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Chapter 1

Preliminaries

1.1 Fractional Sobolev spaces and trace theo-

rems

Let Ω be a regular, bounded domain in RN and Γ = ∂Ω. Let p ∈ [1,∞). As in
[1, p. 312], it is possible to define a family of spaces intermediate between Lp(Ω)
and W 1,p(Ω). Let s ∈ (0, 1), we define

W s,p(Ω) =

{
u ∈ Lp(Ω) :

|u(x)− u(y)|
|x− y|s+N/p

∈ Lp(Ω× Ω)

}
,

with the natural norm associated. Set Hs(Ω) = W s,2(Ω). If s is real, not integer
and s > 1, instead, we set s = m + σ, with m = [s] and we can define the space
W s,p(Ω) as follows:

W s,p(Ω) = {u ∈ Wm,p(Ω) : Dαu ∈ W σ,p(Ω) ∀α : |α| = m} .

Then, the trace operator u 7→ u|Γ defined on the regular functions u (cf. [1, p. 314])
has a unique prolongation to the linear and continuous operator

γ : W 1,p(Ω)→ W 1−1/p,p(Γ)

and there exists a linear continuous operator

R : W 1−1/p,p(Γ)→ W 1,p(Ω)

such that γ(R(v)) = v for all v ∈ W 1−1/p,p(Γ).

3
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1.2 The Hilbert triplet

Let V and H be two real Hilbert spaces satisfying

V is a vectorial subspace of H dense in H , (1.1)

the immersion of V in H is continuous, (1.2)

V is separable, (1.3)

which implies that alsoH and V ′ are separable because V = H, and V ′ is separable
because it is a dual space of a reflexive and separable Banach space ([1, p. 73]).
Denote respectively by ‖ · ‖, | · |, and ‖ · ‖∗ the norms in the three spaces V , H,
and V ′. By ((·, ·)), (·, ·), and ((·, ·))∗ the corresponding scalar products, and by 〈·, ·〉
the duality between V ′ and V . Condition (1.2) is equivalent to the existence of a
positive constant c∗ such that |v| ≤ c∗‖v‖ for all v ∈ V . Fixed u ∈ H, consider
the functional

Iu : v → (u, v), v ∈ V .
Then, Iu is linear and continuous on V . Indeed, applying the Schwarz inequality,
we have

|(u, v)| ≤ |u||v| ≤ c∗|u|‖v‖ ∀v ∈ V .
Hence, Iu ∈ V ′ and ‖Iu‖∗ ≤ c∗|u|. Hence the application from H to V ′ defined
as I : u → Iu is linear and continuous. It is also injective due to (1.1). Indeed,
Iu = 0 implies (u, v) = 0 for all v ∈ V , hence u ∈ V ⊥ in H, i.e. u = 0 for (1.1)
(cf. [1, p. 133]). Hence, we can identify the element u ∈ H with the element
Iu ∈ V ′. Hence, we have the inclusion H ⊆ V ′ and the inequality

‖u‖∗ ≤ c∗|u| ∀u ∈ H

and we usually say that (V,H, V ′) is an Hilbert triplet. The identification can be
resumed in the formula

〈u, v〉 = (u, v) ∀u ∈ H, ∀v ∈ V .

It is possible, moreover, to prove that the immersion of V into V ′ is dense too.

1.3 Vector valued function spaces

Cf. [4], [5, p. 649], [11, p. 332]), [13]. For the proofs cf. also [6].
Let W be a generic Hilbert space. Then, we define the Banach space

C0([0, T ];W ) as the space of continuous functions from [0, T ] with values in W
and endow it with the norm

‖v‖C0([0,T ];W ) = max
t∈[0,T ]

‖v(t)‖W .



1.3. VECTOR VALUED FUNCTION SPACES 5

In case W = L2(Ω), with Ω a sufficiently regular bounded domain in RN ,
N = 1, 2, 3, we have that u ∈ C0([0, T ];L2(Ω)) means: if tn → t0 as n ↗ ∞,
then u(tn) → u(t0) in L2(Ω). Let us note that, e.g., taking Ω = (0, 1), T = 1,
u(t) = χ

(t,1), then u ∈ C0([0, T ];L2(Ω)) but u 6∈ C0(Ω× (0, T )).

Analogously, we can define the space C1([0, T ];W ). Moreover, we want now
to define the space Lp(0, T ;W ). In order to do that, we need first to introduce
the space D(0, T ;W )(= C∞c (0, T ;W )) as the space of C∞ functions from (0, T )
with values in W , which are 0 near 0 and T . Then, we say that u : (0, T )→ W
is strongly measurable if there exists a sequence un : (0, T ) → W of simple
functions (i.e. finite combinations with coefficients in W of characteristic functions
of Lebesgue-measurable subsets of (0, T )) such that un(t) → u(t) as n ↗ ∞
strongly in W and for a.e. t ∈ (0, T ). Then - due to the Pettis theorem - we
have that in a separable space the strong measurability is equivalent to the scalar
measurability, i.e. for all w′ ∈ W ′ the function t 7→ 〈w′, u(t)〉 is measurable on
(0, T ). This is not true for general (not separable) spaces. Indeed, it is possible
to prove that L∞(Ω× (0, T )) 6= L∞((0, T );L∞(Ω)).

Hence, from now on we suppose W to be separable and we introduce the
following Banach space

Lp(0, T ;W ) = {u : (0, T )→ W measurable : t 7→ ‖u(t)‖W belongs to Lp(0, T )} ,

endowed with the following norm (in case p ∈ [1,+∞))

‖u‖Lp(0,T ;W ) =

(∫ T

0

‖u(t)‖pW dt

)1/p

,

and in case p =∞, we take

‖u‖L∞(0,T ;W ) = sup(ess)t∈(0,T )‖u(t)‖W ,

Then, we have the following result

Theorem 1.3.1. Let W be a separable Banach space. Then, for every p ∈ [1,∞]
Lp(0, T ;W ) is a Banach space and if W is Hilbert, then also L2(0, T ;W ) is an

Hilbert space with the following scalar product (u, v)L2(0,T ;W ) =
∫ T

0
(u(t), v(t))W dt.

Notice that, for every p ∈ [1,∞), Lp(0, T ;Lp(Ω)) = Lp(Ω× (0, T )).

Now, we can introduce a generalized notion of derivative
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Theorem 1.3.2. Let W be an Hilbert separable space and u, w ∈ L1(0, T ;W ).
Then the following three conditions are equivalent

there esists c ∈ W such that u(t) = c+

∫ t

0

w(s) ds, a.e. in [0, T ] , (1.4)∫ T

0

(w(t), v(t)) dt = −
∫ T

0

(u(t), v′(t)) dt, ∀v ∈ D(0, T ;W ) , (1.5)∫ T

0

(w(t), z)ϕ(t) dt = −
∫ T

0

(u(t), z)ϕ′(t) dt, ∀z ∈ W, ∀ϕ ∈ D(0, T ) . (1.6)

Definition 1.3.3. Let W be an Hilbert separable space and u, w ∈ L1(0, T ;W ).
We say that w is the derivative of u in L1(0, T ;W ) if w satisfies one of the
equivalent conditions of Thm. 1.3.2. Its uniqueness follows from the density of
D(0, T ;W ) in L1(0, T ;W ).

Note that in case u ∈ C1([0, T ];W ) this notion of derivative coincides with
the classical one.

Then, we can define the space H1(0, T ;W ) as the space of functions u ∈
L2(0, T ;W ) such that u′ ∈ L2(0, T ;W ). Proceeding by induction on k, we
can, analogously, define the spaces Hk+1(0, T ;W ) = {v ∈ Hk(0, T ;W ) : v′ ∈
Hk(0, T ;W )}, and we have that the space Hk(0, T ;W ) is an Hilbert space with
respect to the following norm and scalar product

‖v‖2
Hk(0,T ;W ) =

k∑
i=0

∫ T

0

‖v(i)(t)‖2
W dt ,

(u, v)Hk(0,T ;W ) =
k∑
i=0

∫ T

0

(u(i)(t), v(i)(t)) dt .

Let V be an Hilbert separable space and define the following space

W := {u ∈ L2(0, T ;V ) : u′ ∈ L2(0, T ;V ′)} , (1.7)

endowed with the norm

‖v‖2
W :=

∫ T

0

(
‖v(t)‖2 + ‖v′(t)‖2

∗
)
dt . (1.8)

This space is an Hilbert space linked to the usual Sobolev spaces by the formula

W = L2(0, T ;V ) ∩H1(0, T ;V ′)

and the norm (1.8) is equivalent to the following one

‖v‖2
W := ‖v‖2

L2(0,T ;V ) + ‖v′‖2
L2(0,T ;V ′) .
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Theorem 1.3.4. The following continuous inclusion holds true

W ↪→ C0([0, T ];H) . (1.9)

Moreover, if w, v ∈ W , then the following formulae hold true for every couple of
points τ, t ∈ [0, T ]:∫ t

τ

(〈w′(s), v(s)〉+ 〈v′(s), w(s)〉) ds = (w(t), v(t))− (w(τ), v(τ)), (1.10)∫ t

τ

〈v′(s), v(s)〉 =
1

2
|v(t)|2 − 1

2
|v(τ)|2 . (1.11)

In the study of abstract Cauchy problems it is useful to have an immersion
and a formula analogous to (1.10–1.11) linked to the operator A, which intervenes
in the problem we want to deal with.

