A weak formulation for a dynamic process in delamination with unilateral constraint

Riccardo Scala (WIAS)
joint work with G. Schimperna (University of Pavia)

Lisboa
2015 Oct 1st

Introduction: setting

We consider two d-dimensional elastic bodies represented by the open, bounded sets Ω_{1} and Ω_{2}. There is a common boundary Γ which is the interface where an adhesive keep the two bodies glued together.

Introduction: setting

We consider two d-dimensional elastic bodies represented by the open, bounded sets Ω_{1} and Ω_{2}. There is a common boundary Γ which is the interface where an adhesive keep the two bodies glued together.
The variable $u: \Omega \rightarrow \mathbb{R}^{d}$ represents the displacement. The variable $z: \Gamma \rightarrow[0,1]$ represents the status of the adhesive.

$$
\begin{aligned}
& z(x)=1 \Rightarrow \text { glue perfectly sane at } x \\
& z(x)=0 \Rightarrow \text { glue completely deteriored at } x \Rightarrow \text { ineffective }
\end{aligned}
$$

Introduction: setting

We consider two d-dimensional elastic bodies represented by the open, bounded sets Ω_{1} and Ω_{2}. There is a common boundary Γ which is the interface where an adhesive keep the two bodies glued together.
The variable $u: \Omega \rightarrow \mathbb{R}^{d}$ represents the displacement. The variable $z: \Gamma \rightarrow[0,1]$ represents the status of the adhesive.

$$
\begin{aligned}
& z(x)=1 \Rightarrow \text { glue perfectly sane at } x \\
& z(x)=0 \Rightarrow \text { glue completely deteriored at } x \Rightarrow \text { ineffective }
\end{aligned}
$$

The variable $\sigma: \Omega \rightarrow \mathbb{R}^{d \times d}$ is the stress of the body. The constitutive equation for σ is

$$
\sigma=\mathbb{C}^{0} e(u)+\mu \mathbb{C}^{1} e(\dot{u}),
$$

where $e(u):=\frac{1}{2}\left(\nabla u+\nabla u^{T}\right), \mathbb{C}^{0}$ is the elasticity tensor and \mathbb{C}^{1} is the elasticity tensor for viscosity, $\mu>0$ is the viscosity of the material. We suppose \mathbb{C}^{i} positive definite and constant on Ω (homogeneous material).

The general problem

We suppose $\partial \Omega=\partial_{D} \Omega \cup \partial_{N} \Omega$, which represents the Dirichlet and Neumann part of the boundary.

The general problem

We suppose $\partial \Omega=\partial_{D} \Omega \cup \partial_{N} \Omega$, which represents the Dirichlet and Neumann part of the boundary.
If $f: \Omega \rightarrow \mathbb{R}^{d}, g: \partial_{N} \Omega \rightarrow \mathbb{R}^{d}$ represents the external forces, and $w: \partial_{D} \Omega \rightarrow \mathbb{R}^{d}$ a boundary datum, then the law of dynamic reads

$$
\rho \ddot{u}-\operatorname{Div} \sigma=f
$$

where ρ is the constant density of the material, coupled with the Neumann condition $\sigma \nu=g$ on $\partial_{N} \Omega$, and the Dirichlet condition $u=w$ on $\partial_{D} \Omega$.

The general problem

We suppose $\partial \Omega=\partial_{D} \Omega \cup \partial_{N} \Omega$, which represents the Dirichlet and Neumann part of the boundary.
If $f: \Omega \rightarrow \mathbb{R}^{d}, g: \partial_{N} \Omega \rightarrow \mathbb{R}^{d}$ represents the external forces, and $w: \partial_{D} \Omega \rightarrow \mathbb{R}^{d}$ a boundary datum, then the law of dynamic reads

$$
\rho \ddot{u}-\operatorname{Div} \sigma=f
$$

where ρ is the constant density of the material, coupled with the Neumann condition $\sigma \nu=g$ on $\partial_{N} \Omega$, and the Dirichlet condition $u=w$ on $\partial_{D} \Omega$.
The relation with the variable z arises in the condition

$$
\sigma \nu=-\mathbb{K}[u] z \quad \text { on } \Gamma
$$

where \mathbb{K} is the (constant, positive definite) elasticity tensor of the adhesive, and [u]:= $u^{2}-u^{1}$.
Let us introduce the delamination potential

$$
\frac{1}{2} \int_{\Gamma} \mathbb{K}[u] \cdot[u] z
$$

The internal variable

As for the constitutive equations for $z \in L^{\infty}(\Gamma,[0,1])$, we want that the process of deterioration is irreversible:

$$
\begin{equation*}
\dot{z} \leq 0 . \tag{1}
\end{equation*}
$$

The internal variable

As for the constitutive equations for $z \in L^{\infty}(\Gamma,[0,1])$, we want that the process of deterioration is irreversible:

$$
\begin{equation*}
\dot{z} \leq 0 . \tag{1}
\end{equation*}
$$

Moreover there is a delamination threshold $\alpha \in L^{\infty}(\Gamma)$, with $\alpha>c>0$, such that

$$
\begin{align*}
& \frac{1}{2} \mathbb{K}[u] \cdot[u]<\alpha \quad \Rightarrow \quad \dot{z}=0 \tag{2a}\\
& \dot{z}\left(\frac{1}{2} \mathbb{K}[u] \cdot[u]-\alpha\right)=0, \tag{2b}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{1}{2} \mathbb{K}[u] \cdot[u]-\alpha \leq 0, \tag{2c}
\end{equation*}
$$

holding on the set $\{z>0\} \subset \Gamma$.

Introduction of the constraint

Physically, the quantity $[u] \cdot \nu$ represents the normal jump of the displacement on Γ. Thus if it is positive, means that the bodies are separating, while a negative value must be avoided, since it means that interpenetration of matter is taking place.

Introduction of the constraint

Physically, the quantity $[u] \cdot \nu$ represents the normal jump of the displacement on Γ. Thus if it is positive, means that the bodies are separating, while a negative value must be avoided, since it means that interpenetration of matter is taking place. Therefore the constraint takes the form

$$
\begin{equation*}
[\nu] \cdot \nu \geq 0 . \tag{3}
\end{equation*}
$$

Introduction of the constraint

Physically, the quantity $[u] \cdot \nu$ represents the normal jump of the displacement on Γ. Thus if it is positive, means that the bodies are separating, while a negative value must be avoided, since it means that interpenetration of matter is taking place.
Therefore the constraint takes the form

$$
\begin{equation*}
[\nu] \cdot \nu \geq 0 . \tag{3}
\end{equation*}
$$

The presence of (3) will provide an instantaneous normal reaction at Γ as soon as $[u] \cdot \nu=0$. Such reaction must have fixed sign too!
So we introduce the reaction term ξ in the equation for σ, i.e.,

$$
\begin{equation*}
-\sigma(t) \nu=\mathbb{K}[u(t)] z(t)+\xi \nu \quad \text { on } \Gamma, \tag{4}
\end{equation*}
$$

coupled with (3) and the condition

$$
\begin{array}{lll}
{[u] \cdot \nu>0} & \Rightarrow & \xi=0 \\
{[u] \cdot \nu=0} & \Rightarrow & \xi<0 \tag{6}
\end{array}
$$

Introduction of the constraint

Physically, the quantity $[u] \cdot \nu$ represents the normal jump of the displacement on Γ. Thus if it is positive, means that the bodies are separating, while a negative value must be avoided, since it means that interpenetration of matter is taking place.
Therefore the constraint takes the form

$$
\begin{equation*}
[\nu] \cdot \nu \geq 0 . \tag{3}
\end{equation*}
$$

The presence of (3) will provide an instantaneous normal reaction at Γ as soon as $[u] \cdot \nu=0$. Such reaction must have fixed sign too!
So we introduce the reaction term ξ in the equation for σ, i.e.,

$$
\begin{equation*}
-\sigma(t) \nu=\mathbb{K}[u(t)] z(t)+\xi \nu \quad \text { on } \Gamma, \tag{4}
\end{equation*}
$$

coupled with (3) and the condition

$$
\begin{array}{lll}
{[u] \cdot \nu>0} & \Rightarrow & \xi=0 \\
{[u] \cdot \nu=0} & \Rightarrow & \xi<0 \tag{6}
\end{array}
$$

This can be equivalently said writting

$$
\begin{equation*}
\xi \in \partial_{[0,+\infty)}([u] \cdot \nu), \tag{7}
\end{equation*}
$$

with $\partial_{[0,+\infty)}$ denotes the subdifferential of the characteristic function of the interval $[0,+\infty)$.

