorname{BV}\left([0, T] ; W^{1, r^{\prime}}(\Omega)^{*}\right) \\
& \mathbf{u} \in H^{1}\left(0, T ; H^{2}\left(\Omega ; \mathbb{R}^{d}\right)\right) \cap W^{1, \infty}\left(0, T ; H_{0}^{1}(\Omega)\right) \cap H^{2}\left(0, T ; L^{2}\left(\Omega ; \mathbb{R}^{d}\right)\right) \\
& \chi \in L^{\infty}\left(0, T ; H^{s}(\Omega)\right) \cap H^{1}\left(0, T ; L^{2}(\Omega)\right)
\end{aligned}
$$

for every $1 \leq r<\frac{d+2}{d+1}$, fulfilling the initial conditions

$$
\begin{array}{ll}
\mathbf{u}(0, x)=\mathbf{u}_{0}(x), \quad \mathbf{u}_{t}(0, x)=\mathbf{v}_{0}(x) & \text { for a.e. } x \in \Omega \\
\chi(0, x)=\chi_{0}(x) & \text { for a.e. } x \in \Omega
\end{array}
$$

the equations (for every $\varphi \in \mathrm{C}^{0}\left([0, T] ; W^{1, r^{\prime}}(\Omega)\right) \cap W^{1, r^{\prime}}\left(0, T ; L^{r^{\prime}}(\Omega)\right)$ and $\left.t \in(0, T]\right)$

$$
\begin{aligned}
& \int_{\Omega} \varphi(t) w(t)(\mathrm{d} x)-\int_{0}^{t} \int_{\Omega} w \varphi_{t} \mathrm{~d} x+\int_{0}^{t} \int_{\Omega} \chi_{t} \Theta(w) \varphi \mathrm{d} x+\int_{0}^{t} \int_{\Omega} K(w) \nabla w \nabla \varphi \mathrm{~d} x \\
& \quad=\int_{0}^{t} \int_{\Omega} g \varphi+\int_{\Omega} w_{0} \varphi(0) \mathrm{d} x \\
& \mathbf{u}_{t t}-\operatorname{div}\left((\chi+\delta) \varepsilon\left(\mathbf{u}_{t}\right)+(\chi+\delta) \varepsilon(\mathbf{u})\right)=\mathbf{f} \text { in } H^{-1}\left(\Omega ; \mathbb{R}^{d}\right) \text { a.e. in }(0, T)
\end{aligned}
$$

and the subdifferential inclusion "in a suitable sense"
$\chi_{t}+\partial I_{(-\infty, 0]}\left(\chi_{t}\right)+A_{s} \chi+\partial I_{[0,+\infty)}(\chi)+\gamma(\chi) \ni-\frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\Theta(w) \quad$ in $H^{-s}(\Omega)$ and a.e. in $(0, T)$

Generalized principle of virtual powers for $\delta>0$ [E.R., R. Rossi, preprint arXiv:1205.3578v1 (2012)]
[Theorem 1] $(\delta>0)$ Under the previous assumptions on the data, then,
[1.] Problem $\left[\mathrm{P}_{\delta}\right]$ admits a weak solution (w, \mathbf{u}, χ), which, beside fulfilling the enthalpy and momentum equations, satisfies $\chi_{t}(x, t) \leq 0$ for almost all $t \in(0, T)$, and $\left(\forall \varphi \in L^{2}\left(0, T ; H_{+}^{s}(\Omega)\right) \cap L^{\infty}(Q)\right)$ the one-sided inequality

$$
\int_{0}^{T} \int_{\Omega} \chi_{t} \varphi+a_{s}(\chi, \varphi)+\xi \varphi+\gamma(\chi) \varphi+\frac{|\varepsilon(\mathbf{u})|^{2}}{2} \varphi-\Theta(w) \varphi \leq 0
$$

with $\xi \in \partial I_{[0,+\infty)}(\chi)$ in the following sense:

$$
\xi \in L^{1}\left(0, T ; L^{1}(\Omega)\right),\langle\xi(t), \varphi-\chi(t)\rangle_{H^{s}(\Omega)} \leq 0 \quad \forall \varphi \in H_{+}^{s}(\Omega), \text { a.e. } t \in(0, T)
$$

Generalized principle of virtual powers for $\delta>0$ [E.R., R. Rossi, preprint arXiv:1205.3578v1 (2012)]
[Theorem 1] $(\delta>0)$ Under the previous assumptions on the data, then,
[1.] Problem $\left[\mathrm{P}_{\delta}\right]$ admits a weak solution (w, \mathbf{u}, χ), which, beside fulfilling the enthalpy and momentum equations, satisfies $\chi_{t}(x, t) \leq 0$ for almost all $t \in(0, T)$, and $\left(\forall \varphi \in L^{2}\left(0, T ; H_{+}^{s}(\Omega)\right) \cap L^{\infty}(Q)\right)$ the one-sided inequality

$$
\int_{0}^{T} \int_{\Omega} \chi_{t} \varphi+a_{s}(\chi, \varphi)+\xi \varphi+\gamma(\chi) \varphi+\frac{|\varepsilon(\mathbf{u})|^{2}}{2} \varphi-\Theta(w) \varphi \leq 0
$$

with $\xi \in \partial I_{[0,+\infty)}(\chi)$ in the following sense:

$$
\xi \in L^{1}\left(0, T ; L^{1}(\Omega)\right),\langle\xi(t), \varphi-\chi(t)\rangle_{H^{s}(\Omega)} \leq 0 \quad \forall \varphi \in H_{+}^{s}(\Omega), \text { a.e. } t \in(0, T)
$$

and the energy inequality for all $t \in(0, T]$, for $s=0$, and for almost all $0<s \leq t$:

$$
\begin{aligned}
& \int_{s}^{t} \int_{\Omega}\left|\chi_{t}\right|^{2} \mathrm{~d} x \mathrm{~d} r+\frac{1}{2} a_{s}(\chi(t), \chi(t))+\int_{\Omega} W(\chi(t)) \mathrm{d} x \\
& \leq \frac{1}{2} a_{s}(\chi(s), \chi(s))+\int_{\Omega} W(\chi(s)) \mathrm{d} x+\int_{s}^{t} \int_{\Omega} \chi_{t}\left(-\frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\Theta(w)\right) \mathrm{d} x \mathrm{~d} r
\end{aligned}
$$

