Nonlocal diffuse-interface models for binary viscous incompressible fluids

Sergio Frigeri¹

¹Dipartimento di Matematica "F. Enriques" Università degli Studi di Milano www.mat.unimi.it/users/frigeri

MathProSpeM2012 INdAM, Roma, April 16-19 2012

Supported by the FP7-IDEAS-ERC-StG Grant "EntroPhase"

erc

ヘロト ヘ戸ト ヘヨト ヘヨト

Local Cahn-Hilliard-Navier-Stokes systems

In
$$\Omega \times (0, \infty)$$
, $\Omega \subset \mathbb{R}^d$, $d = 2, 3$
 $u_t + (u \cdot \nabla)u - \operatorname{div}(\nu(\varphi)Du) + \nabla \pi = \mu \nabla \varphi + h$
 $\operatorname{div}(u) = 0$
 $\varphi_t + u \cdot \nabla \varphi = \operatorname{div}(k(\varphi)\nabla \mu)$
 $\mu = -\epsilon \Delta \varphi + \epsilon^{-1} F'(\varphi)$

 μ chemical potential, first variation of the free energy

$$E(\varphi) = \int_{\Omega} \left(\frac{\epsilon}{2} |\nabla \varphi|^2 + \frac{1}{\epsilon} F(\varphi) \right) dx$$

Rigorous derivation by Gurtin, Polignone and Viñals '96

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Local Cahn-Hilliard-Navier-Stokes systems

- F double-well potential
 - Regular, e.g.

$$F(s) = (1 - s^2)^2, \quad \forall s \in \mathbb{R}$$

• Singular, e.g.

$$F(s) = \frac{\theta}{2}((1+s)\log(1+s) + (1-s)\log(1-s)) - \frac{\theta_c}{2}s^2$$

for all $s \in (-1, 1)$, with $\theta < \theta_c$

 Mathematical results by V.N. Starovoitov ('97), F. Boyer ('99), Abels '09, Abels and Feireisl '08 (existence of weak and strong solutions, uniqueness and regularity) and by Abels '09, Gal & Grasselli '09, Zhao, Wu & Huang '09 (convergence to single equilibria), Abels '09, Gal & Grasselli '09, '10 and '11 (attractors).

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Nonlocal Cahn-Hilliard-Navier-Stokes systems

Nonlocal free energy (van der Waals)

$$\mathcal{E}(\varphi) = \frac{1}{4} \int_{\Omega} \int_{\Omega} J(x - y) (\varphi(x) - \varphi(y))^2 dx dy + \eta \int_{\Omega} F(\varphi(x)) dx$$

where $J : \mathbb{R}^d \to \mathbb{R}$ s.t. J(x) = J(-x)Local free energy is an approximation of the nonlocal one

Nonlocal chemical potential

$$\mu = \mathbf{a}\varphi - \mathbf{J} * \varphi + \eta \mathbf{F}'(\varphi)$$

where

$$(J * \varphi)(x) := \int_{\Omega} J(x - y)\varphi(y) dy \quad a(x) := \int_{\Omega} J(x - y) dy$$

伺 とくき とくき とう

Nonlocal Cahn-Hilliard-Navier-Stokes systems

Consider in $\Omega \times (0,\infty)$ ($\Omega \subset \mathbb{R}^d$ bounded, d = 2,3)

$$\begin{split} \varphi_t + u \cdot \nabla \varphi &= \Delta \mu \\ \mu &= a\varphi - J * \varphi + F'(\varphi) \\ u_t - \operatorname{div}(\nu(\varphi)Du) + (u \cdot \nabla)u + \nabla \pi &= \mu \nabla \varphi + h \\ \operatorname{div}(u) &= 0 \end{split}$$

subject to

$$\frac{\partial \mu}{\partial n} = 0 \quad u = 0 \quad \text{on} \quad \partial \Omega \times (0, \infty)$$
$$u(0) = u_0 \quad \varphi(0) = \varphi_0 \quad \text{in} \quad \Omega$$

(雪) (ヨ) (ヨ)

1

Some literature on nonlocal models

- Cahn-Hilliard equation: Giacomin & Lebowitz '97 and '98; Chen & Fife '00; Gajewski '02; Gajewski & Zacharias '03; Han '04; Bates & Han '05; Colli, Krejčí, Rocca & Sprekels '07; Londen & Petzeltová '11
- Navier-Stokes-Korteweg systems (liquid-vapour phase transitions): Rohde '05
- several other contributions on nonlocal Allen-Cahn equations and phase-field systems (notably by Bates et al. and Sprekels et al.)

