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Part 1

THE DIFFUSE TUMOR GROWTH MODEL



Part 1

Background. The analysis of models for cancer evolution is becoming more and more
studied in the recent years (see the general monograph Cristini-Lowengrub 2010). The
considered models are divided into two classes: continuum models and discrete
models. The former are usually diffuse-interface models based on continuum mixture
theory.

A continuum model consists of a Cahn-Hilliard equation with a transport and reaction
term. The reaction term governs various variables of the system (cell concentrations)
and depends on the concentration of nutrient which obeys an reaction-diffusion
equation coupled with the Cahn-Hilliard equation.

We will consider a very simplified model where the cell velocities are neglected and the
transport-reaction term has a very specific form.
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The tumor growth model

Let Ω be a smooth domain in R3 (an organic/biological tissue).

The variables of the system are:
The tumorous/healthy phase variable u:

u(x) ' 1⇒ tumor cell at x

u(x) ' −1⇒ sane cell at x

The nutrient variable σ: represents the concentration of nutrient (oxygen or
glucose).
The chemical potential v which is linked with the phase variable by the relation

v :=
1
ε

f (u)− ε∆u,

with ε a model parameter representing the regularization (the width of the narrow
transition layer). The function f is the derivative of a double-well potential W
with zeros at {±1}.

For ε ∼ 0 we will obtain a sharp interface model!
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The tumor growth model

The equations of the model are{
ut −∆v = R(u, v , σ)
σt −∆σ = −R(u, v , σ),

(1)

R denoting the reaction term containing the proliferation of the tumorous phase.

We consider a model where

R(u, v , σ) = 2σ + u − v .

Therefore the system we have isut −∆v = 2σ + u − v
σt −∆σ = −2σ − u + v
v = 1

ε
f (u)− ε∆u.

(2)

Our aim is to study the behavior of the solutions to (2) as ε→ 0. This would give
rise to a sharp interface model!
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The tumor growth model

Indeed, the system has the following Lyapunov function

1
ε

∫
Ω

W (u)dx + ε

∫
Ω
|∇u|2dx +

3
2
‖σ‖2

L2 +
1
2
‖∇σ‖2

L2 +
∫

Ω
uσdx . (3)

This means that 1
ε

∫
Ω W (u)dx remains uniformly bounded in time and ε.

When ε is close to zero then the finiteness of the energy 1
ε

∫
Ω W (u)dx would force u

to assume only values close to +1 and −1.
We expect that at the limit the functions u and v satisfy a free-boundary problem,
where the boundary is an interface separating the phases u = ±1.
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Part 2

GAMMA CONVERGENCE OF GRADIENT FLOWS



Gamma convergence of gradient flows

Gamma convergence of gradient flows [Sandier-Serfaty] is here introduced in a
simplified setting.

Let ε ∈ (0, 1) and let Xε ⊂ Y Hilbert spaces. We assume that the functionals Eε on Xε
are of class C1 and we deal with the solutions uε : [0,T ]→ Xε of the gradient flows

uεt = −∇Xε Eε(uε), (4)

with energy balance

Eε(uε(0))− Eε(uε(t)) =
∫ t

0
‖uεt ‖2

Xε
ds. (5)

We want to study the limit as ε→ 0 of uε.
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Gamma convergence of gradient flows

Let us assume that uε S−→ u in some sense (to be specified from case to case).
Suppose the following conditions are satisfied:

(i) (Gamma liminf) There exists a C1 functional F on a Hilbert space X ⊂ Y such
that for all sequences vε S−→ v it holds

lim inf
ε→0

Eε(vε) ≥ F (v).

(ii) (Lower bound on the velocities) If uε(t) S−→ u(t) for all t ∈ [0,T ] then

lim inf
ε→0

∫ s

0
‖uεt (t)‖2

Xε
dt ≥

∫ s

0
‖ut (t)‖2

X dt.

(iii) (Lower bound on the slopes) If vε S−→ v then

lim inf
ε→0

‖∇Xε Eε(vε)‖Xε ≥ ‖∇X F (v)‖X .