Generalized principle of virtual powers for $\delta>0$ [E.R., R. Rossi, preprint arXiv:1205.3578v1 (2012)]
[Theorem 1] $(\delta>0)$ Under the previous assumptions on the data, then,
[1.] Problem $\left[\mathrm{P}_{\delta}\right]$ admits a weak solution (w, \mathbf{u}, χ), which, beside fulfilling the enthalpy and momentum equations, satisfies $\chi_{t}(x, t) \leq 0$ for almost all $t \in(0, T)$, and $\left(\forall \varphi \in L^{2}\left(0, T ; H_{+}^{s}(\Omega)\right) \cap L^{\infty}(Q)\right)$ the one-sided inequality

$$
\int_{0}^{T} \int_{\Omega} \chi_{t} \varphi+a_{s}(\chi, \varphi)+\xi \varphi+\gamma(\chi) \varphi+\frac{|\varepsilon(\mathbf{u})|^{2}}{2} \varphi-\Theta(w) \varphi \leq 0
$$

with $\xi \in \partial I_{[0,+\infty)}(\chi)$ in the following sense:

$$
\xi \in L^{1}\left(0, T ; L^{1}(\Omega)\right),\langle\xi(t), \varphi-\chi(t)\rangle_{H^{s}(\Omega)} \leq 0 \quad \forall \varphi \in H_{+}^{s}(\Omega), \text { a.e. } t \in(0, T)
$$

and the energy inequality for all $t \in(0, T]$, for $s=0$, and for almost all $0<s \leq t$:

$$
\begin{aligned}
& \int_{s}^{t} \int_{\Omega}\left|\chi_{t}\right|^{2} \mathrm{~d} x \mathrm{~d} r+\frac{1}{2} a_{s}(\chi(t), \chi(t))+\int_{\Omega} W(\chi(t)) \mathrm{d} x \\
& \leq \frac{1}{2} a_{s}(\chi(s), \chi(s))+\int_{\Omega} W(\chi(s)) \mathrm{d} x+\int_{s}^{t} \int_{\Omega} \chi_{t}\left(-\frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\Theta(w)\right) \mathrm{d} x \mathrm{~d} r
\end{aligned}
$$

[2.] Suppose in addition that $g(x, t) \geq 0, \theta_{0}>\underline{\theta}_{0} \geq 0$ a.e. Then $\theta(x, t):=\Theta(w(x, t)) \geq \underline{\theta}_{0} \geq 0$ a.e.

Generalized principle of virtual powers for $\delta>0$ [E.R., R. Rossi, preprint arXiv:1205.3578v1 (2012)]
[Theorem 1] $(\delta>0)$ Under the previous assumptions on the data, then,
[1.] Problem $\left[\mathrm{P}_{\delta}\right]$ admits a weak solution (w, \mathbf{u}, χ), which, beside fulfilling the enthalpy and momentum equations, satisfies $\chi_{t}(x, t) \leq 0$ for almost all $t \in(0, T)$, and $\left(\forall \varphi \in L^{2}\left(0, T ; H_{+}^{s}(\Omega)\right) \cap L^{\infty}(Q)\right)$ the one-sided inequality

$$
\int_{0}^{T} \int_{\Omega} \chi_{t} \varphi+a_{s}(\chi, \varphi)+\xi \varphi+\gamma(\chi) \varphi+\frac{|\varepsilon(\mathbf{u})|^{2}}{2} \varphi-\Theta(w) \varphi \leq 0
$$

with $\xi \in \partial I_{[0,+\infty)}(\chi)$ in the following sense:

$$
\xi \in L^{1}\left(0, T ; L^{1}(\Omega)\right),\langle\xi(t), \varphi-\chi(t)\rangle_{H^{s}(\Omega)} \leq 0 \quad \forall \varphi \in H_{+}^{s}(\Omega), \text { a.e. } t \in(0, T)
$$

and the energy inequality for all $t \in(0, T]$, for $s=0$, and for almost all $0<s \leq t$:

$$
\begin{aligned}
& \int_{s}^{t} \int_{\Omega}\left|\chi_{t}\right|^{2} \mathrm{~d} x \mathrm{~d} r+\frac{1}{2} a_{s}(\chi(t), \chi(t))+\int_{\Omega} W(\chi(t)) \mathrm{d} x \\
& \leq \frac{1}{2} a_{s}(\chi(s), \chi(s))+\int_{\Omega} W(\chi(s)) \mathrm{d} x+\int_{s}^{t} \int_{\Omega} \chi_{t}\left(-\frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\Theta(w)\right) \mathrm{d} x \mathrm{~d} r
\end{aligned}
$$

[2.] Suppose in addition that $g(x, t) \geq 0, \theta_{0}>\underline{\theta}_{0} \geq 0$ a.e. Then $\theta(x, t):=\Theta(w(x, t)) \geq \underline{\theta}_{0} \geq 0$ a.e.

Uniqueness of solutions for the irreversible system, even in the isothermal case, is still an open problem. This is mainly due to the doubly nonlinear character of the χ equation.

