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E. Rocca (Università di Milano) Phase Transitions and Damage July 1–5, 2012 1 / 30



Contents

Part 1. Introduction of the problems and deduction of the PDE system via
modelling

Part 2. Our most recent results:

� joint with Riccarda Rossi [preprint arXiv:1205.3578v1 (2012)]: weak solvability of the
3D degenerating PDE system
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Mathematical problems arising from Thermomechanics

Damage phenomena:

I aim: deal with diffuse interface models in thermoviscoelasticity accounting for
- the evolution of the displacement variables
- the temperature
- the damage parameter χ (for the completely damaged χ = 0 and the undamaged state
χ = 1, respectively, in damage models, while 0 < χ < 1 corresponds to partial damage)

Phase transitions in thermoviscoelastic materials

I aim: introduce a model where we have the full elastic contribution of

(1− χ)ε(u)Reε(u)

only in the non-viscous phase, i.e. when χ = 0, while it is null in the viscous one,
i.e. when χ = 1:

- χ is the order parameter, standing for the local proportion of the liquid phase
- χ = 0 stands for the solid phase,
- χ = 1 for the liquid one
- 0 < χ < 1 in the so-called mushy regions

where the momentum equation contains χ-dependent elliptic operators, which may
degenerate at the pure phases 0 and 1
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E. Rocca (Università di Milano) Phase Transitions and Damage July 1–5, 2012 3 / 30



Mathematical problems arising from Thermomechanics

Damage phenomena:

I aim: deal with diffuse interface models in thermoviscoelasticity accounting for
- the evolution of the displacement variables
- the temperature
- the damage parameter χ (for the completely damaged χ = 0 and the undamaged state
χ = 1, respectively, in damage models, while 0 < χ < 1 corresponds to partial damage)

Phase transitions in thermoviscoelastic materials

I aim: introduce a model where we have the full elastic contribution of

(1− χ)ε(u)Reε(u)

only in the non-viscous phase, i.e. when χ = 0, while it is null in the viscous one,
i.e. when χ = 1:

- χ is the order parameter, standing for the local proportion of the liquid phase
- χ = 0 stands for the solid phase,
- χ = 1 for the liquid one
- 0 < χ < 1 in the so-called mushy regions

where the momentum equation contains χ-dependent elliptic operators, which may
degenerate at the pure phases 0 and 1
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The scope

The analysis of the initial boundary-value problem for the following PDE system:

c(ϑ)ϑt + χtϑ− ρϑ div ut − div(k(ϑ)∇ϑ) = g

utt − div(a(χ)ε(ut) + b(χ)ε(u)− ρϑ1) = f

χt + µ∂I(−∞,0](χt)−∆pχ+ W ′(χ) 3 −b′(χ)
|ε(u)|2

2
+ ϑ

which describes a thermoviscoelastic system in a reference domain Ω ⊂ Rd , d ∈ {2, 3}
during a time interval [0,T ]

ϑ is the absolute temperature of the system

u the vector of small displacements

χ is the order parameter, standing for the local proportion of one of the two phases
in phase transitions (χ = 0: solid phase and χ = 1: liquid phase, and 0 < χ < 1 in
the so-called mushy regions) =⇒ a(χ) = χ, b(χ) = 1− χ
χ is the damage parameter, assessing the soundness of the material in damage (for
the completely damaged χ = 0 and the undamaged state χ = 1, respectively, while
0 < χ < 1: partial damage) =⇒ a(χ) = b(χ) = χ
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Deal with the possible degeneracy in the momentum equation

Main aim: We shall let a and b vanish at the threshold values 0 and 1, not enforce
separation of χ from the threshold values 0 and 1, and accordingly we will allow for
general initial configurations of χ

=⇒ It is not to be expected that either of the coefficients a(χ) and b(χ) stay away from
0: elliptic degeneracy of the displacement equation

utt − div(a(χ)ε(ut) + b(χ)ε(u)− ρϑ1) = f

=⇒ We shall approximate the system with a non-degenerating one, where we replace the
momentum equation with

utt − div((a(χ) + δ)ε(ut) + b(χ)ε(u)− ρϑ1) = f for δ > 0
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The first results and the new goal

[First result.] Local in time well-posedness for a suitable formulation of the
reversible problem (µ = 0 and ρ = 0) using in

c(ϑ)ϑt + χtϑ− ρϑ div ut − div(k(ϑ)∇ϑ) = g+|χt |2 + a(χ)|ε(ut)|2 .

