A phase transition model with the possibility of voids

Michel Frémond¹ Elisabetta Rocca²

¹Laboratoire Central des Ponts et Chaussées Paris, France fremond@lcpc.fr

> ²Department of Mathematics University of Milan, Italy rocca@mat.unimi.it

FBP 2005 Coimbra, June 7–12, 2005 Phase transition models with voids

Frémond and Rocca

Outlin

The mode

The mass balance The free energy The pseudo-potential of dissipation Equations of motion

The analytic aspects The PDE's system

Main results

- discuss a phase transition model including possibly voids formation
- consider the modelling aspects: to derive the model by
 - choosing the free energy (responsible for the thermomechanical equilibrium of the system) and the pseudo-potential of dissipation (responsible for the thermomechanical evolution of the system)
 - introducing the constitutive relations and the basic laws of continuum mechanics
- consider the analytical aspects: to point out the EXISTENCE AND UNIQUENESS OF SOLUTIONS for the related PDE'S SYSTEM
- to introduce some open related problems like the possibility to apply this kind of approach to SHAPE MEMORY ALLOYS

Phase transition models with voids

Frémond and Rocca

Outline

The model

The mass balance The free energy The pseudo-potential of dissipation Equations of motion Entropy balance

The analytic aspects

The PDE's system Main results

- discuss a phase transition model including possibly voids formation
- consider the modelling aspects: to derive the model by
 - choosing the free energy (responsible for the thermomechanical equilibrium of the system) and the pseudo-potential of dissipation (responsible for the thermomechanical evolution of the system)
 - introducing the constitutive relations and the basic laws of continuum mechanics
- consider the analytical aspects: to point out the EXISTENCE AND UNIQUENESS OF SOLUTIONS for the related PDE'S SYSTEM
- to introduce some open related problems like the possibility to apply this kind of approach to SHAPE MEMORY ALLOYS

Phase transition models with voids

Frémond and Rocca

Outline

The model

The mass balance The free energy The pseudo-potential of dissipation Equations of motion Entropy balance

The analytic aspects

The PDE's system Main results

- discuss a phase transition model including possibly voids formation
- consider the modelling aspects: to derive the model by
 - choosing the free energy (responsible for the thermomechanical equilibrium of the system) and the pseudo-potential of dissipation (responsible for the thermomechanical evolution of the system)
 - introducing the constitutive relations and the basic laws of continuum mechanics
- consider the analytical aspects: to point out the EXISTENCE AND UNIQUENESS OF SOLUTIONS for the related PDE'S SYSTEM
- to introduce some open related problems like the possibility to apply this kind of approach to SHAPE MEMORY ALLOYS

Phase transition models with voids

Frémond and Rocca

Outline

The model

The mass balance The free energy The pseudo-potential of dissipation Equations of motion Entropy balance

The analytic aspects The PDE's system Main results

- discuss a phase transition model including possibly voids formation
- consider the modelling aspects: to derive the model by
 - choosing the free energy (responsible for the thermomechanical equilibrium of the system) and the pseudo-potential of dissipation (responsible for the thermomechanical evolution of the system)
 - introducing the constitutive relations and the basic laws of continuum mechanics
- consider the analytical aspects: to point out the EXISTENCE AND UNIQUENESS OF SOLUTIONS for the related PDE'S SYSTEM
- to introduce some open related problems like the possibility to apply this kind of approach to SHAPE MEMORY ALLOYS

Phase transition models with voids

Frémond and Rocca

Outline

The model

The mass balance The free energy The pseudo-potential of dissipation Equations of motion Entropy balance

The analytic aspects

The PDE's system Main results

- discuss a phase transition model including possibly voids formation
- consider the modelling aspects: to derive the model by
 - choosing the free energy (responsible for the thermomechanical equilibrium of the system) and the pseudo-potential of dissipation (responsible for the thermomechanical evolution of the system)
 - introducing the constitutive relations and the basic laws of continuum mechanics
- consider the analytical aspects: to point out the EXISTENCE AND UNIQUENESS OF SOLUTIONS for the related PDE'S SYSTEM
- to introduce some open related problems like the possibility to apply this kind of approach to SHAPE MEMORY ALLOYS

Phase transition models with voids

Frémond and Rocca

Outline

The model

The mass balance The free energy The pseudo-potential of dissipation Equations of motion Entropy balance

The analytic aspects The PDE's system

Main results

- discuss a phase transition model including possibly voids formation
- consider the modelling aspects: to derive the model by
 - choosing the free energy (responsible for the thermomechanical equilibrium of the system) and the pseudo-potential of dissipation (responsible for the thermomechanical evolution of the system)
 - introducing the constitutive relations and the basic laws of continuum mechanics
- consider the analytical aspects: to point out the EXISTENCE AND UNIQUENESS OF SOLUTIONS for the related PDE'S SYSTEM
- to introduce some open related problems like the possibility to apply this kind of approach to SHAPE MEMORY ALLOYS