Generalized principle of virtual powers vs classical phase inclusion

Generalized principle of virtual powers vs classical phase inclusion

- Any weak solution (w, \mathbf{u}, χ) fulfills the total energy inequality for all $t \in(0, T]$, for $s=0$, and for almost all $0<s \leq t$

$$
\begin{aligned}
& \int_{\Omega} w(t)(\mathrm{d} x)+\frac{1}{2} \int_{\Omega}\left|\mathbf{u}_{t}(t)\right|^{2} \mathrm{~d} x+\int_{s}^{t} \int_{\Omega}\left|\chi_{t}\right|^{2} \mathrm{~d} x+\int_{s}^{t}(\chi+\delta)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2} \\
& \quad+\frac{1}{2}(\chi(t)+\delta)|\varepsilon(\mathbf{u}(t))|^{2}+\frac{1}{2} a_{s}(\chi(t), \chi(t))+\int_{\Omega} W(\chi(t)) \mathrm{d} x \\
& \leq \int_{\Omega} w(s)(\mathrm{d} x)+\frac{1}{2} \int_{\Omega}\left|\mathbf{u}_{t}(s)\right|^{2} \mathrm{~d} x+\frac{1}{2}(\chi(s)+\delta)|\varepsilon(\mathbf{u}(s))|^{2}+\frac{1}{2} a_{s}(\chi(s), \chi(s)) \\
& \quad+\int_{\Omega} W(\chi(s)) \mathrm{d} x+\int_{s}^{t} \int_{\Omega} \mathbf{f} \cdot \mathbf{u}_{t} \mathrm{~d} x+\int_{s}^{t} \int_{\Omega} g \mathrm{~d} x
\end{aligned}
$$

Generalized principle of virtual powers vs classical phase inclusion

- Any weak solution (w, \mathbf{u}, χ) fulfills the total energy inequality for all $t \in(0, T]$, for $s=0$, and for almost all $0<s \leq t$

$$
\begin{aligned}
& \int_{\Omega} w(t)(\mathrm{d} x)+\frac{1}{2} \int_{\Omega}\left|\mathbf{u}_{t}(t)\right|^{2} \mathrm{~d} x+\int_{s}^{t} \int_{\Omega}\left|\chi_{t}\right|^{2} \mathrm{~d} x+\int_{s}^{t}(\chi+\delta)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2} \\
& \quad+\frac{1}{2}(\chi(t)+\delta)|\varepsilon(\mathbf{u}(t))|^{2}+\frac{1}{2} a_{s}(\chi(t), \chi(t))+\int_{\Omega} W(\chi(t)) \mathrm{d} x \\
& \leq \int_{\Omega} w(s)(\mathrm{d} x)+\frac{1}{2} \int_{\Omega}\left|\mathbf{u}_{t}(s)\right|^{2} \mathrm{~d} x+\frac{1}{2}(\chi(s)+\delta)|\varepsilon(\mathbf{u}(s))|^{2}+\frac{1}{2} a_{s}(\chi(s), \chi(s)) \\
& \quad+\int_{\Omega} W(\chi(s)) \mathrm{d} x+\int_{s}^{t} \int_{\Omega} \mathbf{f} \cdot \mathbf{u}_{t} \mathrm{~d} x+\int_{s}^{t} \int_{\Omega} g \mathrm{~d} x
\end{aligned}
$$

- If (w, \mathbf{u}, χ) are "more regular" and satisfy the notion of weak solution, then, differentiating the energy inequality and using the chain rule, we conclude that (w, \mathbf{u}, χ, ξ) comply with

$$
\left\langle\chi_{t}(t)+A_{s}(\chi(t))+\xi(t)+\gamma(\chi(t))+\frac{|\varepsilon(\mathbf{u})|^{2}}{2}-\Theta(w(t)), \chi_{t}(t)\right\rangle_{H^{s}(\Omega)} \leq 0 \text { for a.e.t }
$$

Using the one-sided inequality we obtain the classical phase inclusion:

$$
\begin{aligned}
& \exists \zeta \in L^{2}\left(0, T ; L^{2}(\Omega)\right) \text { with } \zeta(x, t) \in \partial I_{(-\infty, 0]}\left(\chi_{t}(x, t)\right) \text { a.e. s.t. } \\
& \qquad \chi_{t}+\zeta+A_{s} \chi+\xi+\gamma(\chi)=-\frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\Theta(w) \text { a.e. }
\end{aligned}
$$

The techniques used in the proof of Thm. $1(\delta>0)$

The techniques used in the proof of Thm. $1(\delta>0)$

- We pass to the limit in a carefully designed time-discretization scheme

The techniques used in the proof of Thm. $1(\delta>0)$

- We pass to the limit in a carefully designed time-discretization scheme
- The presence of the s-Laplacian with $s>d / 2 \Longrightarrow$ an estimate for χ in $L^{\infty}\left(0, T ; H^{s}(\Omega)\right)$ (from the total energy balance) \Longrightarrow a suitable regularity estimate on the displacement variable $\mathbf{u} \Longrightarrow$ an $L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$-bound on the quadratic nonlinearity $|\varepsilon(\mathbf{u})|^{2}$ on the right-hand side of

$$
\chi_{t}+\partial I_{(-\infty, 0]}\left(\chi_{t}\right)+A_{s} \chi+W^{\prime}(\chi) \ni-\frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\Theta(w)
$$

The techniques used in the proof of Thm. $1(\delta>0)$

- We pass to the limit in a carefully designed time-discretization scheme
- The presence of the s-Laplacian with $s>d / 2 \Longrightarrow$ an estimate for χ in $L^{\infty}\left(0, T ; H^{5}(\Omega)\right)$ (from the total energy balance) \Longrightarrow a suitable regularity estimate on the displacement variable $\mathbf{u} \Longrightarrow$ an $L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$-bound on the quadratic nonlinearity $|\varepsilon(\mathbf{u})|^{2}$ on the right-hand side of

$$
\chi_{t}+\partial I_{(-\infty, 0]}\left(\chi_{t}\right)+A_{s} \chi+W^{\prime}(\chi) \ni-\frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\Theta(w)
$$