(iv) The initial data are well prepared, in the sense that Eε(uε(0))→ F (u(0)).
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Gamma convergence of gradient flows

Theorem (Sandier-Serfaty)

If conditions (i)-(iv) are satisfied, then

ut = −∇X F (u). (6)

From the energy balance one has

Eε(uε(0))− Eε(uε(t)) =
∫ t

0
‖uεt (s)‖2

Xε
ds =

1
2

∫ t

0
‖uεt (s)‖2

Xε
+ ‖∇Xε Eε(uε(s))‖2

Xε
ds.

Then the Fatou Lemma implies

lim inf
ε→0

Eε(uε(0))− Eε(uε(t)) ≥
1
2

∫ t

0
‖ut (s)‖2

X ds + ‖∇X F (u(s))‖2
X ,

≥ −
∫ t

0
〈ut (s),∇X F (u(s))〉X ds = −

∫ t

0

d
dt

F (u(s))ds = F (u(0))− F (u(t)).
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Gamma convergence of gradient flows

But, thanks to (i) and (iv) we have

lim sup
ε→0

Eε(uε0)− Eε(uε(t)) ≤ F (u0)− F (u(t)).

This implies that all the inequalities are equalities! In particular

1
2

∫ t

0
‖ut (s)‖2

X ds + ‖∇X F (u(s))‖2
X = −

∫ t

0
〈ut (s),∇X F (u(s))〉X ds,

which entails
ut (t) = −∇X F (u(t)),

for a.e. t ∈ [0,T ].
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Part 3

THE SHARP INTERFACE LIMIT



The sharp interface limit

We now want to write the systemut −∆v = 2σ + u − v
σt −∆σ = −2σ − u + v
v = 1

ε
f (u)− ε∆u

(7)

as a gradient flow. With the change of variable u = ϕ− σ we arrive at{
ϕt = ∆

(
1
ε

f (ϕ− σ)− ε∆(ϕ− σ)
)

+ ∆σ
σt = ∆σ + 1

ε
f (ϕ− σ)− ε∆(ϕ− σ)− σ − ϕ.

(8)

Let us introduce the space

H−1
n (Ω) := {u ∈ (H1(Ω))′ : ∃v ∈ H1(Ω) such that 〈u, ϕ〉 =

∫
Ω
∇v ·∇ϕdx ∀ϕ ∈ H1(Ω)},

with scalar product
〈u, v〉H−1

n
:= 〈∇∆−1u,∇∆−1v〉.
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The sharp interface limit

The equations (8) are recognized as a gradient flow of the energy

Eε(ϕ, σ) :=
1
ε

∫
Ω

W (ϕ− σ)dx + ε

∫
Ω
|∇(ϕ− σ)|2dx +

1
2
‖σ‖2

L2 +
1
2
‖∇σ‖2

L2 +
∫

Ω
ϕσdx .

with respect to the structure of H−1
n (Ω)× L2(Ω).

Therefore we aim to apply the technique introduced so far (with few modifications).

Theorem

The functionals Eε Γ-converge in L1 × L1 to

2cWH2(∂{ϕ− σ = 1}) +
1
2
‖σ‖2

L2 +
1
2
‖∇σ‖2

L2 +
∫

Ω
ϕσdx , (9)

when ϕ− σ ∈ {±1} and where ∂{ϕ− σ = 1} denotes the interface between the phase
1 and −1.

This implies condition (i).
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1 and −1.

This implies condition (i).



The sharp interface limit

It is easy to obtain the following a-priori estimates

‖ϕε‖H1(0,T ;H−1
n (Ω)) ≤ M, (10)

‖σε‖H1(0,T ;L2(Ω)) ≤ M, (11)

‖vε‖L2(0,T ;H1(Ω)) ≤ M, (12)

‖σε‖L2(0,T ;H2(Ω)) ≤ M, (13)

‖uε‖L∞(0,T ;L4(Ω)) ≤ M (14)

from which follows condition (iii).