Theorem 1.3.5. Let A : V → V ′ be a linear and continuous operator, let
D(A;H) = A−1(H) and endow it with the graph norm

‖v‖2
D(A;H) = ‖v‖2 + |Av|2 ∀v ∈ D(A;H).

Suppose, moreover, that A is symmetric (i.e. 〈Au, v〉 = 〈Av, u〉 for all u, v ∈ V )
and it satisfies the following weak coercivity assumption:

〈Av, v〉+ λ|v|2 ≥ L‖v‖2 ∀v ∈ V .

Then, the following continuous inclusion holds true:

L2(0, T ;D(A;H)) ∩H1(0, T ;H) ↪→ C0([0, T ];V ) . (1.12)

Moreover, if w, v ∈ L2(0, T ;D(A;H)) ∩H1(0, T ;H), then the following formulae
hold true for every couple of points τ, t ∈ [0, T ]:∫ t

τ

((Aw(s), v′(s)) + (Av(s), w′(s))) ds = 〈Aw(t), v(t)〉 − 〈Aw(τ), v(τ)〉 , (1.13)∫ t

τ

(Av(s), v′(s)) =
1

2
〈Av(t), v(t)〉 − 1

2
〈Av(τ), v(τ)〉 . (1.14)

1.4 Gronwall lemma

Lemma 1.4.1. Let a, b ≥ 0, ϕ ∈ L1(0, T ) such that

ϕ(t) ≤ a+ b

∫ t

0

ϕ(s) ds a.e. in (0, T ) .
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Then, the following inequality holds true:

ϕ(t) ≤ aebt a.e. in (0, T ) .

Hence, there exists a positive constant c depending only on b and T such that

ϕ(t) ≤ c a a.e. in (0, T ) .

1.5 Generalized Poincarè inequality

Lemma 1.5.1. Let V and X be two Hilbert spaces and L : V → X be a
linear and compact operator. Let ‖ · ‖0 be a norm in V associated to a scalar
product in V . Then for all ε > 0 there exists Cε > 0 such that for all v ∈ V
‖Lv‖X ≤ ε‖v‖V + Cε‖v‖0.

Proof. Suppose, by contradiction, that there exists ε > 0 such that for all
c > 0 there exists v ∈ V such that ‖Lv‖X > ε‖v‖V + c‖v‖0. Then, there exist
ε > 0 and a sequence {vn} in V such that ‖Lvn‖X > ε‖vn‖V +n‖vn‖0 for all n ∈ N.

Then, vn 6= 0 because Lvn > 0, hence, we can take the sequence un =
vn
‖vn‖V

and

we have ‖un‖V = 1 and ‖Lun‖X > ε + n‖un‖0. But, since, L is a compact
operator and un → u weakly in V . Then, Lun → Lu in X as n↗∞. Hence, for
a subsequence nk of n it holds true: nk‖unk

‖ ≤ const, which means that unk
→ 0

as k ↗∞. But we have

‖u‖2
0 = (u, u)0 = lim

k↗∞
(u, unk

)0 ≤ lim inf ‖u‖0‖unk
‖0 = 0 .

Hence, u = 0, and, since unk
→ u(= 0) weakly in V , we have also Lunk

→ Lu(= 0)
in X, which is in contradiction with ‖Lun‖X > ε for all n ∈ N. This concludes
the proof.

Lemma 1.5.2. Let V, H, W, Z be four Hilbert spaces and A : V → W , B :
V → Z be linear and continuous operators such that V ⊆ H with compact
immersion, Ker(A) ∩Ker(B) = {0}, and there exists a positive constant M such
that ‖v‖V ≤ M (‖Av‖W + ‖v‖H) for all v ∈ V . Then, there exists a positive
constant C such that ‖v‖H ≤ C (‖Av‖W + ‖Bv‖Z) for all v ∈ V and the norm
‖Av‖W + ‖Bv‖Z is equivalent to the norm ‖v‖V .

Proof. We can use Lemma 1.5.1 with ‖v‖0 = ‖Av‖W + ‖Bv‖Z , X = H and
L the immersion of V in H. Then, we have

‖v‖H ≤ ε‖v‖V + cε‖v‖0 = ε‖v‖V + cε (‖Av‖W + ‖Bv‖Z)

≤ εM (‖Av‖W + ‖v‖H) + cε (‖Av‖W + ‖Bv‖Z)

≤ εM‖v‖H + (εM + cε) (‖Av‖W + ‖Bv‖Z) .
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Then, we can take ε = 1/2M , obtaining the desired estimate.

Applications. Let Ω be a bounded, Lipschitz, connected subset of RN , then we
can apply the previous lemma to the following cases:

1) V = H1(Ω), H = L2(Ω), W = L2(Ω)N , Z = R, A = ∇, Bv =
∫
∂Ω
v ds.

Then, we get the standard Poincarè inequality

‖v‖L2(Ω) ≤ cp

(
‖∇v‖L2(Ω)N +

∣∣∣∣∫
∂Ω

v ds

∣∣∣∣) ∀v ∈ H1(Ω) , (1.15)

and, in particular,

‖v‖L2(Ω) ≤ cp‖∇v‖L2(Ω)N ∀v ∈ H1
0 (Ω) . (1.16)

2) V = H1(Ω), H = L2(Ω), W = L2(Ω)N , Z = R, A = ∇, Bv =
∫

Γ0
v ds,

where Γ0 is an open connected subset of ∂Ω with positive measure. Then,
we get the following Poincarè inequality

‖v‖L2(Ω) ≤ cp

(
‖∇v‖L2(Ω)N +

∣∣∣∣∫
Γ0

v ds

∣∣∣∣) ∀v ∈ H1(Ω) ,

and, in particular,

‖v‖L2(Ω) ≤ cp‖∇v‖L2(Ω)N ∀v ∈ H1
Γ0

(Ω) ,

where H1
Γ0

(Ω) = {v ∈ H1(Ω) : v|Γ0 = 0}.

3) Ω sufficiently regular, V = H2(Ω), H = H1(Ω), n = #{multindexes α such
that |α| = 2} W = L2(Ω)n, Z = L2(Ω), A : v 7→ {Dαv , |α| = 2}, Bv = v.
Then, we get the following inequality

‖v‖H1(Ω) ≤ C

∑
|α|=2

‖Dαv‖L2(Ω) + ‖v‖L2(Ω)

 ∀v ∈ H2(Ω) ,

hence, the norm
∑
|α|=2 ‖Dαv‖L2(Ω) + ‖v‖L2(Ω) is equivalent to the norm

‖v‖H2(Ω).
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Chapter 2

Abstract linear parabolic
equations

We resume here some of the results concerning some abstract linear parabolic
equations. The theory that we cannot completely explain here is contained in [5,
11] and a more detailed and sophisticated theory is explained in [8, 9]. Regarding
the regularity results for elliptic equations cf., e.g., [3], [7, Thms. 2.2.2.3, 3.2.1.2],
and [5, Cap. 6].

Let Ω be an open bounded subset of Rn with sufficiently regular boundary
Γ. Denote by ν the outward normal derivative to the boundary Γ and by ∆ and ∇
the spatial Laplacian and gradient, respectively. Then, we consider the following
Cauchy problem for the heat equation:

∂tu−∆u = f in Ω× (0, T ) , (2.1)

∇u · ν + αu = g on Γ× (0, T ) , (2.2)

u(·, 0) = u0 in Ω , (2.3)

where, in a classical formulation, the unknown u and the source f are regular
functions defined in Ω × [0, T ], the data α, g are defined and sufficiently regular
on Γ and Γ× [0, T ], respectively, such that α(x) ∈ [0,+∞) for all x ∈ Γ. Finally,
u0 is a sufficiently regular initial datum in Ω. Let us note that the boundary
condition (2.2) is called Robin boundary condition in case α > 0. Instead, in case
α = 0, it corresponds to the Neumann boundary condition.

11
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2.1 Variational formulation.

Let now v be a regular function in Ω, multiply equation (2.1) by v, integrating by
parts in Ω and using the boundary condition (2.2), we formally get∫

Ω

∂tu v dx+

∫
Ω

∇u · ∇v dx+

∫
Γ

α(σ)u v dσ =

∫
Ω

f(x, t) v dx+

∫
Γ

g(σ, t) v dσ ,

dσ denoting the superficial element. Now, it is natural to use the spaces V =
H1(Ω) and H = L2(Ω), the bilinear form:

a(w, v) =

∫
Ω

∇w · ∇v dx+

∫
Γ

α(σ)w v dσ, w, v ∈ V , (2.4)

and the element h(t) ∈ V ′ such that

〈h(t), v〉 =

∫
Ω

f(t) v dx+

∫
Γ

g(σ, t) v dσ, w, v ∈ V . (2.5)

Naturally, in the integrals on Γ we have used the notation v, even if rigorously,
we should use the trace of v ∈ V on Γ and indicate it with the symbol v|Γ. Notice
that, due to the trace theorems, this trace belongs to the space H1/2(Γ) ↪→ L2(Γ).
Then, our problem can be re-written as

d

dt
〈u(t), v〉+ 〈Au(t), v〉 = 〈h(t), v〉 ∀v ∈ V , (2.6)

where A denotes the linear operator associated to the bilinear form a, i.e.