- A Boccardo-Gallouët-type estimates combined with the Gagliardo-Nirenberg inequality applied to the enthalpy equation in order to obtain an $L^{r}\left(0, T ; W^{1, r}(\Omega)\right.$)-estimate on the enthalpy w (and hence on $\Theta(w)$)

$$
\left.w_{t}+\chi_{t} \Theta(w)-\operatorname{div}(K(w) \nabla w)\right)=g
$$

The total energy inequality in the degenerating case $\delta \searrow 0$

Rewrite the momentum equation

$$
\partial_{t}^{2} \mathbf{u}_{\delta}-\operatorname{div}\left((\chi+\delta) \varepsilon\left(\partial_{t} \mathbf{u}_{\delta}\right)\right)-\operatorname{div}\left((\chi+\delta) \varepsilon\left(\mathbf{u}_{\delta}\right)\right)=\mathbf{f}
$$

using the new variables (quasi-stresses) $\boldsymbol{\mu}_{\delta}:=\sqrt{\chi_{\delta}+\delta} \varepsilon\left(\partial_{t} \mathbf{u}_{\delta}\right)$, and $\boldsymbol{\eta}_{\delta}:=\sqrt{\chi_{\delta}+\delta} \varepsilon\left(\mathbf{u}_{\delta}\right):$

$$
\partial_{t}^{2} \mathbf{u}_{\delta}-\operatorname{div}\left(\sqrt{\chi+\delta} \boldsymbol{\mu}_{\delta}\right)-\operatorname{div}\left(\sqrt{\chi+\delta} \boldsymbol{\eta}_{\delta}\right)=\mathbf{f}
$$

The total energy inequality in the degenerating case $\delta \searrow 0$

Rewrite the momentum equation

$$
\partial_{t}^{2} \mathbf{u}_{\delta}-\operatorname{div}\left((\chi+\delta) \varepsilon\left(\partial_{t} \mathbf{u}_{\delta}\right)\right)-\operatorname{div}\left((\chi+\delta) \varepsilon\left(\mathbf{u}_{\delta}\right)\right)=\mathbf{f}
$$

using the new variables (quasi-stresses) $\boldsymbol{\mu}_{\delta}:=\sqrt{\chi_{\delta}+\delta} \varepsilon\left(\partial_{t} \mathbf{u}_{\delta}\right)$, and $\boldsymbol{\eta}_{\delta}:=\sqrt{\chi_{\delta}+\delta} \varepsilon\left(\mathbf{u}_{\delta}\right):$

$$
\partial_{t}^{2} \mathbf{u}_{\delta}-\operatorname{div}\left(\sqrt{\chi+\delta} \boldsymbol{\mu}_{\delta}\right)-\operatorname{div}\left(\sqrt{\chi+\delta} \boldsymbol{\eta}_{\delta}\right)=\mathbf{f}
$$

The total energy inequality for ($w_{\delta}, \mathbf{u}_{\delta}, \chi_{\delta}$) is

$$
\begin{aligned}
& \int_{\Omega} w_{\delta}(t)(\mathrm{d} x)+\frac{1}{2} \int_{\Omega}\left|\partial_{t} \mathbf{u}_{\delta}(t)\right|^{2} \mathrm{~d} x+\int_{s}^{t} \int_{\Omega}\left|\partial_{t} \chi_{\delta}\right|^{2} \mathrm{~d} x+\frac{1}{2} \int_{s}^{t}\left|\mu_{\delta}(r)\right|^{2} \\
& \quad+\frac{\left|\eta_{\delta}(t)\right|^{2}}{2}+\frac{1}{2} a_{s}\left(\chi_{\delta}(t), \chi_{\delta}(t)\right)+\int_{\Omega} W\left(\chi_{\delta}(t)\right) \mathrm{d} x \\
& \leq \int_{\Omega} w_{\delta}(s)(\mathrm{d} x)+\frac{1}{2} \int_{\Omega}\left|\partial_{t} \mathbf{u}_{\delta}(s)\right|^{2} \mathrm{~d} x+\frac{\left|\eta_{\delta}(s)\right|^{2}}{2}+\frac{1}{2} a_{s}\left(\chi_{\delta}(s), \chi_{\delta}(s)\right) \\
& \quad+\int_{\Omega} W\left(\chi_{\delta}(s)\right) \mathrm{d} x+\int_{s}^{t} \int_{\Omega} \mathbf{f} \cdot \partial_{t} \mathbf{u}_{\delta} \mathrm{d} x+\int_{s}^{t} \int_{\Omega} g \mathrm{~d} x
\end{aligned}
$$

The degenerate problem ($\delta=0$): the existence theorem [E.R., R. Rossi, preprint arXiv:1205.3578v1 (2012)]

The degenerate problem ($\delta=0$): the existence theorem [E.R., R. Rossi, preprint arXiv:1205.3578v1 (2012)]
[Theorem 2] $(\delta=0)$ Under the previous assumptions, there exist

$$
\begin{aligned}
& \mathbf{u} \in W^{1, \infty}\left(0, T ; L^{2}(\Omega)\right) \cap H^{2}\left(0, T ; H^{-1}(\Omega)\right), \mu \in L^{2}\left(0, T ; L^{2}(\Omega)\right), \eta \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right), \\
& w \in L^{r}\left(0, T ; W^{1, r}(\Omega)\right) \cap L^{\infty}\left(0, T ; L^{1}(\Omega)\right) \cap \operatorname{BV}\left([0, T] ; W^{1, r^{\prime}}(\Omega)^{*}\right) \\
& \chi \in L^{\infty}\left(0, T ; H^{s}(\Omega)\right) \cap H^{1}\left(0, T ; L^{2}(\Omega)\right), \quad \chi(x, t) \geq 0, \quad \chi_{t}(x, t) \leq 0 \text { a.e. }
\end{aligned}
$$