Phase transition models with voids

Frémond and Rocca

Outline

The model

The mass balance The free energy The pseudo-potential of dissipation Equations of motion Entropy balance

The analytic aspects The PDE's system

Main results

- discuss a phase transition model including possibly voids formation
- consider the modelling aspects: to derive the model by
 - choosing the free energy (responsible for the thermomechanical equilibrium of the system) and the pseudo-potential of dissipation (responsible for the thermomechanical evolution of the system)
 - introducing the constitutive relations and the basic laws of continuum mechanics
- consider the analytical aspects: to point out the EXISTENCE AND UNIQUENESS OF SOLUTIONS for the related PDE'S SYSTEM
- to introduce some open related problems like the possibility to apply this kind of approach to SHAPE MEMORY ALLOYS

Phase transition models with voids

Frémond and Rocca

Outline

The model

The mass balance The free energy The pseudo-potential of dissipation Equations of motion Entropy balance

The analytic aspects The PDE's system Main results

Open related

Phase transitions

Phase-field models means deriving equations for:

- ε the linearized symmetric strain tensor (quasi-static macroscopic equation of motion)
- β = (β₁, β₂)^τ where β₁ and β₂ the volume fraction of the two phases (microscopic equation of motion)

Phase transition models with voids

Frémond and Rocca

Outlin

The model

The mass balance The free energy The pseudo-potential of dissipation Equations of motion Entropy balance

The analytic aspects The PDE's system Main results

The mass balance

Assume the same constant density ρ and the same velocity U := ut (being u = (u1, u2, u3) the small displacement) for liquid and solid phases.

Then, the mass balance can be written as

$$\frac{d}{dt} \big[\rho(\beta_1 + \beta_2) \big] + \rho(\beta_1 + \beta_2) \operatorname{div} \boldsymbol{U} = 0 \quad \text{in } \boldsymbol{Q} := \Omega \times (0, T)$$

Moreover, within the small perturbations assumption, it gives

$$\partial_t(\beta_1 + \beta_2) + (\beta_1^0 + \beta_2^0) \operatorname{div} \boldsymbol{U} = 0 \quad \text{in } Q.$$
 (MB)

Take the reference value of the material volume fraction $\beta_1^0 + \beta_2^0 = 1$ for simplicity.

Phase transition models with voids

Frémond and Rocca

Outlin

The model

The mass balance

The free energy The pseudo-potential of dissipation Equations of motion

The analytic aspects

The PDE's system Main results

The mass balance

Assume the same constant density ρ and the same velocity U := ut (being u = (u1, u2, u3) the small displacement) for liquid and solid phases.

Then, the mass balance can be written as

$$\frac{d}{dt}[\rho(\beta_1+\beta_2)]+\rho(\beta_1+\beta_2)\operatorname{div} \boldsymbol{U}=0\quad\text{in }\boldsymbol{Q}:=\Omega\times(0,T).$$

Moreover, within the small perturbations assumption, it gives

$$\partial_t(\beta_1 + \beta_2) + (\beta_1^0 + \beta_2^0) \operatorname{div} \boldsymbol{U} = 0 \quad \text{in } Q.$$
 (MB)

Take the reference value of the material volume fraction $\beta_1^0 + \beta_2^0 = 1$ for simplicity.

Phase transition models with voids

Frémond and Rocca

Outlin

The model

The mass balance

The free energy The pseudo-potential of dissipation Equations of motion Entropy balance

The analytic aspects

The PDE's system Main results

The mass balance

Assume the same constant density ρ and the same velocity U := ut (being u = (u1, u2, u3) the small displacement) for liquid and solid phases.

Then, the mass balance can be written as

$$\frac{d}{dt}[\rho(\beta_1+\beta_2)]+\rho(\beta_1+\beta_2)\operatorname{div} \boldsymbol{U}=0\quad\text{in }\boldsymbol{Q}:=\Omega\times(0,T).$$

Moreover, within the small perturbations assumption, it gives

$$\partial_t(\beta_1+\beta_2)+(\beta_1^0+\beta_2^0) \operatorname{div} \boldsymbol{U}=0 \quad \text{in } Q.$$
 (MB)

Take the reference value of the material volume fraction $\beta_1^0 + \beta_2^0 = 1$ for simplicity.