Simplifications (WLOG) and Generalizations

We treat the homogeneous Dirichlet datum case $u=0$ on $\partial_{D} \Omega$. Moreover we assume all the elasticity tensors being the identity matrix, i.e., $\mathbb{C}^{1}=\mathbb{C}^{2}=\mathbb{K}=I d$, and the constant $\rho=\mu=1$. Finally we replace the symmetric gradient $e(u)$ by the usual one ∇u (wlog thanks to Korn).

Simplifications (WLOG) and Generalizations

We treat the homogeneous Dirichlet datum case $u=0$ on $\partial_{D} \Omega$. Moreover we assume all the elasticity tensors being the identity matrix, i.e., $\mathbb{C}^{1}=\mathbb{C}^{2}=\mathbb{K}=I d$, and the constant $\rho=\mu=1$. Finally we replace the symmetric gradient $e(u)$ by the usual one ∇u (wlog thanks to Korn).
Let us rewrite all the equations

$$
\begin{align*}
& \ddot{u}-\Delta u-\Delta \dot{u}=f \quad \text { on } \Omega, \tag{8a}\\
& -(\nabla u+\nabla \dot{u}) \nu=[u] z+\xi \nu \quad \text { on } \Gamma \text {, } \tag{8b}\\
& \frac{1}{2}|[u]|^{2}<\alpha \quad \Rightarrow \quad \dot{z}=0, \tag{8c}
\end{align*}
$$

and

$$
\begin{align*}
& \dot{z}\left(\frac{1}{2}|[u]|^{2}-\alpha\right)=0, \tag{8d}\\
& \frac{1}{2}|[u]|^{2}-\alpha \leq 0, \tag{8e}
\end{align*}
$$

holding on the set $\{z>0\} \subset \Gamma$.

Simplifications (WLOG) and Generalizations

We treat the homogeneous Dirichlet datum case $u=0$ on $\partial_{D} \Omega$. Moreover we assume all the elasticity tensors being the identity matrix, i.e., $\mathbb{C}^{1}=\mathbb{C}^{2}=\mathbb{K}=I d$, and the constant $\rho=\mu=1$. Finally we replace the symmetric gradient $e(u)$ by the usual one ∇u (wlog thanks to Korn).
Let us rewrite all the equations

$$
\begin{align*}
& \ddot{u}-\Delta u-\Delta \dot{u}=f \quad \text { on } \Omega, \tag{8a}\\
& -(\nabla u+\nabla \dot{u}) \nu=[u] z+\xi \nu \quad \text { on } \Gamma, \tag{8b}\\
& \frac{1}{2}|[u]|^{2}<\alpha \quad \Rightarrow \quad \dot{z}=0, \tag{8c}
\end{align*}
$$

and

$$
\begin{align*}
& \dot{z}\left(\frac{1}{2}|[u]|^{2}-\alpha\right)=0, \tag{8d}\\
& \frac{1}{2}|[u]|^{2}-\alpha \leq 0, \tag{8e}
\end{align*}
$$

holding on the set $\{z>0\} \subset \Gamma$.
On the other side, in orther to get a general constraint, we replace the function $I_{[0,+\infty)}$ by $j: \mathbb{R} \rightarrow[0,+\infty]$, being a convex and lower semicontinuous function such that $j(0)=\min j=0$. Then the constraint reads

$$
\begin{equation*}
\xi \in \partial j([u] \cdot \nu) \tag{8f}
\end{equation*}
$$

Generalized constraint

We define

$$
\begin{equation*}
\mathcal{J}(v):=\int_{0}^{T} \int_{\Gamma} j(v) d x d t \quad v \in L^{2}([0, T] \times \Gamma) \tag{9}
\end{equation*}
$$

The subdifferential of \mathcal{J} on $L^{2}([0, T] \times \Gamma)$ is defined as the multivalued operator

$$
\partial \mathcal{J}: L^{2}([0, T] \times \Gamma) \rightrightarrows L^{2}([0, T] \times \Gamma)
$$

as follows: for $v, u \in L^{2}([0, T] \times \Gamma)$, we have

$$
\begin{equation*}
v \in \partial \mathcal{J}(u) \Leftrightarrow \mathcal{J}(w)-\mathcal{J}(u) \geq((v, w-u)) \quad \forall w \in L^{2}([0, T] \times \Gamma) \tag{10}
\end{equation*}
$$

Generalized constraint

We define

$$
\begin{equation*}
\mathcal{J}(v):=\int_{0}^{T} \int_{\Gamma} j(v) d x d t \quad v \in L^{2}([0, T] \times \Gamma) \tag{9}
\end{equation*}
$$

The subdifferential of \mathcal{J} on $L^{2}([0, T] \times \Gamma)$ is defined as the multivalued operator

$$
\partial \mathcal{J}: L^{2}([0, T] \times \Gamma) \rightrightarrows L^{2}([0, T] \times \Gamma)
$$

as follows: for $v, u \in L^{2}([0, T] \times \Gamma)$, we have

$$
\begin{equation*}
v \in \partial \mathcal{J}(u) \Leftrightarrow \mathcal{J}(w)-\mathcal{J}(u) \geq((v, w-u)) \quad \forall w \in L^{2}([0, T] \times \Gamma) \tag{10}
\end{equation*}
$$

Setting $\beta:=\partial j$, it is easy to see that $v \in \partial \mathcal{J}(u)$ if and only if

$$
\begin{equation*}
v(t, x) \in \beta(u(t, x)) \quad \text { for a.e. }(t, x) \in[0, T] \times \Gamma \tag{11}
\end{equation*}
$$

Generalized constraint

We define

$$
\begin{equation*}
\mathcal{J}(v):=\int_{0}^{T} \int_{\Gamma} j(v) d x d t \quad v \in L^{2}([0, T] \times \Gamma) \tag{9}
\end{equation*}
$$

The subdifferential of \mathcal{J} on $L^{2}([0, T] \times \Gamma)$ is defined as the multivalued operator

$$
\partial \mathcal{J}: L^{2}([0, T] \times \Gamma) \rightrightarrows L^{2}([0, T] \times \Gamma)
$$

as follows: for $v, u \in L^{2}([0, T] \times \Gamma)$, we have

$$
\begin{equation*}
v \in \partial \mathcal{J}(u) \Leftrightarrow \mathcal{J}(w)-\mathcal{J}(u) \geq((v, w-u)) \quad \forall w \in L^{2}([0, T] \times \Gamma) \tag{10}
\end{equation*}
$$

Setting $\beta:=\partial j$, it is easy to see that $v \in \partial \mathcal{J}(u)$ if and only if

$$
\begin{equation*}
v(t, x) \in \beta(u(t, x)) \quad \text { for a.e. }(t, x) \in[0, T] \times \Gamma \tag{11}
\end{equation*}
$$

We call this the pointwise interpretation of $\partial \mathcal{J}$, so we still denote it by $\beta:=\partial \mathcal{J}$.