・ 「「」 ・ ・ 三 ト ・ 三 ト ・

(A1) $J \in W^{1,1}(\mathbb{R}^d)$ s.t. $a(x) = \int_{\Omega} J(x-y) dy \ge 0$ (A2) $F \in C^2(\mathbb{R})$ and $\exists c_0 > 0$ s.t. $F''(s) + a(x) > c_0, \quad \forall s \in \mathbb{R}, \text{ a.e. } x \in \Omega$ (A3) $\exists c_1 > 0, c_2 > 0 \text{ and } q > 0 \text{ s.t.}$ $F''(s) + a(x) > c_1 |s|^{2q} - c_2, \quad \forall s \in \mathbb{R}, \quad \text{a.e. } x \in \Omega$ (A4) $\exists c_3 > 0, c_4 > 0 \text{ and } p \in (1, 2] \text{ s.t.}$ $|F'(s)|^p < c_3|F(s)| + c_4, \quad \forall s \in \mathbb{R}$ (A5) $h \in L^2_{loc}(\mathbb{R}^+; V'_{div})$ $\mathbb{R}^+ := [0, \infty)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Theorem (Colli, F. & Grasselli '11)

Assume (A1)–(A5). Then, if $u_0 \in H_{div}$, $\varphi_0 \in H$ with $F(\varphi_0) \in L^1(\Omega)$, for every $T > 0 \exists a \text{ weak sol } [u, \varphi] \text{ on } [0, T]$ corresponding to u_0 and φ_0 s.t.

$$\begin{split} & u \in L^{\infty}(0, T; H_{div}) \cap L^{2}(0, T; V_{div}) \\ & \varphi \in L^{\infty}(0, T; L^{2+2q}(\Omega)) \cap L^{2}(0, T; V) \\ & u_{t} \in L^{4/d}(0, T; V'_{div}) \\ & \varphi_{t} \in L^{2}(0, T; V') \quad if \quad d = 2 \quad or \quad d = 3 \text{ and } q \ge 1/2 \\ & \mu \in L^{2}(0, T; V) \end{split}$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Theorem (Colli, F. & Grasselli '11)

s.t. the energy inequality

$$egin{aligned} \mathcal{E}(u(t),arphi(t)) &+ \int_{m{s}}^t (
u \|
abla u(au) \|^2 + \|
abla \mu(au) \|^2) d au \ &\leq \mathcal{E}(u(m{s}),arphi(m{s})) + \int_{m{s}}^t \langle h, u(au)
angle d au \end{aligned}$$

holds for all $t \ge s$ and for a.a. $s \in (0, \infty)$, including s = 0We have set

$$\mathcal{E}(u(t),\varphi(t)) = \frac{1}{2} ||u(t)||^2 + \frac{1}{4} \int_{\Omega} \int_{\Omega} J(x-y)(\varphi(x,t) - \varphi(y,t))^2 dx dy + \int_{\Omega} F(\varphi(t))$$

Main difficulty of the problem

 The nonlocal term implies that φ is not as regular as for the standard (local) CHNS system

 $\varphi \in L^2(H^1)$ (nonlocal), instead of $\varphi \in L^{\infty}(H^1)$ (local)

Consequence

 Uniqueness of weak sols in 2D and regularity results (higher order estimates in 2D and 3D) are open issues

ヘロン 人間 とくほ とくほ とう

Asymptotic behavior in 2D (smooth potentials)

Corollary (Colli, F. & Grasselli '11)

Assume (A1)–(A5) and d = 2. Then

every weak sol z := [u, φ] satisfies the energy identity

$$\frac{d}{dt}\mathcal{E}(z) + \nu \|\nabla u\|^2 + \|\nabla \mu\|^2 = \langle h, u \rangle \qquad \forall t \ge 0$$

• if
$$h \in L^2_{tb}(\mathbb{R}^+; V'_{div})$$
, i.e.

$$\|h\|^2_{L^2_{tb}(\mathbb{R}^+;\,V'_{div})}:=\sup_{t\geq 0}\int_t^{t+1}\|h(au)\|^2_{V'_{div}}d au<\infty$$

then every weak sol z satisfies the dissipative estimate

$$\mathcal{E}(z(t)) \leq \mathcal{E}(z_0)e^{-kt} + F(m)|\Omega| + K \qquad \forall t \geq 0$$