the small perturbations assumption in the 3D (in space) setting [J. Differential
Equations, 2008]

[Second result.] Global well-posedness in the 1D case without small perturbations
assumption [Appl. Math., Special Volume (2008)]

Note: in both these results we assumed χ0 separated from the thresholds 0 and 1 and we
prove (exploiting a sufficient coercivity condition on W at the thresholds 0 and 1) that
the solution χ during the evolution continues to stay separated from 0 and 1 =⇒
prevent degeneracy (the operators are uniformly elliptic)

The goal [E.R., R. Rossi, preprint arXiv:1205.3578v1 (2012)]: to establish a global
existence result in 3D using a suitable notion of solution and without enforcing the
separation property, i.e. allowing for degeneracy
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E. Rocca (Università di Milano) Phase Transitions and Damage July 1–5, 2012 6 / 30



The first results and the new goal

[First result.] Local in time well-posedness for a suitable formulation of the
reversible problem (µ = 0 and ρ = 0) using in

c(ϑ)ϑt + χtϑ− ρϑ div ut − div(k(ϑ)∇ϑ) = g+|χt |2 + a(χ)|ε(ut)|2 .

the small perturbations assumption in the 3D (in space) setting [J. Differential
Equations, 2008]

[Second result.] Global well-posedness in the 1D case without small perturbations
assumption [Appl. Math., Special Volume (2008)]

Note: in both these results we assumed χ0 separated from the thresholds 0 and 1 and we
prove (exploiting a sufficient coercivity condition on W at the thresholds 0 and 1) that
the solution χ during the evolution continues to stay separated from 0 and 1 =⇒
prevent degeneracy (the operators are uniformly elliptic)

The goal [E.R., R. Rossi, preprint arXiv:1205.3578v1 (2012)]: to establish a global
existence result in 3D using a suitable notion of solution and without enforcing the
separation property, i.e. allowing for degeneracy
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The model
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Free energy and Dissipation

cf. [M. Frémond, Phase Change in Mechanics, Lecture Notes of the UMI 13, Springer-Verlag,

Berlin, 2012]

The free-energy F :

F =

∫
Ω

(
f (ϑ) + b(χ)

|ε(u)|2

2
+

1

p
|∇χ|p + W (χ) + ρϑtr(ε(u))− ϑχ

)
dx

f is a concave function, ρ ∈ R a thermal expansion coefficient

b ∈ C2(R; [0,+∞)), e.g., b(χ) = 1− χ in phase transitions, b(χ) = χ in damage

p > d : we need the embedding of W 1,p(Ω) into C0(Ω)

W = β̂ + γ̂, γ̂ ∈ C2(R), β̂ proper, convex, l.s.c., dom(β̂) = [0, 1]

The pseudo-potential P:

P =
k(ϑ)

2
|∇ϑ|2 +

1

2
|χt |2 + a(χ)

|ε(ut)|2

2
+ µI(−∞,0](χt)

k the heat conductivity: coupled conditions with the specific heat c(ϑ) = f (ϑ)− ϑf ′(ϑ)

a ∈ C1(R; [0,+∞)), e.g., a(χ) = χ

µ = 0: reversible case, µ = 1: irreversible case
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The modelling

The momentum equation

utt − div σ = f
(
σ = σnd + σd = ∂F

∂ε(u)
+ ∂P
∂ε(ut )

)
becomes

utt − div(a(χ)ε(ut) + b(χ)ε(u)− ρϑ1) = f

The phase evolution (standard principle of virtual powers)

B − div H = 0
(
B = ∂F

∂χ + ∂P
∂χt

,H = ∂F
∂∇χ

)
becomes

χt + µ∂I(−∞,0](χt)−∆pχ+ W ′(χ) 3 −b′(χ) |ε(u)|2
2

+ ϑ

The internal energy balance

et + div q = g + σ : ε(ut) + Bχt + H · ∇χt

(
e = F − ϑ ∂F

∂ϑ
, q = ∂P

∂∇ϑ

)
becomes

c(ϑ)ϑt + χtϑ− ρϑ div ut − div(k(ϑ)∇ϑ) = g+|χt |2 + a(χ)|ε(ut)|2
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The analysis
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Main mathematical difficulties