Relaxation of the constraint

We consider the restriction of \mathcal{J} to the space $\mathcal{H} \subset L^{2}([0, T] \times \Gamma)$, and we consider the subdifferential with respect to this new topology. This is the multivalued operator

$$
\partial_{\mathcal{H}} \mathcal{J}: \mathcal{H} \rightrightarrows \mathcal{H}^{\prime}
$$

defined as follows: for $u \in \mathcal{H}$ and $\xi \in \mathcal{H}^{\prime}$, we have

$$
\begin{equation*}
\xi \in \partial_{\mathcal{H}} \mathcal{J}(u) \quad \Leftrightarrow \quad \mathcal{J}(w)-\mathcal{J}(u) \geq\langle\langle\xi, w-u\rangle\rangle \quad \forall w \in \mathcal{H}, \tag{12}
\end{equation*}
$$

where $\langle\langle\cdot, \cdot\rangle\rangle$ is the duality pairing between \mathcal{H} and \mathcal{H}^{\prime}.

Relaxation of the constraint

We consider the restriction of \mathcal{J} to the space $\mathcal{H} \subset L^{2}([0, T] \times \Gamma)$, and we consider the subdifferential with respect to this new topology. This is the multivalued operator

$$
\partial_{\mathcal{H}} \mathcal{J}: \mathcal{H} \rightrightarrows \mathcal{H}^{\prime}
$$

defined as follows: for $u \in \mathcal{H}$ and $\xi \in \mathcal{H}^{\prime}$, we have

$$
\begin{equation*}
\xi \in \partial_{\mathcal{H}} \mathcal{J}(u) \quad \Leftrightarrow \quad \mathcal{J}(w)-\mathcal{J}(u) \geq\langle\langle\xi, w-u\rangle\rangle \quad \forall w \in \mathcal{H}, \tag{12}
\end{equation*}
$$

where $\langle\langle\cdot, \cdot\rangle\rangle$ is the duality pairing between \mathcal{H} and \mathcal{H}^{\prime}.
Let us denote by

$$
\beta_{w}:=\partial_{\mathcal{H}} \mathcal{J}
$$

Relaxation of the constraint

We consider the restriction of \mathcal{J} to the space $\mathcal{H} \subset L^{2}([0, T] \times \Gamma)$, and we consider the subdifferential with respect to this new topology. This is the multivalued operator

$$
\partial_{\mathcal{H}} \mathcal{J}: \mathcal{H} \rightrightarrows \mathcal{H}^{\prime}
$$

defined as follows: for $u \in \mathcal{H}$ and $\xi \in \mathcal{H}^{\prime}$, we have

$$
\begin{equation*}
\xi \in \partial_{\mathcal{H}} \mathcal{J}(u) \quad \Leftrightarrow \quad \mathcal{J}(w)-\mathcal{J}(u) \geq\langle\langle\xi, w-u\rangle\rangle \quad \forall w \in \mathcal{H}, \tag{12}
\end{equation*}
$$

where $\langle\langle\cdot, \cdot\rangle\rangle$ is the duality pairing between \mathcal{H} and \mathcal{H}^{\prime}.
Let us denote by

$$
\beta_{w}:=\partial_{\mathcal{H}} \mathcal{J}
$$

Note that the pointwise interpretation

$$
\xi(t, x) \in \beta(u(t, x)) \quad \text { for a.e. }(t, x) \in[0, T] \times \Gamma
$$

does no longer make sense!

Properties of the weak constraint

However if $\xi \in \beta_{w}(u)$ the following can be said:

Properties of the weak constraint

However if $\xi \in \beta_{w}(u)$ the following can be said:

Theorem

There exists a bounded Borel measure \mathcal{T} such that $\langle\langle\xi, \varphi\rangle\rangle=\int_{0}^{T} \int_{\Gamma} \varphi d \mathcal{T}$ for all $\varphi \in \mathcal{H} \cap C_{0}([0, T] \times \Gamma)$. Moreover if $\mathcal{T}=\mathcal{T}_{a}+\mathcal{T}_{s}$ then

$$
\begin{align*}
& \mathcal{T}_{a} u \in L^{1}([0, T] \times \Gamma), \tag{13}\\
& \mathcal{T}_{a}(t, x) \in \beta(u(t, x)) \text { for a.e. } \quad(t, x) \in[0, T] \times \Gamma \tag{14}\\
& \langle\langle\xi, u\rangle\rangle-\int_{0}^{T} \int_{\Gamma} \mathcal{T}_{a} u d x d t=\sup \left\{\int_{0}^{T} \int_{\Gamma} z d \mathcal{T}_{s}, z \in C([0, T] \times \Gamma),|z| \leq 1\right\} . \tag{15}
\end{align*}
$$

Properties of the weak constraint

However if $\xi \in \beta_{w}(u)$ the following can be said:

Theorem

There exists a bounded Borel measure \mathcal{T} such that $\langle\langle\xi, \varphi\rangle\rangle=\int_{0}^{T} \int_{\Gamma} \varphi d \mathcal{T}$ for all $\varphi \in \mathcal{H} \cap C_{0}([0, T] \times \Gamma)$. Moreover if $\mathcal{T}=\mathcal{T}_{a}+\mathcal{T}_{s}$ then

$$
\begin{align*}
& \mathcal{T}_{a} u \in L^{1}([0, T] \times \Gamma), \tag{13}\\
& \mathcal{T}_{a}(t, x) \in \beta(u(t, x)) \text { for a.e. } \quad(t, x) \in[0, T] \times \Gamma, \tag{14}\\
& \langle\langle\xi, u\rangle\rangle-\int_{0}^{T} \int_{\Gamma} \mathcal{T}_{a} u d x d t=\sup \left\{\int_{0}^{T} \int_{\Gamma} z d \mathcal{T}_{s}, z \in C([0, T] \times \Gamma),|z| \leq 1\right\} . \tag{15}
\end{align*}
$$

It can be proved that, in the case that $j=I_{[0,+\infty)}$, denoting by $\mathcal{T}_{s}=\rho\left|\mathcal{T}_{s}\right|$,

$$
\begin{equation*}
\rho \in \partial j(u)\left|\mathcal{T}_{s}\right|-\text { a.e. in }[0, T] \times \Gamma . \tag{16}
\end{equation*}
$$

This means that \mathcal{T}_{s} is supported on the set where $u=0$ and that here it holds $\rho=-1$.

References

These results are adaptations of those contained in

- H. Brézis, Intégrales convexes dans les espaces de Sobolev, Israel J. Math., 13 (1972), 9-23.
- M. Grun-Rehomme, Caractérisation du sous-différentiel d'intégrandes convexes dans les espaces de Sobolev (French), J. Math. Pures Appl. (9), 56 (1977), 149-156.

Approximation of β_{w}

We introduce j^{ϵ} the Moreau-Yosida regularization of j, and define the operator \mathcal{J}^{ϵ} on $L^{2}([0, T] \times \Gamma)$ as

$$
\begin{equation*}
\mathcal{J}^{\epsilon}(v):=\int_{0}^{T} \int_{\Gamma} j^{\epsilon}(v) d x d t \quad v \in L^{2}([0, T] \times \Gamma) \tag{17}
\end{equation*}
$$

Approximation of β_{w}

We introduce j^{ϵ} the Moreau-Yosida regularization of j, and define the operator \mathcal{J}^{ϵ} on $L^{2}([0, T] \times \Gamma)$ as

$$
\begin{equation*}
\mathcal{J}^{\epsilon}(v):=\int_{0}^{T} \int_{\Gamma} j^{\epsilon}(v) d x d t \quad v \in L^{2}([0, T] \times \Gamma) \tag{17}
\end{equation*}
$$

As for j, we set

$$
\beta^{\epsilon}:=\partial j^{\epsilon},
$$

the Yosida approximation of β. Recall that β^{ϵ} is globally ϵ^{-1}-Lipschitz continuous.

