Degenerating PDE system for phase transitions and damage

E. Rocca

Università degli Studi di Milano

The 9th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Orlando, Florida, USA

SS2 Nonlinear Evolution PDEs and Interfaces in Applied Sciences

joint work with Riccarda Rossi (University of Brescia)

Supported by the FP7-IDEAS-ERC-StG Grant “EntroPhase”
Contents

Part 1. Introduction of the problems and deduction of the PDE system via modelling

Part 2. Our most recent results:

Mathematical problems arising from Thermomechanics

Damage phenomena:

- aim: deal with diffuse interface models in thermoviscoelasticity accounting for
 - the evolution of the displacement variables
 - the temperature
 - the damage parameter χ (for the completely damaged $\chi = 0$ and the undamaged state $\chi = 1$, respectively, in damage models, while $0 < \chi < 1$ corresponds to partial damage)

Phase transitions in thermoviscoelastic materials:

- aim: introduce a model where we have the full elastic contribution of $(1 - \chi) \varepsilon(u)$ only in the non-viscous phase, i.e. when $\chi = 0$, while it is null in the viscous one, i.e. when $\chi = 1$:
 - χ is the order parameter, standing for the local proportion of the liquid phase
 - $\chi = 0$ stands for the solid phase,
 - $\chi = 1$ for the liquid one
 - $0 < \chi < 1$ in the so-called mushy regions where the momentum equation contains χ-dependent elliptic operators, which may degenerate at the pure phases 0 and 1.
Mathematical problems arising from Thermomechanics

- **Damage** phenomena:

 - aim: deal with diffuse interface models in thermoviscoelasticity accounting for
 - the evolution of the displacement variables
 - the temperature
 - the damage parameter χ (for the completely damaged $\chi = 0$ and the undamaged state $\chi = 1$, respectively, in damage models, while $0 < \chi < 1$ corresponds to partial damage)

- Phase transitions in thermoviscoelastic materials

 - aim: introduce a model where we have the full elastic contribution of $(1 - \chi)\varepsilon(u)R\varepsilon(u)$ only in the non-viscous phase, i.e. when $\chi = 0$, while it is null in the viscous one, i.e. when $\chi = 1$:
 - χ is the order parameter, standing for the local proportion of the liquid phase
 - $\chi = 0$ stands for the solid phase,
 - $\chi = 1$ for the liquid one
 - $0 < \chi < 1$ in the so-called mushy regions where the momentum equation contains χ-dependent elliptic operators, which may degenerate at the pure phases 0 and 1.
Mathematical problems arising from Thermomechanics

- **Damage** phenomena:
 - **aim:** deal with diffuse interface models in thermoviscoelasticity accounting for
 - the evolution of the displacement variables
 - the temperature
 - the damage parameter χ (for the completely *damaged* $\chi = 0$ and the *undamaged* state $\chi = 1$, respectively, in damage models, while $0 < \chi < 1$ corresponds to *partial damage*).

- Phase transitions in thermoviscoelastic materials
 - **aim:** introduce a model where we have the full elastic contribution of $(1 - \chi)\varepsilon(u)$ only in the non-viscous phase, i.e. when $\chi = 0$, while it is null in the viscous one, i.e. when $\chi = 1$:
 - χ is the order parameter, standing for the local proportion of the liquid phase
 - $\chi = 0$ stands for the solid phase,
 - $\chi = 1$ for the liquid one
 - $0 < \chi < 1$ in the so-called mushy regions where the momentum equation contains χ-dependent elliptic operators, which may degenerate at the pure phases 0 and 1.
Mathematical problems arising from Thermomechanics

- **Damage** phenomena:
 - **aim:** deal with diffuse interface models in thermoviscoelasticity accounting for
 - the evolution of the displacement variables
 - the temperature
 - the damage parameter χ (for the completely *damaged* $\chi = 0$ and the *undamaged* state $\chi = 1$, respectively, in damage models, while $0 < \chi < 1$ corresponds to *partial damage*)

- **Phase transitions** in thermoviscoelastic materials
Mathematical problems arising from Thermomechanics

- **Damage** phenomena:
 - **aim:** deal with diffuse interface models in thermoviscoelasticity accounting for
 - the evolution of the displacement variables
 - the temperature
 - the damage parameter χ (for the completely damaged $\chi = 0$ and the undamaged state $\chi = 1$, respectively, in damage models, while $0 < \chi < 1$ corresponds to partial damage)

- **Phase transitions** in thermoviscoelastic materials
 - **aim:** introduce a model where we have the full elastic contribution of
 $$\varepsilon \left(1 - \chi \right) \varepsilon(u) R e \varepsilon(u)$$
 only in the non-viscous phase, i.e. when $\chi = 0$, while it is null in the viscous one, i.e. when $\chi = 1$:
 - χ is the order parameter, standing for the local proportion of the liquid phase
 - $\chi = 0$ stands for the solid phase,
 - $\chi = 1$ for the liquid one
 - $0 < \chi < 1$ in the so-called mushy regions
Mathematical problems arising from Thermomechanics

- **Damage** phenomena:

 - **aim**: deal with diffuse interface models in thermoviscoelasticity accounting for
 - the evolution of the displacement variables
 - the temperature
 - the damage parameter χ (for the completely damaged $\chi = 0$ and the undamaged state $\chi = 1$, respectively, in damage models, while $0 < \chi < 1$ corresponds to partial damage)

- **Phase transitions** in thermoviscoelastic materials

 - **aim**: introduce a model where we have the full elastic contribution of

 $$(1 - \chi)\varepsilon(u)R_e\varepsilon(u)$$

 only in the non-viscous phase, i.e. when $\chi = 0$, while it is null in the viscous one, i.e. when $\chi = 1$:

 - χ is the order parameter, standing for the local proportion of the liquid phase
 - $\chi = 0$ stands for the solid phase,
 - $\chi = 1$ for the liquid one
 - $0 < \chi < 1$ in the so-called mushy regions

where the momentum equation contains χ-dependent elliptic operators, which may degenerate at the pure phases 0 and 1
The scope

The analysis of the initial boundary-value problem for the following PDE system:

\[
\begin{align*}
 c(\vartheta)\vartheta_t + \chi_t\vartheta - \rho\vartheta \text{ div } \mathbf{u}_t - \text{div}(k(\vartheta)\nabla \vartheta) &= g \\
 \mathbf{u}_{tt} - \text{div}(a(\chi)\varepsilon(\mathbf{u}_t) + b(\chi)\varepsilon(\mathbf{u}) - \rho\vartheta \mathbf{1}) &= f \\
 \chi_t + \mu \partial I_{(-\infty,0]}(\chi_t) - \Delta_p \chi + W'(\chi) &\geq -b'(\chi)\frac{\varepsilon(\mathbf{u})^2}{2} + \vartheta
\end{align*}
\]

which describes a thermoviscoelastic system in a reference domain \(\Omega \subset \mathbb{R}^d \), \(d \in \{2, 3\} \) during a time interval \([0, T]\)
The scope

The analysis of the initial boundary-value problem for the following PDE system:

\[
c(\vartheta)\vartheta_t + \chi_t\vartheta - \rho \vartheta \operatorname{div} \mathbf{u}_t - \operatorname{div}(k(\vartheta) \nabla \vartheta) = g
\]

\[
\mathbf{u}_{tt} - \operatorname{div}(a(\chi)\varepsilon(\mathbf{u}_t) + b(\chi)\varepsilon(\mathbf{u}) - \rho \vartheta \mathbf{1}) = f
\]

\[
\chi_t + \mu \partial I_{(-\infty,0]}(\chi_t) - \Delta_p \chi + W'(\chi) \ni -b'(\chi) \frac{\varepsilon(\mathbf{u})^2}{2} + \vartheta
\]

which describes a thermoviscoelastic system in a reference domain \(\Omega \subset \mathbb{R}^d \), \(d \in \{2, 3\} \) during a time interval \([0, T]\)

- \(\vartheta \) is the absolute temperature of the system
- \(\mathbf{u} \) the vector of small displacements
- \(\chi \) is the order parameter, standing for the local proportion of one of the two phases in phase transitions (\(\chi = 0 \): solid phase and \(\chi = 1 \): liquid phase, and \(0 < \chi < 1 \) in the so-called mushy regions) \(\implies \) \(a(\chi) = \chi, \ b(\chi) = 1 - \chi \)
- \(\chi \) is the damage parameter, assessing the soundness of the material in damage (for the completely damaged \(\chi = 0 \) and the undamaged state \(\chi = 1 \), respectively, while \(0 < \chi < 1 \): partial damage) \(\implies \) \(a(\chi) = b(\chi) = \chi \)
Deal with the possible degeneracy in the momentum equation

Main aim:

We shall let a and b vanish at the threshold values 0 and 1, not enforce separation of χ from the threshold values 0 and 1, and accordingly we will allow for general initial configurations of $\chi = \Rightarrow$

It is not to be expected that either of the coefficients $a(\chi)$ and $b(\chi)$ stay away from 0: elliptic degeneracy of the displacement equation $u_{tt} - \text{div}(a(\chi) \varepsilon(u_t) + b(\chi) \varepsilon(u)) - \rho \vartheta_1) = f = \Rightarrow$

We shall approximate the system with a non-degenerating one, where we replace the momentum equation with $u_{tt} - \text{div}((a(\chi) + \delta) \varepsilon(u_t) + b(\chi) \varepsilon(u)) - \rho \vartheta_1) = f$ for $\delta > 0$
Deal with the possible degeneracy in the momentum equation

Main aim: We shall let a and b vanish at the threshold values 0 and 1, not enforce separation of χ from the threshold values 0 and 1, and accordingly we will allow for general initial configurations of χ.
Deal with the possible degeneracy in the momentum equation

Main aim: We shall let a and b vanish at the threshold values 0 and 1, not enforce separation of χ from the threshold values 0 and 1, and accordingly we will allow for general initial configurations of χ.

It is not to be expected that either of the coefficients $a(\chi)$ and $b(\chi)$ stay away from 0: elliptic degeneracy of the displacement equation

$$u_{tt} - \text{div}(a(\chi)\varepsilon(u_t) + b(\chi)\varepsilon(u) - \rho \vartheta \mathbf{1}) = f$$
Deal with the possible degeneracy in the momentum equation

Main aim: We shall let a and b vanish at the threshold values 0 and 1, not enforce separation of χ from the threshold values 0 and 1, and accordingly we will allow for general initial configurations of χ.