such that

The degenerate problem ($\delta=0$): the existence theorem [E.R., R. Rossi, preprint arXiv:1205.3578v1 (2012)]
[Theorem 2] $(\delta=0)$ Under the previous assumptions, there exist

$$
\begin{aligned}
& \quad \mathbf{u} \in W^{1, \infty}\left(0, T ; L^{2}(\Omega)\right) \cap H^{2}\left(0, T ; H^{-1}(\Omega)\right), \mu \in L^{2}\left(0, T ; L^{2}(\Omega)\right), \eta \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right), \\
& \quad w \in L^{r}\left(0, T ; W^{1, r}(\Omega)\right) \cap L^{\infty}\left(0, T ; L^{1}(\Omega)\right) \cap \operatorname{BV}\left([0, T] ; W^{1, r^{\prime}}(\Omega)^{*}\right) \\
& \quad \chi \in L^{\infty}\left(0, T ; H^{s}(\Omega)\right) \cap H^{1}\left(0, T ; L^{2}(\Omega)\right), \quad \chi(x, t) \geq 0, \quad \chi_{t}(x, t) \leq 0 \text { a.e. } \\
& \text { such that it holds true (a.e. in any open set } A \subset \Omega \times(0, T): \chi>0 \text { a.e. in } A)
\end{aligned}
$$

$$
\boldsymbol{\mu}=\sqrt{\chi} \varepsilon\left(\mathbf{u}_{t}\right), \boldsymbol{\eta}=\sqrt{\chi} \varepsilon(\mathbf{u}),
$$

The degenerate problem ($\delta=0$): the existence theorem [E.R., R. Rossi, preprint arXiv:1205.3578v1 (2012)]
[Theorem 2] $(\delta=0)$ Under the previous assumptions, there exist

$$
\begin{aligned}
& \quad \mathbf{u} \in W^{1, \infty}\left(0, T ; L^{2}(\Omega)\right) \cap H^{2}\left(0, T ; H^{-1}(\Omega)\right), \mu \in L^{2}\left(0, T ; L^{2}(\Omega)\right), \eta \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right), \\
& \quad w \in L^{r}\left(0, T ; W^{1, r}(\Omega)\right) \cap L^{\infty}\left(0, T ; L^{1}(\Omega)\right) \cap \operatorname{BV}\left([0, T] ; W^{1, r^{\prime}}(\Omega)^{*}\right) \\
& \quad \chi \in L^{\infty}\left(0, T ; H^{s}(\Omega)\right) \cap H^{1}\left(0, T ; L^{2}(\Omega)\right), \quad \chi(x, t) \geq 0, \quad \chi_{t}(x, t) \leq 0 \text { a.e. } \\
& \text { such that it holds true (a.e. in any open set } A \subset \Omega \times(0, T): \chi>0 \text { a.e. in } A)
\end{aligned}
$$

$$
\boldsymbol{\mu}=\sqrt{\chi} \varepsilon\left(\mathbf{u}_{t}\right), \boldsymbol{\eta}=\sqrt{\chi} \varepsilon(\mathbf{u})
$$

the weak enthalpy equation and the weak momentum and phase relations

$$
\begin{gathered}
\left.\partial_{t}^{2} \mathbf{u}-\operatorname{div}(\sqrt{\chi} \boldsymbol{\mu})-\operatorname{div}(\sqrt{\chi} \boldsymbol{\eta})\right)=\mathbf{f} \text { in } H^{-1}\left(\Omega ; \mathbb{R}^{d}\right) \text {, a.e. in }(0, T), \\
\int_{0}^{T} \int_{\Omega}\left(\partial_{t} \chi+\gamma(\chi)\right) \varphi \mathrm{d} x+\int_{0}^{T} a_{s}(\chi, \varphi) \leq \int_{0}^{T} \int_{\Omega}\left(-\frac{1}{2 \chi}|\boldsymbol{\eta}|^{2}+\Theta(w)\right) \varphi \mathrm{d} x \\
\quad \text { for all } \varphi \in L^{2}\left(0, T ; H_{+}^{s}(\Omega)\right) \cap L^{\infty}(Q) \text { with } \operatorname{supp}(\varphi) \subset\{\chi>0\}
\end{gathered}
$$

The degenerate problem $(\delta=0)$: the existence theorem [E.R., R. Rossi, preprint arXiv:1205.3578v1 (2012)]
[Theorem 2] $(\delta=0)$ Under the previous assumptions, there exist

$$
\begin{aligned}
& \mathbf{u} \in W^{1, \infty}\left(0, T ; L^{2}(\Omega)\right) \cap H^{2}\left(0, T ; H^{-1}(\Omega)\right), \boldsymbol{\mu} \in L^{2}\left(0, T ; L^{2}(\Omega)\right), \eta \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right), \\
& w \in L^{r}\left(0, T ; W^{1, r}(\Omega)\right) \cap L^{\infty}\left(0, T ; L^{1}(\Omega)\right) \cap \operatorname{BV}\left([0, T] ; W^{1, r^{\prime}}(\Omega)^{*}\right) \\
& \chi \in L^{\infty}\left(0, T ; H^{s}(\Omega)\right) \cap H^{1}\left(0, T ; L^{2}(\Omega)\right), \quad \chi(x, t) \geq 0, \quad \chi_{t}(x, t) \leq 0 \text { a.e. }
\end{aligned}
$$ such that it holds true (a.e. in any open set $A \subset \Omega \times(0, T): \chi>0$ a.e. in A)

$$
\boldsymbol{\mu}=\sqrt{\chi} \varepsilon\left(\mathbf{u}_{t}\right), \boldsymbol{\eta}=\sqrt{\chi} \varepsilon(\mathbf{u})
$$

