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Aim of the talk

I discuss a phase transition model including possibly
voids formation

I consider the modelling aspects: to derive the model
by

I choosing the free energy (responsible for the
thermomechanical equilibrium of the system) and the
pseudo-potential of dissipation (responsible for
the thermomechanical evolution of the system)

I introducing the constitutive relations and the basic
laws of continuum mechanics

I consider the analytical aspects: to point out the
EXISTENCE AND UNIQUENESS OF SOLUTIONS for the
related PDE’S SYSTEM

I to introduce some open related problems like the
possibility to apply this kind of approach to SHAPE

MEMORY ALLOYS
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Phase transitions

Phase-field models means deriving equations for:
I ϑ the absolute temperature (entropy balance

equation)
I ε the linearized symmetric strain tensor (quasi-static

macroscopic equation of motion)
I β = (β1, β2)

τ where β1 and β2 the volume fraction of
the two phases (microscopic equation of motion)

Example
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The mass balance

I Assume the same constant density ρ and the same
velocity U := u t (being u = (u1, u2, u3) the small
displacement) for liquid and solid phases.

Then, the mass balance can be written as

d
dt

[
ρ(β1 + β2)

]
+ ρ(β1 + β2) div U = 0 in Q := Ω× (0, T ).

Moreover, within the small perturbations assumption, it
gives

∂t(β1 + β2) + (β0
1 + β0

2) div U = 0 in Q. (MB)

Take the reference value of the material volume fraction
β0

1 + β0
2 = 1 for simplicity.
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The free energy

The free energy functional must include the constraint on
β, i.e. it is

Ψ = −ϑ ln ϑ +
1
2
|ε(u)|2 − `

ϑc
(ϑ− ϑc)β1 + IK (β) +

1
2
|∇β|2

where ε(u) := (ui,j + uj,i)/2 (i , j = 1, 2, 3) is the linearized
symmetric strain tensor, ` > 0 is the latent heat at the
phase change temperature ϑc , ∇β1 describes properties
of the voids-liquid (∇β2 of the voids-solid) interface.
IK is the indicator function of the convex set

K := {(β1, β2) ∈ R2 such that β1, β2, β1 + β2 ∈ [0, 1]},

that is
IK (x) =

{
0 if x ∈ K

+∞ otherwise.

Return to B snd H
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The pseudo-potential of dissipation

We include dissipation by following the approach of
[Moreau, 1971]

Φ(∇ϑ, β̇,∇β̇, ε(u t)) =
1

2ϑ
|∇ϑ|2 +

1
2
|β̇|2 +

1
2
|∇β̇|2

+
1
2
|ε(u t)|2 + I0

(
∂t(β1 + β2) + div ut

)
,

where the presence of 1/ϑ entails that thermal dissipation
becomes more relevant at low temperatures: indeed it is
more difficult to heat a hot body than a cold one.
The function I0 is the indicator function of 0, i.e.

I0(x) =

{
0 if x = 0

+∞ otherwise.

Return to σ

Return to B snd H

Remark 1
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From basic laws of Thermodynamics and
Constitutive relations

we deduce...

I The equation of macroscopic motion ⇒ ε(u)

I The equation of microscopic motion ⇒ β = (β1, β2)
τ

both deduced from the generalized principle of virtual
power (cf. [M. Frémond, 2002])

I The entropy balance equation ⇒ ϑ
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Equation of macroscopic motion

The quasi-static macroscopic equation of motion is
provided by the principle of virtual power and it is

div σ + f = 0 in Q

σ · n = ĝ on Σ := ∂Ω× (0, T ),

σ is the stress variable, f = exterior volume force, ĝ =
exterior contact force on the boundary.
Due to Consitutive Laws

the equilibrium equation can be rewritten as

div
(
ε(u) + ε(u t)− pI

)
+ f = 0 in Q, (m)

where
−p ∈ ∂I0

(
∂t(β1 + β2) + div u t

)
represents just the PRESSURE of the system!
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The equation of microscopic motion

The balance of momentum for microscopic forces,
derived from a generalization (cf. [M. Frémond, 2002]) of
the principle of virtual power (in absence of external
actions), is

B − div H = 0 in Q, H · n = 0 on Σ.