〈Aw, v〉 = a(w, v), w, v ∈ V . (2.7)

If we are able to interpret u′(t) as an element of V ′, then, we can rewrite (2.6) as

〈u′(t), v〉+ 〈Au(t), v〉 = 〈h(t), v〉 ∀v ∈ V . (2.8)

This is a consequence of the following equalities, holding true for all v ∈ V and
for every ϕ ∈ D(0, T ),∫ T

0

d

dt
〈u(t), v〉ϕ(t) dt = −

∫ T

0

〈u(t), v〉ϕ′(t) dt = −
∫ T

0

〈u(t)ϕ′(t), v〉 dt

= 〈−
∫ T

0

u(t)ϕ′(t) dt, v〉 =

∫ T

0

〈u′(t), v〉ϕ(t) dt .
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2.2 Abstract equation

We generalize here our setting introducing the abstract Cauchy problem in the
framework of an abstract Hilbert triplet (V,H, V ′), which, in the particular case
given above, would be (H1(Ω), L2(Ω), (H1(Ω))′). Denote as in the previous Chap-
ter, respectively by ‖ · ‖, | · |, and ‖ · ‖∗ the norms in the three spaces V , H,
and V ′. By ((·, ·)), (·, ·), and ((·, ·))∗ the corresponding scalar products, and
by 〈·, ·〉 the duality between V ′ and V . Hence, we search for u ∈ W , where
W = {u ∈ L2(0, T ;V ), u′ ∈ L2(0, T ;V ′)} is defined in (1.7), solving the ab-
stract Cauchy problem:

u′(t) + Au(t) = h(t) in V ′ and a.e. in (0, T ) , (2.9)

u(·, 0) = u0 . (2.10)

For the properties of the space W the reader can refer to Chapter 1. Let
us only note that W ↪→ C0([0, T ];H), hence, the initial condition (2.10) turns out
to be meaningful and the natural assumptions on the data are

h ∈ L2(0, T ;V ′) , (2.11)

u0 ∈ H . (2.12)

Note that assumption (2.11) is satisfied for the particular problem (2.1–2.3), e.g.,
in case f ∈ L2(Ω× (0, T )), g ∈ L2(Γ× (0, T )). The assumption we make on A is
that it satisfies the following weak coercivity property: there exist λ, L > 0 such
that

〈Av, v〉+ λ|v|2 ≥ L‖v‖2 ∀v ∈ V . (2.13)

Note that assumption (2.13) is satisfied for the particular problem (2.1–2.3), e.g.,
in case α ∈ L∞(Γ), α ≥ 0.

Remark 2.2.1. Notice that this weak coercivity property is satisfied, e.g., in case
A = B + C, where B is a V -elliptic operator, i.e. it satisfies (2.13) with λ = 0
and C is a linear and continuous operator from V in H. The most easy case is
the case in which V = H and they have finite dimension. Then, we are solving
a Cauchy problem for a system of ODEs, and, fixed a base for V , the operator
A can be written in terms of a m ×m- matrix. The V -ellipticity - in this case -
is equivalent to the fact that the matrix is positive definite, while the problem is
solvable for every matrix A and, indeed, (2.13) is satisfied for every matrix A (for
proper choices of λ and L, depending on A, obviously). Finally, in the general
case of an Hilbert triplet our problem, under assumption (2.13), can be reduced
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to the V -elliptic case with the change of unknown u(t) = eλtw(t). Then the initial
condition (2.10) becomes w(0) = u0 and (2.8) can be rewritten as

w′(t) + (A+ λI)w(t) = e−λth(t) for a.e. t ∈ (0, T ),

where I denotes the immersion of V in V ′. Hence, it is clear that (2.13) is
equivalent to the V -ellipticity of A + λI with ellipticity constant L. Hence, if
we can solve the problem in the V -elliptic case, we can do it also in the weakly
coercive case. Unfortunately the two sets of assumptions can not be interchanged
in order to study the long time behavior of solutions as t ↗ ∞. For this reason
and also in view of possible generalizations of equation (2.9), we will assume
hypothesis (2.13) in our analysis.

Now, we are in the position of stating our well-posedness result for the
abstract Cauchy problem (2.9–2.10).

Theorem 2.2.2. Let A : V → V ′ be a linear and continuous operator satisfying
the weak coercivity assumption (2.13). Then, for every h and u0 verifying hy-
potheses (2.11–2.12), there exists a unique u ∈ W (cf. (1.7)) solving the Cauchy
problem (2.9–2.10). Moreover, u satisfies the following estimate

‖u‖W ≤ c
(
|u0|+ ‖h‖L2(0,T ;V ′)

)
, (2.14)

where c depends only on L, λ, T and on the norm of the operator A.

Proof. Let us start proving uniqueness of solutions. Let us test (2.9) by u(t)
and integrate the resulting equation over (0, t) with t ∈ [0, T ], getting∫ t

0

〈u′(s), u(s)〉 ds+

∫ t

0

〈Au(s), u(s)〉 ds =

∫ t

0

〈f(s), u(s)〉 ds . (2.15)

Using the fact that u ∈ W , we can apply (1.11) and rewrite the first integral on
the left-hand side as ∫ t

0

〈u′(s), u(s)〉 ds =
1

2
|u(t)|2 − 1

2
|u0|2 . (2.16)

Then, we can estimate the second integral on the left-hand side in (2.15) using
(2.13) in the following way∫ t

0

〈Au(s), u(s)〉 ds ≥ L

∫ t

0

‖u(s)‖2 ds− λ
∫ t

0

|u(s)|2 ds , (2.17)
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while we can estimate the integral on the right-hand side as follows:∫ t

0

〈f(s), u(s)〉 ds ≤
∫ t

0

‖f(s)‖∗‖u(s)‖ ds ≤ L

2

∫ t

0

‖u(s)‖2 ds+
1

2L

∫ t

0

‖f(s)‖2
∗ ds .

(2.18)
Combining (2.15–2.18), we get

1

2
|u(t)|2 − 1

2
|u0|2 + L

∫ t

0

‖u(s)‖2 ds− λ
∫ t

0

|u(s)|2 ds

≤ L

2

∫ t

0

‖u(s)‖2 ds+
1

2L

∫ t

0

‖f(s)‖2
∗ ds ,

from which we deduce

|u(t)|2 + L

∫ t

0

‖u(s)‖2 ds ≤ |u0|2 + 2λ

∫ t

0

|u(s)|2 ds+
1

L

∫ t

0

‖f(s)‖2
∗ ds .

Hence, we can apply the Gronwall lemma 1.4.1 with the choices

ϕ(t) = |u(t)|2 + L

∫ t

0

‖u(s)‖2 ds, a = |u0|2 +
1

L

∫ t

0

‖f(s)‖2
∗ ds, b = 2λ .

We get the estimate, holding true for every t ∈ [0, T ]

|u(t)|2 + L

∫ t

0

‖u(s)‖2 ds ≤ c

(
|u0|2 +

1

L

∫ t

0

‖f(s)‖2
∗ ds

)
,

where c depends only on L, λ, and T . This implies:

‖u‖2
C0([0,T ];H) + ‖u‖2

L2(0,T ;V ) ≤ c
(
|u0|2 + ‖f‖2

L2(0,T ;V ′)

)
, (2.19)

for a new constant c depending again only on L, λ, and T . In case of null data,
this implies that u ≡ 0, and we get uniqueness. Moreover, estimate (2.14) follows
from the following inequalities

‖Au‖L2(0,T ;V ′) ≤M‖u‖L2(0,T ;V ), ‖u′‖L2(0,T ;V ′) ≤ ‖Au‖L2(0,T ;V ′) + ‖f‖L2(0,T ;V ′) ,

where M denotes the norm of the operator A.

Let us proceed now proving existence. The procedure will consist in

1. finding a solution for a suitable approximating problem

2. proving a-priori estimates independent of the approximating parameter

3. using compactness results in order to pass to the limit in the approximating
problem and finding a solution to (2.9–2.10).
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The approximation. We use the Faedo-Galerkin scheme, which consists in
discretizing the operator A by means of a discretization of the space V . Using
the fact that V is a separable space, we fix a non-decreasing subsequence {Vn} of
subspaces of V of finite dimension whose union V∞ :=

⋃
n Vn is densely embedded

in V . Then, fixed n, we consider the following approximated problem. Find
un ∈ H1(0, T ;Vn) such that

〈u′n(t), v〉+ 〈Aun(t), v〉 = 〈h(t), v〉 ∀v ∈ Vn, and a.e. in (0, T ) , (2.20)

〈un(0), v〉 = 〈u0, v〉 ∀v ∈ Vn . (2.21)

If m denotes the dimension of Vn, chosen a basis (v1, . . . , vm) of Vn, we can repre-
sent the value un(t) of the solution un (which we are searching for) in the following
form:

un(t) =
m∑
j=1

yj(t)v
j .