Our main aim is to handle the elliptic degeneracy of the momentum equation: we replace
it by

utt − div((a(χ) + δ)ε(ut) + b(χ)ε(u)− ρϑ1) = f

and we want let δ ↘ 0

We should also treat the nonlinear coupling between the single equations: the heat equation

c(ϑ)ϑt + χtϑ− ρϑ div ut − div(k(ϑ)∇ϑ) = g+|χt |2 + a(χ)|ε(ut)|2

and the phase equation

χt + µ∂I(−∞,0](χt)−∆pχ+ W ′(χ) 3 −b′(χ) |ε(u)|2
2

+ ϑ (Phase)

A major difficulty stems from the simultaneous presence in (Phase) of ∂I(−∞,0](χt), −∆pχ,

and W ′(χ). However −∆pχ is necessary in order to estimate −b′(χ) |ε(u)|2
2

We consider a suitable weak formulation of (Phase) consisting of a one-sided variational
inequality + an energy inequality =⇒ generalized principle of virtual powers

In a first approach, we take the small perturbation assumption and deal with

c(ϑ)ϑt + χtϑ− ρϑ div ut − div(k(ϑ)∇ϑ) = g

E. Rocca (Università di Milano) Phase Transitions and Damage July 1–5, 2012 11 / 30



Main mathematical difficulties

Our main aim is to handle the elliptic degeneracy of the momentum equation: we replace
it by

utt − div((a(χ) + δ)ε(ut) + b(χ)ε(u)− ρϑ1) = f

and we want let δ ↘ 0

We should also treat the nonlinear coupling between the single equations: the heat equation

c(ϑ)ϑt + χtϑ− ρϑ div ut − div(k(ϑ)∇ϑ) = g+|χt |2 + a(χ)|ε(ut)|2

and the phase equation

χt + µ∂I(−∞,0](χt)−∆pχ+ W ′(χ) 3 −b′(χ) |ε(u)|2
2

+ ϑ (Phase)

A major difficulty stems from the simultaneous presence in (Phase) of ∂I(−∞,0](χt), −∆pχ,

and W ′(χ). However −∆pχ is necessary in order to estimate −b′(χ) |ε(u)|2
2

We consider a suitable weak formulation of (Phase) consisting of a one-sided variational
inequality + an energy inequality =⇒ generalized principle of virtual powers

In a first approach, we take the small perturbation assumption and deal with

c(ϑ)ϑt + χtϑ− ρϑ div ut − div(k(ϑ)∇ϑ) = g
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E. Rocca (Università di Milano) Phase Transitions and Damage July 1–5, 2012 11 / 30



Main new results
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The main ideas to handle nonlinearities and degeneracy

Introduce a concept of weak solution satisfying

a generalization of the principle of virtual powers inspired by

1. the notion of energetic solution - A. Mielke and co-authors ([Bouchitté, Mielke,

Roub́ıček, ZAMP. Angew. Math. Phys. (2009) and [Mielke, Roub́ıček, Zeman, Comput.

Methods Appl. Mech. Engrg. (2010)]) for rate-independent processes for damaging
phenomena and

2. a notion of weak solution introduced by [Heinemann, Kraus, WIAS preprint 1569 and

WIAS preprint 1520, to appear on Adv. Math. Sci. Appl. (2010)] for non-degenerating
isothermal diffuse interface models for phase separation and damage
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Main results

We replace the momentum equation with a non-degenerating one

utt − div((a(χ) + δ)ε(ut) + b(χ)ε(u)− ρϑ1) = f, δ > 0

[Thm. 1] Existence of solutions to the non-degenerating system δ > 0 in the reversible
case, i.e. with µ = 0 in

χt + µ∂I(−∞,0](χt)−∆pχ+ W ′(χ) 3 −b′(χ)
|ε(u)|2

2
+ ϑ

[Thm. 2] Existence of weak solutions to the non-degenerating system δ > 0 in the
irreversible case (µ = 1) consisting of a one-sided variational inequality and of an energy
inequality

[Thm. 3] For the analysis of the degenerate limit δ ↘ 0 we have carefully adapted
techniques from [Bouchitté, Mielke, Roub́ıček, 2009] and [Mielke, Roub́ıček, Zeman, 2011]
to the case of a rate-dependent equation for χ, also coupled with the temperature equation

