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The motivation

� An isothermal model for the flow of a mixture of two

� viscous

� incompressible

� Newtonian fluids

� of equal density

� Avoid problems related to interface singularities

=⇒ use a diffuse interface model

=⇒ the classical sharp interface replaced by a thin interfacial region

� A partial mixing of the macroscopically immiscible fluids is allowed

=⇒ ϕ is the order parameter, e.g. the concentration difference

� The original idea of diffuse interface model for fluids: HOHENBERG and HALPERIN, ’77

=⇒ H-model

Later, GURTIN ET AL., ’96: continuum mechanical derivation based on microforces

� Models of two-phase or two-component fluids are receiving growing attention (e.g.,

ABELS, BOYER, GARCKE, GRÜN, GRASSELLI, LOWENGRUB, TRUSKINOVSKI, ...)
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Local Cahn-Hilliard-Navier-Stokes model

In Ω× (0,∞), Ω ⊂ Rd, d = 2, 3

ut + (u · ∇)u− ν∆u +∇π = µ∇ϕ+ h

div(u) = 0

ϕt + u · ∇ϕ = div (m(ϕ)∇µ)

µ = −ε∆ϕ+ ε−1F ′(ϕ)

� µ: chemical potential (Cahn-Hilliard), first variation of the (total Helmholtz) free energy

E(ϕ) =

∫
Ω

( ε
2
|∇ϕ|2 +

1

ε
F (ϕ)

)
dx

� F double-well potential: Helmholtz free energy density

� Singular

F (s) = −θc
2
s2 +

θ

2

(
(1 + s) log(1 + s) + (1− s) log(1− s)

)
for all s ∈ (−1, 1), with 0 < θ < θc

� Regular

F (s) = (1− s2)2 ∀s ∈ R
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Nonlocal model for binary fluid flow and phase separation

� Nonlocal free energy rigorously justified by Giacomin and Lebowitz (’97 & ’98) as

macroscopic limit of microscopic phase segregation models

E(ϕ) =
1

4

∫
Ω

∫
Ω

J(x− y)(ϕ(x)− ϕ(y))2dxdy +

∫
Ω

F (ϕ(x))dx

J : Rd → R interaction kernel s.t. J(x) = J(−x) (usually nonnegative and radial)

� Nonlocal chemical potential

µ = aϕ− J ∗ ϕ+ F ′(ϕ)

(J ∗ ϕ)(x) :=

∫
Ω

J(x− y)ϕ(y)dy a(x) :=

∫
Ω

J(x− y)dy

� First analytical results on nonlocal CH: Giacomin & Lebowitz ’97 and ’98; Gajewski ’02;

Gajewski & Zacharias ’03

� Several other contributions on nonlocal Allen-Cahn equations and phase-field systems

(notably by Bates et al. and Sprekels et al.)
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Nonlocal Cahn-Hilliard-Navier-Stokes systems

ϕt + u · ∇ϕ = div (m(ϕ)∇µ)

µ = aϕ− J ∗ ϕ+ F ′(ϕ)

ut − 2div(ν(ϕ)Du) + (u · ∇)u +∇π = µ∇ϕ+ h

div(u) = 0

subject to

∂µ

∂n
= 0 u = 0 on ∂Ω× (0,∞)

u(0) = u0 ϕ(0) = ϕ0 in Ω

� Mass is conserved

ϕ(t) := |Ω|−1

∫
Ω

ϕ(x, t)dx = ϕ0
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Analytical results

� First mathematical results on nonlocal CHNS systems

� Constant mobility+ regular potential

� ∃ global weak sols in 2D-3D (Colli, F. & Grasselli, J. Math. Anal. Appl. ’12)

� global attractor in 2D and trajectory attractor in 3D (F. & Grasselli, J. Dynam

Differential Equations ’12)

� Constant mobility+singular potential

� ∃ global weak sols in 2D-3D; global attractor in 2D and trajectory attractor in

3D (F. & Grasselli, Dyn. Partial Differ. Equ. ’12)

� More recent results

� Constant mobility+ regular potential

� ∃ global unique strong sols in 2D, regularity of global attractor in 2D,

convergence to equilibria of weak sols in 2D (F, Grasselli & Krejčí, J.