Moreover, denote by ~f and ~y the vectors of components, respectively, fj(t) =
〈h(t), vj〉, y0j = 〈u0, v

j〉, B and D the m×m-matrix of elements defined, respec-
tively, by Bij = (vj, vi), Dij = a(vj, vi). Then, we can write the approximated
problem (2.20–2.21) as: find the vector ~y - whose general value is the column
vector ~y(t) ∈ Rm: (y1(t), . . . , ym(t)) - satisfying

B~y′(t) +D~y(t) = ~f(t) a.e. in (0, T ) , (2.22)

~y(0) = ~y0 . (2.23)

Since the vectors vi are independent, it turns out that the matrix B is invertible.
Moreover, the components fi ∈ L2(0, T ) for all i = 1, . . . ,m; indeed, for all
i = 1, . . . ,m, the following inequalities hold true:

|fi(t)| ≤ ‖h(t)‖∗‖vi‖ ≤ ‖h(t)‖∗max
i
‖vi‖ .

The Cauchy problem (2.22–2.23) is a Cauchy problem for a linear system of m
ODEs in m unknowns with right-hand side in L2(0, T ). Hence it admits a unique
solution ~y, whose components yi belong to H1(0, T ). Finally, the approximated
problem (2.20–2.21) has a unique solution un ∈ H1(0, T ;Vn).

A-priori estimates. Repeating the procedure already used in order to prove
uniqueness of solutions, let us take v = un(t) in (2.20), obtaining the following
estimate

‖un‖2
C0([0,T ];H) + ‖un‖2

L2(0,T ;V ) ≤ C
(
|u0|2 + ‖h‖2

L2(0,T ;V ′)

)
, (2.24)
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where C is independent of n. In order to obtain this estimate, here we have
used the fact that, since un(0) is the orthogonal projection in H of u0 on Vn
(which is a closed subspace of H, because it has finite dimension), then, we have
|un(0)| ≤ |u0|. Hence, the positive constant C in (2.24) is the same constant as in
(2.19), and, in particular, it turns out to be independent of n. Moreover, let us
notice that, by definition of orthogonal projection, we have

|un(0)− u0| = min
w∈Vn

|u0 − w| ≤ |u0 − v| ∀v ∈ Vn .

This estimate implies that

un(0)→ u0 in H as n↗∞ . (2.25)

Indeed, since V∞ is densely embedded in V , it is dense also in H. Hence, we can
choose a sequence of elements {vk} of V∞ which tends to u0 in H. Fixed k, choose
nk such that vk ∈ Vnk

. Then, the subsequence dnk
= |unk

− u0| tends to zero as
k ↗ ∞. Since the sequence dn = |un − u0| is non increasing (Vn ⊆ Vn+1), then
the whole sequence dn tends to zero as n↗∞.

Passage to the limit. By means of compactness arguments, we deduce that
the following convergences hold true (at least for a subsequence of n↗∞)

un → u weakly in L2(0, T ;V ) , (2.26)

un → u weakly star in L∞(0, T ;H) . (2.27)

Let us notice that, whence we will have identified the limit function u as solution
of the problem, since we just know that it is unique, we can conclude that the
previous convergences hold true for all the sequence n ↗ ∞ and not only up to
a subsequence. Hence, for simplicity of notation we will use the symbol {un} to
denote the extracted subsequence. Moreover, since A is linear, we also get

Aun → Au weakly in L2(0, T ;V ′) . (2.28)

Now, we need to show that h − Au satisfies the definition of u′. Note that we
cannot use v = u′n(t) in (2.20) as test function in order to pass to the limit in u′n,
because we do not have (as it was instead true in case of the uniqueness proof)
that u′n = h− Aun. This equality holds true only restricted to the space Vn. Fix
an arbitrary function ϕ ∈ D(0, T ), fix m and z ∈ Vm. If n ≥ m, we can choose in
(2.20) v(t) = ϕ(t)z, because Vm ⊆ Vn. Integrate the resulting equation over (0, T )
and use the integration by parts in time formula, getting

−
∫ T

0

〈un(t), z〉ϕ′(t) dt =

∫ T

0

〈h(t)− Aun(t), z〉ϕ(t) dt ∀z ∈ Vm ∀m ≤ n .
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We can now pass to the limit as n↗∞ in this equality getting

−
∫ T

0

〈u(t), z〉ϕ′(t) dt =

∫ T

0

〈h(t)− Au(t), z〉ϕ(t) dt ∀z ∈ Vm . (2.29)

Since m was arbitrary the same equality holds true for all z ∈ V∞, which is dense
in V and so it holds true also for all z ∈ V . Indeed, fixed z ∈ V , we can choose
zk ∈ V∞ such that zk converges to z in V , and, written (2.29) for zk, since

ϕzk → ϕz and ϕ′zk → ϕ′z in L2(0, T ;V ) ,

passing to the limit in (2.29) as k ↗∞, we conclude that (2.29) holds true for all
z ∈ V .

We need now to obtain the initial condition (2.21). If we knew that un → u
weakly in W then it would converge also to u weakly in C0([0, T ];H) as n↗∞.
Then we have un(0)→ u(0) weakly in H, and, due to (2.25), we get also un(0)→
u0 in H, which, due to the uniqueness of the limit, implies u(0) = u0. Hence, let
us prove that un → u weakly in W as n ↗ ∞. Fix m ∈ N such that m ≤ n
and choose in (2.20) v(t) = ϕ(t)z, where ϕ ∈ C∞([0, T ]), ϕ(T ) = 0. Integrate the
resulting equation over (0, T ) and get∫ T

0

〈u′n(t), z〉ϕ(t) dt+

∫ T

0

〈Aun(t), z〉ϕ(t) dt =

∫ T

0

〈h(t), z〉ϕ(t) dt . (2.30)

Integrating by parts in time the first term, we obtain∫ T

0

〈u′n(t), z〉ϕ(t) dt = −
∫ T

0

〈un(t), z〉ϕ′(t) dt− (u0, zϕ(0)) . (2.31)

Hence, passing to the limit as n↗∞ in (2.30) and using (2.31), one deduces

−
∫ T

0

〈u(t), z〉ϕ′(t) dt+
∫ T

0

〈Au(t), z〉ϕ(t) dt =

∫ T

0

〈h(t), z〉ϕ(t) dt+ (u0, zϕ(0)),

(2.32)

∀z ∈ Vm, ϕ ∈ C∞([0, T ]) : ϕ(T ) = 0 .

Using again the density of V∞ in V , as before, we deduce that (2.32) holds true
for all z ∈ V . Now, we use the fact that u ∈ W and so we can integrate the first
term in (2.32) getting

−
∫ T

0

〈u(t), z〉ϕ′(t) dt =

∫ T

0

〈u′(t), z〉ϕ(t) dt+ (u(0), zϕ(0)), (2.33)

∀z ∈ V, ϕ ∈ C∞([0, T ]) : ϕ(T ) = 0 . (2.34)
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Since we know that u is a solution to (2.9), using (2.33) in (2.32), we obtain that
two terms cancel out and we recover

(u(0), zϕ(0)) = (u0, zϕ(0)), ∀z ∈ V, ϕ ∈ C∞([0, T ]) : ϕ(T ) = 0.

Choosing, e.g., ϕ(t) = T − t and using the fact that V is densely embedded in H,
we finally get the desired initial condition u(0) = u0 in H (cf. (2.10)).

Remark 2.2.3. Note that there are different techniques one could employ in
order to solve the problem. For example one could apply a discretization in time
method, which corresponds to replace the time derivative with the incremental
differences and to study the corresponding elliptic problem. Otherwise in case
of nonlinear operators in the equation, one can regularize it with more regular
functions.

Let us proceed here with the following regularity result

Theorem 2.2.4. Let A : V → V ′ be a linear and continuous operator satisfying
the weak coercivity assumption (2.13). Suppose moreover that A is symmetric,
i.e. 〈Au, v〉 = Av, u for all u, v ∈ V . Let h ∈ L2(0, T ;H) and u0 ∈ V . Then, the
solution u to the Cauchy problem (2.9–2.10) is such that u′, Au ∈ L2(0, T ;H),
u ∈ C0([0, T ];V ) and it satisfies the following estimate

‖u′‖L2(0,T ;H) + ‖Au‖L2(0,T ;H) ≤ c
(
‖u0‖+ ‖h‖L2(0,T ;H)

)
, (2.35)

where c depends only on L, λ, T and on the norm of the operator A.

Proof. Let us consider the same approximated problem as for Theorem 2.2.2,
but take as initial condition the following one

un(0) = u0n ,

where u0n is the projection of u0 on Vn with respect to the scalar product of V .
We will need in the proof that the initial datum u0n of un satisfies u0n → u0 in
V and ‖u0n‖ ≤ c‖u0‖. We choose now in (2.20) v = u′n(t) - which turns out to
be an admissible choice because un ∈ H1(0, T ;Vn) - and integrate the resulting
equation over (0, t), with t ∈ (0, T ), getting∫ t

0

|u′n(s)|2 ds+

∫ t

0

〈Aun(s), u′n(s)〉 ds =

∫ t

0

(h(s), u′n(s)) ds . (2.36)
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Then, we can estimate the second term on the left-hand side and the the term on
the right-hand side, respectively, from below and above, getting∫ t

0

〈Aun(s), u′n(s)〉 ds =
1

2
〈Aun(t), un(t)〉 − 1

2
〈Au0n, u0n〉

≥ L

2
‖un(t)‖2 − λ

2
|un(t)|2 − M

2
‖u0n‖2

≥ L

2
‖un(t)‖2 − λ

2
|un(t)|2 − c‖u0‖2 ,∫ t

0

(h(s), u′n(s)) ds ≤ 1

2

∫ T

0

|h(s)|2 ds+
1

2

∫ T

0

|u′n(s)|2 ds .

