A Gamma convergence approach to a phase transition problem, with application to a tumor growth model

> Riccardo Scala (Pavia) joint work with Elisabetta Rocca (Pavia)

> > SISSA 2016 May

 $1\;$ The diffuse tumor growth model

- $1\;$ The diffuse tumor growth model
- 2 General result for convergence of gradient flows

- $1\;$ The diffuse tumor growth model
- 2 General result for convergence of gradient flows
- 3 Application to the tumor growth model

- $1\;$ The diffuse tumor growth model
- 2 General result for convergence of gradient flows
- 3 Application to the tumor growth model
- 4 Comments and open problems

THE DIFFUSE TUMOR GROWTH MODEL

Background. The analysis of models for cancer evolution is becoming more and more studied in the recent years (see the general monograph Cristini-Lowengrub 2010). The considered models are divided into two classes: *continuum models* and *discrete models*. The former are usually diffuse-interface models based on *continuum mixture theory*.

Background. The analysis of models for cancer evolution is becoming more and more studied in the recent years (see the general monograph Cristini-Lowengrub 2010). The considered models are divided into two classes: *continuum models* and *discrete models*. The former are usually diffuse-interface models based on *continuum mixture theory*.

A continuum model consists of a Cahn-Hilliard equation with a transport and reaction term. The reaction term governs various variables of the system (cell concentrations) and depends on the concentration of nutrient which obeys an reaction-diffusion equation coupled with the Cahn-Hilliard equation.

Background. The analysis of models for cancer evolution is becoming more and more studied in the recent years (see the general monograph Cristini-Lowengrub 2010). The considered models are divided into two classes: *continuum models* and *discrete models*. The former are usually diffuse-interface models based on *continuum mixture theory*.

A continuum model consists of a Cahn-Hilliard equation with a transport and reaction term. The reaction term governs various variables of the system (cell concentrations) and depends on the concentration of nutrient which obeys an reaction-diffusion equation coupled with the Cahn-Hilliard equation.

We will consider a very simplified model where the cell velocities are neglected and the transport-reaction term has a very specific form.

The variables of the system are:

• The tumorous/healthy phase variable *u*:

 $u(x) \simeq 1 \Rightarrow \text{ tumor cell at } x$ $u(x) \simeq -1 \Rightarrow \text{ sane cell at } x$

The variables of the system are:

• The tumorous/healthy phase variable *u*:

 $u(x) \simeq 1 \Rightarrow \text{ tumor cell at } x$ $u(x) \simeq -1 \Rightarrow \text{ sane cell at } x$

• The nutrient variable σ : represents the concentration of nutrient (oxygen or glucose).

The variables of the system are:

• The tumorous/healthy phase variable u:

 $u(x) \simeq 1 \Rightarrow \text{ tumor cell at } x$ $u(x) \simeq -1 \Rightarrow \text{ sane cell at } x$

- The nutrient variable σ : represents the concentration of nutrient (oxygen or glucose).
- The chemical potential v which is linked with the phase variable by the relation

$$v := \frac{1}{\epsilon}f(u) - \epsilon \Delta u,$$

with ϵ a model parameter representing the regularization (the width of the narrow transition layer). The function f is the derivative of a double-well potential W with zeros at $\{\pm 1\}$.

The variables of the system are:

• The tumorous/healthy phase variable u:

 $u(x) \simeq 1 \Rightarrow \text{ tumor cell at } x$ $u(x) \simeq -1 \Rightarrow \text{ sane cell at } x$

- The nutrient variable σ : represents the concentration of nutrient (oxygen or glucose).
- The chemical potential v which is linked with the phase variable by the relation

$$v := \frac{1}{\epsilon}f(u) - \epsilon \Delta u,$$

with ϵ a model parameter representing the regularization (the width of the narrow transition layer). The function f is the derivative of a double-well potential W with zeros at $\{\pm 1\}$.

For $\epsilon \sim 0$ we will obtain a sharp interface model!

$$\begin{cases} u_t - \Delta v = R(u, v, \sigma) \\ \sigma_t - \Delta \sigma = -R(u, v, \sigma), \end{cases}$$
(1)

R denoting the reaction term containing the proliferation of the tumorous phase.

$$\begin{cases} u_t - \Delta v = R(u, v, \sigma) \\ \sigma_t - \Delta \sigma = -R(u, v, \sigma), \end{cases}$$
(1)

 ${\it R}$ denoting the reaction term containing the proliferation of the tumorous phase. We consider a model where

$$R(u, v, \sigma) = 2\sigma + u - v.$$

$$\begin{cases} u_t - \Delta v = R(u, v, \sigma) \\ \sigma_t - \Delta \sigma = -R(u, v, \sigma), \end{cases}$$
(1)