Differential Equations ’13)
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Analytical results

� More recent results

� Degenerate mobility+ singular potential

� ∃ and regularity of global weak sols in 2D-3D, global attractor in 2D (F.,

Grasselli & Rocca, preprint arXiv ’13)

� Constant mobility+ regular or singular potential & degenerate mobility +

singular potential

� Uniqueness of global weak sols in 2D

� Constant mobility, nonconstant viscosity +regular potential

� ∃ global unique strong sols in 2D, regularity of global attractor in 2D,

convergence to equilibria of weak sols in 2D

� weak-strong uniqueness in 2D

� Connectedness and regularity of global attractor, ∃ exponential attractor in 2D.

Last results in: F., Gal & Grasselli, WIAS Preprint ’14
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∃ weak sols (constant mobility+regular potential)

Theorem (Colli, F. & Grasselli ’12)

Assume J ∈W 1,1(Rd) and that u0 ∈ L2
div(Ω)d, ϕ0 ∈ L2(Ω) with F (ϕ0) ∈ L1(Ω).

Then, ∀T > 0 ∃ a weak sol [u, ϕ] on [0, T ] s.t.

u ∈ L∞(0, T ;L2
div(Ω)d) ∩ L2(0, T ;H1

div(Ω)d), ut ∈ L4/d(0, T ;H1
div(Ω)′)

ϕ ∈ L∞(0, T ;L4(Ω)) ∩ L2(0, T ;H1(Ω)), ϕt ∈ L2(0, T ;H1(Ω)′)

µ ∈ L2(0, T ;H1(Ω)),

which satisfies the energy inequality (identity if d = 2)

E(u(t), ϕ(t)) +

∫ t

0

(ν‖∇u(τ)‖2 + ‖∇µ(τ)‖2)dτ ≤ E(u0, ϕ0) +

∫ t

0

〈h, u(τ)〉dτ,

for all t > 0, where we have set

E(u(t), ϕ(t)) =
1

2
‖u(t)‖2 +

1

4

∫
Ω

∫
Ω

J(x− y)(ϕ(x, t)− ϕ(y, t))2dxdy +

∫
Ω

F (ϕ(t))
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Strong sols in 2D (constant mobility+regular potential)

� The nonlocal term implies that ϕ is not as regular as for the standard (local) CHNS

system: ϕ ∈ L2(H1) (nonlocal), instead of ϕ ∈ L∞(H1) (local) =⇒ regularity results

and uniqueness of weak sols in 2D difficult issues

Theorem (F., Grasselli & Krejčí ’13)

Assume that J ∈W 2,1(R2) and that

u0 ∈ H1
div(Ω)2 ϕ0 ∈ H2(Ω)

Then, ∀T > 0 ∃ unique strong sol [u, ϕ] s.t.

u ∈ L∞(0, T ;H1
div(Ω)2) ∩ L2(0, T ;H2(Ω)2), ut ∈ L2(0, T ;L2

div(Ω)2)

ϕ ∈ L∞(0, T ;H2(Ω)), ϕt ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω))

Only recently we included (F., Gal & Grasselli, WIAS Preprint ’14)

� Newtonian kernels : J(x) = −k log |x|

� Nonconstant viscosity: ν = ν(ϕ) with 0 < ν1 ≤ ν(ϕ) ≤ ν2
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Uniqueness of weak sol in 2D (constant viscosity)

Constant mobility + regular potentials

Theorem (F., Gal & Grasselli ’14)

Let u0 ∈ L2
div(Ω)2, ϕ0 ∈ L2(Ω) with F (ϕ0) ∈ L1(Ω). Then, ∃ a unique weak sol [u, ϕ]

corresponding to [u0, ϕ0]