Lemma
For a subsequence, we have

uε ⇀ u weakly in L4(Ω× [0,T ]). (15)

Moreover, for all t ∈ [0,T ], u(t) ∈ BV (Ω; {−1, 1}) and

uε(t) ⇀ u(t) weakly in L4(Ω), (16)

uε(t)→ u(t) strongly in L1(Ω), (17)
uε(t) ⇀ u(t) weakly* in BV (Ω). (18)
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The sharp interface limit

If we assume that the limit interface ∂{u = 1} is smooth (at least C3), then we can
write the time derivative of the limiting energy E .

Lemma

Let ∪t∈[0,T∗]Γ(t)× {t} ⊂ Ω× [0,T∗] be a C3 hypersurface with Γ(t) closed for all
t ∈ [0,T∗]. Let u(t) := χΩ+(t) − χΩ+(t) for all t ∈ [0,T∗], and assume
u ∈ H1(0,T ; H−1

n (Ω)) and σ ∈ L∞(0,T∗; H1(Ω)) ∩ H1(0,T∗; L2(Ω)). Then for all
t ∈ [0,T∗]

d
dt

E 0(u(t) + σ(t), σ(t)) =− 2cW 〈V (t), k(t)〉L2(Γ) + 2〈V (t), σ(t)〉L2(Γ)

+ 〈σt (t),−∆σ(t) + u(t) + 3σ(t)〉,

where V (t) is the normal velocity of the surface Γ(t), and k(t) is its mean curvature.



The sharp interface limit

We are now ready to prove the lower bound on the velocities, (ii):

For all t ∈ [0,T ] there holds

lim inf
ε→0

∫ t

0
‖ϕεt (s)‖H−1

n (Ω)ds ≥
∫ t

0
‖2∂t Γ(s) + σt (s)‖H−1

n (Ω)ds. (19)

In some sense this follows from the fact that ϕεt = uεt − σεt .
Finally we need the following lemma:

Lemma

The functions vε ⇀ v weakly in L2(0,T ; H1(Ω)) and the limit function v satisfies for
a.e. t ∈ [0,T ]

v(t) = −cW k(t) on Γ(t), (20)

where k(t) ∈ H1/2(Γ(t)) is the mean curvature of the smooth surface Γ(t) at time t.



The sharp interface limit

We are now ready to prove the lower bound on the velocities, (ii):
For all t ∈ [0,T ] there holds

lim inf
ε→0

∫ t

0
‖ϕεt (s)‖H−1

n (Ω)ds ≥
∫ t

0
‖2∂t Γ(s) + σt (s)‖H−1

n (Ω)ds. (19)

In some sense this follows from the fact that ϕεt = uεt − σεt .

Finally we need the following lemma:

Lemma

The functions vε ⇀ v weakly in L2(0,T ; H1(Ω)) and the limit function v satisfies for
a.e. t ∈ [0,T ]

v(t) = −cW k(t) on Γ(t), (20)

where k(t) ∈ H1/2(Γ(t)) is the mean curvature of the smooth surface Γ(t) at time t.



The sharp interface limit

We are now ready to prove the lower bound on the velocities, (ii):
For all t ∈ [0,T ] there holds

lim inf
ε→0

∫ t

0
‖ϕεt (s)‖H−1

n (Ω)ds ≥
∫ t

0
‖2∂t Γ(s) + σt (s)‖H−1

n (Ω)ds. (19)

In some sense this follows from the fact that ϕεt = uεt − σεt .
Finally we need the following lemma:

Lemma

The functions vε ⇀ v weakly in L2(0,T ; H1(Ω)) and the limit function v satisfies for
a.e. t ∈ [0,T ]

v(t) = −cW k(t) on Γ(t), (20)

where k(t) ∈ H1/2(Γ(t)) is the mean curvature of the smooth surface Γ(t) at time t.