Here we have used the symmetry of A together with (2.13) (cf. also Theorem 1.3.5)
and we have denoted byM the norm of the operator A, ‖A‖L(V ;V ′), while c depends
also on M . Hence, we get

1

2

∫ t

0

|u′n(s)|2 ds+
L

2
‖un(t)‖2 ≤ λ

2
|un(t)|2 + c‖u0‖2 +

1

2

∫ T

0

|h(s)|2 ds . (2.37)

As it results in the proof of Theorem 2.2.2, the sequence {un} is bounded indepen-
dently of n in C0([0, T ];H). Hence the right-hand side in bounded independently
of n and so it follows that u′n → u′ in L2(0, T ;H) (up to a subsequence of n↗∞).
The limit u′ is the same as the one in L2(0, T ;V ′) and so we deduce the following
estimate

‖u′‖L2(0,T ;H) ≤ lim inf
n
‖u′n‖L2(0,T ;H) ≤ c

(
‖u0‖+ ‖h‖L2(0,T ;H)

)
,

with a new constant c depending only on L, λ, T and on the norm of the operator
A. By comparison in (2.9), we deduce that also Au is bounded (with the same
estimate of u′) in L2(0, T ;H).

Remark 2.2.5. First of all, let us notice that to have h ∈ L2(0, T ;H) it is
necessary that g = 0 in (2.5). Let us note that for the regularity result the weak
coercivity assumption (2.13) can be reduced to the V -ellipticity of a, i.e. to the
case in which λ = 0 in (2.13). Indeed, we could re-write equation (2.9) as

u′ + Au+ λu = h+ λu .

Then, using the existence Theorem 2.2.2, we deduce that the right-hand side
h + λu is in H, if h ∈ H, and the operator A + λI is weakly coercive in case A
is V -elliptic. So, using Theorem 2.2.4, we can estimate the norm of u′ and Au
in L2(0, T ;H) in terms of the norms of h and λu in L2(0, T ;H). Observe that
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the norm of λu in L2(0, T ;H) is already estimated in terms of the data thanks
to Theorem 2.2.2. Moreover, let us note that from its proof it is easy to see that
we could prove Theorem 2.2.4 under less restrictive assumptions on A and on
h. E.g., we could treat the case in which A is substituted by the sum A + B
where A is the symmetric operator verifying the requested assumptions and B is
a linear continuous operator from V with values in H. Moreover we can suppose
that h = h1 + h2, where h1 ∈ L2(0, T ;H) and h2 ∈ H1(0, T ;V ′). Moreover,
regarding the initial datum, we can observe that by choosing as test function in
(2.20) v = ζu′n(t) with ζ ∈ C∞([0, T ]) such that ζ(0) = 0, we do not need anymore
the datum u0 to be in V and we obtain analogous regularity results in the time
interval [δ, T ] for all δ ∈ (0, T ). This phenomenon can be called regularizing effect.

Application 1. Let Ω be an open bounded subset of Rn with sufficiently regular
boundary Γ. Denote by ν the outward normal derivative to the boundary Γ and
by ∆ and ∇ the spatial Laplacian and gradient, respectively. We would like
to show here to which types of problems the previous abstract results can be
applied. Let us consider, e.g., the following second order bilinear form defined on
H1(Ω)×H1(Ω)

a(u, v) =

∫
Ω

[
(M(x)∇u) · ∇v + (~b(x)∇u)v + (~c(x)u) · ∇v + d(x)uv

]
dx . (2.38)

Suppose that all the coefficients are in L∞(Ω) and M satisfies

(M(x)ξ)ξ ≥ L|ξ|2 ∀ξ ∈ Rn, and a.e. in Ω .

Under these assumptions a(u, v) is a bilinear, continuous, weakly coercive form
on H1(Ω)×H1(Ω).

Suppose that V = H1
0 (Ω), then, consider the following Cauchy-Dirichlet

problem:{
∂tu− div(M∇u+ ~cu) +~b · ∇u+ du = f in Ω× (0, T ) ,

u(0) = u0, u = 0 on Γ× (0, T ) .
(2.39)

In order to apply Theorem 2.2.2 we need g ∈ L2(0, T ;H−1(Ω)), u0 ∈ L2(Ω)
and we have existence and uniqueness of solutions. We can apply the regularity
result Theorem 2.2.4 in case f ∈ L2(0, T ;L2(Ω)) and u0 ∈ H1

0 (Ω), a symmetric

(i.e. ~c = ~b = ~0, M symmetric). Moreover, in case Ω is of class C1,1 and M is
Lipschitz continuous, we can apply also the regularity results for elliptic equations,
obtaining u ∈ L2(0, T ;H2(Ω)) and

‖u‖L2(0,T ;H2(Ω)) ≤ C
(
‖f‖L2(Ω×(0,T )) + ‖u0‖H1(Ω)

)
,
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where C is a positive constant depending on Ω, the coefficients and on T . Note
that we cannot apply the regularity result in case, e.g., u0 ∈ H1(Ω) and it is not
0 at the boundary of Ω. It is a compatibility condition between the initial datum
and the boundary datum (which is 0 in this case).

Let V = H1(Ω) and consider now the Cauchy-Neumann problem:{
∂tu− div(M∇u+ ~cu) +~b · ∇u+ du = f in Ω× (0, T ) ,

u(0) = u0 in Ω, (M∇u+ ~cu) · ν = g on Γ× (0, T ) .
(2.40)

If f ∈ L2(0, T ;L2(Ω) = L2(Ω× (0, T )), g ∈ L2(0, T ;L2(Γ)) = L2(Γ× (0, T )), u0 ∈
H, we can apply Theorem 2.2.2 and we get existence and uniqueness of solutions.
To apply the regularity Theorem 2.2.4, we need f ∈ L2(0, T ;L2(Ω)), g = 0, and

u0 ∈ H1(Ω), a symmetric (i.e. ~c = ~b = ~0, M symmetric). Moreover, if Ω is of class
C1,1 and M is Lipschitz continuous, we get u ∈ H1(0, T ;L2(Ω))∩L2(0, T ;H2(Ω)).

Let V = {v ∈ H1(Ω) : v|Γ0 = 0}, where (Γ0,Γ1) is a partition of Γ.
Consider now the Cauchy-mixed problem:{
∂tu− div(M∇u+ ~cu) +~b · ∇u+ du = f in Ω× (0, T ) ,

u(0) = u0 in Ω, u = 0 on Γ0 × (0, T ), (M∇u+ ~cu) · ν = g on Γ1 × (0, T ) .

If f ∈ L2(0, T ;L2(Ω)) = L2(Ω × (0, T )), g ∈ L2(0, T ;L2(Γ1)) = L2(Γ1 × (0, T )),
u0 ∈ L2(Ω), we can apply Theorem 2.2.2 and we get existence and uniqueness of
solutions. To apply the regularity Theorem 2.2.4, we need f ∈ L2(0, T ;L2(Ω)),

g = 0, and u0 ∈ V , a symmetric (i.e. ~c = ~b = ~0, M symmetric). Moreover,
if Ω is smooth and M is Lipschitz continuous, we get u ∈ H1(0, T ;L2(Ω)) ∩
L2(0, T ;Hs(Ω)), only with s ∈ (1, 3/2). We do not have here the regularity
results for elliptic equations.

Application 2. Let Ω be an open bounded subset of Rn with sufficiently regular
boundary Γ. Denote by ν the outward normal derivative to the boundary Γ and by
∆ and ∇ the spatial Laplacian and gradient, respectively. Then, we can consider
the following fourth order problem. Let V be a closed subspace of H2(Ω), such
that H2

0 (Ω) ⊂ V and consider the following fourth order H2(Ω)-elliptic bilinear
form

a(u, v) =

∫
Ω

[∆u∆v +∇u · ∇v + uv] dx . (2.41)
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If V = H2
0 (Ω), then, we recover the following Cauchy-Dirichlet fourth order

problem {
∂tu+ ∆2u−∆u+ u = f in Ω× (0, T ) ,

u(0) = u0 in Ω, u = 0, ∂u
∂ν

= 0 on Γ× (0, T ) .

Using the previous results, we get existence and uniqueness of solutions in case
f ∈ L2(Ω × (0, T )) and u0 ∈ L2(Ω). Moreover, u0 ∈ H2

0 (Ω), then, we can apply
the regularity result for elliptic equations (in case Ω is sufficiently regular) finding
u ∈ L2(0, T ;H4(Ω)) ∩H1(0, T ;L2(Ω)).

