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Università degli Studi di Milano

IFIP TC 7.2 Workshop
“Electromagnetics – Modelling, Simulation, Control and Industrial Applications”

WIAS, Berlin, May 13 – 17, 2013

joint work with

Dietmar Hömberg (WIAS, Berlin)

Supported by the FP7-IDEAS-ERC-StG Grant “EntroPhase” #256872
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Outline

The process of Induction Hardening

- classical induction hardening

- multifrequency induction hardening

- aims: simulation and optimization of the process

A thermodynamically consistent model

- the volume fraction relation

- the energy balance

- the induction heating (Maxwell equations)

Our main results on

� existence of solution for the corresponding initial-boundary value problem

� stability estimates

� first-order optimality conditions

Comment on some numerics ([Hömberg, Petzold, WIAS])
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Hardening process

In most structural components in mechanical
engineering, the surface is particularly stressed.
Therefore, the aim of surface hardening is to
increase the hardness of the boundary layers of a
workpiece by rapid heating and subsequent
quenching

This heat treatment leads to a change in
microstructure, which produces the desired
hardening effect. Typical examples of application
are gear-wheels

The mode of operation in induction hardening
facilities relies on the transformer principle. A
given current density in the induction coil
(inductor) Ω induces eddy currents inside the
workpiece Σ
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Advantages and Disadvantages

Because of the Joule effect these eddy currents
lead to an increase in temperature in the
boundary layers of the workpiece

Then the current is switched off and the
workpiece is quenched by spray-water cooling

E. Rocca (Università di Milano) Induction hardening May 14, 2013 4 / 39



Advantages and Disadvantages

Since the magnitude of the eddy currents
decreases with growing distance from the
workpiece surface because of the frequency
dependent skin-effect, induction heating is
suitable for surface hardening if the current
frequency is big enough

After heating, the workpiece is quenched by
spray-water cooling and another phase transition
leads to the desired hardening effect in the
boundary layers of the workpiece
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Advantages and Disadvantages

There is a growing demand in industry for a
more precise process control:

I for weight reduction, especially in automotive
industry, leading to components made of
thinner and thinner steel sheets. The surface
hardening of these sheets is a very delicate task,
since one must be careful not to harden the
complete sheet, which would lead to
undesirable fatigue effects

I for tendency to use high quality steels with only
a small carbon content. Since the hardenability
of a steel is directly related to its carbon
content, already from a metallurgical point of
view, the treatment of these steels is extremely
difficult

Advantage: Very fast and energy-efficient process

Drawback: Difficult to generate desired close to contour hardening profile for
complex work pieces such as gears

MF+HF Actually simultaneous supply of medium and high frequences (MF+HF)
gives the best result
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Multi-frequency induction hardening

Simultaneous supply of medium - and high frequency power on one induction coil

Close to contour hardening profile for gears and other complex-shaped parts

Only the bases heated Only the tips heated Both bases and tips heated
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The model

The reason why one can change the hardness of
steel by thermal treatment lies in the occurring
phase transitions

In the case of surface hardening, owing to high
cooling rates, most of the austenite is
transformed to martensite by a diffusionless
phase transition leading to the desired increase
of hardness
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The model

Hence a mathematical model for induction surface hardening has to account for

the electromagnetic effects that lead to the surface heating

the thermomechanical effects

the phase transitions that are caused by the enormous changes in temperature
during the heat treatment

E. Rocca (Università di Milano) Induction hardening May 14, 2013 6 / 39



The phase transitions

The reason why one can change the hardness of steel by thermal treatment lies in the
occuring phase transitions

z0 ferrite,
pearlite,
martensite

z0(t0) = 1

heating−−−−→

z0 initial com-
position

z1 austenite

z0 + z1 = 1

cooling−−−−→

z0 initial com-
position

z1 austenite
z2 ferrite
z3 pearlite
z4 martensite∑

zi = 1

At room temperature, in coil workpiece general, steel is a mixture of ferrite, pearlite,
and martensite

Upon heating, these phases are transformed to austenite

Then, during cooling austenite is transformed back to a mixture of ferrite, pearlite,
and martensite – we do not consider this part of the process – less interesting