Due to the standard consititutive laws Consitutive Laws , H (an
energy flux tensor) and B (a density of energy vector),
representing internal microscopic forces, we have

β̇ −∆β̇ −∆β + ξ − p1 =

(
`

ϑc
(ϑ− ϑc)

0

)
in Q (M)

∂nβ̇ = ∂nβ = 0 on Σ,

where ξ ∈ ∂IK (β) and −p ∈ ∂I0
(
∂t(β1 + β2) + div ut

)
.

Physical Examples
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Energy-Entropy balance

The small perturbations assumption allows to neglect the
dissipative contributions on the right hand side and due to
the fact that absolute temperature ϑ > 0, the energy
balance equation Energy balance

ϑ
(

st + div Q− r
ϑ

)
= (Bd , Hd ,−Qd) · (β̇,∇β̇,∇ϑ)(= 0)

reduces to the entropy balance (R = r/ϑ)

st + div Q = R.

Finally, since s = −∂Ψ
∂ϑ and Q = − ∂Φ

∂∇ϑ , with our choice of
Ψ and Φ, it becomes:

∂t(ln ϑ) + `
ϑc

∂tβ1 −∆(ln ϑ) = R in Q. (E)
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Problem (P)

Find suitably regular (u, ϑ, β1, β2) s.t.

div
(
ε(u) + ε(u t)− pI

)
+ f = 0 in Q, (m)

− p ∈ ∂I0(∂t(β1 + β2) + div ut) in Q,

∂t(ln ϑ) +
`

ϑc
∂tβ1 −∆(ln ϑ) = R in Q, (E)

β̇ −∆(β̇ + β) + ξ − p1 =

(
`

ϑc
(ϑ− ϑc)

0

)
in Q, (M)

ξ = (ξ1, ξ2) ∈ ∂IK (β) in Q

+ suitable I.C. and B.C.
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The global existence result

Theorem 1 [M. Frémond and E. R.]. Take suitable
assumptions on the data and let T be a positive final
time. Then Problem (P) has at least a solution on the
whole time interval [0, T ].

Remark 1

Remark 2
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The uniqueness result

Theorem 2 [M. Frémond and E. R.]. Let T be a
positive final time. Besides conditions, which guarantee
existence, suppose that

∂IK (β) is substituted by a function α ∈ C0,1(R2).

Then, the solution of Theorem 1 turns out to be unique
and to depend continuously on the data of the problem.

Remark
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Frémond and
Rocca

Outline

The model
The mass balance

The free energy

The pseudo-potential of
dissipation

Equations of motion

Entropy balance

The analytic
aspects
The PDE’s system

Main results

Open related
problems

Some perspectives for the future...

I To treat the case of a fully nonlinear entropy (or
energy) balance equation, i.e. without using the
assumption of SMALL PERTURBATIONS.

I To get uniqueness of solutions in the general case of
the double nonsmooth nonlinearities in the equation
of Microscopic motion.

I To consider the problem of the freezing of soil not
saturated (there is the possibility of having voids
before the phase change occurs and after too).

I To treat the case of phase transitions in the SHAPE

MEMORY ALLOYS with the possibility of voids.
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Idea of the uniqueness’ proof

I Make the following tests:
I (E1 − E2) with 2(ln ϑ1 − ln ϑ2);
I (m1 −m2) with 2(u1 − u2)t ;
I (M1 −M2) with

(
(β1

1)t − (β2
1)t , (β

1
2)t − (β2

2)t
)
;

I use α is Lipschitz continuous for the term∫ t
0 |α(χ1)− α(χ2)|L2(Ω)|(χ1)t − (χ2)t |L2(Ω);

I note that γ : w → exp w , is a locally Lipschitz
continuous function, ϑi = γ(ln ϑi), and ln ϑi are
bounded in L∞(Q) for i = 1, 2, hence

|ϑ1 − ϑ2|L2(Ω) ≤ cγ,| ln ϑi |L∞(Q)
| ln ϑ1 − ln ϑ2|L2(Ω).