We can also treat, with these results, elliptic equations with dynamic
boundary conditions, i.e. the following types of systems{

−∆u = f in Ω× (0, T ) ,

u(0) = w0 on Γ, ∂tu+ ∂u
∂ν

= g on Γ× (0, T ) .
(2.42)

If we make the following change of variables w := u|Γ, once we have find w, we
can recover u by solving the following elliptic problem{

−∆u = 0 in Ω ,

u = w on Γ .
(2.43)

We choose V = H1/2(Γ), H = L2(Γ), (u, v) =
∫

Γ
uv ds. We introduce the linear

and continuous operator R : H1/2(Γ) → H1(Ω), such that (Rw)|Γ = w for all
w ∈ H1/2(Γ). Then, we can re-write problem (2.42) as∂tw +

∂Rw
∂ν

= g on Γ× (0, T ) ,

w(0) = w0 on Γ .
(2.44)

In order to find the corresponding variational formulation, we can test by a generic
test function v ∈ H1/2(Γ), and, if we call formally a(w, v) =

∫
Γ
∂Rw
∂ν

v ds, integrat-
ing by parts in time, we get

a(w, v) =

∫
Γ

∂Rw
∂ν

v ds =

∫
Ω

(∇Rw)(∇Rv) dx+

∫
Ω

(∆Rw)Rv dx

=

∫
Ω

(∇Rw)(∇Rv) dx .

We can verify now that a is a bilinear, continuous, and weakly coercive form, i.e.

|a(w, v)| ≤ ‖Rw‖H1(Ω)‖Rv‖H1(Ω) ≤ ‖R‖L(H1/2(Γ);H1(Ω))‖w‖H1/2(Γ)‖v‖H1/2(Γ) ,

a(v, v) + ‖v‖2
L2(Γ) ≥ αp‖Rv‖2

H1(Ω) ≥ α‖v‖2
H1/2(Γ) ,



24 CHAPTER 2. ABSTRACT LINEAR PARABOLIC EQUATIONS

where we have used the Poincarè inequality. We are in the position of apply-
ing our existence theorem: if g ∈ L2(0, T ;H−1/2(Γ)), w0 ∈ L2(Γ), then there
exists a unique solution w ∈ L2(0, T ;H1/2(Γ)) ∩ H1(0, T ;H−1/2(Γ)) and w ∈
C0([0, T ];L2(Γ)). Hence, u = Rw ∈ L2(0, T ;H1(Ω)) ∩ C0([0, T ];L2(Ω)). The
bilinear form a is also symmetric. Finally, we can apply also our regularity result
in case w0 ∈ H1/2(Γ), getting ∂tw ∈ L2(Γ× (0, T )), ∂tu ∈ L2(Ω× (0, T )).



Chapter 3

Abstract linear hyperbolic
equations

Let us consider the following Cauchy-Dirichlet problem for the wave equation

utt − c2∆u = f in Ω× (0, T ) ,

u(·, 0) = u0, ut(·, 0) = v0 in Ω ,

u = 0 on ∂Ω× (0, T ) .

We consider the function

u : t 7→ u(t) ∈ H1
0 (Ω)(= V ) .

Then, given f ∈ L2(0, T ;L2(Ω)), u0 ∈ H1
0 (Ω), v0 ∈ L2(Ω), we search for u ∈

L2(0, T ;H1
0 (Ω), u

′′
, ∆u ∈ L2(0, T ;H−1(Ω)). We consider the operatorA : H1

0 (Ω)→
H−1(Ω) such that

〈Au, v〉 =

∫
Ω

∇u∇v dx ∀u, v ∈ H1
0 (Ω) .

We define u be a weak solution if u ∈ L2(0, T ;H1
0 (Ω), u

′′ ∈ L2(0, T ;H−1(Ω)),
u′ ∈ L2(0, T ;L2(Ω)) and

〈u′′(t), v〉+ 〈Au(t), v〉 = 〈f(t), v〉 ∀v ∈ H1
0 (Ω) and for a.e. t ∈ [0, T ] ,

u(0) = u0, u′(0) = v0 .

We will show in Thm. 3.1.7 that u ∈ C0([0, T ];V ) ∩ C1([0, T ];H) and this
will give the meaning to the initial conditions and we can interpret the equation
in D′(0, T ) as

d2

dt2
〈u(t), v〉+ 〈Au(t), v〉 = 〈f(t), v〉 for all v ∈ V, in D′(0, T ) ,

25
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indeed we have∫ T

0

〈u′′(t), v〉ϕ(t) dt = 〈
∫ T

0

u′′(t)ϕ(t) dt, v〉

= 〈
∫ T

0

u(t)ϕ′′(t) dt, v〉 =

∫ T

0

〈u(t), v〉ϕ′′(t) dt .

In the following section we will give an abstract formulation of this hyperbolic
problem and we will give proper existence and uniqueness results.

3.1 Abstract formulation

Let (V,H, V ′) be an Hilbert triplet with V separable. We would like to find a
suitable notion of solution for the following abstract Cauchy problem:

u′′(t) + Au(t) = f(t) in V ′ and a.e. in (0, T ) , (3.1)

u(·, 0) = u0 , (3.2)

u′(·, 0) = v0 , (3.3)

whereA : V → V ′ is a linear, continuous, symmetric and weakly coercive operator
(cf. (2.13)), u0 and v0 are initial data and f is a known source.

Before stating the main results, let us state some preliminary results.

Lemma 3.1.1. If W is an Hilbert space and b is a bilinear, symmetric form on
W ×W , then the following formula holds true

2b(u− v, u) = b(u− v, u− v) + b(u, u)− b(v, v), ∀u, v ∈ W .

Proof. Obvious, by definition of b.

Lemma 3.1.2. Let β, γ ≥ 0, {Sm} be a sequence such that S1 ≤ β, Sm ≤
β + γ

∑m−1
k=1 Sk for every m ≥ 2. Then Sm ≤ β(1 + γ)m−1, for every m ≥ 2.

Proof. For m = 1 it is already true. Let it be true for k ≤ m and prove it for
m+ 1. We have

Sm+1 ≤ β + γ

m∑
k=1

Sk ≤ β + βγ

m∑
k=1

(1 + γ)k−1

≤ β + βγ

(
1− (1 + γ)m

1− (1 + γ)

)
= β(1 + γ)m .
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Lemma 3.1.3. Let A, B ∈ R, h ∈ L1(0, T ), h ≥ 0, a.e. in (0, T ), R ∈ L2(0, T )
such that

R2(t) ≤ A2 +B2

∫ t

0

R2(τ) dτ +

∫ t

0

h(τ)R(τ) dτ for all t ∈ [0, T ]

Then

R2(t) ≤
(

2A2 +
1

2
‖h‖2

L1(0,T )

)
e2B2t for all t ∈ [0, T ] .

Proof. The proof is based on [2, Lemmas A.4, A.5, p.157].
Let us start now with an existence result for strong solutions under strong

assumption on the data. Then, we will use this result in order to prove existence
of weak solutions.

Theorem 3.1.4. Let A : V → V ′ be a linear, continuous, symmetric and weakly
coercive operator (cf. (2.13)), u0 ∈ V , v0 ∈ V , f ∈ W 2,1(0, T ;V ′) + H1(0, T ;H)
with f(0)−Au0 ∈ H. Then, there exists at least a solution u to problem (3.1–3.3)
such that u ∈ W 2,∞(0, T ;H) ∩W 1,∞(0, T ;V ).

Proof. We will use here a time discretization scheme. Fix n ∈ N (which
we will take sufficiently large in the following) and split the interval [0, T ] in n
subintervals of length τ = T/n. Let f = f1 + f2, where f1 ∈ W 2,1(0, T ;V ′),
f2 ∈ H1(0, T ;H). Since both f1 and f2 are continuous in time, we can put

f i1 := f1(τi), f i2 := f2(τi), f i = f i1 + f i2 .

Let us rewrite here our problem.

v′(t) + Au(t) = f(t), v = u′ in V ′ and a.e. in (0, T ) , (3.4)

u(·, 0) = u0 , (3.5)

v(·, 0) = v0 , (3.6)

We consider then the following discretized problem.
Problem (Pτ ). Find two vectors (u0, u1, . . . , un) ∈ V n+1, (v0, v1, . . . , vn) ∈ V n+1

such that u0 = u0, v0 = v0 and (for i = 1, . . . , n)
vi =

ui − ui−1

τ
,

vi − vi−1

τ
+ Aui = f i .

Existence of a unique solution for Problem (Pτ ).



28 CHAPTER 3. ABSTRACT LINEAR HYPERBOLIC EQUATIONS

We know u0 and v0, suppose to know ui−1 and vi−1 we want now to find ui

such that
ui

τ
+ τAui = τf i + vi−1 +

ui−1

τ
.

Since A is weakly coercive, then I
τ

+ τA is an isomorphism, indeed

τ〈Au, u〉+
1

τ
(u, u) ≥ τL‖u‖2 − τλ|u|2 +

1

τ
|u|2

≥ τL‖u‖2 ,

if 1/τ ≥ τλ, i.e. τ ≤
√

1/λ, i.e. if n is sufficiently large. Hence, the bilinear form
(τA + I/τ) is V−elliptic and so there exists a unique ui solution to Problem
(Pτ ).

A priori estimates.