Degenerate mobility + singular potential

� ϕ−dependent mobility in the original derivation of CH eq. (J.W. Cahn & J.E. Hilliard,

1971). Thermodynamically reasonable choice: m(ϕ) = k(1− ϕ2)

� Key assumption (cf. [Elliot & Garcke ’96], [Gajewski & Zacharias ’03], [Giacomin &

Lebowitz ’97,’98]): mF ′′ ∈ C([−1, 1])

Theorem (F., Gal & Grasselli ’14)

Let u0 ∈ L2
div(Ω)2, ϕ0 ∈ L∞(Ω) with F (ϕ0) ∈ L1(Ω) and M(ϕ0) ∈ L1(Ω). Then, ∃ a

unique weak sol [u, ϕ] corresponding to [u0, ϕ0]

M ∈ C2(−1, 1) is s.t. m(s)M ′′(s) = 1 for all s ∈ (−1, 1) and M(0) = M ′(0) = 0
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Uniqueness of weak sol in 2D (constant viscosity)

� Difficulty: dealing with the Korteweg force term−ϕ∇µ which, for weak sols is only in

L2(L4/3)

� Idea: by redefining the pressure π, the Korteweg force µ∇ϕ can be rewritten as

−(∇a/2)ϕ2 − (J ∗ ϕ)∇ϕ=⇒ uniqueness by means of some technical arguments

(Gagliardo-Nirenberg in 2D)

� A continuous dependence estimate in L2
div × (H1)′ also holds

‖u2(t)− u1(t)‖2 + ‖ϕ2(t)− ϕ1(t)‖2(H1)′

+

∫ t

0

(
c0‖ϕ2(τ)− ϕ1(τ)‖2 +

ν

2
‖∇(u2(τ)− u1(τ))‖2

)
dτ

≤ Γ1(t)
(
‖u02 − u01‖2 + ‖ϕ02 − ϕ01‖2(H1)′

)
+ CηΓ2(t)|ϕ02 − ϕ01|

|ϕ01|, |ϕ02| ≤ η, with Γi ∈ C(R+) depending on weak sols norms

� Uniqueness of sol and ∃ of the global attractor for the local CH with degenerate

mobility are open issues

S. Frigeri · WIAS DAY, February 19, 2014 · Page 12 (18)



Uniqueness of weak sol in 2D (constant viscosity)

� Difficulty: dealing with the Korteweg force term−ϕ∇µ which, for weak sols is only in

L2(L4/3)

� Idea: by redefining the pressure π, the Korteweg force µ∇ϕ can be rewritten as

−(∇a/2)ϕ2 − (J ∗ ϕ)∇ϕ=⇒ uniqueness by means of some technical arguments

(Gagliardo-Nirenberg in 2D)

� A continuous dependence estimate in L2
div × (H1)′ also holds

‖u2(t)− u1(t)‖2 + ‖ϕ2(t)− ϕ1(t)‖2(H1)′

+

∫ t

0

(
c0‖ϕ2(τ)− ϕ1(τ)‖2 +

ν

2
‖∇(u2(τ)− u1(τ))‖2

)
dτ

≤ Γ1(t)
(
‖u02 − u01‖2 + ‖ϕ02 − ϕ01‖2(H1)′

)
+ CηΓ2(t)|ϕ02 − ϕ01|

|ϕ01|, |ϕ02| ≤ η, with Γi ∈ C(R+) depending on weak sols norms

� Uniqueness of sol and ∃ of the global attractor for the local CH with degenerate

mobility are open issues

S. Frigeri · WIAS DAY, February 19, 2014 · Page 12 (18)



Uniqueness of weak sol in 2D (constant viscosity)

� Difficulty: dealing with the Korteweg force term−ϕ∇µ which, for weak sols is only in

L2(L4/3)

� Idea: by redefining the pressure π, the Korteweg force µ∇ϕ can be rewritten as

−(∇a/2)ϕ2 − (J ∗ ϕ)∇ϕ=⇒ uniqueness by means of some technical arguments

(Gagliardo-Nirenberg in 2D)