Approximation of β_{w}

We introduce j^{ϵ} the Moreau-Yosida regularization of j, and define the operator \mathcal{J}^{ϵ} on $L^{2}([0, T] \times \Gamma)$ as

$$
\begin{equation*}
\mathcal{J}^{\epsilon}(v):=\int_{0}^{T} \int_{\Gamma} j^{\epsilon}(v) d x d t \quad v \in L^{2}([0, T] \times \Gamma) \tag{17}
\end{equation*}
$$

As for j, we set

$$
\beta^{\epsilon}:=\partial j^{\epsilon},
$$

the Yosida approximation of β. Recall that β^{ϵ} is globally ϵ^{-1}-Lipschitz continuous.

Lemma

β^{ϵ} is a monotone operator on \mathcal{H} into \mathcal{H}^{\prime}. Moreover for $u \in \mathcal{H}$ then $\beta^{\epsilon}(u) \in \mathcal{H}^{\prime}$ belongs to the subdifferential of \mathcal{J}^{ϵ} (as an operator on \mathcal{H}).

Approximation of β_{w}

We introduce j^{ϵ} the Moreau-Yosida regularization of j, and define the operator \mathcal{J}^{ϵ} on $L^{2}([0, T] \times \Gamma)$ as

$$
\begin{equation*}
\mathcal{J}^{\epsilon}(v):=\int_{0}^{T} \int_{\Gamma} j^{\epsilon}(v) d x d t \quad v \in L^{2}([0, T] \times \Gamma) \tag{17}
\end{equation*}
$$

As for j, we set

$$
\beta^{\epsilon}:=\partial j^{\epsilon},
$$

the Yosida approximation of β. Recall that β^{ϵ} is globally ϵ^{-1}-Lipschitz continuous.

Lemma

β^{ϵ} is a monotone operator on \mathcal{H} into \mathcal{H}^{\prime}. Moreover for $u \in \mathcal{H}$ then $\beta^{\epsilon}(u) \in \mathcal{H}^{\prime}$ belongs to the subdifferential of \mathcal{J}^{ϵ} (as an operator on \mathcal{H}).

Approximation of β_{w}

Following the theory of

- H. Attouch, "Variational Convergence for Functions and Operators", Pitman, London, 1984.
we can then prove that the monotone operators β^{ϵ} tends to the maximal monotone operator β_{w} in the sense of graph, i.e.,

$$
\forall[x, y] \in \beta_{w} \quad \exists\left[x^{\epsilon}, y^{\epsilon}\right] \in \beta^{\epsilon} \quad \text { such that } \quad\left[x^{\epsilon}, y^{\epsilon}\right] \rightarrow[x, y],
$$

where the convergence is intended with respect to the strong topology of $\mathcal{H} \times \mathcal{H}^{\prime}$.

Approximation of β_{w}

Following the theory of

- H. Attouch, "Variational Convergence for Functions and Operators", Pitman, London, 1984.
we can then prove that the monotone operators β^{ϵ} tends to the maximal monotone operator β_{w} in the sense of graph, i.e.,

$$
\forall[x, y] \in \beta_{w} \quad \exists\left[x^{\epsilon}, y^{\epsilon}\right] \in \beta^{\epsilon} \quad \text { such that } \quad\left[x^{\epsilon}, y^{\epsilon}\right] \rightarrow[x, y],
$$

where the convergence is intended with respect to the strong topology of $\mathcal{H} \times \mathcal{H}^{\prime}$. The following holds:

Lemma

Let the monotone operator η_{n} tends to the maximal monotone operator η in the sense of graph (operators on \mathcal{H} into \mathcal{H}^{\prime}). Let $u_{n} \rightharpoonup u$ weakly in $\mathcal{H}, \xi_{n} \rightharpoonup \xi$ weakly in \mathcal{H}^{\prime}, and assume $\xi_{n} \in \eta_{n}\left(u_{n}\right)$. If

$$
\lim \sup \left\langle\left\langle\xi_{n}, u_{n}\right\rangle\right\rangle \leq\langle\langle\xi, u\rangle\rangle,
$$

then $\xi \in \eta(u)$.

Approximation of β_{w}

Following the theory of

- H. Attouch, "Variational Convergence for Functions and Operators", Pitman, London, 1984.
we can then prove that the monotone operators β^{ϵ} tends to the maximal monotone operator β_{w} in the sense of graph, i.e.,

$$
\forall[x, y] \in \beta_{w} \quad \exists\left[x^{\epsilon}, y^{\epsilon}\right] \in \beta^{\epsilon} \quad \text { such that } \quad\left[x^{\epsilon}, y^{\epsilon}\right] \rightarrow[x, y],
$$

where the convergence is intended with respect to the strong topology of $\mathcal{H} \times \mathcal{H}^{\prime}$. The following holds:

Lemma

Let the monotone operator η_{n} tends to the maximal monotone operator η in the sense of graph (operators on \mathcal{H} into \mathcal{H}^{\prime}). Let $u_{n} \rightharpoonup u$ weakly in $\mathcal{H}, \xi_{n} \rightharpoonup \xi$ weakly in \mathcal{H}^{\prime}, and assume $\xi_{n} \in \eta_{n}\left(u_{n}\right)$. If

$$
\lim \sup \left\langle\left\langle\xi_{n}, u_{n}\right\rangle\right\rangle \leq\langle\langle\xi, u\rangle\rangle,
$$

then $\xi \in \eta(u)$.
These are the ingredients we need!

Energetic formulation of the evolution

We define a weak form of solution to problem (8).

Energetic formulation of the evolution

We define a weak form of solution to problem (8).

Definition

Let $u_{0}, v_{0} \in V, z_{0} \in \mathcal{Z}$, and $f \in L^{2}\left([0, T], V^{\prime}\right)$. Then (u, z, η) is an energetic solution to (8) if

$$
\begin{align*}
& u \in H^{1}([0, T], V) \cap W^{1, \infty}\left([0, T], L^{2}(\Omega)\right), \tag{18a}\\
& \dot{u} \in H^{1}\left([0, T], H^{-1}(\tilde{\Omega})\right) \cap B V\left(0, T ; \tilde{H}^{-2}(\Omega)\right), \tag{18b}\\
& z \in L^{\infty}([0, T], \mathcal{Z}) \cap B V\left(0, T ; L^{1}(\Gamma)\right), \tag{18c}\\
& \xi \in \mathcal{H}^{\prime}, \tag{18d}
\end{align*}
$$

is such that $u(0)=u_{0}, \dot{u}(0)=v_{0}, z(0)=z_{0}$, and satisfies conditions (a), (a'), (b), (c), and (d) below.

Energetic formulation of the evolution

We define a weak form of solution to problem (8).

Definition

Let $u_{0}, v_{0} \in V, z_{0} \in \mathcal{Z}$, and $f \in L^{2}\left([0, T], V^{\prime}\right)$. Then (u, z, η) is an energetic solution to (8) if

$$
\begin{align*}
& u \in H^{1}([0, T], V) \cap W^{1, \infty}\left([0, T], L^{2}(\Omega)\right), \tag{18a}\\
& \dot{u} \in H^{1}\left([0, T], H^{-1}(\tilde{\Omega})\right) \cap B V\left(0, T ; \tilde{H}^{-2}(\Omega)\right), \tag{18b}\\
& z \in L^{\infty}([0, T], \mathcal{Z}) \cap B V\left(0, T ; L^{1}(\Gamma)\right), \tag{18c}\\
& \xi \in \mathcal{H}^{\prime}, \tag{18d}
\end{align*}
$$

is such that $u(0)=u_{0}, \dot{u}(0)=v_{0}, z(0)=z_{0}$, and satisfies conditions (a), (a'), (b), (c), and (d) below.
(a) for all $\varphi \in \mathcal{V}$,

$$
\begin{align*}
& -((\dot{u}, \dot{\varphi}))+(\dot{u}(T), \varphi(T))+((\nabla \dot{u}, \nabla \varphi))+((\nabla u, \nabla \varphi))+\langle\langle\xi,[\varphi] \cdot \nu\rangle\rangle \\
& =\left(u_{1}, \varphi(0)\right)+\langle\langle f, \varphi\rangle\rangle-((z[u],[\varphi]))^{\Gamma} . \tag{19}
\end{align*}
$$