 ${\it R}$ denoting the reaction term containing the proliferation of the tumorous phase. We consider a model where

$$R(u, v, \sigma) = 2\sigma + u - v.$$

Therefore the system we have is

$$\begin{cases} u_t - \Delta v = 2\sigma + u - v \\ \sigma_t - \Delta \sigma = -2\sigma - u + v \\ v = \frac{1}{\epsilon} f(u) - \epsilon \Delta u. \end{cases}$$
(2)

$$\begin{cases} u_t - \Delta v = R(u, v, \sigma) \\ \sigma_t - \Delta \sigma = -R(u, v, \sigma), \end{cases}$$
(1)

 ${\it R}$ denoting the reaction term containing the proliferation of the tumorous phase. We consider a model where

$$R(u, v, \sigma) = 2\sigma + u - v.$$

Therefore the system we have is

$$\begin{cases} u_t - \Delta v = 2\sigma + u - v \\ \sigma_t - \Delta \sigma = -2\sigma - u + v \\ v = \frac{1}{\epsilon} f(u) - \epsilon \Delta u. \end{cases}$$
(2)

Our aim is to study the behavior of the solutions to (2) as $\epsilon \to 0$. This would give rise to a sharp interface model!

Indeed, the system has the following Lyapunov function

$$\frac{1}{\epsilon} \int_{\Omega} W(u) dx + \epsilon \int_{\Omega} |\nabla u|^2 dx + \frac{3}{2} \|\sigma\|_{L^2}^2 + \frac{1}{2} \|\nabla \sigma\|_{L^2}^2 + \int_{\Omega} u\sigma dx.$$
(3)

This means that $\frac{1}{\epsilon} \int_{\Omega} W(u) dx$ remains uniformly bounded in time and ϵ .

Indeed, the system has the following Lyapunov function

$$\frac{1}{\epsilon} \int_{\Omega} W(u) dx + \epsilon \int_{\Omega} |\nabla u|^2 dx + \frac{3}{2} \|\sigma\|_{L^2}^2 + \frac{1}{2} \|\nabla \sigma\|_{L^2}^2 + \int_{\Omega} u\sigma dx.$$
(3)

This means that $\frac{1}{\epsilon} \int_{\Omega} W(u) dx$ remains uniformly bounded in time and ϵ . When ϵ is close to zero then the finiteness of the energy $\frac{1}{\epsilon} \int_{\Omega} W(u) dx$ would force u to assume only values close to +1 and -1. Indeed, the system has the following Lyapunov function

$$\frac{1}{\epsilon} \int_{\Omega} W(u) dx + \epsilon \int_{\Omega} |\nabla u|^2 dx + \frac{3}{2} \|\sigma\|_{L^2}^2 + \frac{1}{2} \|\nabla \sigma\|_{L^2}^2 + \int_{\Omega} u\sigma dx.$$
(3)

This means that $\frac{1}{\epsilon} \int_{\Omega} W(u) dx$ remains uniformly bounded in time and ϵ . When ϵ is close to zero then the finiteness of the energy $\frac{1}{\epsilon} \int_{\Omega} W(u) dx$ would force u to assume only values close to +1 and -1.

We expect that at the limit the functions u and v satisfy a free-boundary problem, where the boundary is an interface separating the phases $u = \pm 1$.

GAMMA CONVERGENCE OF GRADIENT FLOWS

Gamma convergence of gradient flows [Sandier-Serfaty] is here introduced in a simplified setting.

Gamma convergence of gradient flows [Sandier-Serfaty] is here introduced in a simplified setting.

Let $\epsilon \in (0, 1)$ and let $X_{\epsilon} \subset Y$ Hilbert spaces. We assume that the functionals E_{ϵ} on X_{ϵ} are of class C^1 and we deal with the solutions $u^{\epsilon} : [0, T] \to X_{\epsilon}$ of the gradient flows

$$u_t^{\epsilon} = -\nabla_{X_{\epsilon}} E_{\epsilon}(u^{\epsilon}), \tag{4}$$

with energy balance

$$E_{\epsilon}(u^{\epsilon}(0)) - E_{\epsilon}(u^{\epsilon}(t)) = \int_{0}^{t} \|u_{t}^{\epsilon}\|_{X_{\epsilon}}^{2} ds.$$
(5)

Gamma convergence of gradient flows [Sandier-Serfaty] is here introduced in a simplified setting.

