
Phase-field systems:
a dual approach

E. Rocca

The model
Derivation of equations

Thermodynamical
consistency

The PDE system

Our main results
Main Hypothesis

Existence of solutions in
finite time

Case α Lipschitz
continuous:
existence-uniqueness

An idea of the proof

The long-time behaviour
of solutions

Open related
problems

A new dual approach for a class
of phase transitions with memory

E. Rocca
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Plan of the Talk

I Discuss a phase transition model based on a dual formulation -
in the sense of Convex Analysis - of the energy balance

I Introduce the state variable: in particular, the entropy in place of
the temperature

I Describe equilibria by the internal energy functional in place of
the free energy

I Present our mathematical results: Existence and long-time
behaviour of solutions for the resulting doubly nonlinear PDE
system
[E. Bonetti, M. Frémond, E.R., to appear on J. Math. Pure Appl.]
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Phase transitions and phase-field models

Phase transitions phenomena occur in several processes of physical
and industrial interest (like solid-liquid systems, solid-solid phase
transitions in SMA, damage in elastic material ).

Assume that the two phases can coexist at every point , then one
needs a parameter χ characterizing the different phases (e.g. the
concentration of one of the two phases in a point).
To describe the system we use the basic laws of continuum
mechanics

I The generalized principle of virtual power for microscopic
forces by [M. Frémond, Non-smooth Thermomechanics, 2002]

I A dual formulation of the energy balance

together with a proper choice of our internal energy functional
(depending on the state variables) and of the pseudo-potential of
dissipation (depending on the dissipative variables).
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The internal energy: a dual formulation

The state variables: (ϑ, ∇̃ϑ
t
, χ,∇χ) =⇒ (s, ∇̃s

t
, χ,∇χ)

The functional: Ψ(ϑ, ∇̃ϑ
t
, χ,∇χ) ⇒ E = EP(s, χ,∇χ) + EH(∇̃s

t
).

We choose

EP(s, χ,∇χ) = α̂(s − λ(χ)) + σ(χ) + β̂(χ) +
ν

2
|∇χ|2

where
I σ and λ are smooth functions accounting for the non-convex part

and the latent heat in EP , ν ≥ 0 an interfacial energy coefficient
I β̂ : R → [0,∞] is a general proper convex and

lower-semicontinuous function
I α̂ : R → [0, +∞) is convex, increasing, and suitably regular

It corresponds

- due to the standard thermodynamic relation linking
ΨP (= Ψ−ΨH) and EP -
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I α̂∗ : R → R is the convex conjugate of α̂
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The History part of the internal energy

• We refer to the theory introduced in 1968 by [Gurtin and Pipkin] in
order to model the fact that it is not reasonable to observe an
immediate responce of the material to a disturbance at a distant
point

• In our dual formulation, we consider as state variable the
summed past history of ∇ϑ (ϑ = ∂E/∂s) up to time t :

∇̃s
t
(τ) : =

∫ τ

0
∇[∂E/∂s](t − ι) dι .

• Following the idea of Gurtin and Pipkin we choose as History part
of the internal energy:

EH(∇̃s
t
) :=

1
2

∫ +∞

0
h(τ)∇̃s

t
(τ) · ∇̃s

t
(τ) dτ

where

• h : (0, +∞) → (0, +∞) denotes a continuous, decreasing

function such that
∫ +∞

0
τ 2 h(τ) dτ < ∞.
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Possible choices of α̂’s

Take the caloric part of the entropy u = s − λ(χ) .

• If we consider the standard caloric part of the Free Energy
α̂∗(ϑ) = cvϑ(log ϑ− 1), cv constant [standard Ginzburg-Landau
Free energy functional]
=⇒

α̂(u) = exp(c u) for some c ∈ R

• Since, cv in the applications may also not be constant, we can
allow every form for cv = cv (ϑ) such that α̂∗(ϑ) is convex - e.g., if
cV (ϑ) = ϑσ, for ϑ ∈ (0, ϑ̄) with σ ≥ 0 - since
cv (ϑ) = −ϑ

(
∂2Ψ/∂ϑ2), then we have α̂∗(ϑ) = ϑσ+1/ [σ(σ + 1)]

=⇒

α̂(u) = u
σ+1

σ /(σ + 1)
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• If we consider the standard caloric part of the Free Energy
α̂∗(ϑ) = cvϑ(log ϑ− 1), cv constant [standard Ginzburg-Landau
Free energy functional]
=⇒

