

Weierstrass Institute for Applied Analysis and Stochastics

On some local and nonlocal diffuse interface models

Sergio Frigeri

ERC Group "Entropy Formulation of Evolutionary Phase Transitions"

Supported by the FP7-IDEAS-ERC-StG Grant "EntroPhase"

Mohrenstrasse 39 · 10117 Berlin · Germany · Tel. +49 30 20372 0 · www.wias-berlin.de WIAS DAY, February 19, 2014

The motivation

Local Cahn-Hilliard-Navier-Stokes model

Nonlocal model for binary fluid flow and phase separation

Analytical results

A local diffuse interface model related to tumor growth

Some open related problems

The motivation

- An isothermal model for the flow of a mixture of two
 - viscous
 - incompressible
 - Newtonian fluids
 - of equal density
 - Avoid problems related to interface singularities
 - \implies use a diffuse interface model
 - \implies the classical sharp interface replaced by a thin interfacial region
- A partial mixing of the macroscopically immiscible fluids is allowed
 - $\implies \varphi$ is the order parameter, e.g. the concentration difference

The motivation

- An isothermal model for the flow of a mixture of two
 - viscous
 - incompressible
 - Newtonian fluids
 - of equal density
- Avoid problems related to interface singularities
 - \implies use a diffuse interface model
 - \implies the classical sharp interface replaced by a thin interfacial region
- A partial mixing of the macroscopically immiscible fluids is allowed
 - $\implies \varphi$ is the order parameter, e.g. the concentration difference
- The original idea of diffuse interface model for fluids: HOHENBERG and HALPERIN, '77 → H-model

Later, GURTIN ET AL., '96: continuum mechanical derivation based on microforces

Models of two-phase or two-component fluids are receiving growing attention (e.g., ABELS, BOYER, GARCKE, GRÜN, GRASSELLI, LOWENGRUB, TRUSKINOVSKI, ...)

In
$$\Omega \times (0, \infty), \Omega \subset \mathbb{R}^d, d = 2, 3$$

 $\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} - \nu\Delta\mathbf{u} + \nabla\pi = \mu\nabla\varphi + \mathbf{h}$
 $\operatorname{div}(\mathbf{u}) = 0$
 $\varphi_t + \mathbf{u} \cdot \nabla\varphi = \operatorname{div}(m(\varphi)\nabla\mu)$
 $\mu = -\epsilon\Delta\varphi + \epsilon^{-1}F'(\varphi)$

$$\begin{split} \ln \Omega \times (0,\infty), \Omega \subset \mathbb{R}^d, d &= 2,3 \\ \mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} - \nu \Delta \mathbf{u} + \nabla \pi = \mu \nabla \varphi + \mathbf{h} \\ \operatorname{div}(\mathbf{u}) &= 0 \\ \varphi_t + \mathbf{u} \cdot \nabla \varphi &= \operatorname{div} (m(\varphi) \nabla \mu) \\ \mu &= -\epsilon \Delta \varphi + \epsilon^{-1} F'(\varphi) \end{split}$$

μ: chemical potential (Cahn-Hilliard), first variation of the (total Helmholtz) free energy

$$E(\varphi) = \int_{\Omega} \left(\frac{\epsilon}{2} |\nabla \varphi|^2 + \frac{1}{\epsilon} F(\varphi)\right) dx$$

$$\begin{split} \ln\Omega\times(0,\infty), \Omega\subset\mathbb{R}^d, d=2,3\\ \mathbf{u}_t+(\mathbf{u}\cdot\nabla)\mathbf{u}-\nu\Delta\mathbf{u}+\nabla\pi=\mu\nabla\varphi+\mathbf{h}\\ \mathrm{div}(\mathbf{u})=0\\ \varphi_t+\mathbf{u}\cdot\nabla\varphi=\mathrm{div}\left(m(\varphi)\nabla\mu\right)\\ \mu=-\epsilon\Delta\varphi+\epsilon^{-1}F'(\varphi) \end{split}$$