Energetic formulation of the evolution

(a') for all $t \in[0, T]$ there exists $\xi_{t} \in \mathcal{H}^{\prime}$ such that also the local version of (19) holds

$$
\begin{align*}
& -((\dot{u}, \dot{\varphi}))_{t}+(\dot{u}(t), \varphi(t))+((\nabla \dot{u}, \nabla \varphi))_{t}+((\nabla u, \nabla \varphi))_{t}+\left\langle\left\langle\xi_{t},[\varphi] \cdot \nu\right\rangle\right\rangle_{t} \\
& =\left(u_{1}, \varphi(0)\right)+\langle\langle f, \varphi\rangle\rangle_{t}-((z[u],[\varphi]))_{t}^{\Gamma}, \tag{20}
\end{align*}
$$

for all $\varphi \in \mathcal{V}_{t}$. Moreover ξ_{t} satisfies the property that, for all $\varphi \in \mathcal{H}_{t}$ with $\varphi(t)=0$, we have

$$
\begin{equation*}
\left\langle\left\langle\xi_{t}, \varphi\right\rangle\right\rangle_{t}=\langle\langle\xi, \tilde{\varphi}\rangle\rangle, \tag{21}
\end{equation*}
$$

where $\tilde{\varphi}$ is the extension to \mathcal{H} of $\varphi \in \mathcal{H}_{t, 0}$ such that $\varphi(s)=0$ for $s \in[t, T]$.
(b) We have

$$
\begin{equation*}
\xi \in \beta_{w}([u] \cdot \nu), \tag{22}
\end{equation*}
$$

and for all $t \in[0, T]$ it also holds that

$$
\xi_{t} \in \beta_{w, t}([u\llcorner[0, t]] \cdot \nu)
$$

Energetic formulation of the evolution

(c) for almost every $x \in \Gamma$ the function $t \mapsto z(t, x)$ is nonincreasing and

$$
\begin{equation*}
\text { either } \quad \frac{1}{2}|[u(t, x)]|^{2} \leq \alpha(x) \quad \text { or } \quad z(t, x)=0 \quad \text { for a.e. } x \in \Gamma \tag{23}
\end{equation*}
$$

for all $t \in[0, T]$.
(c') for all times t_{1} and t_{2} with $0 \leq t_{1}<t_{2} \leq T$ it holds

$$
\begin{align*}
& \int_{\Gamma} z\left(t_{2}\right)\left(\frac{1}{2}\left|\left[u\left(t_{2}\right)\right]\right|^{2}-\alpha\right) d x-\int_{\Gamma} z\left(t_{1}\right)\left(\frac{1}{2}\left|\left[u\left(t_{1}\right)\right]\right|^{2}-\alpha\right) d x \\
& -\int_{t_{1}}^{t_{2}} \int_{\Gamma} z[u] \cdot[\dot{u}] d x d t=0 \tag{24}
\end{align*}
$$

(d) for all $t \in[0, T]$ the following energy inequality holds

$$
\begin{align*}
& \frac{1}{2}\|\dot{u}(t)\|_{H}^{2}+\int_{\Gamma} j([u(t)] \cdot \nu) d x+\frac{1}{2} \int_{\Gamma} z(t)|[u](t)|^{2} d x+\frac{1}{2}\|\nabla u(t)\|^{2} \\
& +\int_{0}^{T}\|\nabla \dot{u}\|^{2} d t-(\alpha, z(t))_{\Gamma}+\left(\alpha, z_{0}\right)_{\Gamma} \leq \\
& \frac{1}{2}\left\|v_{0}\right\|_{H}^{2}+\int_{\Gamma} j\left(\left[u_{0}\right] \cdot \nu\right) d x+\frac{1}{2} \int_{\Gamma} z_{0}\left|\left[u_{0}\right]\right|^{2} d x+\frac{1}{2}\left\|\nabla u_{0}\right\|^{2}+\langle\langle f, \dot{u}\rangle\rangle_{t} . \tag{25}
\end{align*}
$$

Energetic formulation of the approximate evolution

In order to prove the existence of an energetic solution we introduce the following approximate evolutions.

Energetic formulation of the approximate evolution

In order to prove the existence of an energetic solution we introduce the following approximate evolutions.

Definition

Let $\epsilon \in(0,1), u_{0}, v_{0} \in V, z_{0} \in \mathcal{Z}$, and $f \in L^{2}\left([0, T], V^{\prime}\right)$. Then $\left(u^{\epsilon}, z^{\epsilon}\right)$ is an ϵ-approximation of the energetic solution (4) if

$$
\begin{align*}
& u^{\epsilon} \in H^{1}([0, T], V) \cap W^{1, \infty}\left([0, T], L^{2}(\Omega)\right), \tag{26a}\\
& \dot{u}^{\epsilon} \in H^{1}\left([0, T], V^{\prime}\right), \tag{26b}\\
& z^{\epsilon} \in L^{\infty}([0, T], \mathcal{Z}) \cap B V\left(0, T ; L^{1}(\Gamma)\right), \tag{26c}
\end{align*}
$$

is such that $u^{\epsilon}(0)=u_{0}, \dot{u}^{\epsilon}(0)=v_{0}, z^{\epsilon}(0)=z_{0}$, and satisfies conditions $\left(a^{\epsilon}\right),\left(b^{\epsilon}\right)$, and $\left(c^{\epsilon}\right)$ below.

Energetic formulation of the approximate evolution

In order to prove the existence of an energetic solution we introduce the following approximate evolutions.

Definition

Let $\epsilon \in(0,1), u_{0}, v_{0} \in V, z_{0} \in \mathcal{Z}$, and $f \in L^{2}\left([0, T], V^{\prime}\right)$. Then $\left(u^{\epsilon}, z^{\epsilon}\right)$ is an ϵ-approximation of the energetic solution (4) if

$$
\begin{align*}
& u^{\epsilon} \in H^{1}([0, T], V) \cap W^{1, \infty}\left([0, T], L^{2}(\Omega)\right) \tag{26a}\\
& \dot{u}^{\epsilon} \in H^{1}\left([0, T], V^{\prime}\right) \tag{26b}\\
& z^{\epsilon} \in L^{\infty}([0, T], \mathcal{Z}) \cap B V\left(0, T ; L^{1}(\Gamma)\right), \tag{26c}
\end{align*}
$$

is such that $u^{\epsilon}(0)=u_{0}, \dot{u}^{\epsilon}(0)=v_{0}, z^{\epsilon}(0)=z_{0}$, and satisfies conditions $\left(a^{\epsilon}\right),\left(b^{\epsilon}\right)$, and $\left(c^{\epsilon}\right)$ below.
(a^{ϵ}) for every time $t \in[0, T]$, it holds

$$
\begin{align*}
& -\left(\left(\dot{u}^{\epsilon}, \dot{\varphi}\right)\right)_{t}+\left(\dot{u}^{\epsilon}(t), \varphi(t)\right)+\left(\left(\nabla \dot{u}^{\epsilon}, \nabla \varphi\right)\right)_{t}+\left(\left(\nabla u^{\epsilon}, \nabla \varphi\right)\right)_{t}+\left\langle\left\langle\beta^{\epsilon}\left(\left[u^{\epsilon}\right] \cdot \nu\right),[\varphi] \cdot \nu\right\rangle\right\rangle_{t} \\
& =\left(u_{1}, \varphi(0)\right)+\langle\langle f, \varphi\rangle\rangle_{t}-\left(\left(z^{\epsilon}\left[u^{\epsilon}\right],[\varphi]\right)\right)_{t}^{\Gamma}, \tag{27}
\end{align*}
$$

for all $\varphi \in \mathcal{V}$.