the weak enthalpy equation and the weak momentum and phase relations

$$
\begin{gathered}
\left.\partial_{t}^{2} \mathbf{u}-\operatorname{div}(\sqrt{\chi} \mu)-\operatorname{div}(\sqrt{\chi} \eta)\right)=\mathbf{f} \text { in } H^{-1}\left(\Omega ; \mathbb{R}^{d}\right) \text {, a.e. in }(0, T) \\
\int_{0}^{T} \int_{\Omega}\left(\partial_{t} \chi+\gamma(\chi)\right) \varphi \mathrm{d} x+\int_{0}^{T} a_{s}(\chi, \varphi) \leq \int_{0}^{T} \int_{\Omega}\left(-\frac{1}{2 \chi}|\boldsymbol{\eta}|^{2}+\Theta(w)\right) \varphi \mathrm{d} x \\
\quad \text { for all } \varphi \in L^{2}\left(0, T ; H_{+}^{s}(\Omega)\right) \cap L^{\infty}(Q) \text { with } \operatorname{supp}(\varphi) \subset\{\chi>0\}
\end{gathered}
$$

together with the total energy inequality (for almost all $t \in(0, T])$

$$
\begin{gathered}
\int_{\Omega} w(t)(\mathrm{d} x)+\int_{0}^{t} \int_{\Omega}\left|\chi_{t}\right|^{2} \mathrm{~d} x+\frac{1}{2} \int_{0}^{t}|\boldsymbol{\mu}(r)|^{2}+\int_{\Omega} W(\chi(t)) \mathrm{d} x+\mathcal{J}(t)=\int_{\Omega} w_{0} \mathrm{~d} x \\
+\frac{1}{2} \int_{\Omega}\left|\mathbf{v}_{0}\right|^{2} \mathrm{~d} x+\frac{1}{2} \chi_{0}\left|\varepsilon\left(\mathbf{u}_{0}\right)\right|^{2}+\frac{1}{2} a_{s}\left(\chi_{0}, \chi_{0}\right)+\int_{\Omega} W\left(\chi_{0}\right) \mathrm{d} x+\int_{0}^{t} \int_{\Omega} \mathbf{f} \cdot \mathbf{u}_{t} \mathrm{~d} x \mathrm{~d} r+\int_{0}^{t} \int_{\Omega} g \mathrm{~d} x \\
\quad \text { with } \int_{0}^{t} \mathcal{J}(r) \mathrm{d} r \geq \frac{1}{2} \int_{0}^{t}\left(\int_{\Omega}\left|\mathbf{u}_{t}(r)\right|^{2} \mathrm{~d} x+|\boldsymbol{\eta}(r)|^{2}+a_{s}(\chi(r), \chi(r))\right)
\end{gathered}
$$

A comparison between the solution notions

Weak solution to the degenerating irreversible full system $(\delta=0) \Longleftrightarrow$ weak solution to the non-degenerating irreversible full system $(\delta>0)$

A comparison between the solution notions

Weak solution to the degenerating irreversible full system $(\delta=0) \Longleftrightarrow$ weak solution to the non-degenerating irreversible full system $(\delta>0)$
Suppose that the solution is more regular and $\chi>0$ a.e.

A comparison between the solution notions

Weak solution to the degenerating irreversible full system $(\delta=0) \Longleftrightarrow$ weak solution to the non-degenerating irreversible full system $(\delta>0)$
Suppose that the solution is more regular and $\chi>0$ a.e. Then the following identities hold true:

$$
\boldsymbol{\mu}=\sqrt{\chi} \varepsilon\left(\mathbf{u}_{t}\right), \boldsymbol{\eta}=\sqrt{\chi} \varepsilon(\mathbf{u}) \text { a.e. in } \Omega \times(0, T) .
$$

Hence

A comparison between the solution notions

Weak solution to the degenerating irreversible full system $(\delta=0) \Longleftrightarrow$ weak solution to the non-degenerating irreversible full system ($\delta>0$)
Suppose that the solution is more regular and $\chi>0$ a.e. Then the following identities hold true:

$$
\boldsymbol{\mu}=\sqrt{\chi} \varepsilon\left(\mathbf{u}_{t}\right), \boldsymbol{\eta}=\sqrt{\chi} \varepsilon(\mathbf{u}) \text { a.e. in } \Omega \times(0, T) .
$$

Hence

$$
\begin{gathered}
\int_{0}^{T} \int_{\Omega}\left(\partial_{t} \chi+\gamma(\chi)\right) \varphi \mathrm{d} x+\int_{0}^{T} a_{s}(\chi, \varphi) \leq \int_{0}^{T} \int_{\Omega}\left(-\frac{1}{2 \chi}|\eta|^{2} \varphi+\Theta(w) \varphi\right) \mathrm{d} x \\
\text { for all } \varphi \in L^{2}\left(0, T ; H_{+}^{s}(\Omega)\right) \cap L^{\infty}(Q) \text { with } \operatorname{supp}(\varphi) \subset\{\chi>0\}
\end{gathered}
$$

coincides with

$$
\int_{0}^{T} \int_{\Omega} \chi_{t} \varphi+a_{s}(\chi, \varphi)+\xi \varphi+\gamma(\chi) \varphi+\frac{|\varepsilon(\mathbf{u})|^{2}}{2} \varphi-\Theta(w) \varphi \leq 0
$$

$\forall \varphi \in L^{2}\left(0, T ; H_{+}^{s}(\Omega)\right) \cap L^{\infty}(Q)$ and with $\xi \in \partial I_{[0,+\infty)}(\chi)$.