μ: chemical potential (Cahn-Hilliard), first variation of the (total Helmholtz) free energy

$$E(\varphi) = \int_{\Omega} \left(\frac{\epsilon}{2} |\nabla \varphi|^2 + \frac{1}{\epsilon} F(\varphi)\right) dx$$

■ *F* double-well potential: Helmholtz free energy density

Singular

$$F(s) = -\frac{\theta_c}{2}s^2 + \frac{\theta}{2}\big((1+s)\log(1+s) + (1-s)\log(1-s)\big)$$
 for all $s \in (-1,1)$, with $0 < \theta < \theta_c$

Regular

$$F(s) = (1 - s^2)^2 \quad \forall s \in \mathbb{R}$$

Nonlocal free energy rigorously justified by Giacomin and Lebowitz ('97 & '98) as macroscopic limit of microscopic phase segregation models

$$E(\varphi) = \frac{1}{4} \int_{\Omega} \int_{\Omega} J(x-y)(\varphi(x) - \varphi(y))^2 dx dy + \int_{\Omega} F(\varphi(x)) dx$$

 $J:\mathbb{R}^d\to\mathbb{R}$ interaction kernel s.t. J(x)=J(-x) (usually nonnegative and radial)

Nonlocal free energy rigorously justified by Giacomin and Lebowitz ('97 & '98) as macroscopic limit of microscopic phase segregation models

$$E(\varphi) = \frac{1}{4} \int_{\Omega} \int_{\Omega} J(x-y)(\varphi(x) - \varphi(y))^2 dx dy + \int_{\Omega} F(\varphi(x)) dx$$

 $J:\mathbb{R}^d\to\mathbb{R}$ interaction kernel s.t. J(x)=J(-x) (usually nonnegative and radial)

Nonlocal chemical potential

$$\mu = a\varphi - J * \varphi + F'(\varphi)$$
$$(J * \varphi)(x) := \int_{\Omega} J(x - y)\varphi(y)dy \quad a(x) := \int_{\Omega} J(x - y)dy$$

Nonlocal free energy rigorously justified by Giacomin and Lebowitz ('97 & '98) as macroscopic limit of microscopic phase segregation models

$$E(\varphi) = \frac{1}{4} \int_{\Omega} \int_{\Omega} J(x-y)(\varphi(x) - \varphi(y))^2 dx dy + \int_{\Omega} F(\varphi(x)) dx$$

 $J:\mathbb{R}^d\to\mathbb{R}$ interaction kernel s.t. J(x)=J(-x) (usually nonnegative and radial)

Nonlocal chemical potential

$$\mu = a\varphi - J * \varphi + F'(\varphi)$$
$$(J * \varphi)(x) := \int_{\Omega} J(x - y)\varphi(y)dy \quad a(x) := \int_{\Omega} J(x - y)dy$$

- First analytical results on nonlocal CH: Giacomin & Lebowitz '97 and '98; Gajewski '02; Gajewski & Zacharias '03
- Several other contributions on nonlocal Allen-Cahn equations and phase-field systems (notably by Bates et al. and Sprekels et al.)

$$\begin{split} \varphi_t + \mathbf{u} \cdot \nabla \varphi &= \operatorname{div} \left(m(\varphi) \nabla \mu \right) \\ \mu &= a\varphi - J * \varphi + F'(\varphi) \\ \mathbf{u}_t - 2 \operatorname{div}(\nu(\varphi) D \mathbf{u}) + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla \pi = \mu \nabla \varphi + \mathbf{h} \\ \operatorname{div}(\mathbf{u}) &= 0 \end{split}$$

subject to

$$\begin{split} &\frac{\partial \mu}{\partial n} = 0 \quad \ \ \mathbf{u} = 0 \quad \ \ \mathbf{on} \quad \partial \Omega \times (0,\infty) \\ &\mathbf{u}(0) = \mathbf{u}_0 \quad \ \ \varphi(0) = \varphi_0 \quad \ \ \mathbf{in} \quad \Omega \end{split}$$

Mass is conserved

$$\overline{\varphi(t)}:=|\Omega|^{-1}\int_{\Omega}\varphi(x,t)dx=\overline{\varphi}_{0}$$