Phase transition models with voids

Frémond and Rocca

Outline

The model

The mass balance

The free energy The pseudo-potential of dissipation Equations of motion Entropy balance

The analytic aspects

The PDE's system Main results

The free energy

The free energy functional must include the constraint on β , i.e. it is

$$\Psi = -\vartheta \ln \vartheta + \frac{1}{2} |\varepsilon(\boldsymbol{u})|^2 - \frac{\ell}{\vartheta_c} (\vartheta - \vartheta_c) \beta_1 + I_{\mathcal{K}}(\boldsymbol{\beta}) + \frac{1}{2} |\nabla \boldsymbol{\beta}|^2$$

where $\varepsilon(\mathbf{u}) := (u_{i,j} + u_{j,i})/2$ (*i*, *j* = 1, 2, 3) is the linearized symmetric strain tensor, $\ell > 0$ is the latent heat at the phase change temperature ϑ_c , $\nabla \beta_1$ describes properties of the voids-liquid ($\nabla \beta_2$ of the voids-solid) interface. I_K is the indicator function of the convex set

 $\textit{\textit{K}} := \{ (\beta_1, \beta_2) \in \mathbb{R}^2 \text{ such that } \beta_1, \beta_2, \beta_1 + \beta_2 \in [0, 1] \},$

that is

$$I_{\mathcal{K}}(x) = egin{cases} 0 & ext{if } x \in \mathcal{K} \ +\infty & ext{otherwise}. \end{cases}$$

Phase transition models with voids

Frémond and Rocca

Outlin

The model The mass balance

The free energy

The pseudo-potential of dissipation

Equations of motion Entropy balance

The analytic

The PDE's system Main results

The pseudo-potential of dissipation

We include dissipation by following the approach of [Moreau, 1971]

$$\Phi(\nabla\vartheta,\dot{\beta},\nabla\dot{\beta},\varepsilon(\boldsymbol{u}_{t})) = \frac{1}{2\vartheta}|\nabla\vartheta|^{2} + \frac{1}{2}|\dot{\beta}|^{2} + \frac{1}{2}|\nabla\dot{\beta}|^{2} + \frac{1}{2}|\varepsilon(\boldsymbol{u}_{t})|^{2} + I_{0}(\partial_{t}(\beta_{1}+\beta_{2}) + \operatorname{div}\boldsymbol{u}_{t})$$

where the presence of $1/\vartheta$ entails that thermal dissipation becomes more relevant at low temperatures: indeed it is more difficult to heat a hot body than a cold one. The function I_0 is the indicator function of 0, i.e.

$$\mathit{I}_0(x) = egin{cases} 0 & ext{if } x = 0 \ +\infty & ext{otherwise.} \end{cases}$$

Return to B snd H

Phase transition models with voids

Frémond and Rocca

Outlin

The model The mass balance The free energy

The pseudo-potential of dissipation

Equations of motion Entropy balance

```
The analytic
aspects
The PDE's system
Main results
```


From basic laws of Thermodynamics and Constitutive relations

we deduce...

- The equation of macroscopic motion $\Rightarrow \varepsilon(\mathbf{u})$
- The equation of microscopic motion ⇒ β = (β₁, β₂)^τ both deduced from the generalized principle of virtual power (cf. [M. Frémond, 2002])
- The entropy balance equation $\Rightarrow \vartheta$

Phase transition models with voids

Frémond and Rocca

Outlin

The model

The free energy

The pseudo-potential of dissipation

Equations of motion Entropy balance

The analytic aspects

The PDE's system Main results

Equation of macroscopic motion

The quasi-static macroscopic equation of motion is provided by the principle of virtual power and it is

div
$$\sigma + \boldsymbol{f} = \boldsymbol{0}$$
 in Q
 $\sigma \cdot \boldsymbol{n} = \hat{\boldsymbol{g}}$ on $\Sigma := \partial \Omega \times (0, T),$

 σ is the stress variable, f = exterior volume force, \hat{g} = exterior contact force on the boundary.

Due to < Consitutive Laws

the equilibrium equation can be rewritten as

$$\operatorname{div}\left(\varepsilon(\boldsymbol{u})+\varepsilon(\boldsymbol{u}_t)-p\mathbb{I}\right)+\boldsymbol{f}=\boldsymbol{0}\quad \text{in } \boldsymbol{\mathsf{Q}},$$

where

 $-\boldsymbol{\rho} \in \partial I_0 \big(\partial_t (\beta_1 + \beta_2) + \operatorname{div} \boldsymbol{u}_t \big)$

represents just the **PRESSURE** of the system!

Phase transition models with voids

Frémond and Rocca

Outline

The model

The mass balance The free energy The pseudo-potential of dissipation

Equations of motion Entropy balance

The analytic aspects The PDE's system Main results

Open related problems

(m)

The equation of microscopic motion

The balance of momentum for microscopic forces, derived from a generalization (cf. [M. Frémond, 2002]) of the principle of virtual power (in absence of external actions), is

$$\boldsymbol{B} - \operatorname{div} \boldsymbol{H} = \boldsymbol{0}$$
 in Q, $\boldsymbol{H} \cdot \boldsymbol{n} = 0$ on $\boldsymbol{\Sigma}$.