It seems to us that both the coefficients need to be truncated when taking the degenerate
limit in the momentum equation: the truncation in front of ε(ut) allows us to deal with the
main part of the elliptic operator, but, in order to pass to the limit in the quadratic term on
the right-hand side of χ-eq., we will also need to truncate the coefficient of ε(u)
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Energy vs Enthalpy

In order to deal with the low regularity of ϑ, rewrite the internal energy equation

c(ϑ)ϑt + χtϑ− ρϑ div ut − div(k(ϑ)∇ϑ) = g

as the enthalpy equation

wt + χtΘ(w)− ρΘ(w) div ut− div(K(w)∇w) = g where

w = h(ϑ) :=

∫ ϑ

0
c(s) ds, Θ(w) :=

{
h−1(w) if w ≥ 0,

0 if w < 0,
K(w) :=

k(Θ(w))

c(Θ(w))

We assume that

c ∈ C 0([0,+∞); [0,+∞))

∃σ1 ≥ σ > 2d
d+2

: c0(1+ϑ)σ−1 ≤ c(ϑ) ≤ c1(1+ϑ)σ1−1 =⇒ h is strictly increasing

Assume moreover
[If ρ = 0:] the function k : [0,+∞)→ [0,+∞) is continuous, and

∃ c2, c3 > 0 ∀ϑ ∈ [0,+∞) : c2c(ϑ) ≤ k(ϑ) ≤ c3(c(ϑ) + 1)

[If ρ 6= 0:] ∃ cρ > 0 ∃ q ≥ d+2
2d

: K(w) = cρ
(
|w |2q + 1

)
∀w ∈ [0,+∞)
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The non-degenerate case
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The approximating non-degenerate Problem [Pδ]

Given δ > 0, µ ∈ {0, 1}, find (measurable) functions

w ∈ Lr (0,T ; W 1,r (Ω)) ∩ L∞(0,T ; L1(Ω)) ∩ BV([0,T ]; W 1,r′ (Ω)∗)

u ∈ H1(0,T ; H2(Ω; Rd )) ∩W 1,∞(0,T ; H1
0 (Ω)) ∩ H2(0,T ; L2(Ω; Rd ))

χ ∈ L∞(0,T ; W 1,p(Ω)) ∩ H1(0,T ; L2(Ω))

for every 1 ≤ r < d+2
d+1

, fulfilling the initial conditions

u(0, x) = u0(x), ut(0, x) = v0(x) for a.e. x ∈ Ω

χ(0, x) = χ0(x) for a.e. x ∈ Ω

the equations (for every ϕ ∈ C0([0,T ]; W 1,r′ (Ω)) ∩W 1,r′ (0,T ; Lr′ (Ω)) and t ∈ (0,T ])∫
Ω
ϕ(t) w(t)(dx)−

∫ t

0

∫
Ω

wϕt dx +

∫ t

0

∫
Ω

χtΘ(w)ϕ dx

− ρ
∫ t

0

∫
Ω

divutΘ(w)ϕ dx +

∫ t

0

∫
Ω

K(w)∇w∇ϕdx =

∫ t

0

∫
Ω

gϕ+

∫
Ω

w0ϕ(0) dx

utt − div ((a(χ) + δ)ε(ut) + b(χ)ε(u))− ρ∇Θ(w) = f in H−1(Ω; Rd ) a.e. in (0,T )

and the subdifferential inclusion (in W 1,p(Ω)∗ and a.e. in (0,T ))

χt + µ∂I(−∞,0](χt)−∆pχ+ β(χ) + γ(χ) 3 −b′(χ)
|ε(u)|2

2
+ Θ(w)
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Theorem 1 [The reversible case µ = 0]

Let µ = 0 and ρ = 0, assume the previous Hypotheses and the conditions:

f ∈ L2(0,T ; L2(Ω)), g ∈ L1(0,T ; L1(Ω)) ∩ L2(0,T ; H1(Ω)′)

ϑ0 ∈ Lσ1 (Ω) whence w0 := h(ϑ0) ∈ L1(Ω)

u0 ∈ H2
0 (Ω), v0 ∈ H1

0 (Ω) χ0 ∈ dom(∆p), β̂(χ0) ∈ L1(Ω)

Then,

1. Problem [Pδ] admits a solution (w , u, χ), such that there exists

ξ ∈ L2(0,T ; L2(Ω)), ξ(x , t) ∈ β(χ(x , t)) for a.e. (x , t) ∈ Ω× (0,T ) :