⇒ It is not to be expected that either of the coefficients $a(\chi)$ and $b(\chi)$ stay away from 0: elliptic degeneracy of the displacement equation

$$\mathbf{u}_{tt} - \text{div}(a(\chi)\varepsilon(\mathbf{u}_t) + b(\chi)\varepsilon(\mathbf{u}) - \rho \vartheta \mathbf{1}) = \mathbf{f}$$

⇒ We shall approximate the system with a non-degenerating one, where we replace the momentum equation with

$$\mathbf{u}_{tt} - \text{div}((a(\chi) + \delta)\varepsilon(\mathbf{u}_t) + b(\chi)\varepsilon(\mathbf{u}) - \rho \vartheta \mathbf{1}) = \mathbf{f} \quad \text{for } \delta > 0$$
The first results and the new goal
The first results and the new goal

[**First result.**] *Local in time well-posedness* for a suitable formulation of the reversible problem ($\mu = 0$ and $\rho = 0$) using in

\[
c(\vartheta)\vartheta_t + \chi_t \vartheta - \rho \vartheta \text{ div } u_t - \text{ div}(k(\vartheta) \nabla \vartheta) = g + |\chi_t|^2 + a(\chi)|\varepsilon(u_t)|^2.
\]

the *small perturbations assumption* in the 3D (in space) setting [J. Differential Equations, 2008]

Note: in both these results we assumed χ_0 separated from the thresholds 0 and 1 and we prove (exploiting a sufficient coercivity condition on W at the thresholds 0 and 1) that the solution χ during the evolution continues to stay separated from 0 and 1 \Rightarrow prevent degeneracy (the operators are uniformly elliptic)

The goal [E.R., R. Rossi, preprint arXiv:1205.3578v1 (2012)]: to establish a *global existence result* in 3D using a suitable notion of solution and without enforcing the separation property, i.e. allowing for degeneracy
The first results and the new goal

[**First result.**] **Local in time well-posedness** for a suitable formulation of the reversible problem \((\mu = 0 \text{ and } \rho = 0)\) using in

\[
c(\vartheta)\vartheta_t + \chi_t \vartheta - \rho \vartheta \text{div} \mathbf{u}_t - \text{div}(k(\vartheta)\nabla \vartheta) = g + |\chi_t|^2 + a(\chi)\varepsilon(\mathbf{u}_t)^2.
\]

the *small perturbations assumption* in the 3D (in space) setting [J. Differential Equations, 2008]

[**Second result.**] **Global well-posedness** in the 1D case without *small perturbations assumption* [Appl. Math., Special Volume (2008)]
The first results and the new goal

[**First result.**] **Local in time well-posedness** for a suitable formulation of the reversible problem ($\mu = 0$ and $\rho = 0$) using in

$$c(\vartheta)\vartheta_t + \chi_t \vartheta - \rho \vartheta \text{ div } u_t - \text{div}(k(\vartheta)\nabla \vartheta) = g + |\chi_t|^2 + a(\chi)|\varepsilon(u_t)|^2.$$

the small perturbations assumption in the 3D (in space) setting [J. Differential Equations, 2008]

[**Second result.**] **Global well-posedness** in the 1D case without small perturbations assumption [Appl. Math., Special Volume (2008)]

Note: in both these results we assumed χ_0 separated from the thresholds 0 and 1 and we prove (exploiting a sufficient coercivity condition on W at the thresholds 0 and 1) that the solution χ during the evolution continues to stay separated from 0 and 1 \Rightarrow prevent degeneracy (the operators are uniformly elliptic)
The first results and the new goal

[First result.] Local in time well-posedness for a suitable formulation of the reversible problem \((\mu = 0 \text{ and } \rho = 0)\) using in

\[
c(\vartheta)\vartheta_t + \chi_t \vartheta - \rho \vartheta \text{ div } u_t - \text{div} (k(\vartheta) \nabla \vartheta) = g + |\chi_t|^2 + a(\chi)|\varepsilon(u_t)|^2.
\]

the small perturbations assumption in the 3D (in space) setting [J. Differential Equations, 2008]

[Second result.] Global well-posedness in the 1D case without small perturbations assumption [Appl. Math., Special Volume (2008)]

Note: in both these results we assumed \(\chi_0\) separated from the thresholds 0 and 1 and we prove (exploiting a sufficient coercivity condition on \(W\) at the thresholds 0 and 1) that the solution \(\chi\) during the evolution continues to stay separated from 0 and 1 \(\Rightarrow\) prevent degeneracy (the operators are uniformly elliptic)

The goal [E.R., R. Rossi, preprint arXiv:1205.3578v1 (2012)]: to establish a global existence result in 3D using a suitable notion of solution and without enforcing the separation property, i.e. allowing for degeneracy
The model
Free energy and Dissipation

cf. [M. Frémond, Phase Change in Mechanics, Lecture Notes of the UMI 13, Springer-Verlag, Berlin, 2012]

The free-energy F:

$$F = \int_\Omega \left(f(\vartheta) + b(\chi) |\varepsilon(u)|^2 + \frac{1}{p} |\nabla \chi|^p + W(\chi) + \rho \vartheta \text{tr}(\varepsilon(u)) - \vartheta \chi \right) \, dx$$

f is a concave function, $\rho \in \mathbb{R}$ a thermal expansion coefficient, $b \in C^2(\mathbb{R}; [0, +\infty))$, e.g., $b(\chi) = 1 - \chi$ in phase transitions, $b(\chi) = \chi$ in damage cases.

$p > d$: we need the embedding of $W_1^p(\Omega)$ into $C_0(\Omega)$

$$W = \hat{\beta} + \hat{\gamma}, \quad \hat{\gamma} \in C^2(\mathbb{R}), \quad \hat{\beta} \text{proper, convex, l.s.c.}, \quad \text{dom}(\hat{\beta}) = [0, 1]$$

The pseudo-potential P:

$$P = k(\vartheta) |\nabla \vartheta|^2 + \frac{1}{2} |\chi_t|^2 + a(\chi) |\varepsilon(u_t)|^2 + \mu I(-\infty, 0)(\chi_t)$$

k the heat conductivity: coupled conditions with the specific heat $c(\vartheta) = f(\vartheta) - \vartheta f'(\vartheta)$

$a \in C^1(\mathbb{R}; [0, +\infty))$, e.g., $a(\chi) = \chi$

$\mu = 0$: reversible case, $\mu = 1$: irreversible case
Free energy and Dissipation

cf. [M. Frémond, Phase Change in Mechanics, Lecture Notes of the UMI 13, Springer-Verlag, Berlin, 2012]

The free-energy F:

$$F = \int_{\Omega} \left(f(\vartheta) + b(\chi) \frac{|\varepsilon(u)|^2}{2} + \frac{1}{p} |\nabla \chi|^p + W(\chi) + \rho \vartheta \text{tr}(\varepsilon(u)) - \vartheta \chi \right) dx$$

- f is a concave function, $\rho \in \mathbb{R}$ a thermal expansion coefficient
- $b \in C^2(\mathbb{R}; [0, +\infty))$, e.g., $b(\chi) = 1 - \chi$ in phase transitions, $b(\chi) = \chi$ in damage
- $p > d$: we need the embedding of $W^{1,p}(\Omega)$ into $C^0(\overline{\Omega})$
- $W = \hat{\beta} + \hat{\gamma}, \hat{\gamma} \in C^2(\mathbb{R}), \hat{\beta}$ proper, convex, l.s.c., $\text{dom}(\hat{\beta}) = [0, 1]$
Free energy and Dissipation

cf. [M. Frémond, Phase Change in Mechanics, Lecture Notes of the UMI 13, Springer-Verlag, Berlin, 2012]

The free-energy \mathcal{F}:

$$\mathcal{F} = \int_\Omega \left(f(\vartheta) + b(\chi) \frac{|\varepsilon(u)|^2}{2} + \frac{1}{p} |\nabla \chi|^p + W(\chi) + \rho \vartheta \text{tr}(\varepsilon(u)) - \vartheta \chi \right) \, dx$$

- f is a concave function, $\rho \in \mathbb{R}$ a thermal expansion coefficient
- $b \in C^2(\mathbb{R}; [0, +\infty))$, e.g., $b(\chi) = 1 - \chi$ in phase transitions, $b(\chi) = \chi$ in damage
- $p > d$: we need the embedding of $W^{1,p}(\Omega)$ into $C^0(\overline{\Omega})$
- $W = \hat{\beta} + \hat{\gamma}$, $\hat{\gamma} \in C^2(\mathbb{R})$, $\hat{\beta}$ proper, convex, l.s.c., $\text{dom}(\hat{\beta}) = [0, 1]$

The pseudo-potential \mathcal{P}:

$$\mathcal{P} = \frac{k(\vartheta)}{2} |\nabla \vartheta|^2 + \frac{1}{2} |\chi_t|^2 + a(\chi) \frac{|\varepsilon(u_t)|^2}{2} + \mu I_{(-\infty, 0]}(\chi_t)$$

- k the heat conductivity: coupled conditions with the specific heat $c(\vartheta) = f(\vartheta) - \vartheta f'(\vartheta)$
- $a \in C^1(\mathbb{R}; [0, +\infty))$, e.g., $a(\chi) = \chi$
- $\mu = 0$: reversible case, $\mu = 1$: irreversible case
The modelling

The momentum equation

\[u_{tt} - \text{div} \sigma = f \]

\[(\sigma = \sigma^{nd} + \sigma^{d} = \frac{\partial F}{\partial \varepsilon(u)} + \frac{\partial P}{\partial \varepsilon(u_t)}) \]

becomes

\[u_{tt} - \text{div}(a(\chi)\varepsilon(u_t) + b(\chi)\varepsilon(u) - \rho \vartheta \mathbf{1}) = f \]
The modelling

The momentum equation

\[u_{tt} - \text{div} \sigma = f \quad \left(\sigma = \sigma^{nd} + \sigma^d = \frac{\partial F}{\partial \varepsilon(u)} + \frac{\partial P}{\partial \varepsilon(u_t)} \right) \]
becomes

\[u_{tt} - \text{div}(a(\chi)\varepsilon(u_t) + b(\chi)\varepsilon(u) - \rho \vartheta 1) = f \]

The phase evolution (standard principle of virtual powers)

\[B - \text{div} H = 0 \quad \left(B = \frac{\partial F}{\partial \chi} + \frac{\partial P}{\partial \chi_t}, H = \frac{\partial F}{\partial \nabla \chi} \right) \]
becomes

\[\chi_t + \mu \partial l_{(-\infty,0]}(\chi_t) - \Delta \rho \chi + W'(\chi) \ni -b'(\chi) \frac{|\varepsilon(u)|^2}{2} + \vartheta \]
The modelling

The momentum equation

\[u_{tt} - \text{div} \sigma = f \quad \left(\sigma = \sigma^{\text{nd}} + \sigma^d = \frac{\partial F}{\partial \varepsilon(u)} + \frac{\partial P}{\partial \varepsilon(u_t)} \right) \]

becomes

\[u_{tt} - \text{div}(a(\chi)\varepsilon(u_t) + b(\chi)\varepsilon(u) - \rho \vartheta \mathbf{1}) = f \]

The phase evolution (standard principle of virtual powers)

\[B - \text{div} \mathbf{H} = 0 \quad \left(B = \frac{\partial F}{\partial \chi} + \frac{\partial P}{\partial \chi_t}, \mathbf{H} = \frac{\partial F}{\partial \nabla \chi} \right) \]

becomes

\[\chi_t + \mu \partial I_{(-\infty,0]}(\chi_t) - \Delta \rho \chi + W'(\chi) \ni - b'(\chi) \frac{|\varepsilon(u)|^2}{2} + \vartheta \]

The internal energy balance

\[e_t + \text{div} \mathbf{q} = g + \sigma : \varepsilon(u_t) + B\chi_t + \mathbf{H} \cdot \nabla \chi_t \quad \left(e = F - \vartheta \frac{\partial F}{\partial \vartheta}, \quad \mathbf{q} = \frac{\partial P}{\partial \nabla \vartheta} \right) \]

becomes

\[c(\vartheta)\vartheta_t + \chi_t \vartheta - \rho \vartheta \text{div} \mathbf{u}_t - \text{div}(k(\vartheta)\nabla \vartheta) = g + |\chi_t|^2 + a(\chi)|\varepsilon(u_t)|^2 \]
The analysis
Main mathematical difficulties

Our main aim is to handle the elliptic degeneracy of the momentum equation: we replace it by
\[u_{tt} - \nabla ((a(\chi) + \delta \epsilon(u_t)) + b(\chi) \epsilon(u) - \rho \vartheta_1) = f \]
and we want to let \(\delta \to 0 \).

We should also treat the nonlinear coupling between the single equations: the heat equation
\[c(\vartheta) \vartheta_t + \chi_t \vartheta - \rho \vartheta \nabla u_t - \nabla (k(\vartheta) \nabla \vartheta) = g + |\chi_t|^2 + a(\chi) |\epsilon(u_t)|^2 \]
and the phase equation
\[\chi_t + \mu \partial I(-\infty, 0)(\chi_t) - \Delta p \chi + W'(\chi) \ni - b'(\chi) |\epsilon(u)|^2 \]

A major difficulty stems from the simultaneous presence in (Phase) of \(\partial I(-\infty, 0)(\chi_t) \), \(-\Delta p \chi \), and \(W'(\chi) \). However, \(-\Delta p \chi \) is necessary in order to estimate \(-b'(\chi) |\epsilon(u)|^2 \).

We consider a suitable weak formulation of (Phase) consisting of a one-sided variational inequality + an energy inequality \(\Rightarrow \) generalized principle of virtual powers.