The sharp interface limit

following the proof of the convergence of gradient flows we find

Eε(ϕε0, σε0)− Eε(ϕ(t)ε, σ(t)ε)

=
∫ t

0
(

1
2
‖ϕεt ‖2

H−1
n

+
1
2
‖σεt ‖2

L2 ) +
∫ t

0
(

1
2
‖∆vε + ∆σε‖2

H−1
n

+
1
2
‖∆σε + vε − ϕε − σε‖2

L2 )

≥
∫ t

0
(

1
2
‖2

d
dt

Γ + σt‖2
H−1

n
+

1
2
‖∆v + ∆σ‖2

H−1
n

+
1
2

∫ t

0
(‖σt‖2

L2 + ‖∆σ + v − ϕ− σ‖2
L2 )

≥
∫ t

0
〈(2

d
dt

Γ + σt ),∆v + ∆σ〉H−1
n

+ 〈σt ,∆σ + v − ϕ− σ〉ds

=
∫ t

0
−2〈

d
dt

Γ, v + σ〉H−1
n ×H1 + 〈σt ,∆σ − u − 3σ〉ds

=
∫ t

0
−2〈V , v + σ〉L2(Γ) + 〈σt ,∆σ − u − 3σ〉ds

=
∫ t

0
2cW 〈V , k〉L2(Γ) − 2〈V , σ〉L2(Γ) + 〈σt ,∆σ − u − 3σ〉ds

= E(ϕ0, σ0)− E(ϕ(t), σ(t)). (21)



Sharp interface limit

We then obtain the following statements:

Theorem
If the initial data are well prepared, i.e.,

Eε(ϕε(0), σε(0))→ E(ϕ(0), σ(0)),

then it holds

−∆v = −u − 2σ − v on Ω+ ∪ Ω− (22)
σt = −∆σ + v − u − 2σ on Ω, (23)

and

v = −cW k and [
∂v
∂n

] = 2V a.e. on Γ, (24)

almost everywhere on [0,T ].

The last condition follows from the fact that

2
d
dt

Γ(t) = −∆v(t) + ϕ(t) + σ(t) + v(t) (25)



Part 4

COMMENTS AND OPEN PROBLEMS



Remarks

We tacitly made some hypotheses:
One is on the regularity of the limit interface. As a consequence there will be a
death time T∗ until the evolution is regular. After the death time the evolution is
undetermined!
Behind Lemma 5 there is a technical hypothesis on the convergence of the
measures

ε

2
|∇uε|2 +

W (uε)
ε

⇀ 2cW dHd−1xΓ. (26)

This is unknown in general, but is proved with higher regularity and then
conjectured by Tonegawa to hold in the general case.
To obtain higher regularity it is possible regularize the gradient flow by introduce
a suitable power of the Laplacian replacing ∆. Unfortunately in such a case it is
nontrivial (and out of reach) to prove the interface property [ ∂v

∂n ] = 2V .



Remarks

To be precise, we introduce the space

H−s
n (Ω) := {u ∈ (Hs (Ω))′ : ∃v ∈ Hs (Ω) such that 〈u, ϕ〉 =

∫
Ω

As/2vAs/2ϕdx∀ϕ ∈ Hs (Ω)},

with scalar product
〈u, v〉H−s

n
:= 〈As/2u,As/2v〉,

where As is the s-power of the Laplace operator −∆ on Ω

We take the gradient flow
of

Eε(ϕ, σ) :=
1
ε

∫
Ω

W (ϕ−σ)dx +ε
∫

Ω
|∇(ϕ−σ)|dx +

1
2
‖σ‖2

L2 +
1
2
‖As/2σ‖2

L2 +
∫

Ω
ϕσdx .

with respect to the structure H−s
n (Ω)× L2(Ω) giving rise to{

ϕt = −As
(

1
ε

f (ϕ− σ)− ε∆(ϕ− σ)
)
− Asσ

σt = −Asσ + 1
ε

f (ϕ− σ)− ε∆(ϕ− σ)− σ − ϕ.
(27)

This leads to more regularity of the chemical potential! In particular the condition
above is true!
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Remarks

Theorem
If the initial data are well prepared, i.e.,

Eε(ϕε(0), σε(0))→ E(ϕ(0), σ(0)),

then

As v = u + 2σ + v on Ω+ ∪ Ω− (28)
σt = −Asσ + v − u − 2σ on Ω, (29)

and

v = −cW k and (30)

almost everywhere on [0,T ].

However, As being nonlocal, it seems out of reach the condition [ ∂v
∂n ] = 2V !

2
d
dt

Γ(t) = As v(t) + ϕ(t) + σ(t) (31)
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