- First mathematical results on nonlocal CHNS systems
 - Constant mobility+ regular potential
 - ∃ global weak sols in 2D-3D (Colli, F. & Grasselli, J. Math. Anal. Appl. '12)
 - global attractor in 2D and trajectory attractor in 3D (F. & Grasselli, J. Dynam Differential Equations '12)
 - Constant mobility+singular potential
 - ∃ global weak sols in 2D-3D; global attractor in 2D and trajectory attractor in 3D (F. & Grasselli, Dyn. Partial Differ. Equ. '12)

- First mathematical results on nonlocal CHNS systems
 - Constant mobility+ regular potential
 - ∃ global weak sols in 2D-3D (Colli, F. & Grasselli, J. Math. Anal. Appl. '12)
 - global attractor in 2D and trajectory attractor in 3D (F. & Grasselli, J. Dynam Differential Equations '12)
 - Constant mobility+singular potential
 - ∃ global weak sols in 2D-3D; global attractor in 2D and trajectory attractor in 3D (F. & Grasselli, Dyn. Partial Differ. Equ. '12)

More recent results

- Constant mobility+ regular potential
 - ∃ global unique strong sols in 2D, regularity of global attractor in 2D, convergence to equilibria of weak sols in 2D (F, Grasselli & Krejčí, J. Differential Equations '13)

More recent results

Degenerate mobility+ singular potential

■ ∃ and regularity of global weak sols in 2D-3D, global attractor in 2D (F., Grasselli & Rocca, preprint arXiv '13)

More recent results

- Degenerate mobility+ singular potential
 - ∃ and regularity of global weak sols in 2D-3D, global attractor in 2D (F., Grasselli & Rocca, preprint arXiv '13)
- Constant mobility+ regular or singular potential & degenerate mobility + singular potential
 - Uniqueness of global weak sols in 2D
- Constant mobility, nonconstant viscosity +regular potential
 - ∃ global unique strong sols in 2D, regularity of global attractor in 2D, convergence to equilibria of weak sols in 2D
 - weak-strong uniqueness in 2D
 - Connectedness and regularity of global attractor, \exists exponential attractor in 2D.

Last results in: F., Gal & Grasselli, WIAS Preprint '14

Theorem (Colli, F. & Grasselli '12)

Assume $J \in W^{1,1}(\mathbb{R}^d)$ and that $\mathbf{u}_0 \in L^2_{div}(\Omega)^d$, $\varphi_0 \in L^2(\Omega)$ with $F(\varphi_0) \in L^1(\Omega)$. Then, $\forall T > 0 \exists$ a weak sol $[\mathbf{u}, \varphi]$ on [0, T] s.t.

$$\begin{split} & \mathbf{u} \in L^{\infty}(0,T; L^{2}_{div}(\Omega)^{d}) \cap L^{2}(0,T; H^{1}_{div}(\Omega)^{d}), \qquad \mathbf{u}_{t} \in L^{4/d}(0,T; H^{1}_{div}(\Omega)') \\ & \varphi \in L^{\infty}(0,T; L^{4}(\Omega)) \cap L^{2}(0,T; H^{1}(\Omega)), \qquad \varphi_{t} \in L^{2}(0,T; H^{1}(\Omega)') \\ & \mu \in L^{2}(0,T; H^{1}(\Omega)), \end{split}$$

Theorem (Colli, F. & Grasselli '12)

Assume $J \in W^{1,1}(\mathbb{R}^d)$ and that $\mathbf{u}_0 \in L^2_{div}(\Omega)^d$, $\varphi_0 \in L^2(\Omega)$ with $F(\varphi_0) \in L^1(\Omega)$. Then, $\forall T > 0 \exists$ a weak sol $[\mathbf{u}, \varphi]$ on [0, T] s.t.