Energetic formulation of the approximate evolution

(b^{ϵ}) for almost every $x \in \Gamma$ the function $t \mapsto z^{\epsilon}(t, x)$ is nonincreasing and

$$
\begin{equation*}
\text { either } \quad \frac{1}{2}\left|\left[u^{\epsilon}(t, x)\right]\right|^{2} \leq \alpha(x) \quad \text { or } \quad z^{\epsilon}(t, x)=0 \quad \text { for a.e. } x \in \Gamma \tag{28}
\end{equation*}
$$

for all $t \in[0, T]$.
(c^{ϵ}) the following energy balance holds

$$
\begin{align*}
& \frac{1}{2}\left\|\dot{u}^{\epsilon}(t)\right\|_{H}^{2}+\int_{\Gamma} j^{\epsilon}\left(\left[u^{\epsilon}(t)\right] \cdot \nu\right) d x+\frac{1}{2} \int_{\Gamma} z^{\epsilon}(t)\left|\left[u^{\epsilon}\right](t)\right|^{2} d x+\frac{1}{2}\left\|\nabla u^{\epsilon}(t)\right\|^{2} \\
& +\int_{0}^{T}\left\|\nabla \dot{u}^{\epsilon}\right\|^{2} d t-\left(\alpha, z^{\epsilon}(t)\right)_{\Gamma}+\left(\alpha, z_{0}\right)_{\Gamma}= \\
& \frac{1}{2}\left\|v_{0}\right\|_{H}^{2}+\int_{\Gamma} j^{\epsilon}\left(\left[u_{0}\right] \cdot \nu\right) d x+\frac{1}{2} \int_{\Gamma} z_{0}\left|\left[u_{0}\right]\right|^{2} d x+\frac{1}{2}\left\|\nabla u_{0}\right\|^{2}+\left\langle\left\langle f, \dot{u}^{\epsilon}\right\rangle\right\rangle_{t}, \tag{29}
\end{align*}
$$

for all $t \in[0, T]$.

Existence of evolutions

For all $\epsilon \in(0,1)$, existence of an approximate solution can be obtained by time discretization and by an implicit Euler scheme. This is standard and we can adapt, for instance, results by

- T. Roubicek, Adhesive contact of visco-elastic bodies and defect measures arising by vanishing viscosity. SIAM J. Math. Anal., 45 (2013), 101-126, and reference therin.

Existence of evolutions

For all $\epsilon \in(0,1)$, existence of an approximate solution can be obtained by time discretization and by an implicit Euler scheme. This is standard and we can adapt, for instance, results by

- T. Roubicek, Adhesive contact of visco-elastic bodies and defect measures arising by vanishing viscosity. SIAM J. Math. Anal., 45 (2013), 101-126, and reference therin.
We want to pass to the limit as $\epsilon \rightarrow 0$. The following Theorem holds true.

Theorem

Let $\left(u^{\epsilon}, z^{\epsilon}\right)$ be approximate solutions. Then there exists (u, z, ξ) energetic solution as in Definition 4 such that, up to a subsequence,

$$
\begin{align*}
& u^{\epsilon} \rightarrow u \quad \text { strongly in } H^{1}\left(0, T ; L^{2}(\Omega)\right) \text { and weakly in } H^{1}(0, T ; V), \tag{30a}\\
& \dot{u}^{\epsilon} \rightharpoonup \dot{u} \quad \text { weakly in } H^{1}\left(0, T ; H^{-1}(\tilde{\Omega})\right) \text { and weakly* in } B V\left(0, T ; \tilde{H}^{-2}(\Omega)\right), \tag{30b}\\
& z^{\epsilon}(t) \rightharpoonup z(t) \quad \text { weakly* in } L^{\infty}(\Gamma) \text { for all } t \in[0, T], \tag{30c}\\
& \beta_{\epsilon}\left(\left[u^{\epsilon}\right] \cdot \nu\right) \rightharpoonup \xi \quad \text { weakly in } \mathcal{H}^{\prime} \text { and in } \mathcal{V}^{\prime} . \tag{30d}
\end{align*}
$$

Sketch of the proof

In order to get the convergences above we should prove suitable apriori estimates for $\left(u^{\epsilon}, z^{\epsilon}, \beta_{\epsilon}\left(\left[u^{\epsilon}\right] \cdot \nu\right)\right.$).

Sketch of the proof

In order to get the convergences above we should prove suitable apriori estimates for $\left(u^{\epsilon}, z^{\epsilon}, \beta_{\epsilon}\left(\left[u^{\epsilon}\right] \cdot \nu\right)\right.$).
Some estimates are straightforward and follows by the energy balance $\left(c^{\epsilon}\right)$. These are

$$
\begin{aligned}
& \left\|u^{\epsilon}\right\|_{H^{1}(0, t ; V)} \leq M, \\
& \int_{\Gamma} j^{\epsilon}\left(\left[u^{\epsilon}(t)\right] \cdot \nu\right) \leq M \text { for all } t \in[0, T], \\
& \frac{1}{2} \int_{\Gamma}\left|\left[u^{\epsilon}\right](t)\right|^{2} z^{\epsilon}(t) \leq M \text { for all } t \in[0, T], \\
& \left\|z^{\epsilon}\right\|_{L^{\infty}(0, t ; \mathcal{Z})} \leq M, \\
& \left\|z^{\epsilon}\right\|_{B V\left(0, T ; L^{1}(\Gamma)\right)} \leq M .
\end{aligned}
$$

Sketch of the proof

In order to get the convergences above we should prove suitable apriori estimates for $\left(u^{\epsilon}, z^{\epsilon}, \beta_{\epsilon}\left(\left[u^{\epsilon}\right] \cdot \nu\right)\right.$).
Some estimates are straightforward and follows by the energy balance $\left(\mathrm{c}^{\epsilon}\right)$. These are

$$
\begin{aligned}
& \left\|u^{\epsilon}\right\|_{H^{1}(0, t ; V)} \leq M, \\
& \int_{\Gamma} j^{\epsilon}\left(\left[u^{\epsilon}(t)\right] \cdot \nu\right) \leq M \text { for all } t \in[0, T], \\
& \frac{1}{2} \int_{\Gamma}\left|\left[u^{\epsilon}\right](t)\right|^{2} z^{\epsilon}(t) \leq M \text { for all } t \in[0, T], \\
& \left\|z^{\epsilon}\right\|_{L^{\infty}(0, t ; \mathcal{Z})} \leq M, \\
& \left\|z^{\epsilon}\right\|_{B V\left(0, T ; L^{1}(\Gamma)\right)} \leq M .
\end{aligned}
$$

Crucial is the following one:

Lemma

For all $\epsilon \in(0,1)$ it holds

$$
\begin{equation*}
\left\|\beta_{\epsilon}\left(\left[u^{\epsilon}\right] \cdot \nu\right)\right\|_{L^{1}\left(0, T ; L^{1}(\Gamma)\right)} \leq M . \tag{31}
\end{equation*}
$$

Sketch of the proof

This can be obtained letting $\bar{\psi} \in H^{\frac{1}{2}}\left(\Gamma ; \mathbb{R}^{d}\right)$ such that $\bar{\psi} \cdot \nu=1$ on the whole Γ and extending (harmonic) it to an element $\varphi \in V$ which is 0 on Ω_{2}, and set $\Psi(t, x):=\varphi(x)$ for all $t \in[0, T]$. Testing the weak equation (a^{ϵ}) by $u-\delta \Psi, \delta>0$,