Let $\epsilon \in (0, 1)$ and let $X_{\epsilon} \subset Y$ Hilbert spaces. We assume that the functionals E_{ϵ} on X_{ϵ} are of class C^1 and we deal with the solutions $u^{\epsilon} : [0, T] \to X_{\epsilon}$ of the gradient flows

$$u_t^{\epsilon} = -\nabla_{X_{\epsilon}} E_{\epsilon}(u^{\epsilon}), \tag{4}$$

with energy balance

$$E_{\epsilon}(u^{\epsilon}(0)) - E_{\epsilon}(u^{\epsilon}(t)) = \int_{0}^{t} \|u_{t}^{\epsilon}\|_{X_{\epsilon}}^{2} ds.$$
(5)

We want to study the limit as $\epsilon \to 0$ of u^{ϵ} .

Let us assume that $u^{\epsilon} \xrightarrow{S} u$ in some sense (to be specified from case to case). Suppose the following conditions are satisfied:

Let us assume that $u^{\epsilon} \xrightarrow{S} u$ in some sense (to be specified from case to case). Suppose the following conditions are satisfied:

(i) (Gamma liminf) There exists a C^1 functional F on a Hilbert space $X \subset Y$ such that for all sequences $v^{\epsilon} \xrightarrow{S} v$ it holds

 $\liminf_{\epsilon\to 0} E_{\epsilon}(v^{\epsilon}) \geq F(v).$

Let us assume that $u^{\epsilon} \xrightarrow{S} u$ in some sense (to be specified from case to case). Suppose the following conditions are satisfied:

(i) (Gamma liminf) There exists a C^1 functional F on a Hilbert space $X \subset Y$ such that for all sequences $v^{\epsilon} \xrightarrow{S} v$ it holds

$$\liminf_{\epsilon\to 0} E_{\epsilon}(v^{\epsilon}) \geq F(v).$$

(ii) (Lower bound on the velocities) If $u^{\epsilon}(t) \xrightarrow{S} u(t)$ for all $t \in [0, T]$ then

$$\liminf_{\epsilon \to 0} \int_0^s \|u^\epsilon_t(t)\|^2_{X_\epsilon} dt \geq \int_0^s \|u_t(t)\|^2_X dt.$$

Let us assume that $u^{\epsilon} \xrightarrow{S} u$ in some sense (to be specified from case to case). Suppose the following conditions are satisfied:

(i) (Gamma liminf) There exists a C^1 functional F on a Hilbert space $X \subset Y$ such that for all sequences $v^{\epsilon} \xrightarrow{S} v$ it holds

$$\liminf_{\epsilon\to 0} E_{\epsilon}(v^{\epsilon}) \geq F(v).$$

(ii) (Lower bound on the velocities) If $u^{\epsilon}(t) \xrightarrow{S} u(t)$ for all $t \in [0, T]$ then

$$\liminf_{\epsilon \to 0} \int_0^s \|u^\epsilon_t(t)\|^2_{X_\epsilon} dt \geq \int_0^s \|u_t(t)\|^2_X dt.$$

(iii) (Lower bound on the slopes) If $v^{\epsilon} \xrightarrow{S} v$ then

$$\liminf_{\epsilon\to 0} \|\nabla_{X_{\epsilon}} E_{\epsilon}(v^{\epsilon})\|_{X_{\epsilon}} \geq \|\nabla_X F(v)\|_X.$$

Let us assume that $u^{\epsilon} \xrightarrow{S} u$ in some sense (to be specified from case to case). Suppose the following conditions are satisfied:

(i) (Gamma liminf) There exists a C^1 functional F on a Hilbert space $X \subset Y$ such that for all sequences $v^{\epsilon} \xrightarrow{S} v$ it holds

$$\liminf_{\epsilon\to 0} E_{\epsilon}(v^{\epsilon}) \geq F(v).$$

(ii) (Lower bound on the velocities) If $u^{\epsilon}(t) \xrightarrow{S} u(t)$ for all $t \in [0, T]$ then

$$\liminf_{\epsilon \to 0} \int_0^s \|u^\epsilon_t(t)\|^2_{X_\epsilon} dt \geq \int_0^s \|u_t(t)\|^2_X dt.$$

(iii) (Lower bound on the slopes) If $v^{\epsilon} \xrightarrow{S} v$ then

$$\liminf_{\epsilon\to 0} \|\nabla_{X_{\epsilon}} E_{\epsilon}(v^{\epsilon})\|_{X_{\epsilon}} \geq \|\nabla_X F(v)\|_X.$$

(iv) The initial data are well prepared, in the sense that $E_{\epsilon}(u^{\epsilon}(0)) \rightarrow F(u(0))$.