$$\begin{split} & \mathbf{u} \in L^{\infty}(0,T; L^{2}_{div}(\Omega)^{d}) \cap L^{2}(0,T; H^{1}_{div}(\Omega)^{d}), \qquad \mathbf{u}_{t} \in L^{4/d}(0,T; H^{1}_{div}(\Omega)') \\ & \varphi \in L^{\infty}(0,T; L^{4}(\Omega)) \cap L^{2}(0,T; H^{1}(\Omega)), \qquad \varphi_{t} \in L^{2}(0,T; H^{1}(\Omega)') \\ & \mu \in L^{2}(0,T; H^{1}(\Omega)), \end{split}$$

which satisfies the energy inequality (identity if d = 2)

$$\mathcal{E}(\mathbf{u}(t),\varphi(t)) + \int_0^t (\nu \|\nabla \mathbf{u}(\tau)\|^2 + \|\nabla \mu(\tau)\|^2) d\tau \le \mathcal{E}(\mathbf{u}_0,\varphi_0) + \int_0^t \langle \mathbf{h}, \mathbf{u}(\tau) \rangle d\tau,$$

for all t > 0, where we have set

$$\mathcal{E}(\mathbf{u}(t),\varphi(t)) = \frac{1}{2} \|\mathbf{u}(t)\|^2 + \frac{1}{4} \int_{\Omega} \int_{\Omega} J(x-y)(\varphi(x,t) - \varphi(y,t))^2 dx dy + \int_{\Omega} F(\varphi(t)) dx dy + \int_{\Omega} F(\varphi(t$$

The nonlocal term implies that φ is not as regular as for the standard (local) CHNS system: $\varphi \in L^2(H^1)$ (nonlocal), instead of $\varphi \in L^{\infty}(H^1)$ (local) \Longrightarrow regularity results and uniqueness of weak sols in 2D difficult issues

The nonlocal term implies that φ is not as regular as for the standard (local) CHNS system: $\varphi \in L^2(H^1)$ (nonlocal), instead of $\varphi \in L^{\infty}(H^1)$ (local) \Longrightarrow regularity results and uniqueness of weak sols in 2D difficult issues

Theorem (F., Grasselli & Krejčí '13)

Assume that $J \in W^{2,1}(\mathbb{R}^2)$ and that

$$\mathbf{u}_0 \in H^1_{div}(\Omega)^2 \qquad arphi_0 \in H^2(\Omega)$$

Then, $\forall T > 0 \exists$ unique strong sol $[\mathbf{u}, \varphi]$ s.t.

$$\begin{split} & \mathbf{u} \in L^{\infty}(0,T; H^{1}_{div}(\Omega)^{2}) \cap L^{2}(0,T; H^{2}(\Omega)^{2}), \qquad \mathbf{u}_{t} \in L^{2}(0,T; L^{2}_{div}(\Omega)^{2}) \\ & \varphi \in L^{\infty}(0,T; H^{2}(\Omega)), \qquad \varphi_{t} \in L^{\infty}(0,T; L^{2}(\Omega)) \cap L^{2}(0,T; H^{1}(\Omega)) \end{split}$$

The nonlocal term implies that φ is not as regular as for the standard (local) CHNS system: $\varphi \in L^2(H^1)$ (nonlocal), instead of $\varphi \in L^{\infty}(H^1)$ (local) \Longrightarrow regularity results and uniqueness of weak sols in 2D difficult issues

Theorem (F., Grasselli & Krejčí '13)

Assume that $J \in W^{2,1}(\mathbb{R}^2)$ and that

$$\mathbf{u}_0 \in H^1_{div}(\Omega)^2 \qquad arphi_0 \in H^2(\Omega)$$

Then, $\forall T > 0 \exists$ unique strong sol $[\mathbf{u}, \varphi]$ s.t.

$$\begin{split} & \mathbf{u} \in L^{\infty}(0,T; H^{1}_{div}(\Omega)^{2}) \cap L^{2}(0,T; H^{2}(\Omega)^{2}), \qquad \mathbf{u}_{t} \in L^{2}(0,T; L^{2}_{div}(\Omega)^{2}) \\ & \varphi \in L^{\infty}(0,T; H^{2}(\Omega)), \qquad \varphi_{t} \in L^{\infty}(0,T; L^{2}(\Omega)) \cap L^{2}(0,T; H^{1}(\Omega)) \end{split}$$

Only recently we included (F., Gal & Grasselli, WIAS Preprint '14)