χt −∆pχ+ ξ + γ(χ) = −b′(χ)
|ε(u)|2

2
+ Θ(w) a.e. in Ω× (0,T )

2. Suppose that g(x , t) ≥ 0 a.e. Then, w ≥ 0 a.e., hence ϑ(x , t) := Θ(w(x , t)) ≥ 0
a.e.

3. In case ρ 6= 0, w0 ∈ L2(Ω), and K(w) = cρ
(
|w |2q + 1

)
, q ≥ (d + 2)/2d . Then, w

has the further regularity

w ∈ L2(0,T ; H1(Ω)) ∩ L∞(0,T ; L2(Ω)) ∩W 1,r(q)((0,T ); W 2,−s(q)(Ω))
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Theorem 2 [The irreversible case µ = 1]

Let µ = 1, ρ = 0, and take the previous assumptions with β̂ = I[0,+∞). Then,

[1.] Problem [Pδ] admits a weak solution (w , u, χ), which, beside fulfilling the enthalpy and
momentum equations, satisfies χt(x , t) ≤ 0 for almost all t ∈ (0,T ), and

(∀ϕ ∈ Lp(0,T ; W 1,p
− (Ω)) ∩ L∞(Q)) the one-sided inequality∫ T

0

∫
Ω

χtϕ+ |∇χ|p−2∇χ · ∇ϕ+ ξϕ+ γ(χ)ϕ+ b′(χ)
|ε(u)|2

2
ϕ−Θ(w)ϕ ≥ 0

with ξ ∈ ∂I[0,+∞)(χ) in the following sense:

ξ ∈ L1(0,T ; L1(Ω)), 〈ξ(t), ϕ− χ(t)〉W 1,p(Ω) ≤ 0 ∀ϕ ∈W 1,p
+ (Ω), a.e. t ∈ (0,T )

and the energy inequality for all t ∈ (0,T ], for s = 0, and for almost all 0 < s ≤ t:∫ t

s

∫
Ω
|χt |2 dx dr +

1

p
|∇χ(t)|p +

∫
Ω

W (χ(t)) dx

≤
1

p
|∇χ(s)|p +

∫
Ω

W (χ(s)) dx +

∫ t

s

∫
Ω

χt

(
−b′(χ)

|ε(u)|2

2
+ Θ(w)

)
dx dr

[2.] Suppose in addition that g(x , t) ≥ 0, ϑ0 > ϑ0 ≥ 0 a.e. Then

ϑ(x , t) := Θ(w(x , t)) ≥ ϑ0 ≥ 0 a.e.

[3.] In case ρ 6= 0 an analogous statement to the reversible case holds true
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Generalized principle of virtual powers vs classical phase inclusion

Any weak solution (w , u, χ) fulfills the total energy inequality for all t ∈ (0,T ], for s = 0,
and for almost all 0 < s ≤ t∫

Ω
w(t)(dx) +

1

2

∫
Ω
|ut(t)|2 dx +

∫ t

s

∫
Ω
|χt |2 dx +

∫ t

s
(χ+ δ)|ε(ut)|2

+
1

2
(χ(t) + δ)|ε(u(t))|2 +

1

p
|∇χ(t)|p +

∫
Ω

W (χ(t)) dx

≤
∫

Ω
w(s)(dx) +

1

2

∫
Ω
|ut(s)|2 dx +

1

2
(χ(s) + δ)|ε(u(s))|2 +

1

p
|∇χ(s)|p

+

∫
Ω

W (χ(s)) dx +

∫ t

s

∫
Ω

f · ut dx +

∫ t

s

∫
Ω

g dx

If (w , u, χ) are “more regular” and satisfy the notion of weak solution, then, differentiating
the energy inequality and using the chain rule, we conclude that (w , u, χ, ξ) comply with

〈χt(t)−∆pχ(t) + ξ(t) + γ(χ(t)) +
|ε(u)|2

2
−Θ(w(t)), χt(t)〉

W 1,p(Ω)
≤ 0 for a.e.t

Using the one-sided inequality we obtain the classical phase inclusion:

∃ ζ ∈ L2(0,T ; L2(Ω)) with ζ(x , t)∈ ∂I(−∞,0](χt(x , t)) a.e. s.t.