If conditions (i)-(iv) are satisfied, then

$$u_t = -\nabla_X F(u). \tag{6}$$

If conditions (i)-(iv) are satisfied, then

$$u_t = -\nabla_X F(u). \tag{6}$$

From the energy balance one has

$$E_{\epsilon}(u^{\epsilon}(0))-E_{\epsilon}(u^{\epsilon}(t))=\int_{0}^{t}\|u^{\epsilon}_{t}(s)\|^{2}_{X_{\epsilon}}ds=\frac{1}{2}\int_{0}^{t}\|u^{\epsilon}_{t}(s)\|^{2}_{X_{\epsilon}}+\|\nabla_{X_{\epsilon}}E_{\epsilon}(u^{\epsilon}(s))\|^{2}_{X_{\epsilon}}ds.$$

If conditions (i)-(iv) are satisfied, then

$$u_t = -\nabla_X F(u). \tag{6}$$

From the energy balance one has

$$E_{\epsilon}(u^{\epsilon}(0)) - E_{\epsilon}(u^{\epsilon}(t)) = \int_0^t \|u^{\epsilon}_t(s)\|^2_{X_{\epsilon}} ds = \frac{1}{2} \int_0^t \|u^{\epsilon}_t(s)\|^2_{X_{\epsilon}} + \|\nabla_{X_{\epsilon}} E_{\epsilon}(u^{\epsilon}(s))\|^2_{X_{\epsilon}} ds.$$

Then the Fatou Lemma implies

$$\liminf_{\epsilon \to 0} E_\epsilon(u^\epsilon(0)) - E_\epsilon(u^\epsilon(t)) \geq \frac{1}{2} \int_0^t \|u_t(s)\|_X^2 ds + \|\nabla_X F(u(s))\|_X^2$$

If conditions (i)-(iv) are satisfied, then

$$u_t = -\nabla_X F(u). \tag{6}$$

From the energy balance one has

$$E_{\epsilon}(u^{\epsilon}(0)) - E_{\epsilon}(u^{\epsilon}(t)) = \int_0^t \|u^{\epsilon}_t(s)\|^2_{X_{\epsilon}} ds = \frac{1}{2} \int_0^t \|u^{\epsilon}_t(s)\|^2_{X_{\epsilon}} + \|\nabla_{X_{\epsilon}} E_{\epsilon}(u^{\epsilon}(s))\|^2_{X_{\epsilon}} ds.$$

Then the Fatou Lemma implies

$$\liminf_{\epsilon \to 0} E_{\epsilon}(u^{\epsilon}(0)) - E_{\epsilon}(u^{\epsilon}(t)) \geq \frac{1}{2} \int_0^t \|u_t(s)\|_X^2 ds + \|\nabla_X F(u(s))\|_X^2,$$

$$\geq -\int_0^t \langle u_t(s), \nabla_X F(u(s)) \rangle_X ds = -\int_0^t \frac{d}{dt} F(u(s)) ds = F(u(0)) - F(u(t)).$$

But, thanks to (i) and (iv) we have

$$\limsup_{\epsilon \to 0} E_{\epsilon}(u_0^{\epsilon}) - E_{\epsilon}(u^{\epsilon}(t)) \leq F(u_0) - F(u(t)).$$

But, thanks to (i) and (iv) we have

$$\limsup_{\epsilon \to 0} E_{\epsilon}(u_0^{\epsilon}) - E_{\epsilon}(u^{\epsilon}(t)) \leq F(u_0) - F(u(t)).$$

This implies that all the inequalities are equalities! In particular

$$\frac{1}{2}\int_0^t \|u_t(s)\|_X^2 ds + \|\nabla_X F(u(s))\|_X^2 = -\int_0^t \langle u_t(s), \nabla_X F(u(s))\rangle_X ds,$$

which entails

$$u_t(t) = -\nabla_X F(u(t)),$$

for a.e. $t \in [0, T]$.

THE SHARP INTERFACE LIMIT

We now want to write the system

$$\begin{cases} u_t - \Delta v = 2\sigma + u - v \\ \sigma_t - \Delta \sigma = -2\sigma - u + v \\ v = \frac{1}{\epsilon} f(u) - \epsilon \Delta u \end{cases}$$
(7)

as a gradient flow. With the change of variable $u=\varphi-\sigma$ we arrive at

$$\begin{cases} \varphi_t = \Delta \left(\frac{1}{\epsilon} f(\varphi - \sigma) - \epsilon \Delta(\varphi - \sigma) \right) + \Delta \sigma \\ \sigma_t = \Delta \sigma + \frac{1}{\epsilon} f(\varphi - \sigma) - \epsilon \Delta(\varphi - \sigma) - \sigma - \varphi. \end{cases}$$
(8)

We now want to write the system

$$\begin{cases} u_t - \Delta v = 2\sigma + u - v \\ \sigma_t - \Delta \sigma = -2\sigma - u + v \\ v = \frac{1}{\epsilon} f(u) - \epsilon \Delta u \end{cases}$$
(7)

as a gradient flow. With the change of variable $u=\varphi-\sigma$ we arrive at

$$\begin{cases} \varphi_t = \Delta \left(\frac{1}{\epsilon} f(\varphi - \sigma) - \epsilon \Delta(\varphi - \sigma) \right) + \Delta \sigma \\ \sigma_t = \Delta \sigma + \frac{1}{\epsilon} f(\varphi - \sigma) - \epsilon \Delta(\varphi - \sigma) - \sigma - \varphi. \end{cases}$$
(8)