 $m = \bar{\varphi}_0$ and $k, K \ge 0$ are independent of $z_0 := [u_0, \varphi_0]$

Existence of the global attractor (autonomous case) For $m \ge 0$ given, set

$$\mathcal{X}_m = \mathcal{H}_{div} imes \mathcal{Y}_m$$

$$\mathcal{Y}_m = \{ \varphi \in \mathcal{H} : \mathcal{F}(\varphi) \in L^1(\Omega), \ |\bar{\varphi}| \leq m \}$$

Let \mathcal{G} be the set of all weak sols corresponding to all initial data $z_0 = [u_0, \varphi_0] \in \mathcal{X}_m$.

Theorem (F. & Grasselli '11)

Suppose (A1)–(A4) hold and $h \in V'_{div}$. Then \mathcal{G} is a generalized semiflow on \mathcal{X}_m which possesses the global attractor \mathcal{A}_m

ヘロン 人間 とくほ とくほ とう

Theorem (F. & Grasselli '11)

Assume (A1)–(A4), $h \in L^2_{tb}(\mathbb{R}^+, V'_{div})$ and d = 3. Then the above dissipative estimate still holds for all t > 0 for all weak sols satisfying the energy inequality between s and t for a.a. $s \in (0, \infty)$, including s = 0, and for all $t \ge s$

Trajectory attractor approach (Chepyzhov & Vishik)

- phase space is a space of trajectories K⁺_Σ on which the translation semigroup {T(t)} acts
- the attraction of the trajectory attractor A_Σ is w.r.t. a suitable weak topology Θ⁺_{loc} for the family of bounded (in a suitable norm or metric) subsets of K⁺_Σ

イロト 不得 とくほ とくほ とう

Trajectory attractor in 3D (smooth potentials)

Introduce the space

$$\begin{split} \mathcal{F}_{loc}^{+} &= \Big\{ [v,\psi] \in L^{\infty}_{loc}(\mathbb{R}^+; \mathcal{H}_{div} \times L^{2+2q}(\Omega)) \cap L^2_{loc}(\mathbb{R}^+; \mathcal{V}_{div} \times \mathcal{V}) : \\ &\quad v_t \in L^{4/3}_{loc}(\mathbb{R}^+; \mathcal{V}_{div}'), \; \psi_t \in L^2_{loc}(\mathbb{R}^+; \mathcal{V}'), \; |\overline{\psi}(t)| \leq m \Big\} \end{split}$$

endowed with the topology Θ_{loc}^+ of local weak convergence

Definition

For every $h \in L^2_{loc}(\mathbb{R}^+; V'_{div})$ the trajectory space \mathcal{K}_h^+ is the set of all weak sols $z = [v, \psi]$ (with external force *h*) in \mathcal{F}_{loc}^+ satisfying the energy inequality for all $t \ge s$ and for a.a. $s \in (0, \infty)$

Let \mathcal{F}_b^+ be a subspace of \mathcal{F}_{loc}^+ endowed with a norm used to define bounded subsets of $\mathcal{K}_{\Sigma}^+ := \cup_{h \in \Sigma} \mathcal{K}_h^+$. We have $\mathcal{K}_{\Sigma}^+ \subset \mathcal{F}_b^+$

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Trajectory attractor in 3D (smooth potentials)

Set

$$\Sigma = \mathcal{H}_+(h_0) := \left[\{ T(t)h_0, t \ge 0 \}
ight]_{L^2_{loc,w}(\mathbb{R}^+; H_{div})}$$

 h_0 translation bounded in $L^2_{loc}(\mathbb{R}^+; H_{div})$

Theorem (F. & Grasselli '11)

Let (A1)–(A4) hold. In addition, suppose that (A4) holds with $p \in (1,3/2]$ and that 2q + 2 = p'. If

$$h_0 \in L^2_{tb}(\mathbb{R}^+; H_{div})$$

then {*T*(*t*)} acting on $\mathcal{K}^+_{\mathcal{H}_+(h_0)}$ possesses the uniform (with respect to $h \in \mathcal{H}_+(h_0)$) trajectory attractor $\mathcal{A}_{\mathcal{H}_+(h_0)}$. This set is strictly invariant, bounded in \mathcal{F}^+_b and compact in Θ^+_{loc} . In addition, if *F* has growth ≤ 6 , then $\mathcal{K}^+_{\mathcal{H}_+(h_0)}$ is closed in Θ^+_{loc} , and $\mathcal{A}_{\mathcal{H}_+(h_0)} \subset \mathcal{K}^+_{\mathcal{H}_+(h_0)}$

$$F = F_1 + F_2$$
 $F_1 \in C^{2+2q}(-1,1)$ $q \in \mathbb{N}$ $F_2 \in C^2([-1,1])$