A comparison between the solution notions

Weak solution to the degenerating irreversible full system $(\delta=0) \Longleftrightarrow$ weak solution to the non-degenerating irreversible full system $(\delta>0)$
Suppose that the solution is more regular and $\chi>0$ a.e. Then the following identities hold true:

$$
\boldsymbol{\mu}=\sqrt{\chi} \varepsilon\left(\mathbf{u}_{t}\right), \boldsymbol{\eta}=\sqrt{\chi} \varepsilon(\mathbf{u}) \text { a.e. in } \Omega \times(0, T) .
$$

Hence

$$
\begin{gathered}
\int_{0}^{T} \int_{\Omega}\left(\partial_{t} \chi+\gamma(\chi)\right) \varphi \mathrm{d} x+\int_{0}^{T} a_{s}(\chi, \varphi) \leq \int_{0}^{T} \int_{\Omega}\left(-\frac{1}{2 \chi}|\eta|^{2} \varphi+\Theta(w) \varphi\right) \mathrm{d} x \\
\text { for all } \varphi \in L^{2}\left(0, T ; H_{+}^{s}(\Omega)\right) \cap L^{\infty}(Q) \text { with } \operatorname{supp}(\varphi) \subset\{\chi>0\}
\end{gathered}
$$

coincides with

$$
\int_{0}^{T} \int_{\Omega} \chi_{t} \varphi+a_{s}(\chi, \varphi)+\xi \varphi+\gamma(\chi) \varphi+\frac{|\varepsilon(\mathbf{u})|^{2}}{2} \varphi-\Theta(w) \varphi \leq 0
$$

$\forall \varphi \in L^{2}\left(0, T ; H_{+}^{s}(\Omega)\right) \cap L^{\infty}(Q)$ and with $\xi \in \partial_{[0,+\infty)}(\chi)$. Subtracting from the degenerate total energy inequality the weak enthalpy equation tested by 1 , we recover (a.e. in ($0, T$]) the energy inequality:

$$
\begin{aligned}
& \int_{0}^{t} \int_{\Omega}\left|\chi_{t}\right|^{2} \mathrm{~d} x \mathrm{~d} r+\frac{1}{2} a_{s}(\chi(t), \chi(t))+\int_{\Omega} W(\chi(t)) \mathrm{d} x \\
& \leq \frac{1}{2} a_{s}\left(\chi_{0}, \chi_{0}\right)+\int_{\Omega} W\left(\chi_{0}\right) \mathrm{d} x+\int_{0}^{t} \int_{\Omega} \chi_{t}\left(-\frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\Theta(w)\right) \mathrm{d} x \mathrm{~d} r
\end{aligned}
$$

Work in progress: an entropic formulation for the damage phenomena

We worked here with the small perturbation assumption, i.e. neglecting the quadratic contribution on the r.h.s in the internal energy balance:

$$
\theta_{t}+\chi_{t} \theta-\Delta \theta=\left|\chi_{t}\right|^{2}+\chi\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}
$$

Work in progress: an entropic formulation for the damage phenomena We worked here with the small perturbation assumption, i.e. neglecting the quadratic contribution on the r.h.s in the internal energy balance:

$$
\theta_{t}+\chi_{t} \theta-\Delta \theta=\left|\chi_{t}\right|^{2}+\chi\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}
$$

Our next aim: to couple the weak equations for \mathbf{u} and χ with
\checkmark the entropy production

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega}\left((\log \theta+\chi) \partial_{t} \varphi-\nabla \log \theta \cdot \nabla \varphi\right) d x d t \\
& \quad \leq \int_{0}^{T} \int_{\Omega} \frac{1}{\theta}\left(-\left|\chi_{t}\right|^{2}-\chi\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}-\nabla \log \theta \cdot \nabla \theta\right) \varphi d x d t
\end{aligned}
$$

for every test function $\varphi \in \mathcal{D}\left(\bar{Q}_{T}\right), \varphi \geq 0$

Work in progress: an entropic formulation for the damage phenomena We worked here with the small perturbation assumption, i.e. neglecting the quadratic contribution on the r.h.s in the internal energy balance:

$$
\theta_{t}+\chi_{t} \theta-\Delta \theta=\left|\chi_{t}\right|^{2}+\chi\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}
$$

Our next aim: to couple the weak equations for \mathbf{u} and χ with
\checkmark the entropy production

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega}\left((\log \theta+\chi) \partial_{t} \varphi-\nabla \log \theta \cdot \nabla \varphi\right) d x d t \\
& \quad \leq \int_{0}^{T} \int_{\Omega} \frac{1}{\theta}\left(-\left|\chi_{t}\right|^{2}-\chi\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}-\nabla \log \theta \cdot \nabla \theta\right) \varphi d x d t
\end{aligned}
$$

for every test function $\varphi \in \mathcal{D}\left(\bar{Q}_{T}\right), \varphi \geq 0$ and
\checkmark the energy conservation

$$
E(t)=E(0) \text { for a.e. } t \in[0, T]
$$

where

$$
E \equiv \int_{\Omega}\left(\theta+W(\chi)+\frac{1}{2} a_{s}(\chi, \chi)+\frac{\left|\mathbf{u}_{t}\right|^{2}}{2}+\chi \frac{|\varepsilon(\mathbf{u})|^{2}}{2}\right) d x
$$

This is still a work in progress (with R. Rossi)...

Possible further application

- A fluid-mechanical theory for two-phase mixtures of fluids faces a well known mathematical difficulty:
- the movement of the interfaces \Longrightarrow Lagrangian description
- the bulk fluid flow \Longrightarrow Eulerian framework

Possible further application

- A fluid-mechanical theory for two-phase mixtures of fluids faces a well known mathematical difficulty:
- the movement of the interfaces \Longrightarrow Lagrangian description
- the bulk fluid flow \Longrightarrow Eulerian framework
- The phase-field methods overcome this problem by postulating the existence of a "diffuse" interface spread over a possibly narrow region covering the "real" sharp interface boundary:
- a phase variable χ (concentration difference of the two components) is introduced to demarcate the two species and to indicate the location of the interface
- mixing energy f is defined in terms of χ and its spatial gradient

Possible further application

- A fluid-mechanical theory for two-phase mixtures of fluids faces a well known mathematical difficulty:
- the movement of the interfaces \Longrightarrow Lagrangian description
- the bulk fluid flow \Longrightarrow Eulerian framework
- The phase-field methods overcome this problem by postulating the existence of a "diffuse" interface spread over a possibly narrow region covering the "real" sharp interface boundary:
- a phase variable χ (concentration difference of the two components) is introduced to demarcate the two species and to indicate the location of the interface
- mixing energy f is defined in terms of χ and its spatial gradient
- The time evolution of $\chi \Longrightarrow$ convection-diffusion equation: variants of Cahn-Hilliard or Allen-Cahn or other types of dynamics (cf. [Hohenberg, Halperin (1977)], [Anderson, McFadden, Wheeler (1998)], [Gurtin, Polignone, Vinals (1996)], etc.)