α̂(u) = exp(c u) for some c ∈ R

• Since, cv in the applications may also not be constant, we can
allow every form for cv = cv (ϑ) such that α̂∗(ϑ) is convex - e.g., if
cV (ϑ) = ϑσ, for ϑ ∈ (0, ϑ̄) with σ ≥ 0 - since
cv (ϑ) = −ϑ

(
∂2Ψ/∂ϑ2), then we have α̂∗(ϑ) = ϑσ+1/ [σ(σ + 1)]

=⇒

α̂(u) = u
σ+1

σ /(σ + 1)



Phase-field systems:
a dual approach

E. Rocca

The model
Derivation of equations

Thermodynamical
consistency

The PDE system

Our main results
Main Hypothesis

Existence of solutions in
finite time

Case α Lipschitz
continuous:
existence-uniqueness

An idea of the proof

The long-time behaviour
of solutions

Open related
problems

Possible choices of α̂’s

Take the caloric part of the entropy u = s − λ(χ) .

• If we consider the standard caloric part of the Free Energy

α̂∗(ϑ) = cvϑ(log ϑ− 1), cv constant [standard Ginzburg-Landau
Free energy functional]
=⇒

α̂(u) = exp(c u) for some c ∈ R

• Since, cv in the applications may also not be constant, we can
allow every form for cv = cv (ϑ) such that α̂∗(ϑ) is convex - e.g., if
cV (ϑ) = ϑσ, for ϑ ∈ (0, ϑ̄) with σ ≥ 0 - since
cv (ϑ) = −ϑ

(
∂2Ψ/∂ϑ2), then we have α̂∗(ϑ) = ϑσ+1/ [σ(σ + 1)]

=⇒

α̂(u) = u
σ+1

σ /(σ + 1)



Phase-field systems:
a dual approach

E. Rocca

The model
Derivation of equations

Thermodynamical
consistency

The PDE system

Our main results
Main Hypothesis

Existence of solutions in
finite time

Case α Lipschitz
continuous:
existence-uniqueness

An idea of the proof

The long-time behaviour
of solutions

Open related
problems

Possible choices of α̂’s

Take the caloric part of the entropy u = s − λ(χ) .

• If we consider the standard caloric part of the Free Energy
α̂∗(ϑ) = cvϑ(log ϑ− 1), cv constant [standard Ginzburg-Landau
Free energy functional]

=⇒

α̂(u) = exp(c u) for some c ∈ R

• Since, cv in the applications may also not be constant, we can
allow every form for cv = cv (ϑ) such that α̂∗(ϑ) is convex - e.g., if
cV (ϑ) = ϑσ, for ϑ ∈ (0, ϑ̄) with σ ≥ 0 - since
cv (ϑ) = −ϑ

(
∂2Ψ/∂ϑ2), then we have α̂∗(ϑ) = ϑσ+1/ [σ(σ + 1)]

=⇒

α̂(u) = u
σ+1

σ /(σ + 1)



Phase-field systems:
a dual approach

E. Rocca

The model
Derivation of equations

Thermodynamical
consistency

The PDE system

Our main results
Main Hypothesis

Existence of solutions in
finite time

Case α Lipschitz
continuous:
existence-uniqueness

An idea of the proof

The long-time behaviour
of solutions

Open related
problems

Possible choices of α̂’s

Take the caloric part of the entropy u = s − λ(χ) .

• If we consider the standard caloric part of the Free Energy
α̂∗(ϑ) = cvϑ(log ϑ− 1), cv constant [standard Ginzburg-Landau
Free energy functional]
=⇒

α̂(u) = exp(c u) for some c ∈ R

• Since, cv in the applications may also not be constant, we can
allow every form for cv = cv (ϑ) such that α̂∗(ϑ) is convex - e.g., if
cV (ϑ) = ϑσ, for ϑ ∈ (0, ϑ̄) with σ ≥ 0 - since
cv (ϑ) = −ϑ

(
∂2Ψ/∂ϑ2), then we have α̂∗(ϑ) = ϑσ+1/ [σ(σ + 1)]

=⇒

α̂(u) = u
σ+1

σ /(σ + 1)



Phase-field systems:
a dual approach

E. Rocca

The model
Derivation of equations

Thermodynamical
consistency

The PDE system

Our main results
Main Hypothesis

Existence of solutions in
finite time

Case α Lipschitz
continuous:
existence-uniqueness

An idea of the proof

The long-time behaviour
of solutions

Open related
problems

Possible choices of α̂’s

Take the caloric part of the entropy u = s − λ(χ) .