Due to the standard consititutive laws Constitutive Laws, H (an energy flux tensor) and **B** (a density of energy vector), representing internal microscopic forces, we have

$$\dot{eta} - \Delta \dot{eta} - \Delta eta + m{\xi} - p \mathbf{1} = \begin{pmatrix} rac{\ell}{artheta_c} (artheta - artheta_c) \\ 0 \end{pmatrix}$$
 in Q (M

$$\partial_{\boldsymbol{n}}\dot{\boldsymbol{\beta}} = \partial_{\boldsymbol{n}}\boldsymbol{\beta} = 0 \quad \text{on } \boldsymbol{\Sigma},$$

where $\boldsymbol{\xi} \in \partial I_{\boldsymbol{\kappa}}(\boldsymbol{\beta})$ and $-\boldsymbol{p} \in \partial I_0(\partial_t(\beta_1 + \beta_2) + \operatorname{div} \mathbf{u}_t)$.

Phase transition

models with voids Frémond and

Rocca

Equations of motion

Main results

Energy-Entropy balance

The small perturbations assumption allows to neglect the dissipative contributions on the right hand side and due to the fact that absolute temperature $\vartheta > 0$, the energy balance equation \blacktriangleleft Energy balance

$$\vartheta\left(\mathbf{s}_{t}+\operatorname{div}\mathbf{Q}-\frac{r}{\vartheta}\right)=(\mathbf{B}^{d},H^{d},-\mathbf{Q}^{d})\cdot(\dot{\boldsymbol{\beta}},\nabla\dot{\boldsymbol{\beta}},\nabla\vartheta)(=0)$$

reduces to the entropy balance ($R = r/\vartheta$)

$$s_t + \operatorname{div} \mathbf{Q} = R.$$

Finally, since $s = -\frac{\partial \Psi}{\partial \vartheta}$ and $\mathbf{Q} = -\frac{\partial \Phi}{\partial \nabla \vartheta}$, with our choice of Ψ and Φ , it becomes:

$$\partial_t(\ln \vartheta) + \frac{\ell}{\vartheta_c} \partial_t \beta_1 - \Delta(\ln \vartheta) = R \text{ in } Q.$$

Phase transition models with voids

Frémond and Rocca

Outline

The model

The mass balance The free energy The pseudo-potential of dissipation

Equations of motion

Entropy balance

The analytic aspects

The PDE's system Main results

Open related problems

(E)

Problem (P)

Find suitably regular ($\mathbf{u}, \vartheta, \beta_1, \beta_2$) s.t.

Phase transition

models with voids Frémond and Rocca

+ suitable I.C. and B.C.

The global existence result

Theorem 1 [M. Frémond and E. R.]. Take suitable assumptions on the data and let T be a positive final time. Then Problem (P) has at least a solution on the whole time interval [0, T].

Phase transition models with voids

Frémond and Rocca

Outlin

The mode

The mass balance The free energy The pseudo-potential of dissipation Equations of motion

antopy balance

aspects The PDE's system

Main results

The uniqueness result

Theorem 2 [M. Frémond and E. R.]. Let *T* be a positive final time. Besides conditions, which guarantee existence, suppose that

 $\partial I_{\mathcal{K}}(\beta)$ is substituted by a function $\alpha \in C^{0,1}(\mathbb{R}^2)$.

Then, the solution of Theorem 1 turns out to be unique and to depend continuously on the data of the problem.

▶ Remark

Phase transition models with voids

Frémond and Rocca

Outlin

The mode

The mass balance The free energy The pseudo-potential of dissipation Equations of motion Entropy balance

The analytic aspects

Main results

- To treat the case of a fully nonlinear entropy (or energy) balance equation, i.e. without using the assumption of SMALL PERTURBATIONS.
- To get uniqueness of solutions in the general case of the double nonsmooth nonlinearities in the equation of Microscopic motion.
- To consider the problem of the freezing of soil not saturated (there is the possibility of having voids before the phase change occurs and after too).
- ► To treat the case of phase transitions in the SHAPE MEMORY ALLOYS with the possibility of voids.

Phase transition models with voids

Frémond and Rocca

Outlin

The model

The mass balance The free energy The pseudo-potential of dissipation Equations of motion Entropy balance

The analytic aspects

The PDE's systen Main results

- To treat the case of a fully nonlinear entropy (or energy) balance equation, i.e. without using the assumption of SMALL PERTURBATIONS.
- To get uniqueness of solutions in the general case of the double nonsmooth nonlinearities in the equation of Microscopic motion.
- To consider the problem of the freezing of soil not saturated (there is the possibility of having voids before the phase change occurs and after too).
- ► To treat the case of phase transitions in the SHAPE MEMORY ALLOYS with the possibility of voids.