Introduce the auxiliary vector (z0, . . . , zn) ∈ V n+1 such that

z0 = z1 := f(0)− Au0, zi =
vi − vi−1

τ
, i = 2, . . . , n .

Take, moreover, the piecewise constant functions

uτ (t) = ui, vτ (t) = vi, zτ (t) = zi, f τ (t) = f i , for t ∈ ((i− 1)τ, iτ ]

and the linear interpolants of the constants ui, vi, zi

ûτ = u1 +
u1 − ui−1

τ
(t− iτ), v̂τ = v1 +

v1 − vi−1

τ
(t− iτ),

ẑτ = z1 +
z1 − zi−1

τ
(t− iτ), for t ∈ ((i− 1)τ, iτ ] .

Notice that they coincide with the constants ui and vi at times τi.
Hence, we can rewrite Problem (Pτ ) as: find uτ , ûτ , vτ , v̂τ , zτ ∈ L1(0, T ;V )

such that

zτ (t) + Auτ (t) = f τ (t) , (3.7)

vτ (t) = û′τ (t), zτ (t) = v̂′τ (t) , (3.8)

ûτ (0) = u0, v̂τ (0) = v0 , (3.9)

where t ∈ (0, T ). We would like to find now estimates on uτ , ûτ , . . . and pass to
the limit as τ → 0 in (3.7–3.9), recovering a solution to our problem.
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Take the difference between (3.7) written for the index i and (3.7) written
for the index i− 1 finding

zi − zi−1 + τAvi = f i − f i−1.

Sum to both sides λτvi (cf. (2.13)) and multiply the resulting equation by zi

getting

1

2
|zi|2 − 1

2
|zi−1|2 +

1

2
|zi − zi−1|2 +

1

2
aλ(v

i, vi) (3.10)

− 1

2
aλ(v

i−1, vi−1) +
τ 2

2
aλ(z

i, zi) = 〈f i − f i−1 + λτvi, zi〉 ,

where aλ(u, v) := 〈Au, v〉+ λ(u, v). Here we have used Lemma 3.1.1 with b = aλ.
Indeed, we have

aλ(v
i, vi − vi−1) =

1

2
aλ(τz

i, τzi) +
1

2
aλ(v

i, vi)− 1

2
aλ(v

i−1, vi−1) .

Summing up the equality (3.10) for i = 1, . . .m, we get

Sm =
1

2
|z0|2 +

1

2
aλ(v

0, v0) +
m∑
i=1

τ〈f
i − f i−1

τ
+ λvi, zi〉 ,

where

Sm =
1

2
|zm|2 +

1

2

m∑
i−1

|zi − zi−1|2 +
1

2
aλ(v

m, vm) +
m∑
i=1

τ 2

2
aλ(z

i, zi) .

Now, |z0|2 = |Au0−f(0)|2 ≤ C, 1
2
aλ(v

0, v0) ≤ C‖v0‖2 ≤ C , with C independent
of n. Hence, denoting by Ci some constants independent of n, we have

Sm ≤ C1 +
m∑
i=1

τ〈f
i − f i−1

τ
+ λvi, zi〉, m ≥ 1 .

Now we need to estimate the term
∑m

i=1 τ〈
f i−f i−1

τ
+ λvi, zi〉. Use the notation

gik :=
f ik−f

i−1
k

τ
, with k = 1, 2 and write down

m∑
i=1

τ〈f
i − f i−1

τ
+ λvi, zi〉 ≤ R1(m) +R2(m) +R3(m) ,
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where

R1(m) =
m∑
i=1

(gi1, v
i − vi−1) = (gm, vm) +

m−1∑
i=1

(gi1, v
i)− (g1

1, v
0)−

m∑
i=2

(gi1, v
i−1)

= (gm, vm)− (g1
1, v

0)−
m∑
i=2

〈g
i
1 − gi−1

1

τ
, vi−1〉

≤ σ max
1≤i≤m

‖vi‖2 + C2(σ) ,

and

R2(m) =
m∑
i=1

τ |gi2||zi| ≤
1

2

m∑
i=1

τ |zi|2 +
1

2
‖f ′2‖2

L2(0,T ;H) ,

R3(m) =
m∑
i=1

λτ |vi||zi| ≤ C3

m∑
i=1

τ‖vi‖2 + λ
m∑
i=1

τ |zi|2

for every σ > 0 which we will choose properly. The estimate for R1 has been
obtained using the fact that

‖gi1‖∗ ≤
1

τ

∫ iτ

(i−1)τ

‖f ′1(t)‖∗ dt ≤ ‖f ′1‖C0([0,T ];V ′) ,∥∥∥∥gi1 − gi−1
1

τ

∥∥∥∥
∗
≤ 1

τ

2
∥∥∥∥∫ iτ

(i−1)τ

(f ′1(t)− f ′1(t− τ)) dt

∥∥∥∥
∗

≤ 1

τ

2 ∫ iτ

(i−1)τ

∫ t

t−τ
‖f ′′1 (s)‖∗ ds dt

≤ 1

τ
‖f1‖L1((i−1)τ,iτ ;V ′) .

Let us denote by

Nm =
1

2

(
|zm|2 +

m∑
i=1

|zi − zi−1|2
)

+
L

2

(
‖vm‖2 +

m∑
i=1

τ 2‖zi‖2

)
.

Choosing properly σ, we get

|R1(m)| ≤ 1

2
max

1≤i≤m
Ni ,

|R2(m)| ≤ C

(
1 +

m∑
i=1

τNi

)
,

|R3(m)| ≤ C
m∑
i=1

τNi .
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Hence, if k ≤ m, we have

Nk ≤ C4

(
1 +

k∑
i=1

τNi

)
+

1

2
max
1≤i≤k

Ni

≤ C4

(
1 +

m∑
i=1

τNi

)
+

1

2
max

1≤i≤m
Ni .

Taking the maximum over 1 ≤ k ≤ m, we obtain

1

2
Nm ≤

1

2
max

1≤i≤m
Ni ≤ C4

(
1 +

m∑
i=1

τNi

)
.

Taking then τ ≤ 1/(4C4), we have

1

2
Nm ≤ 4C4

(
1 +

m−1∑
i=1

τNi

)
for every m ≥ 2

and N1 ≤ 4C4 .

Applying now the discrete Gronwall Lemma 3.1.2 with β = 4C4, γ = 4C4τ , we
obtain

Nm ≤ 4C4

(
1 +

4C4T

n

)m−1

≤ 4C4

((
1 +

4C4T

n

) n
4C4T

)4C4T

≤ 4C4e4C4T .

Hence, for τ sufficiently small (n sufficiently large), we get the following estimate

‖zτ‖2
L∞(0,T ;H) + τ‖ẑ′τ‖2

L2(0,T ;H) + ‖vτ‖2
L∞(0,T ;V ) + τ‖v̂′τ‖2

L2(0,T ;V ) ≤ C5 . (3.11)

By comparison, we also deduce

‖ûτ‖L∞(0,T ;V ) ≤ ‖u0‖+ T‖û′τ‖L∞(0,T ;V ) ≤ ‖u0‖+ T‖vτ‖L∞(0,T ;V ) ≤ C6, (3.12)

‖v̂τ‖L∞(0,T ;V ) ≤ max
1≤i≤n

(
‖vi‖+ ‖vi−1‖

)
≤ 2‖vτ‖L∞(0,T ;V ) + ‖v0‖ ≤ C7,

‖v̂τ‖W 1,∞(0,T ;H) ≤ ‖v̂τ‖L∞(0,T ;H) + ‖zτ‖L∞(0,T ;H) ≤ C8 .
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Moreover, we also get

‖f τ − f‖L1(0,T ;V ′) =
n∑
i=1

∫ iτ

(i−1)τ

∥∥∥∥∫ iτ

t

f ′(s) ds

∥∥∥∥
∗
dt ≤ τ‖f ′‖L1(0,T ;V ′) ≤ τC9 ,

‖uτ − ûτ‖L∞(0,T ;V ) ≤ τ‖vτ‖L∞(0,T ;V ) ≤ τC10,

‖vτ − v̂τ‖L∞(0,T ;H) ≤ τ‖zτ‖L∞(0,T ;H) ≤ τC11 . (3.13)

Hence, for a subsequence of n→∞ or τ → 0, we get the following convergences

ûτ → u weakly star in W 1,∞(0, T ;V ) ,

uτ → ũ weakly star in L∞(0, T ;V ) ,

v̂τ → v weakly star in W 1,∞(0, T ;H) ,

vτ → ṽ weakly star in L∞(0, T ;V ) ,

zτ → z weakly star in L∞(0, T ;H) .

Moreover, due to (3.13), we also have

uτ − ûτ → 0 in L∞(0, T ;V ) vτ − v̂τ → 0 in L∞(0, T ;H) ,

from which we deduce u = ũ and v = ṽ. In order to pass to the limit in Problem
(Pτ ), let us note that

Auτ → Au weakly in L2(0, T ;V ′) .

Using the assumptions on f together with (3.13), we can also pass to the limit in
f τ ; indeed, we have

‖f τ‖L∞(0,T ;V ′)+L∞(0,T ;H) ≤ C12

(
‖f1‖C0([0,T ];V ′) + ‖f2‖C0([0,T ];H)

)
.