• If we consider the standard caloric part of the Free Energy
α̂∗(ϑ) = cvϑ(log ϑ− 1), cv constant [standard Ginzburg-Landau
Free energy functional]
=⇒

α̂(u) = exp(c u) for some c ∈ R

• Since, cv in the applications may also not be constant, we can
allow every form for cv = cv (ϑ) such that α̂∗(ϑ) is convex - e.g., if
cV (ϑ) = ϑσ, for ϑ ∈ (0, ϑ̄) with σ ≥ 0 - since
cv (ϑ) = −ϑ

(
∂2Ψ/∂ϑ2), then we have α̂∗(ϑ) = ϑσ+1/ [σ(σ + 1)]

=⇒

α̂(u) = u
σ+1

σ /(σ + 1)



Phase-field systems:
a dual approach

E. Rocca

The model
Derivation of equations

Thermodynamical
consistency

The PDE system

Our main results
Main Hypothesis

Existence of solutions in
finite time

Case α Lipschitz
continuous:
existence-uniqueness

An idea of the proof

The long-time behaviour
of solutions

Open related
problems

Possible choices of α̂’s

Take the caloric part of the entropy u = s − λ(χ) .

• If we consider the standard caloric part of the Free Energy
α̂∗(ϑ) = cvϑ(log ϑ− 1), cv constant [standard Ginzburg-Landau
Free energy functional]
=⇒

α̂(u) = exp(c u) for some c ∈ R

• Since, cv in the applications may also not be constant, we can
allow every form for cv = cv (ϑ) such that α̂∗(ϑ) is convex - e.g., if
cV (ϑ) = ϑσ, for ϑ ∈ (0, ϑ̄) with σ ≥ 0 - since
cv (ϑ) = −ϑ

(
∂2Ψ/∂ϑ2), then we have α̂∗(ϑ) = ϑσ+1/ [σ(σ + 1)]

=⇒

α̂(u) = u
σ+1

σ /(σ + 1)



Phase-field systems:
a dual approach

E. Rocca

The model
Derivation of equations

Thermodynamical
consistency

The PDE system

Our main results
Main Hypothesis

Existence of solutions in
finite time

Case α Lipschitz
continuous:
existence-uniqueness

An idea of the proof

The long-time behaviour
of solutions

Open related
problems

The pseudo-potential of dissipation

The dissipative variables: (∇ϑ, χt) =⇒ (∇u, χt) being u = s− λ(χ)

The pseudo-potential: Φ(∇ϑ, χt) ⇒ p = p(∇u, χt).

We choose:

p(∇u, χt) =
1
2
|χt |2 +

α′(u)

2
|∇u|2

Justification of this choice.

- We use the relation linking Φ and p - i.e.

Φ(∇ϑ, χt) = p∗(∇ϑ, χt) = sup∇u{〈∇u,∇ϑ〉 − p(∇u, χt)}

- Then we have ∇ϑ =
∂p

∂(∇u)
, indeed ∇ϑ = ∇α(u) = α′(u)∇u

- Hence, the choice of p corresponds to the general choice of the
pseudo-potential of dissipation

Φ(∇ϑ, χt) =
1
2
|χt |2 +

1
2α′(α−1(ϑ))

|∇ϑ|2

- In case α(u) = c exp(u) leads to the standard case

Φ(∇ϑ, χt) =
1
2
|χt |2 +

1
2ϑ
|∇ϑ|2.
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problems

Principle of virtual power for microscopic motion

For any subdomain D ⊂ Ω and any virtual microscopic velocity v ,

Pint(D, v) + Pext(D, v) = 0,

where (B and H new interior forces)

Pint(D, v) := −
∫

D
(Bv + H · ∇v),

Pext(D, v) :=

∫
D

A · v +

∫
∂D

a · v = 0.

Here
I B is an energy density per units of concentration χ

I H is an energy flux per density
I A and a are the volume and surface amounts of mechanical

energy provided to the system by microscopic actions
(e.g. electrical, chemical, or radiative external actions).

In absence of external actions, we derive an equilibrium equation in Ω

B − div H = 0

with the natural associated boundary condition on ∂Ω

H · n = 0.
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of solutions

Open related
problems

The phase inclusion

Using the constitutive laws

B =
∂EP

∂χ +
∂p
∂χt

, H =
∂EP

∂(∇χ)

and recalling

EP(s, χ,∇χ) = α̂(s − λ(χ))+σ(χ) + β̂(χ) +
ν

2
|∇χ|2

⇓

χt − ν∆χ + β(χ) + σ′(χ)− α(s − λ(χ))λ′(χ) 3 0 in Ω

and ∂nχ = 0 on ∂Ω

I α = α̂′ and β = ∂β̂.
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∫
D

E dΩ = −Pi(D, χt).