Let us introduce the space

$$H_n^{-1}(\Omega):=\{u\in (H^1(\Omega))': \exists v\in H^1(\Omega) \text{ such that } \langle u,\varphi\rangle=\int_\Omega \nabla v\cdot\nabla\varphi dx \; \forall \varphi\in H^1(\Omega)\},$$

with scalar product

$$\langle u, v \rangle_{H_n^{-1}} := \langle \nabla \Delta^{-1} u, \nabla \Delta^{-1} v \rangle.$$

The equations (8) are recognized as a gradient flow of the energy

$$\mathsf{E}^{\epsilon}(\varphi,\sigma):=\frac{1}{\epsilon}\int_{\Omega}\mathsf{W}(\varphi-\sigma)\mathsf{d} x+\epsilon\int_{\Omega}|\nabla(\varphi-\sigma)|^{2}\mathsf{d} x+\frac{1}{2}\|\sigma\|_{L^{2}}^{2}+\frac{1}{2}\|\nabla\sigma\|_{L^{2}}^{2}+\int_{\Omega}\varphi\sigma\mathsf{d} x.$$

with respect to the structure of $H_n^{-1}(\Omega) \times L^2(\Omega)$.

The equations (8) are recognized as a gradient flow of the energy

$$\mathsf{E}^{\epsilon}(\varphi,\sigma):=\frac{1}{\epsilon}\int_{\Omega}\mathsf{W}(\varphi-\sigma)\mathsf{d} x+\epsilon\int_{\Omega}|\nabla(\varphi-\sigma)|^{2}\mathsf{d} x+\frac{1}{2}\|\sigma\|_{L^{2}}^{2}+\frac{1}{2}\|\nabla\sigma\|_{L^{2}}^{2}+\int_{\Omega}\varphi\sigma\mathsf{d} x.$$

with respect to the structure of $H_n^{-1}(\Omega) \times L^2(\Omega)$.

Therefore we aim to apply the technique introduced so far (with few modifications).

The equations (8) are recognized as a gradient flow of the energy

$$\mathsf{E}^{\epsilon}(\varphi,\sigma) := \frac{1}{\epsilon} \int_{\Omega} W(\varphi-\sigma) d\mathsf{x} + \epsilon \int_{\Omega} |\nabla(\varphi-\sigma)|^2 d\mathsf{x} + \frac{1}{2} \|\sigma\|_{L^2}^2 + \frac{1}{2} \|\nabla\sigma\|_{L^2}^2 + \int_{\Omega} \varphi \sigma d\mathsf{x}.$$

with respect to the structure of $H_n^{-1}(\Omega) \times L^2(\Omega)$. Therefore we aim to apply the technique introduced so far (with few modifications).

Theorem

The functionals E^{ϵ} Γ -converge in $L^1 \times L^1$ to

$$2c_{W}\mathcal{H}^{2}(\partial\{\varphi-\sigma=1\}) + \frac{1}{2}\|\sigma\|_{L^{2}}^{2} + \frac{1}{2}\|\nabla\sigma\|_{L^{2}}^{2} + \int_{\Omega}\varphi\sigma dx, \qquad (9)$$

when $\varphi - \sigma \in \{\pm 1\}$ and where $\partial \{\varphi - \sigma = 1\}$ denotes the interface between the phase 1 and -1.

This implies condition (i).

It is easy to obtain the following a-priori estimates

$$\|\varphi^{\epsilon}\|_{H^1(0,T;H_n^{-1}(\Omega))} \le M,\tag{10}$$

$$\|\sigma^{\epsilon}\|_{H^1(0,T;L^2(\Omega))} \le M,\tag{11}$$

$$\|v^{\epsilon}\|_{L^2(0,T;H^1(\Omega))} \le M,\tag{12}$$

$$\|\sigma^{\epsilon}\|_{L^{2}(0,T;H^{2}(\Omega))} \leq M,$$
(13)

$$\|u^{\epsilon}\|_{L^{\infty}(0,T;L^{4}(\Omega))} \leq M$$
(14)

from which follows condition (iii).

It is easy to obtain the following a-priori estimates

$$\|\varphi^{\epsilon}\|_{H^1(0,T;H_n^{-1}(\Omega))} \le M,\tag{10}$$

$$\|\sigma^{\epsilon}\|_{H^1(0,T;L^2(\Omega))} \le M,\tag{11}$$

$$\|v^{\epsilon}\|_{L^{2}(0,T;H^{1}(\Omega))} \leq M,$$
 (12)

$$\|\sigma^{\epsilon}\|_{L^2(0,T;H^2(\Omega))} \le M,\tag{13}$$

$$\|u^{\epsilon}\|_{L^{\infty}(0,T;L^{4}(\Omega))} \leq M \tag{14}$$

from which follows condition (iii).