- **Newtonian kernels** : $J(x) = -k \log |x|$
- **Nonconstant viscosity**: $\nu = \nu(\varphi)$ with $0 < \nu_1 \le \nu(\varphi) \le \nu_2$

Constant mobility + regular potentials

Theorem (F., Gal & Grasselli '14)

Let $\mathbf{u}_0 \in L^2_{div}(\Omega)^2$, $\varphi_0 \in L^2(\Omega)$ with $F(\varphi_0) \in L^1(\Omega)$. Then, \exists a unique weak sol $[\mathbf{u}, \varphi]$ corresponding to $[\mathbf{u}_0, \varphi_0]$

Constant mobility + regular potentials

Theorem (F., Gal & Grasselli '14)

Let $\mathbf{u}_0 \in L^2_{div}(\Omega)^2$, $\varphi_0 \in L^2(\Omega)$ with $F(\varphi_0) \in L^1(\Omega)$. Then, \exists a unique weak sol $[\mathbf{u}, \varphi]$ corresponding to $[\mathbf{u}_0, \varphi_0]$

Degenerate mobility + singular potential

- φ -dependent mobility in the original derivation of CH eq. (J.W. Cahn & J.E. Hilliard, 1971). Thermodynamically reasonable choice: $m(\varphi) = k(1 \varphi^2)$
- Key assumption (cf. [Elliot & Garcke '96], [Gajewski & Zacharias '03], [Giacomin & Lebowitz '97,'98]): $mF'' \in C([-1,1])$

Theorem (F., Gal & Grasselli '14)

Let $\mathbf{u}_0 \in L^2_{div}(\Omega)^2$, $\varphi_0 \in L^{\infty}(\Omega)$ with $F(\varphi_0) \in L^1(\Omega)$ and $M(\varphi_0) \in L^1(\Omega)$. Then, \exists a unique weak sol $[\mathbf{u}, \varphi]$ corresponding to $[\mathbf{u}_0, \varphi_0]$

 $M\in C^2(-1,1)$ is s.t. $m(s)M^{\prime\prime}(s)=1$ for all $s\in (-1,1)$ and $M(0)=M^\prime(0)=0$

Difficulty: dealing with the Korteweg force term $-\varphi\nabla\mu$ which, for weak sols is only in $L^2(L^{4/3})$

- Difficulty: dealing with the Korteweg force term $-\varphi\nabla\mu$ which, for weak sols is only in $L^2(L^{4/3})$
- Idea: by redefining the pressure π , the Korteweg force $\mu \nabla \varphi$ can be rewritten as $-(\nabla a/2)\varphi^2 - (J * \varphi)\nabla \varphi \Longrightarrow$ uniqueness by means of some technical arguments (Gagliardo-Nirenberg in 2D)

- Difficulty: dealing with the Korteweg force term $-\varphi\nabla\mu$ which, for weak sols is only in $L^2(L^{4/3})$
- Idea: by redefining the pressure π , the Korteweg force $\mu \nabla \varphi$ can be rewritten as $-(\nabla a/2)\varphi^2 - (J * \varphi)\nabla \varphi \Longrightarrow$ uniqueness by means of some technical arguments (Gagliardo-Nirenberg in 2D)

A continuous dependence estimate in $L^2_{div} imes (H^1)'$ also holds

$$\begin{split} \|\mathbf{u}_{2}(t) - \mathbf{u}_{1}(t)\|^{2} + \|\varphi_{2}(t) - \varphi_{1}(t)\|_{(H^{1})'}^{2} \\ + \int_{0}^{t} \Big(c_{0}\|\varphi_{2}(\tau) - \varphi_{1}(\tau)\|^{2} + \frac{\nu}{2}\|\nabla(\mathbf{u}_{2}(\tau) - \mathbf{u}_{1}(\tau))\|^{2}\Big)d\tau \\ \leq \Gamma_{1}(t)\Big(\|\mathbf{u}_{02} - \mathbf{u}_{01}\|^{2} + \|\varphi_{02} - \varphi_{01}\|_{(H^{1})'}^{2}\Big) + C_{\eta}\Gamma_{2}(t)|\overline{\varphi}_{02} - \overline{\varphi}_{01}| \end{split}$$