The actual phase distribution at the end of the heat treatment depends on the cooling
strategy. In the case of surface hardening, owing to high cooling rates most of the
austenite is transformed to martensite by a diffusionless phase transition leading to the
desired increase of hardness.
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The evolution of the phase fraction of austenite z = z1

According to [Leblond and Deveaux (1984)], the
formation of austenite cannot be described by
the additivity rule, since for fixed temperature
within the transformation range, one can get an
equilibrium volume fraction of austenite less
than one

Therefore, they propose to use the rate law

z(0) = 0 in Σ

zt(t) =
1

τ(θ)
max {(zeq(θ)− z(t)) , 0}

=
1

τ(θ)
(zeq(θ)− z(t))+ in Q := Σ× (0,T )

zeq ∈ [0, 1] is an equilibrium fraction of austenite.
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The magnetic field

In the eddy current problems we get the Maxwell’s
equations in D × (0,T )

curlH = J, curlE = −Bt , divB = 0

where

E is the electric field

B the magnetic induction

H the magnetic field

J the spatial current density

and we have neglected the electric displacement
in the first relation (| ∂D

∂t
| << |J|)
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The magnetic field

Assume the Ohm’s law and a linear relation between
the magnetic induction and the magnetic field

J = σE , B = µH

where the electrical conductivity σ and the magnetic
permeability µ (sufficiently regular and bounded for
below and above) may depend both on the spatial vari-
ables and also on the phase parameter z

σ(x , z) =


0, x ∈ D \ (Ω ∪ Σ)

σw (z), x ∈ Σ

σi , x ∈ Ω

and

µ(x , z) =


µ0, x ∈ D \ (Ω ∪ Σ)

µw (z), x ∈ Σ

µi , x ∈ Ω
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The magnetic vector potential
Since divB = 0, we can introduce the magnetic vector potential A such that

B = curlA in D

and, since A is not uniquely defined, we impose the Coulomb gauge

divA = 0 in D

Using curlE + Bt = 0 and B = curlA, we define the scalar potential φ by

E + At = −∇φ in D × (0,T )

and we get the total current density

J = σE = −σAt︸ ︷︷ ︸
Jeddy

−σ∇φ︸ ︷︷ ︸
Jsource

in D × (0,T )

Since Jsource = 0 in D \ Ω, we get

σAt + curl

(
1

µ
curlA

)
︸ ︷︷ ︸

H︸ ︷︷ ︸
J

+ σχΩ∇φ = 0 in D × (0,T ) and − div(σ∇φ) = 0 in Ω
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Boundary conditions

Introduction of boundary conditions on ∂D

(1) Perfect electric conductor E × n = 0

(2) Perfect magnetic conductor H × n = 0

(1) leads to
A× n = 0 (tangential component vanish on ∂D)

(2) leads to
µ−1 curlA× n = 0

Inside the inductor (a closed tube) we fix a section Γ and model the current density
which is generated by the hardening machine by an interface condition on Γ

σ∇φ · n = 0 on ∂Ω

[σ∇φ · ñ] = 0 and [φ] = U0 on Γ

where n, n, and ñ denote normal unit vectors to ∂D, ∂Ω, and Γ, resp.
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Eliminating the scalar potential

For a given coil geometry (here a torus with rectangular cross-section), the source
current density Jsource := σ∇φ can be precomputed analytically

From div(σ∇φ) = 0 one obtains in cylindrical coordinates

φ = C1ϕ and consequently Jsource = σC1 (0, 1/r , 0)T(r,ϕ,z)

where C1 = U0/(2π) for a given voltage

For a given source current in the coil C1 is computed from∫
Γ

Jsource · ñ da = Icoil

In cartesian coordinates one obtains for a given source current

Jsource =
Icoil

log(rA/rI )h

−y/(x2 + y 2)
x/(x2 + y 2)

0


It can be used as control for optimization Jsource = u(t)J0 where J0 is the spatial
current density prescribed in the induction coil Ω

J0(x) =

{
Ji (x), x ∈ Ω

0, x ∈ D \ Ω

and u = u(t) denotes a time-dependent control on [0,T ]
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The energy balance