Sketch of the proof

This can be obtained letting $\bar{\psi} \in H^{\frac{1}{2}}\left(\Gamma ; \mathbb{R}^{d}\right)$ such that $\bar{\psi} \cdot \nu=1$ on the whole Γ and extending (harmonic) it to an element $\varphi \in V$ which is 0 on Ω_{2}, and set $\Psi(t, x):=\varphi(x)$ for all $t \in[0, T]$. Testing the weak equation (a^{ϵ}) by $u-\delta \Psi, \delta>0$, we obtain

$$
\begin{aligned}
& \left(\dot{u}^{\epsilon}(T), u^{\epsilon}(T)\right)-\left(u_{1}^{\epsilon}, u_{0}^{\epsilon}\right)-\int_{0}^{T}\left\|\dot{u}^{\epsilon}\right\|_{2}^{2}+\int_{\Omega_{1}} u^{\epsilon}(t), \delta \Psi d x-\int_{\Omega_{1}} u_{0}^{\epsilon}, \delta \Psi d x+\int_{0}^{T}\left\|\nabla u^{\epsilon}\right\|_{2}^{2} d t \\
& \left.+\frac{1}{2}\left\|\nabla u^{\epsilon}(T)\right\|_{2}^{2}-\frac{1}{2}\left\|\nabla u_{0}^{\epsilon}\right\|_{2}^{2}+((\nabla u, \delta \nabla \psi\rangle)\right)^{\Omega_{1}}+\left(\nabla u^{\epsilon}(T), \delta \nabla \Psi\right)^{\Omega_{1}}-\left(\nabla u_{0}^{\epsilon}, \delta \nabla \Psi\right)^{\Omega_{1}} \\
& +\int_{0}^{T} \int_{\Gamma} \beta_{\epsilon}\left(\left[u^{\epsilon}\right] \cdot \nu\right)\left(\left[u^{\epsilon}\right] \cdot \nu-\delta\right) d x d t+\left(\left(z^{\epsilon},\left|\left[u^{\epsilon}\right]\right|^{2}-\delta u^{\epsilon} \cdot \nu\right)\right)=\left\langle\left\langle f, u^{\epsilon}\right\rangle\right\rangle+\langle\langle f, \delta \Psi\rangle\rangle^{\Omega_{1}}
\end{aligned}
$$

and then using the previous estimates and the fact that $\left|\beta_{\epsilon}(x)\right| \leq \delta^{-1}\left|\beta_{\epsilon}(x)(x-\delta)\right|$ for $\epsilon \in(0,1)$.

Sketch of the proof

This can be obtained letting $\bar{\psi} \in H^{\frac{1}{2}}\left(\Gamma ; \mathbb{R}^{d}\right)$ such that $\bar{\psi} \cdot \nu=1$ on the whole Γ and extending (harmonic) it to an element $\varphi \in V$ which is 0 on Ω_{2}, and set $\Psi(t, x):=\varphi(x)$ for all $t \in[0, T]$. Testing the weak equation (a^{ϵ}) by $u-\delta \Psi, \delta>0$, we obtain

$$
\begin{aligned}
& \left(\dot{u}^{\epsilon}(T), u^{\epsilon}(T)\right)-\left(u_{1}^{\epsilon}, u_{0}^{\epsilon}\right)-\int_{0}^{T}\left\|\dot{u}^{\epsilon}\right\|_{2}^{2}+\int_{\Omega_{1}} u^{\epsilon}(t), \delta \Psi d x-\int_{\Omega_{1}} u_{0}^{\epsilon}, \delta \Psi d x+\int_{0}^{T}\left\|\nabla u^{\epsilon}\right\|_{2}^{2} d t \\
& \left.+\frac{1}{2}\left\|\nabla u^{\epsilon}(T)\right\|_{2}^{2}-\frac{1}{2}\left\|\nabla u_{0}^{\epsilon}\right\|_{2}^{2}+((\nabla u, \delta \nabla \psi\rangle)\right)^{\Omega_{1}}+\left(\nabla u^{\epsilon}(T), \delta \nabla \Psi\right)^{\Omega_{1}}-\left(\nabla u_{0}^{\epsilon}, \delta \nabla \Psi\right)^{\Omega_{1}} \\
& +\int_{0}^{T} \int_{\Gamma} \beta_{\epsilon}\left(\left[u^{\epsilon}\right] \cdot \nu\right)\left(\left[u^{\epsilon}\right] \cdot \nu-\delta\right) d x d t+\left(\left(z^{\epsilon},\left|\left[u^{\epsilon}\right]\right|^{2}-\delta u^{\epsilon} \cdot \nu\right)\right)=\left\langle\left\langle f, u^{\epsilon}\right\rangle\right\rangle+\langle\langle f, \delta \Psi\rangle\rangle^{\Omega_{1}} .
\end{aligned}
$$

and then using the previous estimates and the fact that $\left|\beta_{\epsilon}(x)\right| \leq \delta^{-1}\left|\beta_{\epsilon}(x)(x-\delta)\right|$ for $\epsilon \in(0,1)$.

The previous estimate implies

$$
\begin{equation*}
\left\|\dot{u}^{\epsilon}\right\|_{W^{1,1}\left(0, T ; \tilde{H}^{-2}(\Omega)\right)} \leq M, \tag{32}
\end{equation*}
$$

for all $\epsilon \in(0,1)$.

Sketch of the proof

Now we employ Helly selection principle combined with a generalized version of Aubin-Lions compactness principle entail the strong convergence

$$
\begin{align*}
& u^{\epsilon} \rightarrow u \quad \text { strongly in } H^{1}\left(0, T ; L^{2}(\Omega)\right) \tag{33}\\
& u^{\epsilon}(t) \rightarrow u(t) \quad \text { strongly in } L^{2}(\Omega) \text { for all } t \in[0, T] \tag{34}
\end{align*}
$$

Sketch of the proof

Now we employ Helly selection principle combined with a generalized version of Aubin-Lions compactness principle entail the strong convergence

$$
\begin{align*}
& u^{\epsilon} \rightarrow u \quad \text { strongly in } H^{1}\left(0, T ; L^{2}(\Omega)\right) \tag{33}\\
& u^{\epsilon}(t) \rightarrow u(t) \quad \text { strongly in } L^{2}(\Omega) \text { for all } t \in[0, T] . \tag{34}
\end{align*}
$$

Another key fact is the following:

Lemma

There holds

$$
\begin{equation*}
\left\|\beta_{\epsilon}\left(\left[u^{\epsilon}\right] \cdot \nu\right)\right\|_{\mathcal{H}^{\prime}} \leq M \tag{35}
\end{equation*}
$$

for all $\epsilon \in(0,1)$.

Sketch of the proof

Now we employ Helly selection principle combined with a generalized version of Aubin-Lions compactness principle entail the strong convergence

$$
\begin{align*}
& u^{\epsilon} \rightarrow u \quad \text { strongly in } H^{1}\left(0, T ; L^{2}(\Omega)\right) \tag{33}\\
& u^{\epsilon}(t) \rightarrow u(t) \quad \text { strongly in } L^{2}(\Omega) \text { for all } t \in[0, T] . \tag{34}
\end{align*}
$$

Another key fact is the following:

Lemma

There holds

$$
\begin{equation*}
\left\|\beta_{\epsilon}\left(\left[u^{\epsilon}\right] \cdot \nu\right)\right\|_{\mathcal{H}^{\prime}} \leq M \tag{35}
\end{equation*}
$$

for all $\epsilon \in(0,1)$.
Using the previous estimate we argue as before using an arbitrary function $\psi \in H^{\frac{1}{2}}\left(\Gamma ; \mathbb{R}^{d}\right)$ and suitably extending it to V.