In a first approach, we take the small perturbation assumption and deal with...
Main mathematical difficulties

Our main aim is to handle the elliptic degeneracy of the momentum equation: we replace it by
\[u_{tt} - \text{div}((a(\chi) + \delta)\varepsilon(u_t) + b(\chi)\varepsilon(u) - \rho \varrho \mathbf{1}) = f \]
and we want let \(\delta \downarrow 0 \).
Main mathematical difficulties

- Our main aim is to handle the elliptic degeneracy of the momentum equation: we replace it by
 \[u_{tt} - \text{div}((a(\chi) + \delta)\varepsilon(u_t) + b(\chi)\varepsilon(u) - \rho \vartheta 1) = f \]
 and we want let \(\delta \downarrow 0 \)

- We should also treat the nonlinear coupling between the single equations: the heat equation
 \[c(\vartheta)\vartheta_t + \chi_t\vartheta - \rho \vartheta \text{div} u_t - \text{div}(k(\vartheta)\nabla \vartheta) = g + |\chi_t|^2 + a(\chi)|\varepsilon(u_t)|^2 \]
 and the phase equation
 \[\chi_t + \mu \partial \mathcal{I}_{(-\infty,0]}(\chi_t) - \Delta \rho \chi + W'(\chi) \varrho - b'(\chi)\frac{|\varepsilon(u)|^2}{2} + \vartheta \quad \text{(Phase)} \]
Main mathematical difficulties

- Our main aim is to handle the elliptic degeneracy of the momentum equation: we replace it by
 \[u_{tt} - \text{div}((a(\chi) + \delta)\varepsilon(u_t) + b(\chi)\varepsilon(u) - \rho\vartheta 1) = f \]
 and we want let \(\delta \searrow 0 \)

- We should also treat the nonlinear coupling between the single equations: the heat equation
 \[c(\vartheta)\vartheta_t + \chi_t \vartheta - \rho\vartheta \text{ div } u_t - \text{div}(k(\vartheta) \nabla \vartheta) = g + |\chi_t|^2 + a(\chi)|\varepsilon(u_t)|^2 \]
 and the phase equation
 \[\chi_t + \mu \partial I_{(-\infty,0]}(\chi_t) - \Delta_p \chi + W'(\chi) \ni -b'(\chi) \frac{|\varepsilon(u)|^2}{2} + \vartheta \quad \text{ (Phase)} \]

- A major difficulty stems from the simultaneous presence in (Phase) of \(\partial I_{(-\infty,0]}(\chi_t), -\Delta_p \chi, \) and \(W'(\chi). \) However \(-\Delta_p \chi\) is necessary in order to estimate \(-b'(\chi) \frac{|\varepsilon(u)|^2}{2}\)
Main mathematical difficulties

- Our main aim is to handle the elliptic degeneracy of the momentum equation: we replace it by
 \[u_{tt} - \text{div}(\(a(\chi) + \delta \)\(\varepsilon(u_t) + b(\chi)\varepsilon(u) - \rho \vartheta 1 \)) = f \]
 and we want let \(\delta \downarrow 0 \)

- We should also treat the nonlinear coupling between the single equations: the heat equation
 \[c(\vartheta)\vartheta_t + \chi_t\vartheta - \rho \vartheta \text{div} u_t - \text{div}(k(\vartheta)\nabla \vartheta) = g + |\chi_t|^2 + a(\chi)|\varepsilon(u_t)|^2 \]
 and the phase equation
 \[\chi_t + \mu \partial I_{(\infty,0]}(\chi_t) - \Delta_p \chi + W'(\chi) \ni -b'(\chi)\frac{|\varepsilon(u)|^2}{2} + \vartheta \quad \text{(Phase)} \]

- A major difficulty stems from the simultaneous presence in (Phase) of \(\partial I_{(\infty,0]}(\chi_t), -\Delta_p \chi, \)
 and \(W'(\chi) \). However \(-\Delta_p \chi \) is necessary in order to estimate \(-b'(\chi)\frac{|\varepsilon(u)|^2}{2} \)

- We consider a suitable weak formulation of (Phase) consisting of a one-sided variational inequality + an energy inequality \(\implies \) generalized principle of virtual powers
Main mathematical difficulties

- Our main aim is to handle the elliptic degeneracy of the momentum equation: we replace it by
 \[u_{tt} - \text{div}(a(\chi) + \delta)\varepsilon(u_t) + b(\chi)\varepsilon(u) - \rho\vartheta 1 = f \]
 and we want let \(\delta \searrow 0 \)

- We should also treat the nonlinear coupling between the single equations: the heat equation
 \[c(\vartheta)\vartheta_t + \chi_t\vartheta - \rho\vartheta \text{div} u_t - \text{div}(k(\vartheta)\nabla \vartheta) = g + |\chi_t|^2 + a(\chi)|\varepsilon(u_t)|^2 \]
 and the phase equation
 \[\chi_t + \mu \partial I_{(-\infty,0]}(\chi_t) - \Delta_p \chi + W'(\chi) \geq -b'(\chi)\frac{|\varepsilon(u)|^2}{2} + \vartheta \quad \text{(Phase)} \]

- A major difficulty stems from the simultaneous presence in (Phase) of \(\partial I_{(-\infty,0]}(\chi_t), -\Delta_p \chi, \)
 and \(W'(\chi) \). However \(-\Delta_p \chi \) is necessary in order to estimate \(-b'(\chi)\frac{|\varepsilon(u)|^2}{2} \)

- We consider a suitable weak formulation of (Phase) consisting of a one-sided variational inequality + an energy inequality \(\Rightarrow \) generalized principle of virtual powers

- In a first approach, we take the small perturbation assumption and deal with
 \[c(\vartheta)\vartheta_t + \chi_t\vartheta - \rho\vartheta \text{div} u_t - \text{div}(k(\vartheta)\nabla \vartheta) = g \]
Main new results
The main ideas to handle nonlinearities and degeneracy

The main ideas to handle nonlinearities and degeneracy

Introduce a concept of weak solution satisfying

\textit{a generalization of the principle of virtual powers} inspired by

E. Rocca (Università di Milano)
Phase Transitions and Damage
July 1–5, 2012
The main ideas to handle nonlinearities and degeneracy

Introduce a concept of weak solution satisfying

\[\text{a generalization of the principle of virtual powers inspired by} \]

Main results

We replace the momentum equation with a non-degenerating one

\[u_{tt} - \text{div} \left(a(\chi) + \delta \epsilon(u_t) \right) + b(\chi) \epsilon(u) - \rho \vartheta_1 = f, \quad \delta > 0 \]

[Thm. 1]
Existence of solutions to the non-degenerating system \(\delta > 0 \) in the reversible case, i.e. with \(\mu = 0 \) in

\[\chi_t + \mu \partial I(-\infty,0](\chi_t) - \Delta p \chi + W'(\chi) \ni -b'(\chi) |\epsilon(u)|^2 + \vartheta \]

[Thm. 2]
Existence of weak solutions to the non-degenerating system \(\delta > 0 \) in the irreversible case (\(\mu = 1 \)) consisting of a one-sided variational inequality and of an energy inequality

[Thm. 3]
For the analysis of the degenerate limit \(\delta \downarrow 0 \) we have carefully adapted techniques from [Bouchitté, Mielke, Roubíček, 2009] and [Mielke, Roubíček, Zeman, 2011] to the case of a rate-dependent equation for \(\chi \), also coupled with the temperature equation.

It seems to us that both the coefficients need to be truncated when taking the degenerate limit in the momentum equation: the truncation in front of \(\epsilon(u_t) \) allows us to deal with the main part of the elliptic operator, but, in order to pass to the limit in the quadratic term on the right-hand side of \(\chi \)-eq., we will also need to truncate the coefficient of \(\epsilon(u) \).
Main results

- We replace the momentum equation with a non-degenerating one

\[u_{tt} - \text{div}((a(\chi) + \delta)\varepsilon(u_t) + b(\chi)\varepsilon(u) - \rho \vartheta 1) = f, \quad \delta > 0 \]
Main results

- We replace the momentum equation with a non-degenerating one

\[u_{tt} - \text{div}(a(\chi) + \delta)\varepsilon(u_t) + b(\chi)\varepsilon(u) - \rho\vartheta 1) = f, \quad \delta > 0 \]

- [Thm. 1] Existence of solutions to the non-degenerating system \(\delta > 0 \) in the reversible case, i.e. with \(\mu = 0 \) in

\[\chi_t + \mu \partial I_{(-\infty,0]}(\chi_t) - \Delta p\chi + W'(\chi) \geq -b'(\chi) \frac{|\varepsilon(u)|^2}{2} + \vartheta \]

- [Thm. 2] Existence of weak solutions to the non-degenerating system \(\delta > 0 \) in the irreversible case (\(\mu = 1 \)) consisting of a one-sided variational inequality and of an energy inequality

- [Thm. 3] For the analysis of the degenerate limit \(\delta \downarrow 0 \) we have carefully adapted techniques from [Bouchitté, Mielke, Roubíček, 2009] and [Mielke, Roubíček, Zeman, 2011] to the case of a rate-dependent equation for \(\chi \), also coupled with the temperature equation.

It seems to us that both the coefficients need to be truncated when taking the degenerate limit in the momentum equation: the truncation in front of \(\varepsilon(u_t) \) allows us to deal with the main part of the elliptic operator, but, in order to pass to the limit in the quadratic term on the right-hand side of \(\chi \)-eq., we will also need to truncate the coefficient of \(\varepsilon(u) \).
Main results

- We replace the momentum equation with a non-degenerating one

\[u_{tt} - \text{div} ((a(\chi) + \delta)\varepsilon(u_t) + b(\chi)\varepsilon(u) - \rho \vartheta \mathbf{1}) = f, \quad \delta > 0 \]

- \textbf{[Thm. 1]} Existence of solutions to the non-degenerating system \(\delta > 0 \) in the \textit{reversible} case, i.e. with \(\mu = 0 \) in

\[\chi_t + \mu \partial l_{(-\infty,0]}(\chi_t) - \Delta_p \chi + W'(\chi) \ni -b'(\chi) \frac{|\varepsilon(u)|^2}{2} + \vartheta \]

- \textbf{[Thm. 2]} Existence of \textit{weak solutions} to the non-degenerating system \(\delta > 0 \) in the \textit{irreversible} case (\(\mu = 1 \)) consisting of a \textit{one-sided} variational inequality and of an energy inequality
Main results

- We replace the momentum equation with a non-degenerating one
 \[u_{tt} - \text{div}(a(\chi) + \delta)\varepsilon(u_t) + b(\chi)\varepsilon(u) - \rho \vartheta 1) = f, \quad \delta > 0 \]

- **[Thm. 1]** Existence of solutions to the non-degenerating system \(\delta > 0 \) in the **reversible** case, i.e. with \(\mu = 0 \) in
 \[\chi_t + \mu \partial I_{(-\infty,0]}(\chi_t) - \Delta_p \chi + W'(\chi) \ni -b'(\chi)\frac{\varepsilon(u)^2}{2} + \vartheta \]

- **[Thm. 2]** Existence of **weak solutions** to the non-degenerating system \(\delta > 0 \) in the **irreversible** case \((\mu = 1) \) consisting of a **one-sided** variational inequality and of an energy inequality

- **[Thm. 3]** For the analysis of the degenerate limit \(\delta \downarrow 0 \) we have carefully adapted techniques from [Bouchitté, Mielke, Roubíček, 2009] and [Mielke, Roubíček, Zeman, 2011] to the case of a **rate-dependent** equation for \(\chi \), also coupled with the temperature equation
Main results

- We replace the momentum equation with a non-degenerating one

\[u_{tt} - \text{div}\left((a(\chi) + \delta)\varepsilon(u_t) + b(\chi)\varepsilon(u) - \rho \vartheta 1 \right) = f, \quad \delta > 0 \]

- **[Thm. 1]** Existence of solutions to the non-degenerating system \(\delta > 0 \) in the *reversible* case, i.e. with \(\mu = 0 \) in

\[\chi_t + \mu \partial l_{(-\infty,0]}(\chi_t) - \Delta p \chi + W'(\chi) \ni - b'(\chi) \frac{|\varepsilon(u)|^2}{2} + \vartheta \]

- **[Thm. 2]** Existence of weak solutions to the non-degenerating system \(\delta > 0 \) in the *irreversible* case \((\mu = 1) \) consisting of a *one-sided* variational inequality and of an energy inequality