Assuming to have as constant density ρ = 1 (for simplicity), the internal energy balance
results as

et + div q = JE = σ|At +∇φ|2 = σ|At |2 in Σ× (0,T )

where

e denotes the internal energy of the system

q the heat flux, which, accordingly to the standard Fourier law is assumed as follows

q = −κ∇θ, κ > 0

Boundary conditions: neglect the possible radiative heat transfer between the inductor
and the workpiece assuming

κ
∂θ

∂ν
+ ηθ = g in ∂Σ× (0,T )

where ν denotes the outward unit normal vector to ∂Σ, η stands for an heat transfer
coefficient and g is a given boundary source
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The thermodynamical consistency
From the Helmholtz relation e = ψ + θs, where ψ = ψ(θ, z) denotes the free energy of
the system, we have that the Clausius-Duhem inequality

θ
(
st + div

(q
θ

))
= et − ψθθt − ψzzt − θts −

q

θ
∇θ + div q

= et + div q − (ψθ + s)θt − ψzzt +
κ|∇θ|2

θ

= σ|At |2 − (ψθ + s)θt − ψzzt +
κ|∇θ|2

θ

≥ 0

is satisfied e.g. if we assume the standard relations ψθ + s = 0 and Lτ(θ)zt = −ψz , and
hence ψz = −L(zeq(θ)− z)+, for some positive constant L > 0.

Using the definition of
the specific heat cv = θsθ, we get

et = cvθt + (ψz + θsz)zt = cvθt + f (θ, z)zt

where we have denoted for simplicity by

f (θ, z) = ψz − θ(ψz)θ = −L(zeq(θ)− z)+ + Lθz ′eq(θ)H(zeq(θ)− z)

H=Heaviside function. The internal energy balance results

cvθt + div q = σ|At |2 − f (θ, z)zt in Σ× (0,T )
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The PDE system

Model consists of vector-potential formulation of
Maxwell’s equation, heat equation and rate law for phase
fractions

Source term u can be used as control for optimization

σAt + curl
1

µ
curlA = J0u in D × (0,T )

θt − div κ∇θ = σ|At |2 + F(θ, z)zt in Σ× (0,T )

zt =
1

τ(θ)
(zeq(θ)− z)+ in Σ× (0,T )

where

J0 =
(
−y/(x2 + y 2), x/(x2 + y 2), 0

)T
F(θ, z) = L(zeq(θ)− θz ′eq(θ)− z)
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Analysis and control of Joule heating models – a few references

Resistance heating

heat source h = σ|∇ϕ|2 −→ thermistor problem

Cimatti, Prodi (1988); Howison, Rodrigues, Shillor (1993); Antonsev, Chipot
(1994), Hömberg, Khludnev, Sokolowski (2001); Hömberg, Meyer, Rehberg (2010),
Hömberg, R. (2011)

Induction heating – time domain

heat source h = σ(θ)|∇ϕ+ At |2

Bossavit, Rodrigues (1994); Hömberg, Sokolowski (2003): optimal shape design;
Hömberg (2004): including mechanical effects −→ the L1-regularity of the r.h.s in
the internal energy balance −→ weak solutions via Boccardo-Gallouët estimates

Induction heating – frequency domain

Bachinger, Langer, Schöberl: Numerical analysis of nonlinear multiharmonic eddy current
problems. Numer. Math. 100 (2005)

Druet, Klein, Sprekels, Tröltzsch, Yousept: Optimal control of 3D state-constrained
induction heating problems with nonlocal radiation effects SICON 49 (2011)

Tröltzsch, Yousept: PDE–constrained optimization of time-dependent 3D electromagnetic
induction heating by alternating voltages. ESAIM: M2AN 46 (2012)
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Well-posedness of state system

Optimality conditions
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Solution space for vector potential

X =
{
v ∈ L2(D)

∣∣∣ curl v ∈ L2(D) , div v = 0 , n × v
∣∣∣
∂D

= 0
}

Assume ∂D ∈ C 1,1. Then X, equipped with the norm

‖v‖X = ‖ curl v‖L2(D) ,

is a closed subspace of H1(D)
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Assumptions

(i) σ(x , z), µ(x , z) : D × [0, 1]→ R are continuous
and Lipschitz continuous (w.r.t. z for almost all
x ∈ D) function s.t.