χt + ζ −∆pχ+ ξ + γ(χ) = −
|ε(u)|2

2
+ Θ(w) a.e.
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The isothermal case: uniqueness

Let ρ ∈ R. In addition to the previous hypotheses, assume that

the function a is constant

Then, the isothermal reversible system admits a unique solution (u, χ) which
continuously depends on the data

Uniqueness of solutions for the irreversible system, even in the isothermal case, is still an
open problem. This is mainly due to the triply nonlinear character of the χ equation.
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The techniques used in the proof

We pass to the limit in a carefully designed time-discretization scheme

A key role is played by
I the presence of the p-Laplacian with p > d =⇒ an estimate for χ in

L∞(0,T ; W 1,p(Ω)) =⇒ a suitable regularity estimate on the displacement variable u
=⇒ a global-in-time bound on the quadratic nonlinearity |ε(u)|2 on the right-hand side
of

χt + µ∂I(−∞,0](χt)−∆pχ+ W ′(χ) 3 −b′(χ)
|ε(u)|2

2
+ ϑ

I the Boccardo-Gallouët-type estimates combined with the Gagliardo-Nirenberg
inequality applied to the enthalpy equation in order to obtain an
Lr (0,T ; W 1,r (Ω))-estimate on the enthalpy w
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The degenerating case
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Hypotheses

Consider the irreversible case with the s−Laplacian (the previous results still hold true in
this case), ρ = 0, and a(χ) = χ, b(χ) = χ+ δ:

∫
Ω

ϕ(t) w(t)(dx)−
∫ t

0

∫
Ω

wϕt dx +

∫ t

0

∫
Ω

χtΘ(w)ϕ dx

+

∫ t

0

∫
Ω

K(w)∇w∇ϕ dx =

∫ t

0

∫
Ω

gϕ+

∫
Ω

w0ϕ(0) dx ,

utt − div ((χ+ δ)ε(ut) + (χ+ δ)ε(u)) = f in H−1(Ω; Rd) a.e. in (0,T )

and the subdifferential inclusion (in W 1,p(Ω)∗ and a.e. in (0,T ))

χt + ∂I(−∞,0](χt) + As(χ) + ∂I[0,+∞)(χ) + γ(χ) 3 −b′(χ)
|ε(u)|2

2
+ Θ(w)

where

As : Hs(Ω)→ Hs(Ω)∗ with s >
d

2
, 〈Asχ,w〉Hs (Ω) := as(χ,w) and

as(z1, z2) :=

∫
Ω

∫
Ω

(
∇z1(x)−∇z1(y)

)
·
(
∇z2(x)−∇z2(y)

)
|x − y |d+2(s−1)

dx dy

Note that all the previous results for the non-degenerating case hold true with As instead of ∆p
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E. Rocca (Università di Milano) Phase Transitions and Damage July 1–5, 2012 24 / 30



The total energy inequality in the degenerating case δ ↘ 0

Rewrite the momentum equation

∂2
t uδ − div((χ+ δ)ε(∂tuδ))− div((χ+ δ)ε(uδ)) = f

using the new variables (quasi-stresses) µδ :=
√
χδ + δ ε(∂tuδ), and

ηδ :=
√
χδ + δ ε(uδ):

∂2
t uδ − div(

√
χ+ δµδ)− div(

√
χ+ δ ηδ) = f

The total energy inequality for (wδ, uδ, χδ) is∫
Ω

wδ(t)(dx) +
1

2

∫
Ω
|∂tuδ(t)|2 dx +

∫ t

s

∫
Ω
|∂tχδ|2 dx +

1

2

∫ t

s
|µδ(r)|2

+
|ηδ(t)|2

2
+

1

2
as(χδ(t), χδ(t)) +

∫
Ω

W (χδ(t)) dx

≤
∫

Ω
wδ(s)(dx) +

1

2

∫
Ω
|∂tuδ(s)|2 dx +

|ηδ(s)|2

2
+

1

2
as(χδ(s), χδ(s))

+

∫
Ω

W (χδ(s)) dx +

∫ t

s

∫
Ω

f · ∂tuδ dx +

∫ t

s

∫
Ω

g dx
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The degenerate problem (δ = 0): the existence theorem [E.R., R. Rossi, preprint

arXiv:1205.3578v1 (2012)]