- **[Thm. 3]** For the analysis of the degenerate limit \(\delta \searrow 0 \) we have carefully adapted techniques from [Bouchitté, Mielke, Roubíček, 2009] and [Mielke, Roubíček, Zeman, 2011] to the case of a *rate-dependent* equation for \(\chi \), also coupled with the temperature equation

- It seems to us that *both* the coefficients need to be truncated when taking the degenerate limit in the momentum equation: the truncation in front of \(\varepsilon(u_t) \) allows us to deal with the *main part* of the elliptic operator, but, in order to pass to the limit in the quadratic term on the right-hand side of \(\chi \)-eq., we will also need to truncate the coefficient of \(\varepsilon(u) \)
Energy vs Enthalpy

In order to deal with the low regularity of ϑ, rewrite the internal energy equation

$$c(\vartheta)\vartheta_t + \chi_t \vartheta - \rho \vartheta \text{ div } u_t - \text{ div}(k(\vartheta)\nabla \vartheta) = g$$

as the enthalpy equation

$$w_t + \chi_t \Theta(w) - \rho \Theta(w) \text{ div } u_t - \text{ div}(K(w)\nabla w) = g$$

where

$$w = h(\vartheta) := \int_0^{\vartheta} c(s) \, ds, \quad \Theta(w) := \begin{cases} h^{-1}(w) & \text{if } w \geq 0, \\ 0 & \text{if } w < 0, \end{cases} \quad K(w) := \frac{k(\Theta(w))}{c(\Theta(w))}$$
Energy vs Enthalpy

In order to deal with the low regularity of ϑ, rewrite the internal energy equation

$$c(\vartheta)\vartheta_t + \chi_t \vartheta - \rho \vartheta \text{ div } \mathbf{u}_t - \text{div}(k(\vartheta)\nabla \vartheta) = g$$

as the enthalpy equation

$$w_t + \chi_t \Theta(w) - \rho \Theta(w) \text{ div } \mathbf{u}_t - \text{div}(K(w)\nabla w) = g$$

where

$$w = h(\vartheta) := \int_0^\vartheta c(s) \, ds, \quad \Theta(w) := \begin{cases} h^{-1}(w) & \text{if } w \geq 0, \\ 0 & \text{if } w < 0, \end{cases} \quad K(w) := \frac{k(\Theta(w))}{c(\Theta(w))}$$

We assume that

- $c \in C^0([0, +\infty); [0, +\infty))$
- $\exists \sigma_1 \geq \sigma > \frac{2d}{d+2} : \quad c_0(1+\vartheta)^{\sigma-1} \leq c(\vartheta) \leq c_1(1+\vartheta)^{\sigma_1-1} \implies h \text{ is strictly increasing}$
In order to deal with the low regularity of \(\vartheta \), rewrite the internal energy equation

\[
c(\vartheta)\vartheta_t + \chi_t\vartheta - \rho\vartheta \operatorname{div} \mathbf{u}_t - \operatorname{div}(k(\vartheta)\nabla \vartheta) = g
\]

as the enthalpy equation

\[
w_t + \chi_t \Theta(w) - \rho \Theta(w) \operatorname{div} \mathbf{u}_t - \operatorname{div}(K(w)\nabla w) = g
\]

where

\[
w = h(\vartheta) := \int_0^{\vartheta} c(s) \, ds, \quad \Theta(w) := \begin{cases} h^{-1}(w) & \text{if } w \geq 0, \\ 0 & \text{if } w < 0, \end{cases} \quad K(w) := \frac{k(\Theta(w))}{c(\Theta(w))}
\]

We assume that

1. \(c \in C^0([0, +\infty); [0, +\infty)) \)
2. \(\exists \sigma_1 \geq \sigma > \frac{2d}{d+2} : \ c_0(1+\vartheta)^{-1} \leq c(\vartheta) \leq c_1(1+\vartheta)^{\sigma_1-1} \implies h \text{ is strictly increasing} \)

Assume moreover

- If \(\rho = 0 \): the function \(k : [0, +\infty) \to [0, +\infty) \) is continuous, and

 \[
 \exists c_2, c_3 > 0 \ \forall \vartheta \in [0, +\infty) : \ c_2 c(\vartheta) \leq k(\vartheta) \leq c_3 (c(\vartheta) + 1)
 \]

- If \(\rho \neq 0 \): \(\exists c_\rho > 0 \ \exists q \geq \frac{d+2}{2d} : \ K(w) = c_\rho \left(|w|^{2q} + 1 \right) \ \forall w \in [0, +\infty) \)
The non-degenerate case
The approximating non-degenerate Problem $[P_{\delta}]$

Given $\delta > 0$, $\mu \in \{0, 1\}$, find (measurable) functions

$$w \in L^r(0, T; W^{1,r}(\Omega)) \cap L^\infty(0, T; L^1(\Omega)) \cap BV([0, T]; W^{1,r'}(\Omega)^*)$$

$$u \in H^1(0, T; H^2(\Omega; \mathbb{R}^d)) \cap W^{1,\infty}(0, T; H^1_0(\Omega)) \cap H^2(0, T; L^2(\Omega; \mathbb{R}^d))$$

$$\chi \in L^\infty(0, T; W^{1,p}(\Omega)) \cap H^1(0, T; L^2(\Omega))$$

for every $1 \leq r < \frac{d+2}{d+1}$, fulfilling the initial conditions

$$u(0, x) = u_0(x), \quad u_t(0, x) = v_0(x) \quad \text{for a.e. } x \in \Omega$$

$$\chi(0, x) = \chi_0(x) \quad \text{for a.e. } x \in \Omega$$

the equations (for every $\varphi \in C^0([0, T]; W^{1,r'}(\Omega)) \cap W^{1,r'}(0, T; L^{r'}(\Omega))$ and $t \in (0, T]$)

$$\int_\Omega \varphi(t) w(t)(dx) - \int_0^t \int_\Omega w \varphi_t \, dx + \int_0^t \int_\Omega \chi_t \Theta(w) \varphi \, dx$$

$$- \rho \int_0^t \int_\Omega \text{div} u_t \Theta(w) \varphi \, dx + \int_0^t \int_\Omega K(w) \nabla w \nabla \varphi \, dx = \int_0^t \int_\Omega g \varphi + \int_\Omega w_0 \varphi(0) \, dx$$

$$u_{tt} - \text{div} \left((a(\chi) + \delta) \varepsilon(u_t) + b(\chi) \varepsilon(u) \right) - \rho \nabla \Theta(w) = f \text{ in } H^{-1}(\Omega; \mathbb{R}^d) \text{ a.e. in } (0, T)$$

and the subdifferential inclusion (in $W^{1,p}(\Omega)^*$ and a.e. in $(0, T)$)

$$\chi_t + \mu \partial I_{(-\infty, 0]}(\chi_t) - \Delta_p \chi + \beta(\chi) + \gamma(\chi) \ni -b'(\chi) \frac{|\varepsilon(u)|^2}{2} + \Theta(w)$$
Theorem 1 [The reversible case $\mu = 0$]

Let $\mu = 0$ and $\rho = 0$, assume the previous Hypotheses and the conditions:

- $f \in L^2(0,T;L^2(\Omega))$
- $g \in L^1(0,T;L^1(\Omega)) \cap L^2(0,T;H^1(\Omega))'$
- $\vartheta_0 \in L^{\sigma_1}(\Omega)$ whence $w_0 := h(\vartheta_0) \in L^1(\Omega)$
- $u_0 \in H^2_0(\Omega)$, $v_0 \in H^1_0(\Omega)$
- $\chi_0 \in \text{dom}(\Delta p)$, $\hat{\beta}((\chi_0)) \in L^1(\Omega)$

Then,

1. Problem $[P_\delta]$ admits a solution (w, u, χ), such that there exists $\xi \in L^2(0,T;L^2(\Omega))$, $\xi(x,t) \in \beta(\chi(x,t))$ for a.e. $(x,t) \in \Omega \times (0,T)$:

 $$\chi_t - \Delta p \chi + \xi + \gamma(\chi) = -b'(|\chi|)|\epsilon(u)|^2 + \Theta(w) \text{ a.e. in } \Omega \times (0,T)$$

2. Suppose that $g(x,t) \geq 0$ a.e. Then, $w \geq 0$ a.e., hence $\vartheta(x,t) := \Theta(w(x,t)) \geq 0$ a.e.

3. In case $\rho \neq 0$, $w_0 \in L^2(\Omega)$, and $K(w) = c \rho (|w|^2_q + 1)$, $q \geq \frac{d+2}{2}$. Then, w has the further regularity $w \in L^2(0,T;H^1(\Omega)) \cap L^\infty(0,T;L^2(\Omega)) \cap W^{1,r}(q)((0,T);W^{2,-s}(q)(\Omega))$.
Theorem 1 [The reversible case $\mu = 0$]

Let $\mu = 0$ and $\rho = 0$, assume the previous Hypotheses and the conditions:

\[
 f \in L^2(0, T; L^2(\Omega)), \quad g \in L^1(0, T; L^1(\Omega)) \cap L^2(0, T; H^1(\Omega)')
\]

$\vartheta_0 \in L^{\sigma_1}(\Omega)$, whence $w_0 := h(\vartheta_0) \in L^1(\Omega)$

$u_0 \in H^2_0(\Omega), \quad v_0 \in H^1_0(\Omega) \quad \chi_0 \in \text{dom}(\Delta \rho), \quad \hat{\beta}(\chi_0) \in L^1(\Omega)$
Theorem 1 [The reversible case $\mu = 0$]

Let $\mu = 0$ and $\rho = 0$, assume the previous Hypotheses and the conditions:

\[
\begin{align*}
f &\in L^2(0, T; L^2(\Omega)), \quad g \in L^1(0, T; L^1(\Omega)) \cap L^2(0, T; H^1(\Omega)'), \\
\vartheta_0 &\in L^{\sigma_1}(\Omega) \quad \text{whence} \quad w_0 := h(\vartheta_0) \in L^1(\Omega) \\
u_0 &\in H^2_0(\Omega), \quad v_0 \in H^1_0(\Omega) \quad \chi_0 \in \text{dom}(\Delta p), \quad \hat{\beta}(\chi_0) \in L^1(\Omega)
\end{align*}
\]

Then,

1. Problem $[P_\delta]$ admits a solution (w, u, χ), such that there exists

\[
\begin{align*}
\xi &\in L^2(0, T; L^2(\Omega)), \quad \xi(x, t) \in \beta(\chi(x, t)) \quad \text{for a.e.} \quad (x, t) \in \Omega \times (0, T) : \\
\chi_t - \Delta_p \chi + \xi + \gamma(\chi) &\equiv -b'(\chi) \frac{|\varepsilon(u)|^2}{2} + \Theta(w) \quad \text{a.e. in} \quad \Omega \times (0, T)
\end{align*}
\]
Theorem 1 [The reversible case $\mu = 0$]

Let $\mu = 0$ and $\rho = 0$, assume the previous Hypotheses and the conditions:

$$f \in L^2(0, T; L^2(\Omega)), \quad g \in L^1(0, T; L^1(\Omega)) \cap L^2(0, T; H^1(\Omega)')$$

$$\vartheta_0 \in L^{\sigma_1}(\Omega) \quad \text{whence} \quad w_0 := h(\vartheta_0) \in L^1(\Omega)$$

$$u_0 \in H^2_0(\Omega), \quad v_0 \in H^1_0(\Omega) \quad \chi_0 \in \text{dom}(\Delta_p), \quad \hat{\beta}(\chi_0) \in L^1(\Omega)$$

Then,

1. Problem $[P_\delta]$ admits a solution (w, u, χ), such that there exists

$$\xi \in L^2(0, T; L^2(\Omega)), \quad \xi(x, t) \in \beta(\chi(x, t)) \text{ for a.e. } (x, t) \in \Omega \times (0, T) :$$

$$\chi_t - \Delta_p \chi + \xi + \gamma(\chi) = -b'(\chi) \frac{|\varepsilon(u)|^2}{2} + \Theta(w) \quad \text{a.e. in } \Omega \times (0, T)$$

2. Suppose that $g(x, t) \geq 0$ a.e. Then, $w \geq 0$ a.e., hence $\vartheta(x, t) := \Theta(w(x, t)) \geq 0$ a.e.
Theorem 1 [The reversible case \(\mu = 0 \)]

Let \(\mu = 0 \) and \(\rho = 0 \), assume the previous Hypotheses and the conditions:

\[
\begin{align*}
 f & \in L^2(0, T; L^2(\Omega)), \quad g \in L^1(0, T; L^1(\Omega)) \cap L^2(0, T; H^1(\Omega)') \\
 \vartheta_0 & \in L^{\sigma_1}(\Omega) \quad \text{whence} \quad w_0 := h(\vartheta_0) \in L^1(\Omega) \\
 u_0 & \in H^2_0(\Omega), \quad v_0 \in H^1_0(\Omega) \quad \chi_0 \in \text{dom}(\Delta_p), \quad \hat{\beta}(\chi_0) \in L^1(\Omega)
\end{align*}
\]

Then,

1. Problem [\(P_\delta \)] admits a solution \((w, u, \chi)\), such that there exists

\[
\xi \in L^2(0, T; L^2(\Omega)), \quad \xi(x, t) \in \beta(\chi(x, t)) \quad \text{for a.e.} \quad (x, t) \in \Omega \times (0, T) :
\]

\[
\chi_t - \Delta_p \chi + \xi + \gamma(\chi) = -b'(\chi) \frac{|\varepsilon(u)|^2}{2} + \Theta(w) \quad \text{a.e. in} \quad \Omega \times (0, T)
\]

2. Suppose that \(g(x, t) \geq 0 \) a.e. Then, \(w \geq 0 \) a.e., hence \(\vartheta(x, t) := \Theta(w(x, t)) \geq 0 \) a.e.