� A continuous dependence estimate in L2
div × (H1)′ also holds

‖u2(t)− u1(t)‖2 + ‖ϕ2(t)− ϕ1(t)‖2(H1)′

+

∫ t

0

(
c0‖ϕ2(τ)− ϕ1(τ)‖2 +

ν

2
‖∇(u2(τ)− u1(τ))‖2

)
dτ

≤ Γ1(t)
(
‖u02 − u01‖2 + ‖ϕ02 − ϕ01‖2(H1)′

)
+ CηΓ2(t)|ϕ02 − ϕ01|

|ϕ01|, |ϕ02| ≤ η, with Γi ∈ C(R+) depending on weak sols norms

� Uniqueness of sol and ∃ of the global attractor for the local CH with degenerate

mobility are open issues

S. Frigeri · WIAS DAY, February 19, 2014 · Page 12 (18)



Uniqueness of weak sol in 2D (constant viscosity)

� Difficulty: dealing with the Korteweg force term−ϕ∇µ which, for weak sols is only in

L2(L4/3)

� Idea: by redefining the pressure π, the Korteweg force µ∇ϕ can be rewritten as

−(∇a/2)ϕ2 − (J ∗ ϕ)∇ϕ=⇒ uniqueness by means of some technical arguments

(Gagliardo-Nirenberg in 2D)

� A continuous dependence estimate in L2
div × (H1)′ also holds

‖u2(t)− u1(t)‖2 + ‖ϕ2(t)− ϕ1(t)‖2(H1)′

+

∫ t

0

(
c0‖ϕ2(τ)− ϕ1(τ)‖2 +

ν

2
‖∇(u2(τ)− u1(τ))‖2

)
dτ

≤ Γ1(t)
(
‖u02 − u01‖2 + ‖ϕ02 − ϕ01‖2(H1)′

)
+ CηΓ2(t)|ϕ02 − ϕ01|

|ϕ01|, |ϕ02| ≤ η, with Γi ∈ C(R+) depending on weak sols norms

� Uniqueness of sol and ∃ of the global attractor for the local CH with degenerate

mobility are open issues
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Uniqueness of weak sol in 2D (constant viscosity)

Consequences

� the nonlocal CHNS system generates a semigroup S(t) of closed operators:

[u(t), ϕ(t)] = S(t)[u0, ϕ0] on the (metric) phase-space

Xη = L2
div(Ω)2 × Yη Yη = {ϕ ∈ L2(Ω) : F (ϕ) ∈ L1(Ω), |ϕ̄| ≤ η}

� The global attractor in Xη for Sη(t) is connected

� By establishing a smoothing property for the difference of two sols in L2
div × L2

Theorem (F., Gal & Grasselli ’14)

For every η ≥ 0 the dynamical system
(
Xη, S(t)

)
possesses an exponential attractorMη ,

i.e., a compact set in Xη s.t.

(i) Positively invariance: S(t)M⊂M∀t ≥ 0

(ii) Finite dimensionality: dimFM <∞
(iii) Exponential attraction: ∃J : R+ → R+ increasing and κ > 0 s.t., ∀R > 0 and

∀B ⊂ Xη with supz∈B dXη (z, 0) ≤ R there holds

dist(S(t)B,M) ≤ J(R)e−κt
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Uniqueness of weak sol in 2D (constant viscosity)

� Optimal control for nonlocal CHNS

ϕt + u · ∇ϕ = div (m(ϕ)∇µ)

µ = aϕ− J ∗ ϕ+ F ′(ϕ)

ut − ν∆u + (u · ∇)u +∇π = µ∇ϕ+ v

div(u) = 0

The external force v is the control function.