Hence, thanks to the regularity L∞(Q) of ln ϑi , we are
able to get the desired continuous dependence estimate,
entailing, in particular, uniqueness of solutions to Problem
(P).
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Frémond and
Rocca

Outline

The model
The mass balance

The free energy

The pseudo-potential of
dissipation

Equations of motion

Entropy balance

The analytic
aspects
The PDE’s system

Main results

Open related
problems

Idea of the uniqueness’ proof

I Make the following tests:
I (E1 − E2) with 2(ln ϑ1 − ln ϑ2);
I (m1 −m2) with 2(u1 − u2)t ;
I (M1 −M2) with

(
(β1

1)t − (β2
1)t , (β

1
2)t − (β2

2)t
)
;

I use α is Lipschitz continuous for the term∫ t
0 |α(χ1)− α(χ2)|L2(Ω)|(χ1)t − (χ2)t |L2(Ω);

I note that γ : w → exp w , is a locally Lipschitz
continuous function, ϑi = γ(ln ϑi), and ln ϑi are
bounded in L∞(Q) for i = 1, 2, hence

|ϑ1 − ϑ2|L2(Ω) ≤ cγ,| ln ϑi |L∞(Q)
| ln ϑ1 − ln ϑ2|L2(Ω).

Hence, thanks to the regularity L∞(Q) of ln ϑi , we are
able to get the desired continuous dependence estimate,
entailing, in particular, uniqueness of solutions to Problem
(P).



Phase transition
models with

voids
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Frémond and
Rocca

Outline

The model
The mass balance

The free energy

The pseudo-potential of
dissipation

Equations of motion

Entropy balance

The analytic
aspects
The PDE’s system

Main results

Open related
problems

Idea of the uniqueness’ proof

I Make the following tests:
I (E1 − E2) with 2(ln ϑ1 − ln ϑ2);
I (m1 −m2) with 2(u1 − u2)t ;
I (M1 −M2) with

(
(β1

1)t − (β2
1)t , (β

1
2)t − (β2

2)t
)
;

I use α is Lipschitz continuous for the term∫ t
0 |α(χ1)− α(χ2)|L2(Ω)|(χ1)t − (χ2)t |L2(Ω);

I note that γ : w → exp w , is a locally Lipschitz
continuous function, ϑi = γ(ln ϑi), and ln ϑi are
bounded in L∞(Q) for i = 1, 2, hence

|ϑ1 − ϑ2|L2(Ω) ≤ cγ,| ln ϑi |L∞(Q)
| ln ϑ1 − ln ϑ2|L2(Ω).

Hence, thanks to the regularity L∞(Q) of ln ϑi , we are
able to get the desired continuous dependence estimate,
entailing, in particular, uniqueness of solutions to Problem
(P).



Phase transition
models with

voids
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entailing, in particular, uniqueness of solutions to Problem
(P).
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Idea of the uniqueness’ proof

I Make the following tests:
I (E1 − E2) with 2(ln ϑ1 − ln ϑ2);
I (m1 −m2) with 2(u1 − u2)t ;
I (M1 −M2) with

(
(β1

1)t − (β2
1)t , (β

1
2)t − (β2

2)t
)
;

I use α is Lipschitz continuous for the term∫ t
0 |α(χ1)− α(χ2)|L2(Ω)|(χ1)t − (χ2)t |L2(Ω);

I note that γ : w → exp w , is a locally Lipschitz
continuous function, ϑi = γ(ln ϑi), and ln ϑi are
bounded in L∞(Q) for i = 1, 2, hence

|ϑ1 − ϑ2|L2(Ω) ≤ cγ,| ln ϑi |L∞(Q)
| ln ϑ1 − ln ϑ2|L2(Ω).

Hence, thanks to the regularity L∞(Q) of ln ϑi , we are
able to get the desired continuous dependence estimate,
entailing, in particular, uniqueness of solutions to Problem
(P).
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Phase transitions

...an example: the melting-solidification process
in a bounded domain Ω ⊂ R3 with regular boundary, e.g.,
containing cast iron or ice. It contains bubbles or VOIDS .
They result from the solidification of a liquid phase
without voids =⇒

voids have been created during the phase change

The column vector of volume fractions β = (β1, β2)
τ :

I β1 ∈ [0, 1]: the liquid volume fraction
I β2 ∈ [0, 1]: the solid volume fraction
I 1− β1 − β2: the void volume fraction.