 $|\overline{\varphi}_{01}|, |\overline{\varphi}_{02}| \leq \eta$, with $\Gamma_i \in C(\mathbb{R}^+)$ depending on weak sols norms

- Difficulty: dealing with the Korteweg force term $-\varphi\nabla\mu$ which, for weak sols is only in $L^2(L^{4/3})$
- Idea: by redefining the pressure π , the Korteweg force $\mu \nabla \varphi$ can be rewritten as $-(\nabla a/2)\varphi^2 - (J * \varphi)\nabla \varphi \Longrightarrow$ uniqueness by means of some technical arguments (Gagliardo-Nirenberg in 2D)

A continuous dependence estimate in $L^2_{div} imes (H^1)'$ also holds

$$\begin{split} \|\mathbf{u}_{2}(t) - \mathbf{u}_{1}(t)\|^{2} + \|\varphi_{2}(t) - \varphi_{1}(t)\|_{(H^{1})'}^{2} \\ + \int_{0}^{t} \Big(c_{0}\|\varphi_{2}(\tau) - \varphi_{1}(\tau)\|^{2} + \frac{\nu}{2}\|\nabla(\mathbf{u}_{2}(\tau) - \mathbf{u}_{1}(\tau))\|^{2}\Big)d\tau \\ \leq \Gamma_{1}(t)\Big(\|\mathbf{u}_{02} - \mathbf{u}_{01}\|^{2} + \|\varphi_{02} - \varphi_{01}\|_{(H^{1})'}^{2}\Big) + C_{\eta}\Gamma_{2}(t)|\overline{\varphi}_{02} - \overline{\varphi}_{01}| \end{split}$$

 $|\overline{\varphi}_{01}|, |\overline{\varphi}_{02}| \leq \eta$, with $\Gamma_i \in C(\mathbb{R}^+)$ depending on weak sols norms

■ Uniqueness of sol and ∃ of the global attractor for the local CH with degenerate mobility are open issues

Consequences

the nonlocal CHNS system generates a semigroup S(t) of *closed* operators: $[\mathbf{u}(t), \varphi(t)] = S(t)[\mathbf{u}_0, \varphi_0]$ on the (metric) phase-space

$$\mathcal{X}_{\eta} = L^{2}_{div}(\Omega)^{2} \times \mathcal{Y}_{\eta} \quad \mathcal{Y}_{\eta} = \{\varphi \in L^{2}(\Omega) : F(\varphi) \in L^{1}(\Omega), |\bar{\varphi}| \leq \eta\}$$

Consequences

the nonlocal CHNS system generates a semigroup S(t) of *closed* operators: $[\mathbf{u}(t), \varphi(t)] = S(t)[\mathbf{u}_0, \varphi_0]$ on the (metric) phase-space

$$\mathcal{X}_{\eta} = L^2_{div}(\Omega)^2 \times \mathcal{Y}_{\eta} \quad \mathcal{Y}_{\eta} = \{\varphi \in L^2(\Omega) : F(\varphi) \in L^1(\Omega), |\bar{\varphi}| \le \eta\}$$

The global attractor in \mathcal{X}_{η} for $S_{\eta}(t)$ is **connected**

Consequences

the nonlocal CHNS system generates a semigroup S(t) of *closed* operators: $[\mathbf{u}(t), \varphi(t)] = S(t)[\mathbf{u}_0, \varphi_0]$ on the (metric) phase-space

 $\mathcal{X}_{\eta} = L^{2}_{div}(\Omega)^{2} \times \mathcal{Y}_{\eta} \quad \mathcal{Y}_{\eta} = \{\varphi \in L^{2}(\Omega) : F(\varphi) \in L^{1}(\Omega), |\bar{\varphi}| \leq \eta\}$

- The global attractor in \mathcal{X}_{η} for $S_{\eta}(t)$ is **connected**
 - By establishing a smoothing property for the difference of two sols in $L^2_{div} imes L^2$

Theorem (F., Gal & Grasselli '14)

For every $\eta \ge 0$ the dynamical system $(\mathcal{X}_{\eta}, S(t))$ possesses an exponential attractor \mathcal{M}_{η} , *i.e.*, a compact set in \mathcal{X}_{η} s.t.