Lemma

For a subsequence, we have

$$u^{\epsilon}
ightarrow u$$
 weakly in $L^4(\Omega \times [0, T])$. (15)

Moreover, for all $t \in [0, T]$, $u(t) \in BV(\Omega; \{-1, 1\})$ and

- $u^{\epsilon}(t)
 ightarrow u(t)$ weakly in $L^{4}(\Omega)$, (16)
- $u^{\epsilon}(t)
 ightarrow u(t)$ strongly in $L^{1}(\Omega)$, (17)

$$u^{\epsilon}(t) \rightharpoonup u(t)$$
 weakly* in $BV(\Omega)$. (18)

If we assume that the limit interface $\partial \{u = 1\}$ is smooth (at least C^3), then we can write the time derivative of the limiting energy E.

Lemma

Let $\cup_{t\in[0,T^*]}\Gamma(t) \times \{t\} \subset \Omega \times [0,T^*]$ be a C^3 hypersurface with $\Gamma(t)$ closed for all $t \in [0,T^*]$. Let $u(t) := \chi_{\Omega^+(t)} - \chi_{\Omega^+(t)}$ for all $t \in [0,T^*]$, and assume $u \in H^1(0,T;H_n^{-1}(\Omega))$ and $\sigma \in L^{\infty}(0,T^*;H^1(\Omega)) \cap H^1(0,T^*;L^2(\Omega))$. Then for all $t \in [0,T^*]$

$$egin{aligned} &rac{d}{dt}E^0(u(t)+\sigma(t),\sigma(t)) = -\,2c_W\langle V(t),k(t)
angle_{L^2(\Gamma)}+2\langle V(t),\sigma(t)
angle_{L^2(\Gamma)}\ &+\langle\sigma_t(t),-\Delta\sigma(t)+u(t)+3\sigma(t)
angle, \end{aligned}$$

where V(t) is the normal velocity of the surface $\Gamma(t)$, and k(t) is its mean curvature.

We are now ready to prove the lower bound on the velocities, (ii):

We are now ready to prove the lower bound on the velocities, (ii): For all $t \in [0, T]$ there holds

$$\liminf_{\epsilon \to 0} \int_0^t \|\varphi_t^{\epsilon}(s)\|_{H_n^{-1}(\Omega)} ds \ge \int_0^t \|2\partial_t \Gamma(s) + \sigma_t(s)\|_{H_n^{-1}(\Omega)} ds.$$
(19)

In some sense this follows from the fact that $\varphi^\epsilon_t = u^\epsilon_t - \sigma^\epsilon_t.$

We are now ready to prove the lower bound on the velocities, (ii): For all $t \in [0, T]$ there holds

$$\liminf_{\epsilon \to 0} \int_0^t \|\varphi_t^{\epsilon}(s)\|_{H_n^{-1}(\Omega)} ds \ge \int_0^t \|2\partial_t \Gamma(s) + \sigma_t(s)\|_{H_n^{-1}(\Omega)} ds.$$
(19)

In some sense this follows from the fact that $\varphi_t^\epsilon = u_t^\epsilon - \sigma_t^\epsilon$. Finally we need the following lemma:

Lemma

The functions $v^{\epsilon} \rightarrow v$ weakly in $L^2(0, T; H^1(\Omega))$ and the limit function v satisfies for a.e. $t \in [0, T]$

$$\nu(t) = -c_W k(t) \quad on \ \Gamma(t), \tag{20}$$

where $k(t) \in H^{1/2}(\Gamma(t))$ is the mean curvature of the smooth surface $\Gamma(t)$ at time t.