σ ≤ σ(x , z) ≤ σ in D × [0, 1]

µ ≤ µ(x , z) ≤ µ in D × [0, 1] ;

(ii) u ∈ H1(0,T );

(iii) J0 : D → R3 is an L2
curl(D)-function;

(iv) τ, zeq ∈ C 2(R) and

τ∗ ≤ τ(θ) ≤ τ∗, 0 ≤ zeq(θ) ≤ 1

‖τ‖C2(R), ‖zeq‖C2(R) ≤ M

| − zeq(θ) + θz ′eq(θ)|, |θz ′′eq(θ)| ≤ M for all θ ∈ R ;

(v) g ∈ L∞(0,T ; L∞(∂Σ));

(vi) A0 ∈ X ∩H3(D), θ0 ∈W 2,5/3(Σ)
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Weak formulation

Find a triple (A, θ, z) with the regularity properties

A ∈ H2(0,T ;L2(D)) ∩W 1,∞(0,T ;X), curlA ∈ L∞(0,T ;L6(D)) (1)

θ ∈W 1,5/3(0,T ; L5/3(Σ)) ∩ L5/3(0,T ;W 2,5/3(Σ)) ∩ L2(0,T ;H1(Σ)) ∩ L∞(Q) (2)

z ∈W 1,∞(0,T ;W 1,∞(Σ)), 0 ≤ z < 1 a.e. in Q (3)

solving the following system∫
Ω∪Σ

σ(x , z)At · v dx +

∫
D

1

µ(x , z)
curlA · curl v dx =

∫
Ω

J0(x)u(t) · v dx (4)

for all v ∈ X, a.e. in (0,T )

θt −∆θ = −F(θ, z)zt + σ(x , z)|At |2 a.e. in Q (5)

zt =
1

τ(θ)
(zeq(θ)− z)+ a.e. in Q (6)

∂θ

∂ν
+ θ = g a.e. on ∂Σ× (0,T ) (7)

A(0) = A0, a.e. in D, θ(0) = θ0, z(0) = 0 a.e. in Σ (8)
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Well-posedness result

Theorem 1: There exists a unique solution to (4)-(8) satisfying the regularities (1)-(3)
and the following estimate

‖A‖H2(0,T ;L2(D))∩W 1,∞(0,T ;X) + ‖ curlA‖L∞(0,T ;L6(D))

+ ‖θ‖W 1,5/3(0,T ;L5/3(Σ))∩L5/3(0,T ;W 2,5/3(Σ))∩L2(0,T ;H1(Σ))∩L∞(Q) + ‖z‖W 1,∞(0,T ;W 1,∞(Σ)) ≤ S

If we denote by (Ai , θi , zi ) (i = 1, 2) two triples of solutions corresponding to data
(A0,i , θ0,i , ui ), then, there exists a positive constant C = C(S) such that the following
stability estimate holds true

‖(A1 − A2)(t)‖2
L2(D) + ‖ curl(A1 − A2)‖2

L2(D×(0,T ))

+ ‖∂t(A1 − A2)(t)‖2
L2(D) + ‖ curl(∂t(A1 − A2))‖2

L2(D×(0,T ))

+ ‖(θ1 − θ2)(t)‖2
L2(Σ) + ‖θ1 − θ2‖2

L2(0,T ;H1(Σ))

+ ‖(z1 − z2)(t)‖2
H1(Σ) + ‖∂t(z1 − z2)‖2

L2(0,T ;H1(Σ))

≤ C
(
‖A0,1 − A0,2‖2

X + ‖(∂t(A1 − A2))(0)‖2
L2(D) + ‖θ0,1 − θ0,2‖2

L2(Σ)

+‖u1J0 − u2J0‖2
L2(0,T ) + ‖u′1J0 − u′2J0‖2

L2(0,T )