- (i) Positively invariance: $S(t)\mathcal{M} \subset \mathcal{M} \ \forall t \geq 0$
- (ii) Finite dimensionality: dim_F $\mathcal{M} < \infty$
- (iii) Exponential attraction: $\exists J : \mathbb{R}^+ \to \mathbb{R}^+$ increasing and $\kappa > 0$ s.t., $\forall R > 0$ and $\forall \mathcal{B} \subset \mathcal{X}_{\eta}$ with $\sup_{z \in \mathcal{B}} d_{\mathcal{X}_{\eta}}(z, 0) \leq R$ there holds

$$dist(S(t)\mathcal{B},\mathcal{M}) \leq J(R)e^{-\kappa t}$$

Optimal control for nonlocal CHNS

$$\begin{split} \varphi_t + \mathbf{u} \cdot \nabla \varphi &= \operatorname{div} \left(m(\varphi) \nabla \mu \right) \\ \mu &= a\varphi - J * \varphi + F'(\varphi) \\ \mathbf{u}_t - \nu \Delta \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla \pi &= \mu \nabla \varphi + \mathbf{v} \\ \operatorname{div}(\mathbf{u}) &= 0 \end{split}$$

The external force \mathbf{v} is the control function.

Optimal control for nonlocal CHNS

$$\begin{split} \varphi_t + \mathbf{u} \cdot \nabla \varphi &= \operatorname{div} \left(m(\varphi) \nabla \mu \right) \\ \mu &= a\varphi - J * \varphi + F'(\varphi) \\ \mathbf{u}_t - \nu \Delta \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla \pi &= \mu \nabla \varphi + \mathbf{v} \\ \operatorname{div}(\mathbf{u}) &= 0 \end{split}$$

The external force \mathbf{v} is the control function.

Cost functional

$$\begin{split} J(y,v) &:= \frac{\beta_1}{2} \int_0^T \int_\Omega |u - u_Q|^2 + \frac{\beta_2}{2} \int_0^T \int_\Omega |\varphi - \varphi_Q|^2 \\ &+ \frac{\beta_3}{2} \int_\Omega |u(T) - u_\Omega|^2 + \frac{\beta_4}{2} \int_0^T \int_\Omega v^2, \end{split}$$

where $y = [\mathbf{u}, \varphi]$ (the state) is the weak sol to the nonlocal CHNS corresponding to the control $v \in \mathcal{U}_{ad} \subset L^{\infty}(Q)$ (and with smooth initial data).

Aim: first order necessary conditions for existence of optimal control

(In progress with E. Rocca & J. Sprekels)

In literature there are numbers of diffuse interface models describing tumor dynamics, in particular the interactions among the different species, i.e. viable, necrotic tumor cells and host cells (multicomponent model)

A model related to tumor growth

- Libriz
- In literature there are numbers of diffuse interface models describing tumor dynamics, in particular the interactions among the different species, i.e. viable, necrotic tumor cells and host cells (multicomponent model)
- Much work done on the modellistic and numerical viewpoint, but very few analytical results (Wang & Zhang '12, Wang & Wu '12, Lowengrub, Titti & Zhao '13, Colli, Gilardi & Hilhorst preprint '14).

- In literature there are numbers of diffuse interface models describing tumor dynamics, in particular the interactions among the different species, i.e. viable, necrotic tumor cells and host cells (multicomponent model)
- Much work done on the modellistic and numerical viewpoint, but very few analytical results (Wang & Zhang '12, Wang & Wu '12, Lowengrub, Titti & Zhao '13, Colli, Gilardi & Hilhorst preprint '14).

A diffuse interface model developed by Hawkins Daarud, van der Zee and Oden.