(P1)
$$F_1^{(2+2q)}(s) \ge c_1 > 0$$
 near $s = \pm 1$
(P2) For each $k = 0, 1, \dots, 2 + 2q$ and each $j = 0, 1, \dots, q$

$$egin{array}{ll} F_1^{(k)}(s) \geq 0 & ext{ near } s=1 \ F_1^{(2j+2)}(s) \geq 0 & F_1^{(2j+1)}(s) \leq 0 & ext{ near } s=-1 \end{array}$$

(P3) $F_1^{(2+2q)}$ non-decreasing (increasing) near s = 1 (s = -1) (P4) $\exists \alpha, \beta \in \mathbb{R}$ with $\alpha + \beta > -\min_{[-1,1]} F_2''$ s.t.

$$m{F}_1^{''}(m{s})\geq lpha \qquad orall m{s}\in (-1,1), \quad m{a}(m{x})\geq eta \qquad ext{a.e. } m{x}\in \Omega$$

(P5) $\lim_{s\to\pm 1} F'_1(s) = \pm \infty$

(a) < (b) < (b) < (b) < (b)</p>

Remark

(P1)-(P5) satisfied for the logarithmic double-well potential F for any $q \in \mathbb{N}$. In particular, setting

$$F_1(s) = rac{ heta}{2}((1+s)\log(1+s)+(1-s)\log(1-s))$$
 $F_2(s) = -rac{ heta_c}{2}s^2$

then (P4) satisfied iff $\beta > \theta_c - \theta$

Remark

• (P1), (P2)
$$\Rightarrow$$
 $F_\epsilon(s) \ge c_q |s|^{2+2q} - d_q$

• (P2), (P4)
$$\Rightarrow$$
 $F_{\epsilon}^{\prime\prime}(s) + a(x) \geq c_0 > 0$

for ϵ small enough, where F_{ϵ} is a regular approximation of F with (2 + 2q)-growth

ヘロト ヘアト ヘビト ヘビト

Theorem (F. & Grasselli '12)

Assume (A1), (A5) and that (P1)–(P5) hold for some fixed positive integer q. Let $u_0 \in H_{div}$, $\varphi_0 \in L^{\infty}(\Omega)$ with $F(\varphi_0) \in L^1(\Omega)$. In addition, assume that $|\overline{\varphi_0}| < 1$. Then, for every $T > 0 \exists$ a weak sol $z := [u, \varphi]$ on [0, T] corresponding to $[u_0, \varphi_0]$ such that $\overline{\varphi}(t) = \overline{\varphi_0}$ for all $t \in [0, T]$ and

$$egin{aligned} arphi \in L^{\infty}(\mathcal{Q}), & |arphi(x,t)| < 1 \; a.e\,(x,t) \in \mathcal{Q} := \Omega imes (0,T) \ arphi \in L^{\infty}(0,T; L^{2+2q}(\Omega)) \end{aligned}$$

Furthermore, the energy inequality holds between s and t, for all $t \ge s$ and for a.a. $s \in (0, \infty)$, including s = 0. If d = 2, every weak sol z satisfies the energy identity

ヘロン 人間 とくほ とくほ とう

Main steps of the proof

- Approximate problem with potential F_{ϵ}
- Uniform (w.r.t. ϵ) estimates for the approximate sol $z_{\epsilon} = [u_{\epsilon}, \varphi_{\epsilon}]$
- Use $|\overline{\varphi_0}| < 1$ to control the averages $\{\overline{\mu_{\epsilon}}\}$
- Pass to the limit $z_{\epsilon} \rightarrow z$
- Use (P5) to show that |φ| < 1 in Ω × (0, T) and hence that z = [u, φ] is indeed a sol

イロト イポト イヨト イヨト 一臣

Asymptotic behavior in 2D (singular potentials)