Phase transition models with voids

Frémond and Rocca

Outlin

The model

The mass balance The free energy The pseudo-potential of dissipation Equations of motion Entropy balance

The analytic

The PDE's system Main results

- To treat the case of a fully nonlinear entropy (or energy) balance equation, i.e. without using the assumption of SMALL PERTURBATIONS.
- To get uniqueness of solutions in the general case of the double nonsmooth nonlinearities in the equation of Microscopic motion.
- To consider the problem of the freezing of soil not saturated (there is the possibility of having voids before the phase change occurs and after too).
- ► To treat the case of phase transitions in the SHAPE MEMORY ALLOYS with the possibility of voids.

Phase transition models with voids

Frémond and Rocca

Outlin

The mode

The mass balance The free energy The pseudo-potential of dissipation Equations of motion Entropy balance

The analytic

The PDE's system Main results

- To treat the case of a fully nonlinear entropy (or energy) balance equation, i.e. without using the assumption of SMALL PERTURBATIONS.
- To get uniqueness of solutions in the general case of the double nonsmooth nonlinearities in the equation of Microscopic motion.
- To consider the problem of the freezing of soil not saturated (there is the possibility of having voids before the phase change occurs and after too).
- To treat the case of phase transitions in the SHAPE MEMORY ALLOYS with the possibility of voids.

Phase transition models with voids

Frémond and Rocca

Outline

The model

The mass balance The free energy The pseudo-potential of dissipation Equations of motion Entropy balance

The analytic

The PDE's system Main results

► Make the following tests:

•
$$(E^1 - E^2)$$
 with 2 $(\ln \vartheta^1 - \ln \vartheta^2)$;

• $(m^1 - m^2)$ with $2(u^1 - u^2)_t$

•
$$(M^1 - M^2)$$
 with $((\beta_1^1)_t - (\beta_2^2)_t, (\beta_2^1)_t - (\beta_2^2)_t);$

• use α is Lipschitz continuous for the term $\int_0^t |\alpha(\chi^1) - \alpha(\chi^2)|_{L^2(\Omega)} |(\chi^1)_t - (\chi^2)_t|_{L^2(\Omega)};$

► note that γ : w → exp w, is a locally Lipschitz continuous function, ϑⁱ = γ(ln ϑⁱ), and ln ϑⁱ are bounded in L[∞](Q) for i = 1, 2, hence

Frémond and Rocca

Outline

The mode

The mass balance The free energy The pseudo-potential of dissipation Equations of motion Entropy balance

The analytic aspects

The PDE's system Main results

Open related problems

$$|\vartheta^{1} - \vartheta^{2}|_{L^{2}(\Omega)} \leq c_{\gamma,|\ln\vartheta'|_{L^{\infty}(\Omega)}} |\ln\vartheta^{1} - \ln\vartheta^{2}|_{L^{2}(\Omega)}.$$

Hence, thanks to the regularity $L^{\infty}(\mathbf{Q})$ of $\ln \vartheta^i$, we are able to get the desired continuous dependence estimate, entailing, in particular, uniqueness of solutions to Problem (P).

- Make the following tests:
 - $(E^1 E^2)$ with $2(\ln \vartheta^1 \ln \vartheta^2)$;
 - $(m^1 m^2)$ with $2(\mathbf{u}^1 \mathbf{u}^2)_t$;
 - $(M^1 M^2)$ with $((\beta_1^1)_t (\beta_1^2)_t, (\beta_2^1)_t (\beta_2^2)_t);$
- use α is Lipschitz continuous for the term $\int_0^t |\alpha(\chi^1) - \alpha(\chi^2)|_{L^2(\Omega)} |(\chi^1)_t - (\chi^2)_t|_{L^2(\Omega)};$
- ► note that γ : w → exp w, is a locally Lipschitz continuous function, ϑⁱ = γ(ln ϑⁱ), and ln ϑⁱ are bounded in L[∞](Q) for i = 1, 2, hence

Frémond and Rocca

Outlin

The mode

The mass balance The free energy The pseudo-potential of dissipation Equations of motion Entropy balance

The analytic aspects

The PDE's system Main results

Open related problems

 $|\vartheta^{1} - \vartheta^{2}|_{L^{2}(\Omega)} \leq c_{\gamma,|\ln\vartheta'|_{L^{\infty}(\Omega)}} |\ln\vartheta^{1} - \ln\vartheta^{2}|_{L^{2}(\Omega)}.$

Hence, thanks to the regularity $L^{\infty}(Q)$ of $\ln \vartheta^i$, we are able to get the desired continuous dependence estimate, entailing, in particular, uniqueness of solutions to Problem (P).