- φ : tumor cell concentration ($\varphi = 1$ tumorous cell, $\varphi = -1$ healthy cell phases)
- µ: chemical potential
- ψ : nutrient concentration (density of an extra-cellular water phase)

$$\begin{split} \varphi_t &= \Delta \mu + p(\varphi)(\psi - \mu) \\ \mu &= -\Delta \varphi + F'(\varphi) \\ \psi_t &= \Delta \psi - p(\varphi)(\psi - \mu) \\ \partial_n \varphi &= \partial_n \mu = \partial_n \psi = 0 \quad \text{on } \partial\Omega \\ \varphi(0) &= \varphi_0, \quad \psi(0) = \psi_0 \end{split}$$

S. Frigeri · WIAS DAY, February 19, 2014 · Page 15 (18)

A model related to tumor growth

Double-well Helmholtz free energy density F (accounting for cell-cell adhesion)

$$F(s) = (1 - s^2)^2$$

Proliferation function $p \ge 0$

$$p(s) = \begin{cases} p_0(1-s^2) & s \in [-1,1] \\ 0 & \text{elsewhere} \end{cases}$$

A model related to tumor growth

Double-well Helmholtz free energy density F (accounting for cell-cell adhesion)

$$F(s) = (1 - s^2)^2$$

Proliferation function $p \ge 0$

$$p(s) = \begin{cases} p_0(1-s^2) & s \in [-1,1] \\ 0 & \text{elsewhere} \end{cases}$$

Energy balance

$$\frac{d}{dt}E(\varphi,\psi) + \|\nabla\mu\|^2 + \|\nabla\psi\|^2 + \int_{\Omega} p(\varphi)(\mu-\psi)^2 = 0$$

$$E(\varphi,\psi) := \frac{1}{2} \|\nabla\varphi\|^2 + \frac{1}{2} \|\psi\|^2 + \int_{\Omega} F(\varphi)$$

Total mass conservation

$$\overline{\varphi(t)} + \overline{\psi(t)} = \overline{\varphi_0} + \overline{\psi_0}$$

Existence and uniqueness of weak sols

Theorem (F., Grasselli & Rocca)

Assume that $\varphi_0 \in H^1(\Omega)$ and $\psi_0 \in L^2(\Omega)$. Then, $\forall T > 0 \exists$ a unique weak solution $[\varphi, \psi]$ on [0, T] s.t.

$$\begin{aligned} \varphi &\in L^{\infty}(0,T; H^{1}(\Omega)) \cap L^{2}(0,T; H^{3}(\Omega)), \qquad \varphi_{t} \in L^{2}(0,T; H^{1}(\Omega)') \\ \mu &\in L^{2}(0,T; H^{1}(\Omega)) \\ \psi &\in L^{\infty}(0,T; L^{2}(\Omega)) \cap L^{2}(0,T; H^{1}(\Omega)), \qquad \psi_{t} \in L^{2}(0,T; H^{1}(\Omega)') \end{aligned}$$

satisfying the energy identity. Moreover, if $[\varphi_{0i}, \psi_{0i}] \in H^1(\Omega) \times L^2(\Omega)$, then

 $\|\varphi_{2}(t) - \varphi_{1}(t)\|_{(H^{1})'} + \|\psi_{2}(t) - \psi_{1}(t)\|_{(H^{1})'} \leq \Lambda \left(\|\varphi_{02} - \varphi_{01}\|_{(H^{1})'} + \|\psi_{02} - \psi_{01}\|_{(H^{1})'}\right)$

Regularity result (assuming, i.e., $\varphi_0 \in H^3(\Omega)$ and $\psi_0 \in H^1(\Omega)$)

Existence of the global attractor

Nonlocal Cahn-Hilliard-Navier-Stokes

- unmatched densities (Abels, Garcke & Grün '12 for the local CHNS)
- compressible models
- non-isothermal model(s)

(Eleuteri, Rocca & Schimperna preprint '14 for the local CHNS)

multicomponent models

Nonlocal Cahn-Hilliard-Navier-Stokes

- unmatched densities (Abels, Garcke & Grün '12 for the local CHNS)
- compressible models

non-isothermal model(s)

(Eleuteri, Rocca & Schimperna preprint '14 for the local CHNS)

multicomponent models

Tumor dynamics

coupling with Darcy laws

(Cahn-Hilliard-Hele-Shaw multicomponent models, cfr. Lowengrub et al. '08 & '10)

singular potentials and degenerate mobilities