If, in agreement with [Frémond, 2002], we take the following form for
the power of internal actions

Pi(D, χt) = −
∫
D

(Bχt + H · ∇χt) dΩ,

and remember that

B =
∂E
∂χ +

∂p
∂χt

, H =
∂E

∂(∇χ)
,

we get exactly that there exists q such that

Et + div q =
∂E
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∂χt

χt +
∂E

∂(∇χ)
∇χt in Ω.
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) and

EP(s, χ,∇χ) = α̂(s − λ(χ))+σ(χ) + β̂(χ) +
ν

2
|∇χ|2

EH(∇̃s
t
)=

1
2

∫ +∞

0
h(τ)∇̃s

t
(τ) · ∇̃s

t
(τ) dτ ,

and, denoting by u = s − λ(χ), it gives:

α(u) (st + div Q) = r int + α′(u)|∇u|2 + χ2
t in Ω

where we have chosen

• Q =
q

α(u)
= −

∫ +∞

0
h(τ)∇̃s

t
(τ) dτ −∇u

• α(u) = α̂′(u)

(
= ϑ =

∂E
∂s

)
, r int=

1
2

∫ +∞

0
h(τ)

d
dτ

∣∣∣∇̃s
t
(τ)

∣∣∣2
dτ .
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α(u) (st + div Q) = r int + α′(u)|∇u|2 + χ2
t

• α(u) = α(s − λ(χ)) = α̂′(s − λ(χ)) =
∂E
∂s

(= ϑ) > 0 (ϑ is the

absolute temperature), α′ > 0 (α̂ is convex), and

• r int
(
= 1

2

∫ +∞
0 h(τ) d

dτ

∣∣∇̃s
t
(τ)

∣∣2 dτ
)
≥ 0

• This can be done introducing the auxiliary kernel k such that
h = −k ′, with k , k ′, k ′′ ∈ L1(0, +∞) and limτ→+∞ k(τ) = 0, then

r int = 1
2

∫ +∞
0 k ′′(τ)

∣∣∇̃s
t
(τ)

∣∣2 dτ with k ′′ ≥ 0 (being h decreasing),
and hence r int ≥ 0

Dividing by α(u) > 0 the internal energy balance, we get

st + div
(q

ϑ

)
= st + div Q ≥ 0,

that is just the pointwise Clausius-Duhem inequality
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• Use the following energy conservation principle

α(u) (st + div Q) = r int + α′(u)|∇u|2 + χ2
t

where u = s − λ(χ)

• Divide by α(u)

• Use the small perturbations assumption (cf. [Germain]) - which
allows to neglect the higher order dissipative contributions on the
right hand side - smaller with respect to the other terms

• Recall the form of the entropy flux

Q = −
∫ t

−∞
k(t − τ)∇α(u(τ)) dτ −∇u

we obtain the following equation for u

(u + λ(χ))t −∆u − div
∫ t

−∞
k(t − τ)∇α(u(τ)) dτ = 0.
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• Divide by α(u)

• Use the small perturbations assumption (cf. [Germain]) - which
allows to neglect the higher order dissipative contributions on the
right hand side - smaller with respect to the other terms

• Recall the form of the entropy flux

Q = −
∫ t

−∞
k(t − τ)∇α(u(τ)) dτ −∇u

we obtain the following equation for u

(u + λ(χ))t −∆u − div
∫ t

−∞
k(t − τ)∇α(u(τ)) dτ = 0.
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The PDE system

We generalize now the system:
I let α = ∂α̂ be a general maximal monotone graph (maybe also

multivalued)

Take the auxiliary variable u = s − λ(χ) and suppose the past

history term div
∫ 0

−∞
k(t − τ)∇α(u(τ)) dτ to be known - put it on the

right hand side.