- Make the following tests:
 - $(E^1 E^2)$ with $2(\ln \vartheta^1 \ln \vartheta^2)$;
 - $(m^1 m^2)$ with $2(\mathbf{u}^1 \mathbf{u}^2)_t$;
 - $(M^1 M^2)$ with $((\beta_1^1)_t (\beta_1^2)_t, (\beta_2^1)_t (\beta_2^2)_t);$
- use α is Lipschitz continuous for the term $\int_0^t |\alpha(\chi^1) \alpha(\chi^2)|_{L^2(\Omega)} |(\chi^1)_t (\chi^2)_t|_{L^2(\Omega)};$
- ► note that γ : w → exp w, is a locally Lipschitz continuous function, ϑⁱ = γ(ln ϑⁱ), and ln ϑⁱ are bounded in L[∞](Q) for i = 1, 2, hence

$$|\vartheta^1 - \vartheta^2|_{L^2(\Omega)} \leq c_{\gamma, |\ln \vartheta^j|_{L^\infty(\Omega)}} |\ln \vartheta^1 - \ln \vartheta^2|_{L^2(\Omega)}$$

Hence, thanks to the regularity $L^{\infty}(\mathbf{Q})$ of $\ln \vartheta^i$, we are able to get the desired continuous dependence estimate, entailing, in particular, uniqueness of solutions to Problem (P).

Phase transition models with voids

Frémond and Rocca

Outlin

The mode

The mass balance The free energy The pseudo-potential of dissipation Equations of motion Entropy balance

The analytic aspects

The PDE's system Main results

- Make the following tests:
 - $(E^1 E^2)$ with $2(\ln \vartheta^1 \ln \vartheta^2)$;
 - $(m^1 m^2)$ with $2(\mathbf{u}^1 \mathbf{u}^2)_t$;
 - $(M^1 M^2)$ with $((\beta_1^1)_t (\beta_1^2)_t, (\beta_2^1)_t (\beta_2^2)_t);$
- use α is Lipschitz continuous for the term $\int_0^t |\alpha(\chi^1) \alpha(\chi^2)|_{L^2(\Omega)} |(\chi^1)_t (\chi^2)_t|_{L^2(\Omega)};$
- ► note that γ : w → exp w, is a locally Lipschitz continuous function, ϑⁱ = γ(ln ϑⁱ), and ln ϑⁱ are bounded in L[∞](Q) for i = 1, 2, hence

$$|\vartheta^{1} - \vartheta^{2}|_{L^{2}(\Omega)} \leq c_{\gamma, |\ln \vartheta^{i}|_{L^{\infty}(Q)}} |\ln \vartheta^{1} - \ln \vartheta^{2}|_{L^{2}(\Omega)}$$

Hence, thanks to the regularity $L^{\infty}(\mathbf{Q})$ of $\ln \vartheta^i$, we are able to get the desired continuous dependence estimate, entailing, in particular, uniqueness of solutions to Problem (P).

Phase transition models with voids

Frémond and Rocca

Outlin

The mode

The mass balance The free energy The pseudo-potential of dissipation Equations of motion Entropy balance

The analytic aspects

The PDE's system Main results

- ► Make the following tests:
 - $(E^1 E^2)$ with $2(\ln \vartheta^1 \ln \vartheta^2)$;
 - $(m^1 m^2)$ with $2(\mathbf{u}^1 \mathbf{u}^2)_t$;
 - $(M^1 M^2)$ with $((\beta_1^1)_t (\beta_1^2)_t, (\beta_2^1)_t (\beta_2^2)_t);$
- use α is Lipschitz continuous for the term $\int_0^t |\alpha(\chi^1) \alpha(\chi^2)|_{L^2(\Omega)} |(\chi^1)_t (\chi^2)_t|_{L^2(\Omega)};$
- ► note that γ : w → exp w, is a locally Lipschitz continuous function, ϑⁱ = γ(ln ϑⁱ), and ln ϑⁱ are bounded in L[∞](Q) for i = 1, 2, hence

$$|\vartheta^1 - \vartheta^2|_{L^2(\Omega)} \leq c_{\gamma,|\ln \vartheta^j|_{L^\infty(Q)}} |\ln \vartheta^1 - \ln \vartheta^2|_{L^2(\Omega)}.$$

Hence, thanks to the regularity $L^{\infty}(\mathbf{Q})$ of $\ln \vartheta^i$, we are able to get the desired continuous dependence estimate, entailing, in particular, uniqueness of solutions to Problem (P).