Sketch of the proof

Now we employ Helly selection principle combined with a generalized version of Aubin-Lions compactness principle entail the strong convergence

$$
\begin{align*}
& u^{\epsilon} \rightarrow u \quad \text { strongly in } H^{1}\left(0, T ; L^{2}(\Omega)\right) \tag{33}\\
& u^{\epsilon}(t) \rightarrow u(t) \quad \text { strongly in } L^{2}(\Omega) \text { for all } t \in[0, T] . \tag{34}
\end{align*}
$$

Another key fact is the following:

Lemma

There holds

$$
\begin{equation*}
\left\|\beta_{\epsilon}\left(\left[u^{\epsilon}\right] \cdot \nu\right)\right\|_{\mathcal{H}^{\prime}} \leq M \tag{35}
\end{equation*}
$$

for all $\epsilon \in(0,1)$.
Using the previous estimate we argue as before using an arbitrary function $\psi \in H^{\frac{1}{2}}\left(\Gamma ; \mathbb{R}^{d}\right)$ and suitably extending it to V.
We have then found

$$
\beta_{\epsilon}\left(\left[u^{\epsilon}\right] \cdot \nu\right) \rightharpoonup \xi,
$$

for some $\xi \in \mathcal{H}^{\prime}$.

Sketch of the proof

We are now ready to prove (b). To this aim we apply Lemma 3, and then we have to check that

$$
\begin{equation*}
\limsup _{\epsilon \rightarrow 0}\left\langle\left\langle\beta^{\epsilon}\left(u^{\epsilon}\right), u^{\epsilon}\right\rangle\right\rangle \leq\langle\langle\xi, u\rangle\rangle . \tag{36}
\end{equation*}
$$

Sketch of the proof

We are now ready to prove (b). To this aim we apply Lemma 3, and then we have to check that

$$
\begin{equation*}
\limsup _{\epsilon \rightarrow 0}\left\langle\left\langle\beta^{\epsilon}\left(u^{\epsilon}\right), u^{\epsilon}\right\rangle\right\rangle \leq\langle\langle\xi, u\rangle\rangle . \tag{36}
\end{equation*}
$$

Thanks to the convergences above it is easily seen that (a) holds. Using (27), we write

$$
\begin{align*}
& \left\langle\left\langle\beta^{\epsilon}\left(\left[u^{\epsilon}\right] \cdot \nu\right), u^{\epsilon}\right\rangle\right\rangle=\left\|\dot{u}^{\epsilon}\right\|_{L^{2}\left(0, T ; L^{2}\right)}^{2}-\left(\dot{u}^{\epsilon}(T), u^{\epsilon}(T)\right)+\left(u_{1}, u_{0}\right)-\frac{1}{2}\left\|\nabla u^{\epsilon}(T)\right\|^{2} \\
& +\frac{1}{2}\left\|\nabla u_{0}\right\|^{2}-\left\|\nabla u^{\epsilon}\right\|_{L^{2}\left(0, T ; L^{2}\right)}^{2}-\int_{0}^{T} \int_{\Gamma} z^{\epsilon}(t)\left[u^{\epsilon}(t)\right]^{2} d x d t+\left(\left(f, u^{\epsilon}\right)\right) \tag{37}
\end{align*}
$$

Sketch of the proof

We are now ready to prove (b). To this aim we apply Lemma 3, and then we have to check that

$$
\begin{equation*}
\limsup _{\epsilon \rightarrow 0}\left\langle\left\langle\beta^{\epsilon}\left(u^{\epsilon}\right), u^{\epsilon}\right\rangle\right\rangle \leq\langle\langle\xi, u\rangle\rangle . \tag{36}
\end{equation*}
$$

Thanks to the convergences above it is easily seen that (a) holds. Using (27), we write

$$
\begin{align*}
& \left\langle\left\langle\beta^{\epsilon}\left(\left[u^{\epsilon}\right] \cdot \nu\right), u^{\epsilon}\right\rangle\right\rangle=\left\|\dot{u}^{\epsilon}\right\|_{L^{2}\left(0, T ; L^{2}\right)}^{2}-\left(\dot{u}^{\epsilon}(T), u^{\epsilon}(T)\right)+\left(u_{1}, u_{0}\right)-\frac{1}{2}\left\|\nabla u^{\epsilon}(T)\right\|^{2} \\
& +\frac{1}{2}\left\|\nabla u_{0}\right\|^{2}-\left\|\nabla u^{\epsilon}\right\|_{L^{2}\left(0, T ; L^{2}\right)}^{2}-\int_{0}^{T} \int_{\Gamma} z^{\epsilon}(t)\left[u^{\epsilon}(t)\right]^{2} d x d t+\left(\left(f, u^{\epsilon}\right)\right) . \tag{37}
\end{align*}
$$

Taking the lim sup we get

$$
\begin{align*}
& \leq\|\dot{u}\|_{L^{2}\left(0, T ; L^{2}\right)}^{2}-(\dot{u}(T), u(T))+\left(u_{1}, u_{0}\right)-\frac{1}{2}\|\nabla u(T)\|^{2}+\frac{1}{2}\left\|\nabla u_{0}\right\|^{2}-\|\nabla u\|_{L^{2}\left(0, T ; L^{2}\right)}^{2} \\
& +\int_{0}^{T} \int_{\Gamma} z(t)[u(t)]^{2} d x d t+((f, u))=\langle\langle\xi, u\rangle\rangle \tag{38}
\end{align*}
$$

and the claim follows.

Some Remarks

We have seen that ξ and ξ_{t} coincides with Borel measures concentrated on the set where $[u] \cdot \nu=0$. Thanks to the fact that

$$
\dot{u} \in B V\left(0, T ; H^{-2}(\Omega)\right),
$$

it can be proved that $\xi_{t} \equiv \xi_{\llcorner[0, t] \times \Gamma}$ outside a set of countable many times.

Some Remarks

We have seen that ξ and ξ_{t} coincides with Borel measures concentrated on the set where $[u] \cdot \nu=0$. Thanks to the fact that

$$
\dot{u} \in B V\left(0, T ; H^{-2}(\Omega)\right),
$$

it can be proved that $\xi_{t} \equiv \xi_{\llcorner[0, t] \times \Gamma}$ outside a set of countable many times. In some sense the presence of such jumps is the main difficulty to prove an enery balance (if it holds). Outside these points an energy balance holds true!!!

Some Remarks

We have seen that ξ and ξ_{t} coincides with Borel measures concentrated on the set where $[u] \cdot \nu=0$. Thanks to the fact that

$$
\dot{u} \in B V\left(0, T ; H^{-2}(\Omega)\right),
$$

it can be proved that $\xi_{t} \equiv \xi_{\llcorner[0, t] \times \Gamma}$ outside a set of countable many times. In some sense the presence of such jumps is the main difficulty to prove an enery balance (if it holds). Outside these points an energy balance holds true!!!

In dimension $d=1$ energy balance holds!

Some Remarks

We have seen that ξ and ξ_{t} coincides with Borel measures concentrated on the set where $[u] \cdot \nu=0$. Thanks to the fact that

$$
\dot{u} \in B V\left(0, T ; H^{-2}(\Omega)\right),
$$

it can be proved that $\xi_{t} \equiv \xi_{\llcorner[0, t] \times \Gamma}$ outside a set of countable many times. In some sense the presence of such jumps is the main difficulty to prove an enery balance (if it holds). Outside these points an energy balance holds true!!!

In dimension $d=1$ energy balance holds!
The behaviour of the constraint is quite independent of the flow rule of the variable z. For instance, the same behaviour takes place when we add a viscosity term in the flow rule

$$
\frac{1}{2}|[u]|^{2}+\dot{z}-\alpha \leq 0
$$

(S.-G. Schimperna).

THANK YOU FOR ATTENTION!

Some references:

- E. Bonetti, E. Rocca, R. S., G. Schimperna, On the strongly damped wave equation with constraint, preprint arXiv:1503.01911 (2015), 1-21.
- R. S., G. Schimperna, A contact problem for viscoelastic bodies with inertial effects and unilateral boundary constraints, preprint: http://cvgmt.sns.it/paper/2744/.
- R. S., Limit of viscous dynamic processes in delamination as the viscosity and inertia vanish, preprint: http://cvgmt.sns.it/paper/2434/.