[Theorem 3] (δ = 0) Under the previous assumptions, there exist

u ∈W 1,∞(0,T ; L2(Ω)) ∩ H2(0,T ; H−1(Ω)), µ ∈ L2(0,T ; L2(Ω)), η ∈ L∞(0,T ; L2(Ω)),

w ∈ Lr (0,T ; W 1,r (Ω)) ∩ L∞(0,T ; L1(Ω)) ∩ BV([0,T ]; W 1,r′ (Ω)∗)

χ ∈ L∞(0,T ; Hs(Ω)) ∩ H1(0,T ; L2(Ω)), χ(x , t) ≥ 0, χt(x , t) ≤ 0 a.e.

such that it holds true (a.e. in any open set A ⊂ Ω× (0,T ): χ > 0 a.e. in A)

µ =
√
χ ε(ut), η =

√
χ ε(u) ,

the weak enthalpy equation and the weak momentum and phase relations

∂2
t u− div(

√
χµ)− div(

√
χη)) = f in H−1(Ω; Rd ), a.e. in (0,T ) ,∫ T

0

∫
Ω

(∂tχ+ γ(χ))ϕdx +

∫ T

0
as(χ, ϕ) ≤

∫ T

0

∫
Ω

(
−

1

2χ
|η|2 + Θ(w)

)
ϕ dx

for all ϕ ∈ L2(0,T ; W s,2
+ (Ω)) ∩ L∞(Q) with supp(ϕ) ⊂ {χ > 0},

together with the total energy inequality (for almost all t ∈ (0,T ])∫
Ω

w(t)(dx) +

∫ t

0

∫
Ω
|χt |2 dx +

1

2

∫ t

0
|µ(r)|2 +

∫
Ω

W (χ(t)) dx + J (t) =

∫
Ω

w0 dx

+
1

2

∫
Ω
|v0|2 dx +

1

2
χ0|ε(u0)|2 +

1

2
as(χ0, χ0) +

∫
Ω

W (χ0) dx +

∫ t

0

∫
Ω

f · ut dxdr +

∫ t

0

∫
Ω

g dx

with

∫ t

0
J (r) dr ≥

1

2

∫ t

0

(∫
Ω
|ut(r)|2 dx + |η(r)|2 + as(χ(r), χ(r))

)
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A comparison between the solution notions

Weak solution to the degenerating irreversible full system (δ = 0) ⇐⇒ weak solution to
the non-degenerating irreversible full system (δ > 0)

Suppose that the solution is more regular and χ > 0 a.e. Then the following identities hold true:

µ =
√
χ ε(ut), η =

√
χ ε(u) a.e. in Ω× (0,T ) .

Hence ∫ T

0

∫
Ω

(∂tχ+ γ(χ))ϕdx +

∫ T

0
as(χ, ϕ) ≤

∫ T

0

∫
Ω

(
−

1

2χ
|η|2ϕ+ Θ(w)ϕ

)
dx

for all ϕ ∈ L2(0,T ; W s,2
+ (Ω)) ∩ L∞(Q) with supp(ϕ) ⊂ {χ > 0},

coincides with ∫ T

0

∫
Ω

χtϕ+ as(χ, ϕ) + ξϕ+ γ(χ)ϕ+
|ε(u)|2

2
ϕ−Θ(w)ϕ ≥ 0

∀ϕ ∈ L2(0,T ; Hs
−(Ω)) ∩ L∞(Q) and with ξ ∈ ∂I[0,+∞)(χ). Subtracting from the degenerate

total energy inequality the weak enthalpy equation tested by 1, we recover (a.e. in (0,T ]) the
energy inequality:∫ t

0

∫
Ω
|χt |2 dx dr +

1

2
as(χ(t), χ(t)) +

∫
Ω

W (χ(t)) dx

≤
1

2
as(χ0, χ0) +

∫
Ω

W (χ0) dx +

∫ t

0

∫
Ω

χt

(
−
|ε(u)|2

2
+ Θ(w)

)
dx dr
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Suppose that the solution is more regular and χ > 0 a.e. Then the following identities hold true:

µ =
√
χ ε(ut), η =

√
χ ε(u) a.e. in Ω× (0,T ) .