Phase transition models with voids

Frémond and Rocca

Outlin

The mode

The mass balance The free energy The pseudo-potential of dissipation Equations of motion Entropy balance

The analytic aspects

The PDE's system Main results

- ► Make the following tests:
 - $(E^1 E^2)$ with $2(\ln \vartheta^1 \ln \vartheta^2)$;
 - $(m^1 m^2)$ with $2(\mathbf{u}^1 \mathbf{u}^2)_t$;
 - $(M^1 M^2)$ with $((\beta_1^1)_t (\beta_1^2)_t, (\beta_2^1)_t (\beta_2^2)_t);$
- use α is Lipschitz continuous for the term $\int_0^t |\alpha(\chi^1) \alpha(\chi^2)|_{L^2(\Omega)} |(\chi^1)_t (\chi^2)_t|_{L^2(\Omega)};$
- ► note that γ : w → exp w, is a locally Lipschitz continuous function, ϑⁱ = γ(ln ϑⁱ), and ln ϑⁱ are bounded in L[∞](Q) for i = 1, 2, hence

$$|\vartheta^1 - \vartheta^2|_{L^2(\Omega)} \leq c_{\gamma, |\ln \vartheta^j|_{L^\infty(Q)}} |\ln \vartheta^1 - \ln \vartheta^2|_{L^2(\Omega)}$$

Hence, thanks to the regularity $L^{\infty}(Q)$ of $\ln \vartheta^i$, we are able to get the desired continuous dependence estimate, entailing, in particular, uniqueness of solutions to Problem (P).

Phase transition models with voids

Frémond and Rocca

Outlin

The model

The mass balance The free energy The pseudo-potential of dissipation Equations of motion Entropy balance

The analytic aspects

The PDE's system Main results

Phase transitions

...an example: the melting-solidification process in a bounded domain $\Omega \subset \mathbb{R}^3$ with regular boundary, e.g., containing cast iron or ice. It contains bubbles or VOIDS. They result from the solidification of a liquid phase without voids \Longrightarrow

voids have been created during the phase change

The column vector of volume fractions $\beta = (\beta_1, \beta_2)^{\tau}$:

- $\beta_1 \in [0, 1]$: the liquid volume fraction
- $\beta_2 \in [0, 1]$: the solid volume fraction
- $1 \beta_1 \beta_2$: the void volume fraction.

We do not have the relation $\beta_1 + \beta_2 = 1$ but only $\beta_1 + \beta_2 \le 1$ because we may have voids but no interpenetration

Phase transition models with voids

The pseudo-potential of dissipation

Phase transition models with voids

Frémond and Rocca

The term $I_0(\partial_t(\beta_1 + \beta_2) + \text{div } \mathbf{u}_t)$ in Φ is zero if (MB) is satisfied and it is $+\infty$ otherwise, where

$$\partial_t(\beta_1 + \beta_2) + \operatorname{div} \boldsymbol{u}_t = 0 \quad \text{in } Q.$$
 (MB)

From basic laws of Thermodynamics and Constitutive relations Principle of virtual power for microscopic motion

For any subdomain $D \subset \Omega$ and any virtual microscopic velocity v,

 $P_{\text{int}}(D, \mathbf{v}) + P_{\text{ext}}(D, \mathbf{v}) = \mathbf{0},$

where (**B** and *H* new interior forces)

$$P_{\text{int}}(D, \mathbf{v}) := -\int_{D} (\mathbf{B} \cdot \mathbf{v} + H : \nabla \mathbf{v}),$$
$$P_{\text{ext}}(D, \mathbf{v}) := \int_{D} \mathbf{A} \cdot \mathbf{v} + \int_{\partial D} \mathbf{a} \cdot \mathbf{v} = 0$$

From which (in absence of external actions) we derive an equilibrium equation in $\boldsymbol{\Omega}$

 $\mathbf{B} - \operatorname{div} H = \mathbf{0}$

with the natural associated boundary condition on $\partial \Omega$ $H \cdot \mathbf{n} = 0.$ Phase transition models with voids

Constitutive laws...

