Global attractor

for reaction-diffusion equations

Elisabetta Rocca

Dipartimento di Matematica “F. Casorati”
Universita degli Studi di Pavia
elisabetta.rocca@unipv.it

1/16



Reaction-diffusion equations 1

u—Au+f(uy=g inQ x(0,400)

u=0 onT x(0,+00)

uO)=u iInQ

@ Q c R" bdd with smooth bdry I' (e.g. of class C'-")
e fe C'(R)
@ dcy, 0,03 > 0s.t.

alylf—e <f(y)y<a(lyf+1) VyeR

o flly) >~y VyeR, forsomevyeR
@ A= —A:D(A) = H}(Q) N H}(Q) — L3(Q)
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Theorem

LetT >0andg c H'(Q).
For any ug € L?(Q), 3'u € C([0, T]; L2(Q)) (weak solution) s.t.

ueL20,T; H{ ()N LS x (0,T))

ur € L2(0, T; H-1(Q)) + L85(Q x (0, T)) € L¥3(0, T; H-1(Q))
ur+Au+fuy=g IinH'(Q), ae. in (0,T)

u(0) = wp

Moreover, the map uy — u(t) is Lipschitz continuous from
L2(Q) to itself for any fixed t > 0, that is

lus (1) = u2(D)llz < C(T, f,Q)|Uot — Uozll;z, V>0
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On account of the previous theorem, we can now define the
semigroup

S(tuo = u(t)  Vt>0
and we have that (L?(Q), S(t)) is a dynamical system
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Theorem
The following dissipative estimate holds

2c 1
ot lelE vezo

(1) lu(t)IZ < lluollFze™" + v

where )\ is a constant depending on €.

Moreover, we also have

t1
(2) /t (”U(T)Hip + ||U(7')||?6) dr < C(f)(1 +||U0Hfz+||g|!,24_1)

for all t > 0 and some C(f) > 0 depending also on Q.
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Proof. Take v = u(t) € L?(Q) as test function. Then we have

{ur(t), u(t)) + (A(u)(1), u(t)) + (F(u(1)), u(t)) = (g, u(t))

from which

gtHU(t)Hfz + 2| Vu(t)|Z + 2(f(u(t)), u(t)) = 2(g, u(t))
Recall that, if Q is bdd, it holds |- (F, v>H3| <|IFllg-1 IV V2.
Thus we deduce (using also the bounds on f(y)y)
;Hu(t)||§2+2\|Vu(t)||§2+2c1 lu()gs < 2ca+2]Igllp-1 V(b2
and an application of the Young’s inequality gives

d
(+) EHU(f)Hfz + [Vu(t)|Z + 2¢ [lu(t) 1% < 2¢2 + |91,
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Using Poincaré’s inequality, we get
d
&IIU(t)Ilfz +cpllu(t)|Z < 2c2+|glF+ VE=0

and standard Gronwall’s lemma yields estimate (1):

t
lu(t)][Z2 < l|uoliZ6~%" + (2¢2 + HQH;{H)/O e~ P(=5)ds

1
(200 + 193 1) ¥t=0

< HUO\\izecht + o

Then, integrating (x) on (t, t + 1), we also recover estimate (2):
a 2 6 2 2
/t (IVu()IZ: + 261 [[u(r)IIfe ) dr < llu(t)|2 +2¢2 + gl

< lluollfze=" + (1/cp + 1)(2c2 + l|glI%-1)
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(L2(Q), S(t)) has a bounded (in L?(R2)) absorbing set.

Proof. Denote by B(p) C L?(Q) a generic ball with radius p > 0.
If up € B(p) then, on account of (1), we have

U] < po '+ (202 + glf,r) ¥E=0
Choosing any tg(,) > 0 such that
pe M) < 1/x1(2¢2 + [|g1%-1)
then we easily get

lu(®)liZ2 < 2/M (202 + lIglify-1) = po Vt > ty(y)

We conclude that B(pg) is a bounded absorbing set.