We do not have the relation β1 + β2 = 1 but only
β1 + β2 ≤ 1 because we may have voids but no

interpenetration
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The pseudo-potential of dissipation

The term I0
(
∂t(β1 + β2) + div ut

)
in Φ is zero if (MB) is

satisfied and it is +∞ otherwise, where

∂t(β1 + β2) + div u t = 0 in Q. (MB)

Return
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From basic laws of Thermodynamics and
Constitutive relations
Principle of virtual power for microscopic motion

For any subdomain D ⊂ Ω and any virtual microscopic
velocity v ,

Pint(D, v) + Pext(D, v) = 0,

where (B and H new interior forces)

Pint(D, v) := −
∫

D
(B · v + H : ∇v),

Pext(D, v) :=

∫
D

A · v +

∫
∂D

a · v = 0.

From which (in absence of external actions) we derive an
equilibrium equation in Ω

B − div H = 0
with the natural associated boundary condition on ∂Ω

H · n = 0.

Return
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Constitutive laws...

The stress tensor σ = σnd + σd

I σnd = ∂Ψ
∂ε(u) = ε(u)

I σd = ∂Φ
∂ε(u t )

= ε(u t)− pI.
where −p is a selection of ∂I0 and
because the of the choice of the Free energy and of the
Pseudo-potential of dissipation

Pseudopotential

Return
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Constitutive laws

The interior forces
I B = Bnd + Bd (a density of energy vector)

I Bnd = ∂Ψ
∂β = −

(
`

ϑc
(ϑ− ϑc)

0

)
+ ξ,

I Bd = ∂Φ
∂β̇

= β̇ − p1;

I H = Hnd + Hd (an energy flux tensor)
I Hnd = ∂Ψ

∂∇β = ∇β,
I Hd = ∂Φ

∂∇β̇
= ∇β̇.

where ξ and −p are two selections of ∂IK and ∂I0,
respectively and
because of the choices of the Free energy

Free energy

and of the Pseudo-potential of dissipation
Pseudopotential

Return
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Some physical case covered by the model

Take the case β1, β2 ∈ (0, 1) and −∆β = 0, then we can
write (M) M as

β̇1 −∆β̇1 = p + ϑ− ϑc in Q,

χ̇1 −∆χ̇1 = 2p + ϑ− ϑc in Q,

where χ1 = β1 + β2. Hence, we find

♦ If (p + ϑ− ϑc) < 0 a.e. in Q, then β̇1 < 0 a.e. in Q
(think of solid-liquid phase transitions: the liquid
content decreases).

♦ If (2p + ϑ− ϑc) < 0 a.e. in Q, then
χ̇1 = ∂t(β1 + β2) < 0 a.e. in Q and, by the mass
balance equation, we verify the frost heave
phenomenon in soils:

div ut = −∂t(β1 + β2) > 0 a.e. in Q.

Return



Phase transition
models with

voids
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Energy-Entropy balance

As usual the Energy Balance reads

et + div q = r + (Bd , Hd ,−Qd) · (β̇,∇β̇,∇ϑ),

where e is the internal energy , q the heat flux, r the
external rate of heat production.
Using the definition of entropy and the Helmoltz relation:

s = −∂Ψ

∂ϑ
, e = Ψ + ϑs,

we get

ϑ
(

st + div Q− r
ϑ

)
= (Bd , Hd ,−Qd) · (β̇,∇β̇,∇ϑ)

where Q := q/ϑ. Return
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The global existence result

Uniqueness seems to be difficult due to
I the difficult coupling between the microscopic motion

(prresence of ϑ) and the entropy balance equations
(the variable is ln ϑ) (cf. also [Bonetti, Colli,
Frémond]) and

I the double nonsmooth nonlinearities in the
microscopic motion equation: ∂IK (β) and
∂I0(∂t(β1 + β2) + div ut).

Return
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The global existence result

Note that we are able to prove the same existence result
for more general maximal monotone graphs, that is if ∂IK
in (M) is substituted by α := ∂j with

j : R2 → [0,+∞] a proper, convex, lower semicontinuous

function such that j(0) = 0.

Example. The logarithmic or the polynomial cases.
Return
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The uniqueness result

We overcome difficulties due to the difficult coupling
between

I the entropy balance equation (E) =⇒ parabolic in
ln ϑ and

I the microscopic equation of motion (M) =⇒
containing the ϑ variable

using a regularity result for parabolic equations entailing
in particular ln ϑ ∈ L∞(Q) (cf. [Ladyženskaja, Solonnikov,
Uralçeva, 1967]).

Return
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