The sharp interface limit

following the proof of the convergence of gradient flows we find

$$\begin{aligned} E^{\epsilon}(\varphi_{0}^{\epsilon},\sigma_{0}^{\epsilon}) - E^{\epsilon}(\varphi(t)^{\epsilon},\sigma(t)^{\epsilon}) \\ &= \int_{0}^{t} \left(\frac{1}{2} \|\varphi_{t}^{\epsilon}\|_{H_{n}^{-1}}^{2} + \frac{1}{2} \|\sigma_{t}^{\epsilon}\|_{L^{2}}^{2}\right) + \int_{0}^{t} \left(\frac{1}{2} \|\Delta v^{\epsilon} + \Delta \sigma^{\epsilon}\|_{H_{n}^{-1}}^{2} + \frac{1}{2} \|\Delta \sigma^{\epsilon} + v^{\epsilon} - \varphi^{\epsilon} - \sigma^{\epsilon}\|_{L^{2}}^{2}\right) \\ &\geq \int_{0}^{t} \left(\frac{1}{2} \|2\frac{d}{dt}\Gamma + \sigma_{t}\|_{H_{n}^{-1}}^{2} + \frac{1}{2} \|\Delta v + \Delta \sigma\|_{H_{n}^{-1}}^{2} + \frac{1}{2} \int_{0}^{t} \left(\|\sigma_{t}\|_{L^{2}}^{2} + \|\Delta \sigma + v - \varphi - \sigma\|_{L^{2}}^{2}\right) \\ &\geq \int_{0}^{t} \left\langle \left(2\frac{d}{dt}\Gamma + \sigma_{t}\right), \Delta v + \Delta \sigma\right\rangle_{H_{n}^{-1}} + \left\langle \sigma_{t}, \Delta \sigma + v - \varphi - \sigma\right\rangle ds \\ &= \int_{0}^{t} -2\left\langle \frac{d}{dt}\Gamma, v + \sigma\right\rangle_{H_{n}^{-1} \times H^{1}} + \left\langle \sigma_{t}, \Delta \sigma - u - 3\sigma\right\rangle ds \\ &= \int_{0}^{t} -2\langle V, v + \sigma\rangle_{L^{2}(\Gamma)} + \left\langle \sigma_{t}, \Delta \sigma - u - 3\sigma\right\rangle ds \\ &= \int_{0}^{t} 2c_{W}\langle V, k\rangle_{L^{2}(\Gamma)} - 2\langle V, \sigma\rangle_{L^{2}(\Gamma)} + \left\langle \sigma_{t}, \Delta \sigma - u - 3\sigma\right\rangle ds \\ &= E(\varphi_{0}, \sigma_{0}) - E(\varphi(t), \sigma(t)). \end{aligned}$$

$$(21)$$

We then obtain the following statements:

Theorem

If the initial data are well prepared, i.e.,

$$\mathsf{E}^{\epsilon}(\varphi^{\epsilon}(0), \sigma^{\epsilon}(0)) \to \mathsf{E}(\varphi(0), \sigma(0)),$$

then it holds

$$-\Delta v = -u - 2\sigma - v \quad \text{on } \Omega^+ \cup \Omega^- \tag{22}$$

$$\sigma_t = -\Delta\sigma + v - u - 2\sigma \quad \text{on } \Omega, \tag{23}$$

and

$$v = -c_W k$$
 and $\left[\frac{\partial v}{\partial n}\right] = 2V$ a.e. on Γ , (24)

almost everywhere on [0, T].

The last condition follows from the fact that

$$2\frac{d}{dt}\Gamma(t) = -\Delta v(t) + \varphi(t) + \sigma(t) + v(t)$$
(25)

COMMENTS AND OPEN PROBLEMS

We tacitly made some hypotheses:

- One is on the regularity of the limit interface. As a consequence there will be a death time T^* until the evolution is regular. After the death time the evolution is undetermined!
- Behind Lemma 5 there is a technical hypothesis on the convergence of the measures

$$\frac{\epsilon}{2} |\nabla u^{\epsilon}|^2 + \frac{W(u^{\epsilon})}{\epsilon} \rightharpoonup 2c_W d\mathcal{H}^{d-1} \llcorner_{\Gamma}.$$
(26)

This is unknown in general, but is proved with higher regularity and then conjectured by Tonegawa to hold in the general case.

• To obtain higher regularity it is possible regularize the gradient flow by introduce a suitable power of the Laplacian replacing Δ . Unfortunately in such a case it is nontrivial (and out of reach) to prove the interface property $\left[\frac{\partial v}{\partial n}\right] = 2V$.

To be precise, we introduce the space

$$H_n^{-s}(\Omega) := \{ u \in (H^s(\Omega))' : \exists v \in H^s(\Omega) \text{ such that } \langle u, \varphi \rangle = \int_\Omega A^{s/2} v A^{s/2} \varphi dx \forall \varphi \in H^s(\Omega) \},$$

with scalar product

$$\langle u,v\rangle_{H_n^{-s}}:=\langle A^{s/2}u,A^{s/2}v\rangle,$$

where A^s is the s-power of the Laplace operator $-\Delta$ on Ω

To be precise, we introduce the space

$$H_n^{-s}(\Omega) := \{ u \in (H^s(\Omega))' : \exists v \in H^s(\Omega) \text{ such that } \langle u, \varphi \rangle = \int_\Omega A^{s/2} v A^{s/2} \varphi dx \forall \varphi \in H^s(\Omega) \},$$