Preliminary result: Uniform Gronwall’s lemma

Lemma

Let n be an absolutely continuous nonnegative function on
[to, 00) and ¢, ¢ € L} ,([to, +00)) two nonnegative functions
(a.e.) such that

t+r t+r

t+r
° ¢(8)ds < ay, P(8) ds < ap, / n(s)ds < as
t t t

V't > ty, for some positive constants r and a;
d :
o —n(t) < o(tn(t) +u(t) ae. in [o,00)

Then

a
n(t+r) < (73+a2>ea1 Vit>ty
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(L2(R), S(t)) has an absorbing set B; that is bounded in H} ()

Proof. We argue formally by taking v = us(t) as test function
(to be rigorous we should build a Faedo-Galerkin scheme).
This gives

(ue(t), ur(t)) + (A(u)(t), ur(t)) + (F(u(t)), ur(t)) = (g, ur(t))
from which (u=00onT x (0,T)=u;=00nT x (0, 7))
lue ()22 + (Vu(t), Vur(t)) + (F(u(?)), ur(t)) = (g, u(1))

Setting F(y) = JJ f(2)dz, then we get

(@ g (IVUOIE: + 2(F(w(D).1) ~ 2(.u(t) ) +2lun(0)f: =
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On account of assumptions on f, it the can be shown that there
exist ¢; > 0 such that (see notes on reaction-diffusion eqs)

(b) Cilylf—ch < F(y)<ch(lylP+1) VyeR.
Let us set
(%) E(u(t)) = [Vu(t)|2+2(F(u(t)), 1)—2(g, u(t))+2¢5|Q|+2|| g7

Using Young’s inequality (|(g, u(t))| < [Ig11-+ + 7lIVu(t)[I2.)
and (b), we obtain

() E(u(t)) > SIVu()|f +2¢ilu(n)]3 > 0
() E(u(t) < 5 IVu(t) o2 (D)% + 4115, +2(ch+ch)io)
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Let B be any bounded set in L?(Q). Thanks to the previous
corollary we know that after a time tz > 0 all the trajectories
starting from ug € B enter in By = B(po), B(po) C L2(Q) being
an absorbing set.

Hence we can always write, Vit > tg, V7 > 0,

S(t)Uo = S(t — g+ tB)Uo = S(t — tB)S(tB)Uo = S(T)U1

where uy € By.
Hence, for the sake of simplicity, in the following part of the
proof we will take t > 0 and ug € By.
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Going back to (d), taking up € By and applying inequality (2) of
the previous theorem, we deduce
t+1
sup E(u(r))dr < C(po)
t>0 Jt

where C(pp) is a positive constant depending also on f, g, Q.
Moreover, recalling (a) and definition () one has

d
Z(E(um) <0

Then, an application of the uniform Gronwall’s lemma (with
n=E(), ¢=0,¢=0,r=1,1t =0)gives

E(u(t)) < C(po) Vt=1
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Recalling again definition (x) and Poincaré’s inequality we
conclude B
[u(®)l[r < Clpo) V=1

Finally, on account of the previous remark, for any bounded set
B c L2(Q2) we have

(&) [IS(H)Blm < Clpo) Vit > tg+1

Hence _
By = {x € Ho(9) : lIx]lur < Clpo)}

is an absorbing set in L2(Q2) that is bounded in HJ ().
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As by-product we deduce

+oo
/ Hut(T)HdeT < C(po), wheret* =g+ 1
t*

Proof. Recall definition (x) and (a). Then we have

2 (EWn) + udt)Z =0

Integrating on (t*,t) and using (c) and (d) we get

/ lue(r)|172 < ( ) e CUE, Qv u(t) | Z+ N u(t) s +1g11F-+1)

Passing to the limit for t — 400 and on account of (e) we get
the estimate.
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(L2(Q), S(t)) is a compact dynamical system which has a
(connected) global attractor A that is bounded in Hg (Q).
Moreover, for any bounded absorbing set By it holds

A = w(Bo)

Proof. In the previous theorem we proved the existence of a
bounded absorbing set By  L?(Q) that is closed and bounded
in H} (). Hence, By is compact in L2(€).

Using corollary 3.27 (see notes on attractors) we get the
existence of the global attractor A C By C H}(Q).

On account of Theorem 3.17, A is also connected (as L?(Q)).

Finally, an application of theorem 3.26 gives A = w(By), for any
bounded absorbing set By.
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