Aim: find suitably regular (u, χ) solving in a proper functional
framework the following initial-boundary value problem:

(u + λ(χ))t −∆(u + k ∗ α(u)) 3 r in Ω× (0, T )

∂n(u + k ∗ α(u)) 3 g on ∂Ω× (0, T )

χt − ν∆χ + β(χ) + σ′(χ)− λ′(χ)α(u) 3 0 in Ω× (0, T )

∂nχ = 0 on ∂Ω× (0, T )

u(0) = u0, χ(0) = χ0 in Ω

where (k ∗ α(u))(t) :=
∫ t

0 k(t − s)α(u)(s) ds. We must suppose from
now on λ′ constant (= 1 for simplicity).
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I Existence of (weak) solutions

I under general assumptions on the nonlinearity α, for a graph β with
domain the whole R and with at most a polynomial growth at ∞

I in case α = exp and for a general β

I Long-time behaviour of solutions: analysis of the ω-limit in
both cases

I Uniqueness of solutions in case α is Lipschitz-continuous and
for a general β
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Hypothesis 1

I Ω ⊂ R3 bdd connected domain with Lipschitz boundary Γ := ∂Ω

I t ∈ [0,∞], Qt := Ω× (0, t), Σt := Γ× (0, t),
I V := H1(Ω) ↪→ H := L2(Ω) ≡ H ′ ↪→ V ′ the Hilbert triplet.

Suppose moreover that

β̂, α̂ : R → [0, +∞] are proper, convex, l.s.c. function, α := ∂α̂, β := ∂β̂

|ξ| ≤ cβ + c′β min{|r |5−η, |β̂(r)|} ∀r ∈ R, ξ ∈ β(r), and for some η > 0

σ ∈ C2(R), σ′′ ∈ L∞(R)

k ∈ W 2,1(R), k(0) > 0, ν > 0

〈F (t), v〉 =

∫
Ω

r(·, t)v +

∫
Γ

g(·, v)v|Γ , v ∈ V , F ∈ W 1,1(0, T ; V ′)

u0 ∈ H, α̂(u0) ∈ L1(Ω), χ0 ∈ V

being cβ and c′β two positive constants depending only on β.
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Maximal monotone operators in V ′-V

Associate to α̂ the functionals α̂H and α̂V (defined on H and V
respectively)

α̂H(v) =

∫
Ω

α̂(v(x))dx if v ∈ H and α̂(v) ∈ L1(Ω),

α̂H(v) = +∞ if v ∈ H and α̂(v) 6∈ L1(Ω),

α̂V (v) = α̂H(v) if v ∈ V .

Their subdifferentials (cf. [Barbu, ’76])

A := ∂V ,V ′ α̂V : V → 2V ′

and (cf. [Brezis, ’73])
∂H α̂H : H → 2H

are maximal monotone operators.
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Existence result for a general α

PROBLEM 1. Find (u, χ, ϑ, ξ) with the regularity properties

u ∈ H1(0, T ; V ′) ∩ L2(0, T ; V ), ϑ ∈ L2(0, T ; V ′)

k ∗ ϑ ∈ L2(0, T ; V ) ∩ C0([0, T ]; H),

χ ∈ H1(0, T ; H) ∩ L∞(0, T ; V ), ξ ∈ L∞(0, T ; L6/(5−η)(Ω)),

and satisfying

∂t(u + χ) + Au + A(k∗ϑ) = F in V ′, a.e. in (0, T ), (1)

∂tχ + νA(χ) + ξ + σ′(χ)− ϑ = 0 in V ′, a.e. in (0, T ), (2)

ϑ ∈ A(u) in V ′ a.e. in (0, T ), ξ ∈ β(χ) a.e. in QT ,

u(0) = u0, χ(0) = χ0 a.e. in Ω.

THEOREM 1. Let T be a positive final time and let HYPOTHESIS 1 be
satisfied, then PROBLEM 1 has at least a solution (u, χ, ϑ, ξ) on the
time interval (0, T ).
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Choices of α

I α(u) = exp(u)(= ϑ) : we recover the model proposed by

[Bonetti, Colli, Frémond, ’03]

(u + χ)t −∆(u + k ∗ exp(u)) = r
χt − ν∆χ + β(χ) + σ′(χ)− exp(u) 3 0.

With the choice q = −κ∇(α2(u)) we recover the model proposed
by [Bonetti, Colli, Fabrizio, Gilardi, ’06]

(u + χ)t −∆(exp(u) + k ∗ exp(u)) = r
χt − ν∆χ + β(χ) + σ′(χ)− exp(u) 3 0

I α(u) = −1/u : we recover, e.g., the Penrose-Fife system

Choices of β

I The growth condition of β̂(r) at most like a power (6− η) (η > 0)
as |r | ↗ ∞ is needed only in the 3D (in space) case

I This condition exclude the choice β̂ = I[0,1], but it includes the
smooth double-well potential β(χ) + σ′(χ) ∼ χ3 − χ, e.g.
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(u + χ)t −∆(u + k ∗ exp(u)) = r
χt − ν∆χ + β(χ) + σ′(χ)− exp(u) 3 0.