3. In case \(\rho \neq 0 \), \(w_0 \in L^2(\Omega) \), and \(K(w) = c_\rho \left(|w|^{2q} + 1 \right) \), \(q \geq (d + 2)/2d \).
Theorem 1 [The reversible case $\mu = 0$]

Let $\mu = 0$ and $\rho = 0$, assume the previous Hypotheses and the conditions:

\[
\begin{align*}
&f \in L^2(0, T; L^2(\Omega)), \quad g \in L^1(0, T; L^1(\Omega)) \cap L^2(0, T; H^1(\Omega)'), \\
&\vartheta_0 \in L^\sigma(\Omega) \quad \text{whence} \quad w_0 := h(\vartheta_0) \in L^1(\Omega) \\
&u_0 \in H^2_0(\Omega), \quad v_0 \in H^1_0(\Omega) \quad \chi_0 \in \text{dom}(\Delta_\rho), \quad \hat{\beta}(\chi_0) \in L^1(\Omega)
\end{align*}
\]

Then,

1. **Problem $[P_\delta]$ admits a solution (w, u, χ), such that there exists**

\[
\xi \in L^2(0, T; L^2(\Omega)), \quad \xi(x, t) \in \beta(\chi(x, t)) \quad \text{for a.e.} \ (x, t) \in \Omega \times (0, T) : \\
\chi_t - \Delta_\rho \chi + \xi + \gamma(\chi) = -b'(\chi)\frac{\varepsilon(u)^2}{2} + \Theta(w) \quad \text{a.e. in} \ \Omega \times (0, T)
\]

2. **Suppose that $g(x, t) \geq 0$ a.e. Then, $w \geq 0$ a.e., hence $\vartheta(x, t) := \Theta(w(x, t)) \geq 0$ a.e.**

3. **In case $\rho \neq 0$, $w_0 \in L^2(\Omega)$, and $K(w) = c_\rho (|w|_{2q}^q + 1), \ q \geq (d + 2)/2d$. Then, w has the further regularity**

\[
w \in L^2(0, T; H^1(\Omega)) \cap L^\infty(0, T; L^2(\Omega)) \cap W^{1,r(q)}((0, T); W^{2,-s(q)}(\Omega))
\]
Theorem 2 [The irreversible case \(\mu = 1 \)]

Let \(\mu = 1, \rho = 0, \) and take the previous assumptions with \(\hat{\beta} = l_{[0, +\infty)} \). Then,

[1.] Problem \([P_\delta]\) admits a weak solution \((w, u, \chi)\), which, beside fulfilling the enthalpy and momentum equations, satisfies \(\chi_t(x, t) \leq 0 \) for almost all \(t \in (0, T) \), and

\[
(\forall \varphi \in L^p(0, T; W^{1,p}_-(\Omega)) \cap L^\infty(Q)) \text{ the one-sided inequality}
\]

\[
\int_0^T \int_\Omega \chi_t \varphi + |\nabla \chi|^{p-2} \nabla \chi \cdot \nabla \varphi + \xi \varphi + \gamma(\chi) \varphi + b'(\chi) \frac{|\varepsilon(u)|^2}{2} \varphi - \Theta(w) \varphi \geq 0
\]

with \(\xi \in \partial l_{[0, +\infty)}(\chi) \) in the following sense:

\[
\xi \in L^1(0, T; L^1(\Omega)), \quad \langle \xi(t), \varphi - \chi(t) \rangle_{W^{1,p}(\Omega)} \leq 0 \quad \forall \varphi \in W^{1,p}_+(\Omega), \text{ a.e. } t \in (0, T)
\]
Theorem 2 [The irreversible case $\mu = 1$]

Let $\mu = 1$, $\rho = 0$, and take the previous assumptions with $\hat{\beta} = I_{[0, +\infty)}$. Then,

[1.] Problem $[P_\delta]$ admits a weak solution (w, u, χ), which, beside fulfilling the enthalpy and momentum equations, satisfies $\chi_t(x, t) \leq 0$ for almost all $t \in (0, T)$, and

$(\forall \varphi \in L^p(0, T; W^{1,p}_-(\Omega)) \cap L^\infty(Q))$ the one-sided inequality

$$\int_0^T \int_\Omega \chi_t \varphi + |\nabla \chi|^{-2} \nabla \chi \cdot \nabla \varphi + \xi \varphi + \gamma(\chi) \varphi + b'(\chi) \frac{|\varepsilon(u)|^2}{2} \varphi - \Theta(w) \varphi \geq 0$$

with $\xi \in \partial I_{[0, +\infty)}(\chi)$ in the following sense:

$$\xi \in L^1(0, T; L^1(\Omega)), \langle \xi(t), \varphi - \chi(t) \rangle_{W^{1,p}(\Omega)} \leq 0 \quad \forall \varphi \in W^{1,p}_+(\Omega), \text{a.e. } t \in (0, T)$$

and the energy inequality for all $t \in (0, T)$, for $s = 0$, and for almost all $0 < s \leq t$:

$$\int_s^t \int_\Omega |\chi_t|^2 \, dx \, dr + \frac{1}{p} |\nabla \chi(t)|^p + \int_\Omega W(\chi(t)) \, dx$$

$$\leq \frac{1}{p} |\nabla \chi(s)|^p + \int_\Omega W(\chi(s)) \, dx + \int_s^t \int_\Omega \chi_t \left(-b'(\chi) \frac{|\varepsilon(u)|^2}{2} + \Theta(w) \right) \, dx \, dr$$
Theorem 2 [The irreversible case $\mu = 1$]

Let $\mu = 1$, $\rho = 0$, and take the previous assumptions with $\hat{\beta} = I_{[0, +\infty)}$. Then,

[1.] Problem $[P_\delta]$ admits a weak solution (w, u, χ), which, beside fulfilling the enthalpy and momentum equations, satisfies $\chi_t(x, t) \leq 0$ for almost all $t \in (0, T)$, and $(\forall \varphi \in L^p(0, T; W^{1,p}_-(\Omega)) \cap L^\infty(Q))$ the one-sided inequality

$$
\int_0^T \int_\Omega \chi_t \varphi + |\nabla \chi|^{p-2} \nabla \chi \cdot \nabla \varphi + \xi \varphi + \gamma(\chi) \varphi + b'(\chi) \frac{\varepsilon(u)^2}{2} \varphi - \Theta(w) \varphi \geq 0
$$

with $\xi \in \partial I_{[0, +\infty)}(\chi)$ in the following sense:

$$
\xi \in L^1(0, T; L^1(\Omega)), \quad \langle \xi(t), \varphi - \chi(t) \rangle_{W^{1,p}(\Omega)} \leq 0 \quad \forall \varphi \in W^{1,p}_+(\Omega), \text{ a.e. } t \in (0, T)
$$

and the energy inequality for all $t \in (0, T]$, for $s = 0$, and for almost all $0 < s \leq t$:

$$
\int_s^t \int_\Omega |\chi_t|^2 \, dx \, dr + \frac{1}{p} |\nabla \chi(t)|^p + \int_\Omega W(\chi(t)) \, dx
$$

$$
\leq \frac{1}{p} |\nabla \chi(s)|^p + \int_\Omega W(\chi(s)) \, dx + \int_s^t \int_\Omega \chi_t \left(-b'(\chi) \frac{\varepsilon(u)^2}{2} + \Theta(w)\right) \, dx \, dr
$$

[2.] Suppose in addition that $g(x, t) \geq 0$, $\vartheta_0 > \bar{\vartheta}_0 \geq 0$ a.e. Then

$$
\vartheta(x, t) := \Theta(w(x, t)) \geq \vartheta_0 \geq 0 \text{ a.e.}
$$
Theorem 2 [The irreversible case $\mu = 1$]

Let $\mu = 1$, $\rho = 0$, and take the previous assumptions with $\widehat{\beta} = l_{[0,+\infty)}$. Then,

[1.] Problem $[P_\delta]$ admits a weak solution (w, u, χ), which, beside fulfilling the enthalpy and momentum equations, satisfies $\chi_t(x, t) \leq 0$ for almost all $t \in (0, T)$, and $(\forall \varphi \in L^p(0, T; W^{1,p}_-(\Omega)) \cap L^\infty(Q))$ the one-sided inequality

$$\int_0^T \int_\Omega \chi_t \varphi + |\nabla \chi|^{p-2} \nabla \chi \cdot \nabla \varphi + \xi \varphi + \gamma(\chi) \varphi + b'(\chi) \frac{|\varepsilon(u)|^2}{2} \varphi - \Theta(w) \varphi \geq 0$$

with $\xi \in \partial l_{[0,+\infty)}(\chi)$ in the following sense:

$$\xi \in L^1(0, T; L^1(\Omega)), \quad \langle \xi(t), \varphi - \chi(t) \rangle_{W^{1,p}(\Omega)} \leq 0 \quad \forall \varphi \in W_+^{1,p}(\Omega), \text{ a.e. } t \in (0, T)$$

and the energy inequality for all $t \in (0, T]$, for $s = 0$, and for almost all $0 < s \leq t$:

$$\int_s^t \int_\Omega |\chi_t|^2 \, dx \, dr + \frac{1}{p} |\nabla \chi(t)|^p + \int_\Omega W(\chi(t)) \, dx \\
\leq \frac{1}{p} |\nabla \chi(s)|^p + \int_\Omega W(\chi(s)) \, dx + \int_s^t \int_\Omega \chi_t \left(-b'(\chi) \frac{|\varepsilon(u)|^2}{2} + \Theta(w) \right) \, dx \, dr$$

[2.] Suppose in addition that $g(x, t) \geq 0$, $\vartheta_0 > \varrho_0 \geq 0$ a.e. Then $\vartheta(x, t) := \Theta(w(x, t)) \geq \varrho_0 \geq 0$ a.e.

[3.] In case $\rho \neq 0$ an analogous statement to the reversible case holds true
Generalized principle of virtual powers vs classical phase inclusion

Any weak solution \((w, u, \chi)\) fulfills the total energy inequality for all \(t \in (0, T]\), for \(s = 0\), and for almost all \(0 < s \leq t\):

\[
\int_{\Omega} w(t) \, dx + \frac{1}{2} \int_{\Omega} |u_t(t)|^2 \, dx + \frac{1}{2} \int_{t-s}^{t} \int_{\Omega} |\chi_t|^2 \, dx + \frac{1}{2} \int_{t-s}^{t} \int_{\Omega} (\chi(t) + \delta) |\varepsilon(u)(t)|^2 + 1 \leq \int_{\Omega} w(s) \, dx + \frac{1}{2} \int_{\Omega} |u_t(s)|^2 \, dx + \frac{1}{2} (\chi(t) + \delta) |\varepsilon(u)(t)|^2 + 1 + p|\nabla \chi(t)|^p + \int_{\Omega} W(\chi(t)) \, dx + \int_{t-s}^{t} \int_{\Omega} f \cdot u_t \, dx + \int_{t-s}^{t} \int_{\Omega} g \, dx.
\]

If \((w, u, \chi, \xi)\) are "more regular" and satisfy the notion of weak solution, then, differentiating the energy inequality and using the chain rule, we conclude that \((w, u, \chi, \xi, \nu)\) comply with:

\[
\langle \chi_t(t) - \Delta p \chi(t) + \xi(t) + \gamma(\chi(t)) + |\varepsilon(u)|^2, \chi_t(t) \rangle \leq 0
\]

for a.e. \(t\).