Hence ∫ T

0

∫
Ω

(∂tχ+ γ(χ))ϕdx +

∫ T

0
as(χ, ϕ) ≤

∫ T

0

∫
Ω

(
−

1

2χ
|η|2ϕ+ Θ(w)ϕ

)
dx

for all ϕ ∈ L2(0,T ; W s,2
+ (Ω)) ∩ L∞(Q) with supp(ϕ) ⊂ {χ > 0},

coincides with ∫ T

0

∫
Ω

χtϕ+ as(χ, ϕ) + ξϕ+ γ(χ)ϕ+
|ε(u)|2

2
ϕ−Θ(w)ϕ ≥ 0

∀ϕ ∈ L2(0,T ; Hs
−(Ω)) ∩ L∞(Q) and with ξ ∈ ∂I[0,+∞)(χ).

Subtracting from the degenerate

total energy inequality the weak enthalpy equation tested by 1, we recover (a.e. in (0,T ]) the
energy inequality:∫ t

0

∫
Ω
|χt |2 dx dr +

1

2
as(χ(t), χ(t)) +

∫
Ω

W (χ(t)) dx

≤
1

2
as(χ0, χ0) +

∫
Ω

W (χ0) dx +

∫ t

0

∫
Ω

χt

(
−
|ε(u)|2

2
+ Θ(w)

)
dx dr
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Open problem: an entropic formulation for the damage phenomena
We worked here with the small perturbation assumption, i.e. neglecting the quadratic
contribution on the r.h.s in the internal energy balance:

ϑt + χtϑ−∆ϑ = |χt |2 + χ|ε(ut)|2

Is should be possible to couple the weak equations for u and χ with

X the entropy production∫ T

0

∫
Ω

(
(log ϑ+ χ) ∂tϕ−∇ log ϑ · ∇ϕ

)
dxdt

≤
∫ T

0

∫
Ω

1

ϑ

(
−|χt |2 − χ|ε(ut)|2 −∇ log ϑ · ∇ϑ

)
ϕdxdt

for every test function ϕ ∈ D(QT ), ϕ ≥ 0 and

X the energy conservation

E(t) = E(0) for a.e. t ∈ [0,T ],

where

E ≡
∫

Ω

(
ϑ+ W (χ) +

1

2
as(χ, χ) +

|ut |2

2
+ χ |ε(u)|2

2

)
dx .

This is still an open problem...

E. Rocca (Università di Milano) Phase Transitions and Damage July 1–5, 2012 28 / 30



Open problem: an entropic formulation for the damage phenomena
We worked here with the small perturbation assumption, i.e. neglecting the quadratic
contribution on the r.h.s in the internal energy balance:

ϑt + χtϑ−∆ϑ = |χt |2 + χ|ε(ut)|2

Is should be possible to couple the weak equations for u and χ with

X the entropy production∫ T

0

∫
Ω

(
(log ϑ+ χ) ∂tϕ−∇ log ϑ · ∇ϕ

)
dxdt

≤
∫ T

0

∫
Ω

1

ϑ

(
−|χt |2 − χ|ε(ut)|2 −∇ log ϑ · ∇ϑ

)
ϕdxdt

for every test function ϕ ∈ D(QT ), ϕ ≥ 0

and

X the energy conservation

E(t) = E(0) for a.e. t ∈ [0,T ],

where

E ≡
∫

Ω

(
ϑ+ W (χ) +

1

2
as(χ, χ) +

|ut |2

2
+ χ |ε(u)|2

2

)
dx .

This is still an open problem...
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Thanks for your attention!

cf. http://www.mat.unimi.it/users/rocca/
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Remarks

The proof of Theorem 3 strongly relies on the following properties:

1. the compact embedding of Hs(Ω) into C0(Ω);

2. the fact that the s-Laplacian operator is linear: if instead we had stayed with the
p-Laplacian operator, we would have not been able to pass to the limit in the
nonlinear term |∇χδ|p−2∇χδ∇ζ featuring in the χ-inequality in place of as(χδ, ζ);

3. the fact that t 7→ χδ(t, x) is nonincreasing for all x ∈ Ω, which follows from the
irreversibility constraint;

4. the fact that we neglige the thermal expansion, i.e. we take ρ = 0, is due to the low
regularity estimates we have on div ut for δ = 0, which does not allow to pass to the
limit in ρ div(ut)Θ(w) when δ ↘ 0

These are the reasons why we have restricted the analysis of the degenerate limit to the
irreversible system, with the nonlocal s-Laplacian operator.
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