� Cost functional

J(y, v) :=
β1

2

∫ T

0

∫
Ω

|u− uQ|2 +
β2

2

∫ T

0

∫
Ω

|ϕ− ϕQ|2

+
β3

2

∫
Ω

|u(T )− uΩ|2 +
β4

2

∫ T

0

∫
Ω

v2,

where y = [u, ϕ] (the state) is the weak sol to the nonlocal CHNS corresponding to the

control v ∈ Uad ⊂ L∞(Q) (and with smooth initial data).

� Aim: first order necessary conditions for existence of optimal control

(In progress with E. Rocca & J. Sprekels)
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A model related to tumor growth

� In literature there are numbers of diffuse interface models describing tumor dynamics, in

particular the interactions among the different species, i.e. viable, necrotic tumor cells and

host cells (multicomponent model)

� Much work done on the modellistic and numerical viewpoint, but very few analytical

results (Wang & Zhang ’12, Wang & Wu ’12, Lowengrub, Titti & Zhao ’13, Colli, Gilardi &

Hilhorst preprint ’14).

A diffuse interface model developed by Hawkins Daarud, van der Zee and Oden.

� ϕ: tumor cell concentration (ϕ = 1 tumorous cell, ϕ = −1 healthy cell phases)

� µ: chemical potential

� ψ: nutrient concentration (density of an extra-cellular water phase)

ϕt = ∆µ+ p(ϕ)(ψ − µ)

µ = −∆ϕ+ F ′(ϕ)

ψt = ∆ψ − p(ϕ)(ψ − µ)

∂nϕ = ∂nµ = ∂nψ = 0 on ∂Ω

ϕ(0) = ϕ0, ψ(0) = ψ0
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A model related to tumor growth

� Double-well Helmholtz free energy density F (accounting for cell-cell adhesion)

F (s) = (1− s2)2

� Proliferation function p ≥ 0

p(s) =

{
p0(1− s2) s ∈ [−1, 1]

0 elsewhere

� Energy balance

d

dt
E(ϕ,ψ) + ‖∇µ‖2 + ‖∇ψ‖2 +

∫
Ω

p(ϕ)(µ− ψ)2 = 0

E(ϕ,ψ) :=
1

2
‖∇ϕ‖2 +

1

2
‖ψ‖2 +

∫
Ω

F (ϕ)

� Total mass conservation

ϕ(t) + ψ(t) = ϕ0 + ψ0
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A model related to tumor growth; analytical results (in progress)

� Existence and uniqueness of weak sols

Theorem (F., Grasselli & Rocca)

Assume that ϕ0 ∈ H1(Ω) and ψ0 ∈ L2(Ω). Then, ∀T > 0 ∃ a unique weak solution

[ϕ,ψ] on [0, T ] s.t.

ϕ ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H3(Ω)), ϕt ∈ L2(0, T ;H1(Ω)′)

µ ∈ L2(0, T ;H1(Ω))

ψ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)), ψt ∈ L2(0, T ;H1(Ω)′)

satisfying the energy identity. Moreover, if [ϕ0i, ψ0i] ∈ H1(Ω)× L2(Ω), then

‖ϕ2(t)− ϕ1(t)‖(H1)′ + ‖ψ2(t)− ψ1(t)‖(H1)′ ≤ Λ
(
‖ϕ02 − ϕ01‖(H1)′ + ‖ψ02 − ψ01‖(H1)′

)

� Regularity result (assuming, i.e., ϕ0 ∈ H3(Ω) and ψ0 ∈ H1(Ω))

� Existence of the global attractor
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Some open related problems

� Nonlocal Cahn-Hilliard-Navier-Stokes

� unmatched densities (Abels, Garcke & Grün ’12 for the local CHNS)

� compressible models

� non-isothermal model(s)

(Eleuteri, Rocca & Schimperna preprint ’14 for the local CHNS)

� multicomponent models

� Tumor dynamics

� coupling with Darcy laws

(Cahn-Hilliard-Hele-Shaw multicomponent models, cfr. Lowengrub et al. ’08 & ’10)

� singular potentials and degenerate mobilities
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