Using the one-sided inequality we obtain the classical phase inclusion:

\[
\exists \zeta \in L^2(0, T; L^2(\Omega)) \text{ with } \zeta(x, t) \in \partial I_{\infty}(-\infty, 0](\chi_t(x, t)) \text{ a.e. s.t. }
\]

\[
\chi_t + \zeta - \Delta p \chi + \xi + \gamma(\chi) = -|\varepsilon(u)|^2 + \Theta(w) \text{ a.e.}
\]
Generalized principle of virtual powers vs classical phase inclusion

- Any weak solution \((w, u, \chi)\) fulfills the total energy inequality for all \(t \in (0, T]\), for \(s = 0\), and for almost all \(0 < s \leq t\)

\[
\int_\Omega w(t)(dx) + \frac{1}{2} \int_\Omega |u_t(t)|^2 dx + \int_s^t \int_\Omega |\chi_t|^2 dx + \int_s^t (\chi + \delta)|\varepsilon(u_t)|^2
\]

\[
+ \frac{1}{2} (\chi(t) + \delta)|\varepsilon(u(t))|^2 + \frac{1}{p} |\nabla \chi(t)|^p + \int_\Omega W(\chi(t)) dx
\]

\[
\leq \int_\Omega w(s)(dx) + \frac{1}{2} \int_\Omega |u_t(s)|^2 dx + \frac{1}{2} (\chi(s) + \delta)|\varepsilon(u(s))|^2 + \frac{1}{p} |\nabla \chi(s)|^p
\]

\[
+ \int_\Omega W(\chi(s)) dx + \int_s^t \int_\Omega f \cdot u_t dx + \int_s^t \int_\Omega g dx
\]
Any \textit{weak solution} \((w, u, \chi)\) fulfills the \textit{total energy inequality} for all \(t \in (0, T]\), for \(s = 0\), and for almost all \(0 < s \leq t\)

\[
\int_{\Omega} w(t)(dx) + \frac{1}{2} \int_{\Omega} |u_t(t)|^2 dx + \int_{s}^{t} \int_{\Omega} |\chi_t|^2 dx + \int_{s}^{t} (\chi + \delta) |\varepsilon(u_t)|^2 \\
+ \frac{1}{2} |\chi(t) + \delta| \varepsilon(u(t))|^2 + \frac{1}{p} |\nabla \chi(t)|^p + \int_{\Omega} W(\chi(t)) \, dx \\
\leq \int_{\Omega} w(s)(dx) + \frac{1}{2} \int_{\Omega} |u_t(s)|^2 dx + \frac{1}{2} (\chi(s) + \delta) |\varepsilon(u(s))|^2 + \frac{1}{p} |\nabla \chi(s)|^p \\
+ \int_{\Omega} W(\chi(s)) \, dx + \int_{s}^{t} \int_{\Omega} f \cdot u_t \, dx + \int_{s}^{t} \int_{\Omega} g \, dx
\]

If \((w, u, \chi)\) are “more regular” and satisfy the notion of \textit{weak solution}, then, differentiating the \textit{energy inequality} and using the chain rule, we conclude that \((w, u, \chi, \xi)\) comply with

\[
\langle \chi_t(t) - \Delta_p \chi(t) + \xi(t) + \gamma(\chi(t)) + \frac{|\varepsilon(u)|^2}{2} - \Theta(w(t)), \chi_t(t) \rangle \lesssim 0 \text{ for a.e. } t
\]

Using the \textit{one-sided} inequality we obtain the classical phase inclusion:

\[
\exists \zeta \in L^2(0, T; L^2(\Omega)) \text{ with } \zeta(x, t) \in \partial I_{(-\infty, 0]}(\chi_t(x, t)) \text{ a.e. s.t.} \\
\chi_t + \zeta - \Delta_p \chi + \xi + \gamma(\chi) = -\frac{|\varepsilon(u)|^2}{2} + \Theta(w) \text{ a.e.}
\]
The isothermal case: uniqueness

Let $\rho \in \mathbb{R}$. In addition to the previous hypotheses, assume that

the function a is constant

Then, the isothermal reversible system admits a unique solution (u, χ) which continuously depends on the data.
The isothermal case: uniqueness

Let $\rho \in \mathbb{R}$. In addition to the previous hypotheses, assume that

the function a is constant

Then, the isothermal reversible system admits a unique solution (u, χ) which continuously depends on the data

Uniqueness of solutions for the irreversible system, even in the isothermal case, is still an open problem. This is mainly due to the triply nonlinear character of the χ equation.
The techniques used in the proof

We pass to the limit in a carefully designed time-discretization scheme. A key role is played by

\[p \]-Laplacian with \(p > d \) \(\Rightarrow \) an estimate for \(\chi \) in \(L_\infty(0,T;W_1,p(\Omega)) \) \(\Rightarrow \) a suitable regularity estimate on the displacement variable \(u \) \(\Rightarrow \) a global-in-time bound on the quadratic nonlinearity

\[|\epsilon(u)|^2 \]

on the right-hand side of \(\chi_t + \mu \partial I(-\infty,0](\chi_t) - \Delta_p \chi + W'(\chi) \ni -b'(\chi) |\epsilon(u)|^2 + \vartheta \]

\(\Rightarrow \) the Boccardo-Gallouët-type estimates combined with the Gagliardo-Nirenberg inequality applied to the enthalpy equation in order to obtain an \(L_r(0,T;W_1,r(\Omega)) \)-estimate on the enthalpy \(w \).
The techniques used in the proof

- We pass to the limit in a carefully designed time-discretization scheme
The techniques used in the proof

- We pass to the limit in a carefully designed time-discretization scheme
- A key role is played by
 - the presence of the \(p \)-Laplacian with \(p > d \) \(\implies \) an estimate for \(\chi \) in \(L^\infty(0, T; W^{1,p}(\Omega)) \) \(\implies \) a suitable regularity estimate on the displacement variable \(u \) \(\implies \) a global-in-time bound on the quadratic nonlinearity \(|\varepsilon(u)|^2 \) on the right-hand side of

\[
\chi_t + \mu \partial I_{(-\infty,0]}(\chi_t) - \Delta_p \chi + W'(\chi) \ni -b'(\chi) \frac{|\varepsilon(u)|^2}{2} + \vartheta
\]
The techniques used in the proof

- We pass to the limit in a carefully designed time-discretization scheme.
- A key role is played by
 - the presence of the p-Laplacian with $p > d$ implying an estimate for χ in $L^\infty(0, T; W^{1,p}(\Omega))$.
 - a suitable regularity estimate on the displacement variable u.
 - a global-in-time bound on the quadratic nonlinearity $|\varepsilon(u)|^2$ on the right-hand side of

\[
\chi_t + \mu \partial I_{(-\infty, 0]}(\chi_t) - \Delta_p \chi + W'(\chi) \ni -b'(\chi)\frac{|\varepsilon(u)|^2}{2} + \vartheta
\]

- the Boccardo-Gallouët-type estimates combined with the Gagliardo-Nirenberg inequality applied to the enthalpy equation in order to obtain an $L^r(0, T; W^{1,r}(\Omega))$-estimate on the enthalpy w.

E. Rocca (Università di Milano)
Phase Transitions and Damage
July 1–5, 2012 22 / 30
The degenerating case
Hypotheses

Consider the irreversible case with the s–Laplacian (the previous results still hold true in this case), $\rho = 0$, and $a(\chi) = \chi$, $b(\chi) = \chi + \delta$:
Hypotheses

Consider the irreversible case with the $s-$Laplacian (the previous results still hold true in this case), $\rho = 0$, and $a(\chi) = \chi$, $b(\chi) = \chi + \delta$:

$$
\int_\Omega \varphi(t) w(t)(dx) - \int_0^t \int_\Omega w \varphi_t \, dx + \int_0^t \int_\Omega \chi_t \Theta(w) \varphi \, dx \\
+ \int_0^t \int_\Omega K(w) \nabla w \nabla \varphi \, dx = \int_0^t \int_\Omega g \varphi + \int_\Omega w_0 \varphi(0) \, dx ,
$$

$$
u_{tt} - \text{div} ((\chi + \delta) \varepsilon(u_t) + (\chi + \delta) \varepsilon(u)) = f \text{ in } H^{-1}(\Omega; \mathbb{R}^d) \text{ a.e. in } (0, T)
$$

and the subdifferential inclusion (in $W^{1,p}(\Omega)^*$ and a.e. in $(0, T)$)

$$
\chi_t + \partial I_{(-\infty,0]}(\chi_t) + A_s(\chi) + \partial I_{[0,\infty)}(\chi) + \gamma(\chi) \ni -b'(\chi) \frac{\varepsilon(u)^2}{2} + \Theta(w)
$$
Hypotheses

Consider the irreversible case with the s–Laplacian (the previous results still hold true in this case), $\rho = 0$, and $a(\chi) = \chi$, $b(\chi) = \chi + \delta$:

$$\int_{\Omega} \varphi(t) w(t) (dx) - \int_0^t \int_{\Omega} w \varphi_t \, dx + \int_0^t \int_{\Omega} \chi_t \Theta(w) \varphi \, dx$$

$$+ \int_0^t \int_{\Omega} K(w) \nabla w \nabla \varphi \, dx = \int_0^t \int_{\Omega} g \varphi + \int_{\Omega} w_0 \varphi(0) \, dx,$$

$$u_{tt} - \text{div} \left((\chi + \delta) \varepsilon(u_t) + (\chi + \delta) \varepsilon(u) \right) = f \text{ in } H^{-1}(\Omega; \mathbb{R}^d) \text{ a.e. in } (0, T)$$

and the subdifferential inclusion (in $W^{1,p}(\Omega)^*$ and a.e. in $(0, T)$)

$$\chi_t + \partial I_{(-\infty,0]}(\chi_t) + A_s(\chi) + \partial I_{[0,\infty)}(\chi) + \gamma(\chi) \ni -b'(\chi) \frac{\varepsilon(u)^2}{2} + \Theta(w)$$

where

$$A_s : H^s(\Omega) \to H^s(\Omega)^* \quad \text{with } s > \frac{d}{2}, \quad \langle A_s \chi, w \rangle_{H^s(\Omega)} := a_s(\chi, w) \text{ and}$$

$$a_s(z_1, z_2) := \int_{\Omega} \int_{\Omega} \frac{(\nabla z_1(x) - \nabla z_1(y)) \cdot (\nabla z_2(x) - \nabla z_2(y))}{|x - y|^{d+2(s-1)}} \, dx \, dy$$

Note that all the previous results for the non-degenerating case hold true with A_s instead of Δ_p.
The total energy inequality in the degenerating case $\delta \searrow 0$

Rewrite the momentum equation

$$\partial_t^2 u_\delta - \text{div}((\chi + \delta)\varepsilon(\partial_t u_\delta)) - \text{div}((\chi + \delta)\varepsilon(u_\delta)) = f$$

using the new variables (quasi-stresses) $\mu_\delta := \sqrt{\chi_\delta + \delta} \varepsilon(\partial_t u_\delta)$, and $\eta_\delta := \sqrt{\chi_\delta + \delta} \varepsilon(u_\delta)$:

$$\partial_t^2 u_\delta - \text{div}(\sqrt{\chi + \delta} \mu_\delta) - \text{div}(\sqrt{\chi + \delta} \eta_\delta) = f$$
The total energy inequality in the degenerating case $\delta \searrow 0$