)
for all t ∈ [0,T ]
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Idea of the proof of Thm 1

Local existence via Shauder fixed point argument exploiting the Lipschitz continuity
of the map θ 7→ z from W 1,p(0,T0; Lp(Σ)) in itself

Global a-priori estimates on solutions
1. Exploit the regularity and boundedness of the solution z to the ODE getting

‖z‖W 1,∞(0,T0;L∞(Σ)) ≤ C , 0 ≤ z(x , t) < 1 a.e. in Q

2. Take first v = At , then differentiate it (formally) in time and take v = At in∫
Ω∪Σ

σ(x , z)At · v dx +

∫
D

1

µ(x , z)
curlA · curl v dx =

∫
Ω
J0(x)u(t) · v dx

and use Est. 1 and the assumptions on µ and σ, getting

‖A‖H1(0,T0;X)∩W 1,∞(0,T0;L2(D)) + ‖At‖L10/3(D×(0,T0)) ≤ C

3. Test
θt −∆θ = −F(θ, z)zt + σ(x , z)|At |2

by θ and using maximal regularity results for parabolic equations, we get

‖θ‖L2(0,T0;H1(Σ))∩L∞(0,T0;L2(Σ))∩L5/3(0,T0;W 2,5/3(Σ))∩W 1,5/3(0,T0;L5/3(Σ)) ≤ C

4. Differentiating (formally) the A-eq. and taking v = Att , arguing by comparison and
using the results of [Kawanago, ’93] in order to prove the L∞-estimate for θ, we get
the desired regularity of solutions and we can prolpongate it over the whole time
interval [0,T ]
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Stability estimate

Differentiate in time equation∫
Ω∪Σ

σ(x , z)At · v dx +

∫
D

1

µ(x , z)
curlA · curl v dx =

∫
Ω

J0(x)u(t) · v dx

and take the difference of the two differentiated relations in two solutions (Ai , θi , zi )
and test the difference by (A1 − A2)t

Use the Lipschitz continuity properties of the solution map to the ODE in z

Take the differences of the equations for θ and test by θ1 − θ2, exploit the regularity
of A and sum up the two relations
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Optimal control problem – Existence

cost functional

J (A, θ, z ; u) =
β1

2

T∫
0

∫
Σ

(θ(x , t)− θd(x , t))2dxdt +

β2

2

∫
Σ

(z(x ,T )− zd)2dx +
β3

2
‖u‖2

H1(0,T )

control problem (CP)
minJ (A, θ, z ; u)
such that A, θ, z satisfies (P) and u ∈ Uad ⊂ H1(0,T )

Theorem 2: (CP) has a solution u ∈ Uad
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Optimal control problem – Differentiability

Lipschitz-continuity the control-to-state mapping

S : u 7→ (A, θ, z)

is Lipschitz continuous from H1(0,T ) to Z by Theorem 1

Fréchet differentiability the control-to-state mapping

S : u 7→ (A, θ, z)

is Fréchet differentiable from H1(0,T ) to Y: Z ⊂ Y
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Optimal control problem – First-order necessary conditions of optimality

adjoint system
−σαt − curl

( 1

µ
curlα

)
− σ′(x , z)ztα = −2(σAtϑ)t

−ϑt − k∆ϑ+ fθ(θ, z)ϑ = fθζ + β1(θ − θd)

−ζt − fz(θ, z)ζ + σ′At ·α− σ′|At |2ϑ =
µ′

µ2
curlA · curlα− fzϑ

α× n = 0 in ∂D × (0,T )

k
∂ϑ

∂ν
+ κϑ = 0 in ∂Σ× (0,T )

ϑ(T ) = 0 , ζ(T ) = z(x ,T )− zd(x) in Σ

α(T ) = 0 in D

variational inequality
T∫

0

(
β3ū(t)−

∫
D

α(x , t) · J0(x , t)dx
)

(u − ū)dt

+

T∫
0

β3u
′(t)(u′(t)− ū′(t))dt ≥ 0 for all u ∈ Uad ⊂ H1(0,T )
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Numerical results – Challenges [Hömberg, Petzold]