Possible further application

- A fluid-mechanical theory for two-phase mixtures of fluids faces a well known mathematical difficulty:
- the movement of the interfaces \Longrightarrow Lagrangian description
- the bulk fluid flow \Longrightarrow Eulerian framework
- The phase-field methods overcome this problem by postulating the existence of a "diffuse" interface spread over a possibly narrow region covering the "real" sharp interface boundary:
- a phase variable χ (concentration difference of the two components) is introduced to demarcate the two species and to indicate the location of the interface
- mixing energy f is defined in terms of χ and its spatial gradient
- The time evolution of $\chi \Longrightarrow$ convection-diffusion equation: variants of Cahn-Hilliard or Allen-Cahn or other types of dynamics (cf. [Hohenberg, Halperin (1977)], [Anderson, McFadden, Wheeler (1998)], [Gurtin, Polignone, Vinals (1996)], etc.)
- We aim to consider the non-isothermal version of [H. Abels, ARMA (2009)]:

Possible further application

- A fluid-mechanical theory for two-phase mixtures of fluids faces a well known mathematical difficulty:
- the movement of the interfaces \Longrightarrow Lagrangian description
- the bulk fluid flow \Longrightarrow Eulerian framework
- The phase-field methods overcome this problem by postulating the existence of a "diffuse" interface spread over a possibly narrow region covering the "real" sharp interface boundary:
- a phase variable χ (concentration difference of the two components) is introduced to demarcate the two species and to indicate the location of the interface
- mixing energy f is defined in terms of χ and its spatial gradient
- The time evolution of $\chi \Longrightarrow$ convection-diffusion equation: variants of Cahn-Hilliard or Allen-Cahn or other types of dynamics (cf. [Hohenberg, Halperin (1977)], [Anderson, McFadden, Wheeler (1998)], [Gurtin, Polignone, Vinals (1996)], etc.)
- We aim to consider the non-isothermal version of [H. Abels, ARMA (2009)]:

$$
\begin{align*}
& \operatorname{div} \mathbf{v}=0, \quad \partial_{t} \mathbf{v}+\operatorname{div}(\mathbf{v} \otimes \mathbf{v})+\nabla p=\operatorname{div} \mathbb{S}-\mu \nabla_{x} \chi, \quad \mathbb{S}=\nu(\theta, \chi)\left(\nabla_{x} \mathbf{v}+\nabla_{x}^{t} \mathbf{v}\right) \tag{1}\\
& \partial_{t} \theta+\operatorname{div}(\theta \mathbf{v})+\operatorname{div} \mathbf{q}=\mathbb{S}: \nabla_{x} \mathbf{v}+\left|\nabla_{x} \mu\right|^{2} \tag{2}\\
& \partial_{t} \chi+\mathbf{v} \cdot \nabla_{x} \chi=\Delta \mu, \quad \mu=-\Delta \chi+W^{\prime}(\chi)-\lambda(\theta) \tag{3}
\end{align*}
$$

Possible further application

- A fluid-mechanical theory for two-phase mixtures of fluids faces a well known mathematical difficulty:
- the movement of the interfaces \Longrightarrow Lagrangian description
- the bulk fluid flow \Longrightarrow Eulerian framework
- The phase-field methods overcome this problem by postulating the existence of a "diffuse" interface spread over a possibly narrow region covering the "real" sharp interface boundary:
- a phase variable χ (concentration difference of the two components) is introduced to demarcate the two species and to indicate the location of the interface
- mixing energy f is defined in terms of χ and its spatial gradient
- The time evolution of $\chi \Longrightarrow$ convection-diffusion equation: variants of Cahn-Hilliard or Allen-Cahn or other types of dynamics (cf. [Hohenberg, Halperin (1977)], [Anderson, McFadden, Wheeler (1998)], [Gurtin, Polignone, Vinals (1996)], etc.)
- We aim to consider the non-isothermal version of [H. Abels, ARMA (2009)]:

$$
\begin{align*}
& \operatorname{div} \mathbf{v}=0, \quad \partial_{t} \mathbf{v}+\operatorname{div}(\mathbf{v} \otimes \mathbf{v})+\nabla p=\operatorname{div} \mathbb{S}-\mu \nabla_{x} \chi, \quad \mathbb{S}=\nu(\theta, \chi)\left(\nabla_{x} \mathbf{v}+\nabla_{x}^{t} \mathbf{v}\right) \tag{1}\\
& \partial_{t} \theta+\operatorname{div}(\theta \mathbf{v})+\operatorname{div} \mathbf{q}=\mathbb{S}: \nabla_{x} \mathbf{v}+\left|\nabla_{x} \mu\right|^{2} \tag{2}\\
& \partial_{t} \chi+\mathbf{v} \cdot \nabla_{x} \chi=\Delta \mu, \quad \mu=-\Delta \chi+W^{\prime}(\chi)-\lambda(\theta) \tag{3}
\end{align*}
$$

Entropic notion of solution is needed in order to interpret the internal energy balance (2) ...

Thanks for your attention!

cf. http://www.mat.unimi.it/users/rocca/