Rewrite the momentum equation

$$\partial_t^2 u_\delta - \text{div}((\chi + \delta)\varepsilon(\partial_t u_\delta)) - \text{div}((\chi + \delta)\varepsilon(u_\delta)) = f$$

using the new variables (quasi-stresses) $\mu_\delta := \sqrt{\chi_\delta + \delta} \varepsilon(\partial_t u_\delta)$, and $\eta_\delta := \sqrt{\chi_\delta + \delta} \varepsilon(u_\delta)$:

$$\partial_t^2 u_\delta - \text{div}(\sqrt{\chi + \delta} \mu_\delta) - \text{div}(\sqrt{\chi + \delta} \eta_\delta) = f$$

The total energy inequality for $(w_\delta, u_\delta, \chi_\delta)$ is

$$\int_\Omega w_\delta(t)(dx) + \frac{1}{2} \int_\Omega |\partial_t u_\delta(t)|^2 dx + \int_s^t \int_\Omega |\partial_t \chi_\delta|^2 dx + \frac{1}{2} \int_s^t |\mu_\delta(r)|^2 dx$$

$$+ \frac{|\eta_\delta(t)|^2}{2} + \frac{1}{2} a_s(\chi_\delta(t), \chi_\delta(t)) + \int_\Omega W(\chi_\delta(t)) dx$$

$$\leq \int_\Omega w_\delta(s)(dx) + \frac{1}{2} \int_\Omega |\partial_t u_\delta(s)|^2 dx + \frac{|\eta_\delta(s)|^2}{2} + \frac{1}{2} a_s(\chi_\delta(s), \chi_\delta(s))$$

$$+ \int_\Omega W(\chi_\delta(s)) dx + \int_s^t \int_\Omega f \cdot \partial_t u_\delta dx + \int_s^t \int_\Omega g dx$$

[Theorem 3] ($\delta = 0$) Under the previous assumptions, there exist

$$u \in W^{1,\infty}(0, T; L^2(\Omega)) \cap H^2(0, T; H^{-1}(\Omega)), \quad \mu \in L^2(0, T; L^2(\Omega)), \quad \eta \in L^\infty(0, T; L^2(\Omega)),$$
$$w \in L^r(0, T; W^{1,r}(\Omega)) \cap L^\infty(0, T; L^1(\Omega)) \cap BV([0, T]; W^{1,r'}(\Omega)^*)$$
$$\chi \in L^\infty(0, T; H^s(\Omega)) \cap H^1(0, T; L^2(\Omega)), \quad \chi(x, t) \geq 0, \quad \chi_t(x, t) \leq 0 \text{ a.e.}$$

such that

[Theorem 3] \((\delta = 0)\) Under the previous assumptions, there exist

\[
\begin{align*}
 &u \in W^{1,\infty}(0, T; L^2(\Omega)) \cap H^2(0, T; H^{-1}(\Omega)), \quad \mu \in L^2(0, T; L^2(\Omega)), \quad \eta \in L^\infty(0, T; L^2(\Omega)), \\
 &w \in L^r(0, T; W^{1,r}(\Omega)) \cap L^\infty(0, T; L^1(\Omega)) \cap BV([0, T]; W^{1,r'}(\Omega)^*) \\
 &\chi \in L^\infty(0, T; H^s(\Omega)) \cap H^1(0, T; L^2(\Omega)), \quad \chi(x, t) \geq 0, \quad \chi_t(x, t) \leq 0 \text{ a.e.}
\end{align*}
\]

such that it holds true (a.e. in any open set \(A \subset \Omega \times (0, T)\): \(\chi > 0\) a.e. in \(A\))

\[
\mu = \sqrt{\chi} \varepsilon(u_t), \quad \eta = \sqrt{\chi} \varepsilon(u),
\]

[Theorem 3] ($\delta = 0$) Under the previous assumptions, there exist

\[u \in W^{1,\infty}(0, T; L^2(\Omega)) \cap H^2(0, T; H^{-1}(\Omega)), \quad \mu \in L^2(0, T; L^2(\Omega)), \quad \eta \in L^\infty(0, T; L^2(\Omega)), \]

\[w \in L^r(0, T; W^{1,r}(\Omega)) \cap L^\infty(0, T; L^1(\Omega)) \cap BV([0, T]; W^{1,r'}(\Omega)^*) \]

\[\chi \in L^\infty(0, T; H^s(\Omega)) \cap H^1(0, T; L^2(\Omega)), \quad \chi(x, t) \geq 0, \quad \chi_t(x, t) \leq 0 \text{ a.e.} \]

such that it holds true (a.e. in any open set $A \subset \Omega \times (0, T)$: $\chi > 0$ a.e. in A)

\[\mu = \sqrt{\chi} \varepsilon(u_t), \quad \eta = \sqrt{\chi} \varepsilon(u), \]

the weak enthalpy equation and the weak momentum and phase relations

\[\partial_t^2 u - \text{div}(\sqrt{\chi} \mu) - \text{div}(\sqrt{\chi} \eta) = f \quad \text{in} \quad H^{-1}(\Omega; \mathbb{R}^d), \text{ a.e. in } (0, T), \]

\[\int_0^T \int_\Omega (\partial_t \chi + \gamma(\chi)) \varphi \, dx + \int_0^T a_s(\chi, \varphi) \leq \int_0^T \int_\Omega \left(-\frac{1}{2\chi} |\eta|^2 + \Theta(w) \right) \varphi \, dx \]

for all $\varphi \in L^2(0, T; W^{s,2}_+(\Omega)) \cap L^\infty(Q)$ with $\text{supp}(\varphi) \subset \{ \chi > 0 \}$,

[Theorem 3] \((\delta = 0)\) Under the previous assumptions, there exist

\[
\begin{align*}
 u & \in W^{1,\infty}(0, T; L^2(\Omega)) \cap H^2(0, T; H^{-1}(\Omega)), \quad \mu \in L^2(0, T; L^2(\Omega)), \quad \eta \in L^\infty(0, T; L^2(\Omega)), \\
 w & \in L^r(0, T; W^{1,r}(\Omega)) \cap L^\infty(0, T; L^1(\Omega)) \cap BV([0, T]; W^{1,r}(\Omega)^*) \\
 \chi & \in L^\infty(0, T; H^s(\Omega)) \cap H^1(0, T; L^2(\Omega)), \quad \chi(x, t) \geq 0, \quad \chi_t(x, t) \leq 0 \text{ a.e.}
\end{align*}
\]

such that it holds true (a.e. in any open set \(A \subset \Omega \times (0, T)\): \(\chi > 0\) a.e. in \(A\))

\[
 \mu = \sqrt{\chi} \varepsilon(u_t), \quad \eta = \sqrt{\chi} \varepsilon(u),
\]

the weak enthalpy equation and the weak momentum and phase relations

\[
 \partial^2_t u - \text{div}(\sqrt{\chi} \mu) - \text{div}(\sqrt{\chi} \eta) = f \quad \text{in } H^{-1}(\Omega; \mathbb{R}^d), \text{ a.e. in } (0, T),
\]

\[
 \int_0^T \int_\Omega (\partial_t \chi + \gamma(\chi)) \varphi \, dx + \int_0^T a_s(\chi, \varphi) \leq \int_0^T \int_\Omega \left(-\frac{1}{2\chi} |\eta|^2 + \Theta(w) \right) \varphi \, dx
\]

for all \(\varphi \in L^2(0, T; W^{s,2}_+(\Omega)) \cap L^\infty(Q)\) with \(\text{supp}(\varphi) \subset \{\chi > 0\}\),

together with the **total energy inequality** (for almost all \(t \in (0, T]\))

\[
 \int_\Omega w(t)(dx) + \int_0^t \int_\Omega |\chi_t|^2 \, dx + \frac{1}{2} \int_0^t |\mu(r)|^2 + \int_\Omega W(\chi(t)) \, dx + J(t) = \int_\Omega w_0 \, dx
\]

\[
 + \frac{1}{2} \int_\Omega |v_0|^2 \, dx + \frac{1}{2} \chi_0 |\varepsilon(u_0)|^2 + \frac{1}{2} a_s(\chi_0, \chi_0) + \int_\Omega W(\chi_0) \, dx + \int_0^t \int_\Omega f \cdot u_t \, dx \, dr + \int_0^t \int_\Omega g \, dx
\]

with \(\int_0^t J(r) \, dr \geq \frac{1}{2} \left(\int_\Omega |u_t(r)|^2 \, dx + |\eta(r)|^2 + a_s(\chi(r), \chi(r)) \right)\)
A comparison between the solution notions

Weak solution to the *degenerating* irreversible full system ($\delta = 0$) \iff weak solution to the *non-degenerating* irreversible full system ($\delta > 0$)

Suppose that the solution is more regular and $\chi > 0$ a.e.

Then the following identities hold true:

$$
\mu = \sqrt{\chi \varepsilon (u_t)}, \quad \eta = \sqrt{\chi \varepsilon (u)} \text{ a.e. in } \Omega \times (0, T)
$$

Hence

$$
\int_0^T \int_\Omega (\partial_t \chi + \gamma (\chi) \phi) d\chi + \int_0^T a_s (\chi, \phi) \leq \int_0^T \int_\Omega -\frac{1}{2} \chi |\eta|^2 \phi + \Theta (w) \phi
$$

for all $\phi \in L^2(0, T; W^{1,2} (\Omega)) \cap L^\infty (Q)$ with $\text{supp} (\phi) \subset \{ \chi > 0 \}$.

Subtracting from the degenerate total energy inequality the weak enthalpy equation tested by 1, we recover (a.e. in $(0, T]$) the energy inequality:

$$
\int_0^T \int_\Omega |\chi_t|^2 d\chi + \frac{1}{2} a_s (\chi (t), \chi (t)) + \int_\Omega W (\chi (t)) \leq \frac{1}{2} a_s (\chi_0, \chi_0) + \int_\Omega W (\chi_0) + \int_0^T \int_\Omega \chi_t \left(-|\varepsilon (u)|^2 + \Theta (w)\right) d\chi d\tau
$$

for all $\phi \in L^2(0, T; H^{1/2} (\Omega)) \cap L^\infty (Q)$ and with $\xi \in \partial I [0, +\infty) (\chi)$.

E. Rocca (Università di Milano)
A comparison between the solution notions

Weak solution to the *degenerating* irreversible full system \((\delta = 0)\) \iff weak solution to the *non-degenerating* irreversible full system \((\delta > 0)\)

Suppose that the solution is more regular and \(\chi > 0\) a.e.
A comparison between the solution notions

Weak solution to the *degenerating* irreversible full system \((\delta = 0) \iff \text{weak solution to the non-degenerating irreversible full system } \((\delta > 0)\)

Suppose that the solution is more regular and \(\chi > 0\) a.e. Then the following identities hold true:

\[
\mu = \sqrt{\chi} \varepsilon(u_t), \quad \eta = \sqrt{\chi} \varepsilon(u) \quad \text{a.e. in } \Omega \times (0, T).
\]

Hence
A comparison between the solution notions

Weak solution to the *degenerating* irreversible full system ($\delta = 0$) \iff weak solution to the *non-degenerating* irreversible full system ($\delta > 0$)

Suppose that the solution is more regular and $\chi > 0$ a.e. Then the following identities hold true:

$$\mu = \sqrt{\chi} \varepsilon(\mathbf{u}_t), \; \eta = \sqrt{\chi} \varepsilon(\mathbf{u}) \text{ a.e. in } \Omega \times (0, T).$$

Hence

$$\int_0^T \int_\Omega \left(\partial_t \chi + \gamma(\chi) \right) \varphi \, dx + \int_0^T a_s(\chi, \varphi) \leq \int_0^T \int_\Omega \left(-\frac{1}{2\chi} |\eta|^2 \varphi + \Theta(w) \varphi \right) \, dx$$

for all $\varphi \in L^2(0, T; W^{s,2}_+(\Omega)) \cap L^\infty(Q)$ with $\text{supp}(\varphi) \subset \{\chi > 0\}$,

coincides with

$$\int_0^T \int_\Omega \chi_t \varphi + a_s(\chi, \varphi) + \xi \varphi + \gamma(\chi) \varphi + \frac{|\varepsilon(\mathbf{u})|^2}{2} \varphi - \Theta(w) \varphi \geq 0$$