Finally, we can pass to the limit in the initial conditions since W 1,∞(0, T ;V ) ⊆
C0([0, T ];V ) and so

ûτ (0)→ u(0) weakly in V ,

and so we recover u(0) = u0. Analogously, since W 1,∞(0, T ;H) ⊆ C0([0, T ];H),
we recover the condition v(0) = v0. Hence u is the desired solution to our problem.
This concludes the proof of Thm. 3.1.4.

Let us prove now the following uniqueness and continuous dependence of the
solution with respect to the data result.
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Theorem 3.1.5. Let f = f1 + f2, f1 ∈ W 1,1(0, T ;V ′), f2 ∈ L1(0, T ;H), u0 ∈ V ,
v0 ∈ H, A : V → V ′ be a linear, continuous, weakly coercive and symmetric
operator, u be a solution to (3.1–3.3). Then, there exists a positive constant
C = C(T, λ, L,M) such that

‖u‖C1([0,T ];H) + ‖u‖C0([0,T ];V ) ≤ C
(
‖u0‖+ |v0|+ ‖f1‖W 1,1(0,T ;V ′) + ‖f2‖L1(0,T ;H)

)
.

Proof. Test (3.1) by u′, integrate over (0, t), t ∈ (0, T ], getting

1

2
|u′(t)|2 +

L

2
‖u(t)‖2 ≤ 1

2
|v0|2 +

1

2
(λ+M) ‖u0‖2 + λ

∫ t

0

(u(s), u′(s)) ds

+‖f1‖∗‖u(t)‖+ ‖f1(0)‖∗‖u0‖+

∫ t

0

‖f ′1(s)‖∗‖u(s)‖ ds+

∫ t

0

|f2(s)||u′(s)|2 ds

≤ C1

(
1 +

∫ t

0

|u(s)|2 ds+

∫ t

0

|u′(s)|2 ds
)

+

∫ t

0

‖f ′1(s)‖∗‖u(s)‖ ds

+

∫ t

0

|f2(s)||u′(s)|2 ds+
L

4
‖u(t)‖2 + C2

(
‖f1(t)‖2

∗ + ‖f1(0)‖∗‖u0‖
)
.

Using now the Gronwall Lemma 3.1.3, we get the desired estimate.

Remark 3.1.6. Let us notice that there is a gap between the regularity of the
existence and the uniqueness theorems. Hence, we will prove in the following
Theorem 3.1.7 the existence of a weak solution in the regularity framework of the
uniqueness theorem.

Theorem 3.1.7. Let u0 ∈ V , v0 ∈ H, f ∈ W 1,1(0, T ;V ′) +L1(0, T ;H), A : V →
V ′ be a linear, continuous, symmetric and weakly coercive operator (cf. (2.13)).
Then, there exists a unique u ∈ C1([0, T ];H)∩C0([0, T ];V ) solution of (3.1–3.3).

Proof. The idea is to approximate these data with more regular ones. Apply
Theorem 3.1.4 and prove that the solution of the approximating problem {un}
is a Cauchy sequence in C0([0, T ];V ) as well as its derivative {u′n} is a Cauchy
sequence in C0([0, T ];H). Then, we will pass to the limit in the approximating
problem (or in its integrated in time version) obtaining the desired weak solution.

The main problem consists in the approximation of the data. In the as-
sumptions of Theorem 3.1.4, we had u0 ∈ V , v0 ∈ V and f(0)−Au0 ∈ H. Hence,
in particular, we need u0 ∈ D(A;H)(= {u0 ∈ V : Au0 ∈ H}). Hence, we search
for u0n ∈ D(A;H) for all n such that u0n → u0 ∈ V . This is possible because
D(A;H) is densely embedded into V . Indeed it is sufficient to take u0n ∈ V
solution of (cf. 2.13)

u0n +
1

n
(λu0n + Au0n) = u0 . (3.14)
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Let us call Jλ := λI + A. Jλ is V−elliptic and so the bilinear form aλ associated
defines a scalar product in V equivalent to the usual one and Jλ is an isomorphism
isometric of V on V ′ (if we take in V such a scalar product). Hence we have

〈Jλu, v〉 = ((u, v)) = ((Ju, Jv))∗ ∀u, v ∈ V .

Testing now (3.14) by Jλu0n, we get

‖u0n‖2 +
1

n
|Jλu0n|2 = 〈Jλu0n, u0〉 = ((u0n, u0)) ≤ ‖u0n‖‖u0‖ .

Hence ‖u0n‖ ≤ ‖u0‖. Since u0n is bounded in V independently of n, we also have
that u0n converges weakly to ũ in V . But 1

n
Jλu0n converges strongly to 0 in V ′

and weakly to Jũ in V ′. We can pass to the limit in (3.14) getting ũ = u0. Hence,
u0n → u0 weakly in V and ‖u0n‖ ≤ ‖u0‖, and so u0n → u0 strongly in V because

‖u0n − u0‖2 = ‖u0n‖2 + ‖u0‖2 − 2((u0n, u0)) ≤ 2‖u0‖2 − 2((u0n, u0)) ,

passing to the limit as n→∞, we get 0 on the right hand side, and so we conclude
the proof of the strong convergence.

Moreover, always using density results, we take, for all n, v0n ∈ V such
that v0n → v0 in H, f1n ∈ W 2,1(0, T ;V ′) such that f1n(0) ∈ H, f1,n → f1 in
W 1,1(0, T ;V ′), f2n ∈ C1([0, T ];H) such that f2n → f2 in L1(0, T ;H). We can
take f1, f01n ∈ H such that f01n → f1(0) in V ′ and define f1n := f01n +

∫ t
0
gn(s) ds

with gn → f ′1 in L1(0, T ;V ′), gn ∈ W 1,1(0, T ;V ′). Regarding f2, instead, we
can take the prolongation at 0 of f2 outside (0, T ), take the convolution with a
regularizing sequence and truncate on [0, T ] (cf. [1, p. 111–115]).

This concludes the idea of the proof.

The nonlinear case. Let us consider the following nonlinear hyperbolic problem

utt −∆u = f(x, t)β(u, ut) in Ω× (0, T ) , (3.15)

u = 0 on ∂Ω× (0, T ) ,

u(·, 0) = u0, ut(·, 0) = v0 in Ω ,

where β : R2 → R is Lipschitz continuous with respect to both arguments, i.e.

|β(u1, v1)− β(u2, v2)| ≤ Λβ{|u1 − u2|+ |v1 − v2|} for all (ui, vi), i = 1, 2 ,

and f ∈ L1(0, T ;L∞(Ω)). Hence, we take V = H1
0 (Ω) (consider the homogeneous

Cauchy-Dirichlet problem), A : H1
0 (Ω)→ H−1(Ω) defined as 〈Au, v〉 =

∫
Ω
∇u∇v

for all u, v ∈ H1
0 (Ω). Then, for a suitable regular Ω A is H1

0 -elliptic, due to the
Poincaré inequality.
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Then, we try to apply a fixed point argument. Take w ∈ C1([0, T ];H) and
notice that β(w,wt) ∈ C0([0, T ];H), hence f(x, t)β(w(x, t), wt(x, t)) ∈ L1(0, T ;H).
Consider then the following
Problem (Pw). Find u such that

utt −∆u = fβ(w,wt) in Ω× (0, T ) ,

u = 0 on ∂Ω× (0, T ) ,

u(·, 0) = u0, ut(·, 0) = v0 in Ω ,

with u0 ∈ H, v0 ∈ V , f ∈ L1(0, T ;L∞(Ω)). Due to Thm. 3.1.7, there exists
a unique u solution to Problem (Pw). Let us call Ψ the map going from a
closed ball of C1([0, T ];H) into the same ball in C1([0, T ];H) ∩ C0([0, T ];V ) (for
T sufficiently small) which maps w into the solution u of Problem (Pw). We
want to show now that Ψ is a contraction in case T is small. Indeed we have the
estimates

‖u‖C1([0,T ];H) + ‖u‖C0([0,T ];V ) ≤ C
(
‖u0‖+ |v0|+ ‖fβ(w,wt)‖L1(0,T ;H)

)
.

and

‖u1 − u2‖C1([0,T ];H) + ‖u1 − u2‖C0([0,T ];V )

≤ CΛβ

∫ t

0

(∫
Ω

|f(x, s)|2 (|w1 − w2|+ |w′1 − w′2|)
2

(x, s) dx

)1/2

ds

≤
√

2CΛβ

∫ t

0

‖f(s)‖L∞(Ω) (|(w1 − w2)(s)|+ |(w′1 − w′2)(s)|) ds

≤
√

2CΛβ

∫ t

0

‖f(s)‖L∞(Ω)‖w1 − w2‖C1([0,T ];H) .

Using the absolute continuity of the integral, we have that there exists δ > 0 such
that if |I| ≤ δ then ∫

I

‖f(s)‖L∞(Ω) ds ≤
1

2
√

2CΛβ

.

Then, applying the contraction Theorem on the time interval [0, δ], we get the
existence of a unique solution u on [0, δ]. Taking then u(δ) as datum for the
problem, we can continue the same procedure on [δ, 2δ], etc... till we arrive to the
whole [0, T ].
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