Phase transition models with voids

Frémond and Rocca

The stress tensor $\sigma = \sigma^{nd} + \sigma^{d}$

$$\bullet \ \sigma^{nd} = \frac{\partial \Psi}{\partial \varepsilon(\boldsymbol{u})} = \varepsilon(\boldsymbol{u})$$
$$\bullet \ \sigma^{d} = \frac{\partial \Phi}{\partial \varepsilon(\boldsymbol{u}_{t})} = \varepsilon(\boldsymbol{u}_{t}) - p\mathbb{I}.$$

where -p is a selection of ∂I_0 and because the of the choice of the Free energy and of the Pseudo-potential of dissipation

Pseudopotential

Constitutive laws

The interior forces

► $\mathbf{B} = \mathbf{B}^{nd} + \mathbf{B}^{d}$ (a density of energy vector)

►
$$\mathbf{B}^{nd} = \frac{\partial \Psi}{\partial \beta} = -\begin{pmatrix} \frac{\ell}{\vartheta_c}(\vartheta - \vartheta_c) \\ 0 \end{pmatrix} + \boldsymbol{\xi},$$

► $\mathbf{B}^d = \frac{\partial \Phi}{\partial \dot{\beta}} = \dot{\beta} - p\mathbf{1};$

• $H = H^{nd} + H^d$ (an energy flux tensor)

•
$$H^{nd} = \frac{\partial \Psi}{\partial \nabla \beta} = \nabla \beta,$$

• $H^d = \frac{\partial \Phi}{\partial \nabla \dot{\beta}} = \nabla \dot{\beta}.$

where $\boldsymbol{\xi}$ and -p are two selections of $\partial I_{\mathcal{K}}$ and ∂I_{0} , respectively and

because of the choices of the Free energy

Free energy

and of the Pseudo-potential of dissipation

Pseudopotential

Phase transition models with voids

Some physical case covered by the model

Take the case $\beta_1, \beta_2 \in (0, 1)$ and $-\Delta \beta = 0$, then we can write (M) \triangleleft as

$$\dot{\beta_1} - \Delta \dot{\beta_1} = p + \vartheta - \vartheta_c$$
 in Q,
 $\dot{\chi_1} - \Delta \dot{\chi_1} = 2p + \vartheta - \vartheta_c$ in Q,

where $\chi_1 = \beta_1 + \beta_2$. Hence, we find

- ♦ If $(p + \vartheta \vartheta_c) < 0$ a.e. in Q, then $\dot{\beta}_1 < 0$ a.e. in Q (think of solid-liquid phase transitions: the liquid content decreases).
- ♦ If $(2p + \vartheta \vartheta_c) < 0$ a.e. in Q, then $\dot{\chi_1} = \partial_t (\beta_1 + \beta_2) < 0$ a.e. in Q and, by the mass balance equation, we verify the frost heave phenomenon in soils:

div
$$\mathbf{u}_t = -\partial_t(\beta_1 + \beta_2) > 0$$
 a.e. in Q.

Phase transition models with voids

Energy-Entropy balance

As usual the Energy Balance reads

$$e_t + \operatorname{div} \mathbf{q} = r + (\mathbf{B}^d, H^d, -\mathbf{Q}^d) \cdot (\dot{\boldsymbol{\beta}}, \nabla \dot{\boldsymbol{\beta}}, \nabla \vartheta),$$

where e is the *internal energy*, \mathbf{q} the heat flux, r the external rate of heat production.

Using the definition of *entropy* and the Helmoltz relation:

$$\mathbf{s} = -\frac{\partial \Psi}{\partial \vartheta}, \quad \mathbf{e} = \Psi + \vartheta \mathbf{s},$$

we get

$$\vartheta\left(\mathbf{s}_{t}+\operatorname{div}\mathbf{Q}-\frac{\mathbf{r}}{\vartheta}\right)=\left(\mathbf{B}^{d},H^{d},-\mathbf{Q}^{d}\right)\cdot\left(\dot{\boldsymbol{\beta}},\nabla\dot{\boldsymbol{\beta}},\nabla\vartheta\right)$$

where $\mathbf{Q} := \mathbf{q}/\vartheta$.

Phase transition models with voids

The global existence result

Uniqueness seems to be difficult due to

- ► the difficult coupling between the microscopic motion (prresence of ϑ) and the entropy balance equations (the variable is ln ϑ) (cf. also [Bonetti, Colli, Frémond]) and
- ► the double nonsmooth nonlinearities in the microscopic motion equation: ∂*I*_K(β) and ∂*I*₀(∂_t(β₁ + β₂) + div u_t).

The global existence result

Note that we are able to prove the same existence result for more general maximal monotone graphs, that is if $\partial I_{\mathcal{K}}$ in (M) is substituted by $\alpha := \partial j$ with

 $j: \mathbb{R}^2 \to [0, +\infty]$ a proper, convex, lower semicontinuous function such that j(0) = 0.

Example. The logarithmic or the polynomial cases.

Phase transition models with voids

The uniqueness result

We overcome difficulties due to the difficult coupling between

- ► the entropy balance equation (E) ⇒ parabolic in In ϑ and
- ► the microscopic equation of motion (M) ⇒ containing the ϑ variable

using a regularity result for parabolic equations entailing in particular $\ln \vartheta \in L^{\infty}(Q)$ (cf. [Ladyženskaja, Solonnikov, Uralçeva, 1967]).