$\forall \varphi \in L^2(0, T; H^s_-(\Omega)) \cap L^\infty(Q)$ and with $\xi \in \partial I_{[0, +\infty)}(\chi)$.
A comparison between the solution notions

Weak solution to the *degenerating* irreversible full system \((\delta = 0) \iff \text{weak solution to the non-degenerating irreversible full system} \ ((\delta > 0))\)

Suppose that the solution is more regular and \(\chi > 0\) a.e. Then the following identities hold true:

\[
\mu = \sqrt{\chi} \varepsilon(u_t), \quad \eta = \sqrt{\chi} \varepsilon(u) \text{ a.e. in } \Omega \times (0, T).
\]

Hence

\[
\int_0^T \int_\Omega (\partial_t \chi + \gamma(\chi)) \varphi \, dx + \int_0^T a_s(\chi, \varphi) \leq \int_0^T \int_\Omega \left(-\frac{1}{2\chi} |\eta|^2 \varphi + \Theta(w) \varphi \right) \, dx
\]

for all \(\varphi \in L^2(0, T; W^{s,2}_+(\Omega)) \cap L^\infty(Q)\) with \(\text{supp}(\varphi) \subset \{\chi > 0\}\), coincides with

\[
\int_0^T \int_\Omega \chi_t \varphi + a_s(\chi, \varphi) + \xi \varphi + \gamma(\chi) \varphi + \frac{|\varepsilon(u)|^2}{2} \varphi - \Theta(w) \varphi \geq 0
\]

\(\forall \varphi \in L^2(0, T; H^{-s}(\Omega)) \cap L^\infty(Q)\) and with \(\xi \in \partial I_{[0, +\infty)}(\chi)\). Subtracting from the *degenerate total energy inequality* the weak enthalpy equation tested by 1, we recover (a.e. in \((0, T]\)) the energy inequality:

\[
\int_0^t \int_\Omega |\chi_t|^2 \, dx \, dr + \frac{1}{2} a_s(\chi(t), \chi(t)) + \int_\Omega W(\chi(t)) \, dx \\
\leq \frac{1}{2} a_s(\chi_0, \chi_0) + \int_\Omega W(\chi_0) \, dx + \int_0^t \int_\Omega \chi_t \left(-\frac{|\varepsilon(u)|^2}{2} + \Theta(w) \right) \, dx \, dr
\]
Open problem: an entropic formulation for the damage phenomena

We worked here with the small perturbation assumption, i.e. neglecting the quadratic contribution on the r.h.s in the internal energy balance:

\[\vartheta_t + \chi_t \vartheta - \Delta \vartheta = |\chi_t|^2 + \chi|\varepsilon(u_t)|^2 \]
Open problem: an entropic formulation for the damage phenomena

We worked here with the small perturbation assumption, i.e. neglecting the quadratic contribution on the r.h.s in the internal energy balance:

\[\dot{\vartheta} + \chi_t \dot{\vartheta} - \Delta \vartheta = |\chi_t|^2 + \chi |\varepsilon(u_t)|^2 \]

It should be possible to couple the weak equations for \(u \) and \(\chi \) with

✓ the entropy production

\[
\int_0^T \int_{\Omega} \left((\log \vartheta + \chi) \partial_t \varphi - \nabla \log \vartheta \cdot \nabla \varphi \right) dxdt \\
\leq \int_0^T \int_{\Omega} \frac{1}{\vartheta} \left(-|\chi_t|^2 - \chi |\varepsilon(u_t)|^2 - \nabla \log \vartheta \cdot \nabla \vartheta \right) \varphi dxdt
\]

for every test function \(\varphi \in D(\Omega_T), \varphi \geq 0 \).
Open problem: an entropic formulation for the damage phenomena

We worked here with the small perturbation assumption, i.e. neglecting the quadratic contribution on the r.h.s in the internal energy balance:

$$\dot{\vartheta} + \chi_t \vartheta - \Delta \vartheta = |\chi_t|^2 + \chi |\varepsilon(u_t)|^2$$

Is should be possible to couple the weak equations for u and χ with

✓ the entropy production

$$\int_0^T \int_{\Omega} \left((\log \vartheta + \chi) \partial_t \varphi - \nabla \log \vartheta \cdot \nabla \varphi \right) dxdt$$

$$\leq \int_0^T \int_{\Omega} \frac{1}{\vartheta} \left(-|\chi_t|^2 - \chi |\varepsilon(u_t)|^2 - \nabla \log \vartheta \cdot \nabla \vartheta \right) \varphi dxdt$$

for every test function $\varphi \in D(\overline{Q_T})$, $\varphi \geq 0$ and

✓ the energy conservation

$$E(t) = E(0) \text{ for a.e. } t \in [0, T],$$

where

$$E \equiv \int_{\Omega} \left(\vartheta + W(\chi) + \frac{1}{2} a_s(\chi, \chi) + \frac{|u_t|^2}{2} + \chi \frac{|\varepsilon(u)|^2}{2} \right) dx .$$

This is still an open problem...
Thanks for your attention!

Remarks

The proof of Theorem 3 strongly relies on the following properties:

1. the compact embedding of $H^s(Ω)$ into $C^0(Ω);
2. the fact that the s-Laplacian operator is linear: if instead we had stayed with the p-Laplacian operator, we would have not been able to pass to the limit in the nonlinear term $|∇χ_δ|^{p-2}∇χ_δ∇ζ$ featuring in the $χ_δ$-inequality in place of $a_s(χ_δ,ζ);
3. the fact that $t \mapsto χ_δ(t, x)$ is nonincreasing for all $x ∈ Ω$, which follows from the irreversibility constraint;
4. the fact that we neglect the thermal expansion, i.e. we take $ρ = 0$, is due to the low regularity estimates we have on $\text{div} u_t$ for $δ = 0$, which does not allow to pass to the limit in $ρ \text{div}(u_t)Θ(w)$ when $δ \downarrow 0$

These are the reasons why we have restricted the analysis of the degenerate limit to the irreversible system, with the nonlocal s-Laplacian operator.
Remarks

The proof of Theorem 3 strongly relies on the following properties:

1. the compact embedding of $H^s(\Omega)$ into $C^0(\Omega);
2. the fact that the s-Laplacian operator is linear: if instead we had stayed with the p-Laplacian operator, we would have not been able to pass to the limit in the nonlinear term $|\nabla \chi_\delta|^{p-2} \nabla \chi_\delta \nabla \zeta$ featuring in the χ-inequality in place of $a_s(\chi_\delta, \zeta);
3. the fact that $t \mapsto \chi_\delta(t, x)$ is nonincreasing for all $x \in \Omega$, which follows from the irreversibility constraint;
4. the fact that we neglect the thermal expansion, i.e. we take $\rho = 0$, is due to the low regularity estimates we have on $\text{div} u$ for $\delta = 0$, which does not allow to pass to the limit in $\rho \text{div}(u)\Theta(w)$ when $\delta \downarrow 0$.

These are the reasons why we have restricted the analysis of the degenerate limit to the irreversible system, with the nonlocal s-Laplacian operator.
Remarks

The proof of Theorem 3 strongly relies on the following properties:

1. the compact embedding of $H^s(\Omega)$ into $C^0(\overline{\Omega})$;

2. the fact that the s-Laplacian operator is linear: if instead we had stayed with the p-Laplacian operator, we would have not been able to pass to the limit in the nonlinear term $|\nabla \chi_{\delta}|^{p-2} \nabla \chi_{\delta} \nabla \zeta$ featuring in the χ-inequality in place of $a_s(\chi_{\delta}, \zeta)$;

3. the fact that $t \mapsto \chi_{\delta}(t, x)$ is nonincreasing for all $x \in \Omega$, which follows from the irreversibility constraint;

4. the fact that we neglect the thermal expansion, i.e. we take $\rho = 0$, is due to the low regularity estimates we have on $\text{div} u_t$ for $\delta = 0$, which does not allow to pass to the limit in $\rho \text{div}(u_t) \Theta(w)$ when $\delta \downarrow 0$.

These are the reasons why we have restricted the analysis of the degenerate limit to the irreversible system, with the nonlocal s-Laplacian operator.
The proof of Theorem 3 strongly relies on the following properties:

1. the compact embedding of $H^s(\Omega)$ into $C^0(\overline{\Omega})$;

2. the fact that the s-Laplacian operator is linear: if instead we had stayed with the p-Laplacian operator, we would have not been able to pass to the limit in the nonlinear term $|\nabla \chi_\delta|^{p-2} \nabla \chi_\delta \nabla \zeta$ featuring in the χ-inequality in place of $a_s(\chi_\delta, \zeta)$;

3. the fact that $t \mapsto \chi_\delta(t, x)$ is nonincreasing for all $x \in \Omega$, which follows from the irreversibility constraint;

4. the fact that we neglect the thermal expansion, i.e. we take $\rho = 0$, is due to the low regularity estimates we have on $\text{div} u_t$ for $\delta = 0$, which does not allow to pass to the limit in $\rho \text{div} (u_t) \Theta(w)$ when $\delta \downarrow 0$.

These are the reasons why we have restricted the analysis of the degenerate limit to the irreversible system, with the nonlocal s-Laplacian operator.
The proof of Theorem 3 strongly relies on the following properties:

1. the compact embedding of $H^s(\Omega)$ into $C^0(\overline{\Omega})$;

2. the fact that the s-Laplacian operator is linear: if instead we had stayed with the p-Laplacian operator, we would have not been able to pass to the limit in the nonlinear term $|\nabla \chi_\delta|^{p-2} \nabla \chi_\delta \nabla \zeta$ featuring in the χ-inequality in place of $a_s(\chi_\delta, \zeta)$;

3. the fact that $t \mapsto \chi_\delta(t, x)$ is nonincreasing for all $x \in \overline{\Omega}$, which follows from the irreversibility constraint;

4. the fact that we neglect the thermal expansion, i.e. we take $\rho = 0$, is due to the low regularity estimates we have on ∇u_t for $\delta = 0$, which does not allow to pass to the limit in $\rho \nabla (u_t) \Theta(w)$ when $\delta \downarrow 0$.

These are the reasons why we have restricted the analysis of the degenerate limit to the irreversible system, with the nonlocal s-Laplacian operator.
The proof of Theorem 3 strongly relies on the following properties:

1. the compact embedding of $H^s(\Omega)$ into $C^0(\bar{\Omega})$;

2. the fact that the s-Laplacian operator is linear: if instead we had stayed with the p-Laplacian operator, we would have not been able to pass to the limit in the nonlinear term $|\nabla \chi_\delta|^{p-2} \nabla \chi_\delta \nabla \zeta$ featuring in the χ-inequality in place of $a_s(\chi_\delta, \zeta)$;

3. the fact that $t \mapsto \chi_\delta(t, x)$ is nonincreasing for all $x \in \bar{\Omega}$, which follows from the irreversibility constraint;

4. the fact that we neglect the thermal expansion, i.e. we take $\rho = 0$, is due to the low regularity estimates we have on $\text{div} u_t$ for $\delta = 0$, which does not allow to pass to the limit in $\rho \text{div}(u_t) \Theta(w)$ when $\delta \searrow 0$.
Remarks

The proof of Theorem 3 strongly relies on the following properties:

1. the compact embedding of $H^s(\Omega)$ into $C^0(\overline{\Omega})$;

2. the fact that the s-Laplacian operator is linear: if instead we had stayed with the p-Laplacian operator, we would have not been able to pass to the limit in the nonlinear term $|\nabla \chi_\delta|^{p-2} \nabla \chi_\delta \nabla \zeta$ featuring in the χ-inequality in place of $a_s(\chi_\delta, \zeta)$;

3. the fact that $t \mapsto \chi_\delta(t, x)$ is nonincreasing for all $x \in \overline{\Omega}$, which follows from the irreversibility constraint;

4. the fact that we neglige the thermal expansion, i.e. we take $\rho = 0$, is due to the low regularity estimates we have on $\text{div} \, u_t$ for $\delta = 0$, which does not allow to pass to the limit in $\rho \text{div}(u_t) \Theta(w)$ when $\delta \searrow 0$

These are the reasons why we have restricted the analysis of the degenerate limit to the irreversible system, with the nonlocal s-Laplacian operator.