• \mathcal{G} set of all weak sols corresponding to all initial data $z_0 = [u_0, \varphi_0] \in \mathcal{X}_{m_0} := H_{div} \times \mathcal{Y}_{m_0}, m_0 \in (0, 1)$

 $\mathcal{Y}_{m_0} := \{ \varphi \in L^{\infty}(\Omega) : |\varphi| < 1, \ F(\varphi) \in L^1(\Omega), |\overline{\varphi}| \leq m_0 \}$

Theorem (F. & Grasselli '12)

Let d = 2 and suppose that (A1), (P1)–(P5) hold and that $h \in V'_{div}$. Then \mathcal{G} is a generalized semiflow on \mathcal{X}_{m_0} . If F is bounded in (-1, 1), then \mathcal{G} possesses the global attractor

ヘロン 人間 とくほ とくほ とう

Trajectory attractor in 3D (singular potentials)

For $m_0 \in (0, 1)$

$$\begin{split} \mathcal{F}_{loc}^{+} &= \Big\{ [\boldsymbol{v}, \psi] \in L^{\infty}_{loc}(\mathbb{R}^{+}; H_{div} \times L^{2+2q}(\Omega)) \cap L^{2}_{loc}(\mathbb{R}^{+}; V_{div} \times V) : \\ &\quad \boldsymbol{v}_{t} \in L^{4/3}_{loc}(\mathbb{R}^{+}; V_{div}'), \ \psi_{t} \in L^{2}_{loc}(\mathbb{R}^{+}; V'), \ |\overline{\psi}(t)| \leq m_{0} \\ &\quad \psi \in L^{\infty}(Q_{M}), \ |\psi| < 1 \text{ in } Q_{M}, \ \forall M > 0 \Big\}, \quad Q_{M} := \Omega \times (0, M) \end{split}$$

with the topology Θ_{loc}^+ of local weak convergence, and

$$\begin{aligned} \mathcal{F}_b^+ &= \left\{ [v,\psi] \in L^\infty(\mathbb{R}^+; \mathcal{H}_{div} \times L^{2+2q}(\Omega)) \cap L^2_{tb}(\mathbb{R}^+; V_{div} \times V) : \\ &\quad v_t \in L^{4/3}_{tb}(\mathbb{R}^+; V'_{div}), \ \psi_t \in L^2_{tb}(\mathbb{R}^+; V'), |\overline{\psi}(t)| \leq m_0, \\ &\quad \psi \in L^\infty(\mathcal{Q}_\infty), \ |\psi| < 1 \text{ a.e. in } \mathcal{Q}_\infty, \ \mathcal{F}(\psi) \in L^\infty(\mathbb{R}^+; \mathcal{L}^1(\Omega)) \right\} \end{aligned}$$

metric subspace used to define bounded subsets of the space of trajectories $\mathcal{K}^+_{\mathcal{H}_+(h_0)}$

Theorem (F. & Grasselli '12)

Let d = 3 and assume that (A1), (P1)-(P5) hold and $h_0 \in L^2_{tb}(\mathbb{R}^+; H_{div})$. Then, the translation semigroup $\{T(t)\}$ acting on $\mathcal{K}^+_{\mathcal{H}_+(h_0)}$ possesses the uniform (w.r.t. $h \in \mathcal{K}^+_{\mathcal{H}_+(h_0)}$) trajectory attractor $\mathcal{A}_{\mathcal{H}_+(h_0)}$. This set is strictly invariant, bounded in \mathcal{F}^+_b and compact in Θ^+_{loc} . In addition, if F is bounded on (-1, 1), then $\mathcal{K}^+_{\mathcal{H}_+(h_0)}$ is closed in Θ^+_{loc} , and $\mathcal{A}_{\mathcal{H}_+(h_0)} \subset \mathcal{K}^+_{\mathcal{H}_+(h_0)}$

<ロ> <四> <ヨ> <ヨ> 三田

Some developments and open issues

In progress

nonlocal CHNS system with degenerate mobility

$$m(\varphi) = 1 - \varphi^2$$

- nonlocal Ladyzhenskaya-Cahn-Hilliard models
- robustness of the trajectory attractor (w.r.t. the approximating the potential)
- strong trajectory attractor in 2D

Open issues

- uniqueness for N = 2 and existence of strong sols
- connectedness of \mathcal{A}_m
- unmatched densities
- compressible models

ヘロト ヘアト ヘビト ヘビト