with scalar product

$$\langle u,v\rangle_{H_n^{-s}}:=\langle A^{s/2}u,A^{s/2}v\rangle,$$

where A^s is the s-power of the Laplace operator $-\Delta$ on $\Omega~$ We take the gradient flow of

$$E^{\epsilon}(\varphi,\sigma) := \frac{1}{\epsilon} \int_{\Omega} W(\varphi-\sigma) dx + \epsilon \int_{\Omega} |\nabla(\varphi-\sigma)| dx + \frac{1}{2} \|\sigma\|_{L^{2}}^{2} + \frac{1}{2} \|A^{s/2}\sigma\|_{L^{2}}^{2} + \int_{\Omega} \varphi \sigma dx.$$

with respect to the structure $H_n^{-s}(\Omega) \times L^2(\Omega)$ giving rise to

$$\begin{cases} \varphi_t = -A^s \left(\frac{1}{\epsilon} f(\varphi - \sigma) - \epsilon \Delta(\varphi - \sigma) \right) - A^s \sigma \\ \sigma_t = -A^s \sigma + \frac{1}{\epsilon} f(\varphi - \sigma) - \epsilon \Delta(\varphi - \sigma) - \sigma - \varphi. \end{cases}$$
(27)

To be precise, we introduce the space

$$H_n^{-s}(\Omega) := \{ u \in (H^s(\Omega))' : \exists v \in H^s(\Omega) \text{ such that } \langle u, \varphi \rangle = \int_\Omega A^{s/2} v A^{s/2} \varphi dx \forall \varphi \in H^s(\Omega) \},$$

with scalar product

$$\langle u,v\rangle_{H_n^{-s}}:=\langle A^{s/2}u,A^{s/2}v\rangle,$$

where A^s is the s-power of the Laplace operator $-\Delta$ on $\Omega~$ We take the gradient flow of

$$E^{\epsilon}(\varphi,\sigma) := \frac{1}{\epsilon} \int_{\Omega} W(\varphi-\sigma) dx + \epsilon \int_{\Omega} |\nabla(\varphi-\sigma)| dx + \frac{1}{2} \|\sigma\|_{L^{2}}^{2} + \frac{1}{2} \|A^{s/2}\sigma\|_{L^{2}}^{2} + \int_{\Omega} \varphi \sigma dx.$$

with respect to the structure $H_n^{-s}(\Omega) \times L^2(\Omega)$ giving rise to

$$\begin{cases} \varphi_t = -A^s \left(\frac{1}{\epsilon} f(\varphi - \sigma) - \epsilon \Delta(\varphi - \sigma) \right) - A^s \sigma \\ \sigma_t = -A^s \sigma + \frac{1}{\epsilon} f(\varphi - \sigma) - \epsilon \Delta(\varphi - \sigma) - \sigma - \varphi. \end{cases}$$
(27)

This leads to more regularity of the chemical potential! In particular the condition above is true!

Theorem

If the initial data are well prepared, i.e.,

$$E^{\epsilon}(\varphi^{\epsilon}(0), \sigma^{\epsilon}(0)) \rightarrow E(\varphi(0), \sigma(0)),$$

then

$$A^{s}v = u + 2\sigma + v \quad on \ \Omega^{+} \cup \Omega^{-}$$
⁽²⁸⁾

$$\sigma_t = -A^s \sigma + v - u - 2\sigma \quad on \ \Omega, \tag{29}$$

and

$$v = -c_W k$$
 and (30)

almost everywhere on [0, T].

Theorem

If the initial data are well prepared, i.e.,

$$E^{\epsilon}(\varphi^{\epsilon}(0), \sigma^{\epsilon}(0)) \rightarrow E(\varphi(0), \sigma(0)),$$

then

$$A^{s}v = u + 2\sigma + v \quad on \ \Omega^{+} \cup \Omega^{-}$$
⁽²⁸⁾

$$\sigma_t = -A^s \sigma + v - u - 2\sigma \quad on \ \Omega, \tag{29}$$

and

$$v = -c_W k$$
 and (30)

almost everywhere on [0, T].

However, A^s being nonlocal, it seems out of reach the condition $\left[\frac{\partial v}{\partial n}\right] = 2V!$

$$2\frac{d}{dt}\Gamma(t) = A^{s}v(t) + \varphi(t) + \sigma(t)$$
(31)

- N.Q. Le, A Gamma-Convergence approach to the Cahn-Hilliard equation, Calc. Var. Partial Differential Equations, **32** (2008), 499–522.
- M. Roger, Y. Tonegawa, Convergence of phase-field approximations to the Gibbs-Thomson law, Calc. Var. Partial Differ. Equat. 32 (2008), 111–136.
- E. Sandier, S. Serfaty: Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Commun. Pure Appl. Math., **57**(12) (2004), 1627–1672.

THANK YOU FOR ATTENTION