Multiple time scales
Magnetic vector potential and heat conductance live on different time scales
(Averaging method)

Skin effect
Eddy currents are distributed in a small surface layer of the workpiece (Adaptive
mesh generation)

Nonlinear material data
Magnetic permeability µ depends on temperature and magnetic field H
(Linearization)

3D
Time consuming simulation in 3D (Model reduction to tackle optimal control
problem numerically)
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Numerical realization – multiple time scales

Time scale for Maxwell’s equation governed by frequency of source current:
f ≈ 10 kHz− 100 kHz, consequetly τ ∼ 10−5s

Time scale for heat equation governed by heat diffusion:

τ ∼ cpρL2

k
≈ 1 s

Alternating computation:

I Solve for A with fixed temperature on fast time-scale

I Compute Joule heat by averaging electric energy Q = 1
T

∫ T
0 σ

∣∣∣ ∂A∂t ∣∣∣2 dt

I Solve heat equation with fixed magnetic potential on slow time-scale (one time step)
I Update A since σ and µ change with temperature
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Thermal and electrical conductivity, heat capacity and density

Material data depend on temperature

Electrical conductivity σ(θ)
Thermal conductivity κ(θ)

Density ρ(θ)
Specific heat capacity cp(θ)

Nonlinear relation between magnetic induction B and magnetic field H:
Magnetization curve B = µ(θ,H)H

E. Rocca (Università di Milano) Induction hardening May 14, 2013 29 / 39



Example 1, HF: temperature and growth of austenite

(Video: austenite.mp4)

Figure : temperature and austenite growth at high frequency
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cyl_hf_phase.mp4
Media File (video/mp4)



Example 1, HF vs. MF: Adaptive grid

Source current in induction coil I0 = 5000 A at f = 10 kHz

Heating time 1.0 s

Nonlinear data for σ, cp, ρ, κ, µr

Adaptive grid with approx. 50000 DOF

Figure : Comparison of the adaptive grid between HF (left) and MF (right)
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Example 1, HF vs. MF: Temperature

Figure : Comparison of the temperature profile after 1s between HF (left) and MF (right)

E. Rocca (Università di Milano) Induction hardening May 14, 2013 32 / 39



Example 2, HF: temperature

(Video: temperature.mp4)

Figure : temperature evolution at high frequency
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temp_hf_100kHz.mp4
Media File (video/mp4)



Example 2, HF: growth of austenite

(Video: austenite.mp4)

Figure : austenite evolution at high frequency
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phase_hf_100kHz.mp4
Media File (video/mp4)



Example 2, MF: temperature

(Video: temperature.mp4)

Figure : temperature evolution at medium frequency
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temp_mf_8kHz-1.mp4
Media File (video/mp4)



Example 2, MF: growth of austenite

(Video: austenite.mp4)

Figure : austenite evolution at medium frequency
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phase_mf_8kHz-1.mp4
Media File (video/mp4)



Example 2: MF vs. HF

↑
Symmetrieebene

Figure : Temperature and austenite growth, f = 10 kHz, 200 kHz
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Open problems

The case of temperature-dependent electrical conductivity σ: in that case (cf. e.g.
[Hömberg (2004)]) we get only existence of weak solutions −→ parabolic equation
for θ with L1-r.h.s. because we cannot differentiate A-equation

The case of magnetic permeability µ depending both on the temperature θ and on
the magnetic field H

Include Mechanical effects

Numerical Optimal Control
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Thanks for your attention!

cf. http://www.mat.unimi.it/users/rocca/

Avertisement:

CIRM-ERC Workshop ”DIMO-2013” Diffuse Interface Models, Levico Terme (Italy)
September 10-13, 2013. Organized by Pierluigi Colli, E. R., Giulio Schimperna

International School on “Recent advances in partial differential equations and
applications”, Milano (Italy) June 17 – 22, 2013. Coordinators: E. R. and Enrico
Valdinoci

Spring School on ”Rate-independent evolutions and hysteresis modelling”, Milano
(Italy) May 27 – 31, 2013. Coordinators: Stefano Bosia, Michela Eleuteri, E. R. and
Enrico Valdinoci.
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