With the choice q = −κ∇(α2(u)) we recover the model proposed
by [Bonetti, Colli, Fabrizio, Gilardi, ’06]

(u + χ)t −∆(exp(u) + k ∗ exp(u)) = r
χt − ν∆χ + β(χ) + σ′(χ)− exp(u) 3 0

I α(u) = −1/u : we recover, e.g., the Penrose-Fife system

Choices of β

I The growth condition of β̂(r) at most like a power (6− η) (η > 0)
as |r | ↗ ∞ is needed only in the 3D (in space) case

I This condition exclude the choice β̂ = I[0,1], but it includes the
smooth double-well potential β(χ) + σ′(χ) ∼ χ3 − χ, e.g.



Phase-field systems:
a dual approach

E. Rocca

The model
Derivation of equations

Thermodynamical
consistency

The PDE system

Our main results
Main Hypothesis

Existence of solutions in
finite time

Case α Lipschitz
continuous:
existence-uniqueness

An idea of the proof

The long-time behaviour
of solutions

Open related
problems

Choices of α

I α(u) = exp(u)(= ϑ) : we recover the model proposed by

[Bonetti, Colli, Frémond, ’03]
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The case α Lipschitz continuous
PROPSITION 1. Suppose, beside HYPOTHESIS 1 that D(α̂) ≡ R.

Then
ϑ(t) ∈ L1(Ω) for all t ∈ [0, T ] and the relation ϑ ∈ A(u) can be
rewritten as

ϑ ∈ α(u) a.e. in QT .

PROPOSITION 2. Let us prescribe, in addition to HYPOTHESIS 1, the
following hypothesis

α is a Lipschitz continuous function on R .

Then, PROBLEM 1 (where relation ϑ ∈ A(u) in V ′ can be rewritten as
ϑ ∈ α(u) a.e. in QT , due to PROPOSITION 1) admits a unique solution
with the further regularity:

u, ϑ ∈ H1(0, T ; V ′) ∩ L2(0, T ; V ) ∩ C0([0, T ]; H).

Note: PROPOSITION 2 still holds true under the following weaker
assumptions on the data

k ∈ W 1,1(0, T ), k(0) ≥ 0, k ≡ 0 if k(0) = 0,

β proper, convex, l.s.c., without growth conditions,

F ∈ L2(0, T ; V ′), ν ≥ 0 .
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problems

Remark in case α = exp

REMARK 1. In case α = exp (cf. [Bonetti, Colli, Frémond, 2003]) one
can prove the existence of solutions on [0, T ] under the following more
general assumptions on β

ν ≥ 0 if D(β) is bounded and ν > 0 if D(β) is unbounded.

Moreover, in this case, due to PROPOSITION 1, the relation ϑ ∈ α(u)
holds true a.e. and the solution has the following regularity

u ∈ H1(0, T ; V ′) ∩ L2(0, T ; V ), ϑ ∈ L5/3(QT ),

χ ∈ H1(0, T ; H), νχ ∈ L∞(0, T ; V ) ∩ L5/3(0, T ; W 2,5/3(Ω)),

ξ ∈ L5/3(QT ), k(0)(1 ∗ ϑ) ∈ L∞(0, T ; V ).

REMARK 2. In [Bonetti, E.R., ’07] the long-time behaviour of solutions
has been studied for this system.

THE CASE ν, k = 0 has been studied in [Bonetti, Frémond, 2003] and
in [Bonetti, in “Dissipative phase transitions” (ed. P. Colli, N.
Kenmochi, J. Sprekels), 2006]
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Main difficulty: lack of regularity in the ϑ-component

The case α “general”.

Approximate the problem:

regularizing α and β =⇒ αε and βε (their Yosida approximation).

(i) Test “formally” (1)× ϑ + (2)× χt (“ϑ ∈ α(u)′′) :

I handle
∫ t

0 〈F , ϑ− (ϑ)Ω〉 by means of k(0) |∇(1 ∗ ϑ)(t)|2H on the l.h.s.
and by Poincaré inequality

I estimate
∫ t

0 〈F , (ϑ)Ω〉 testing (2)× 1 and using

|β(χ)| ≤ cβ + cβ′ |β̂(χ)| (cf. HYPOTHESIS 1)

This gives |∇(1 ∗ ϑ)|L∞(0,T ;H), |χ|H1(0,T ;H)∩L∞(0,T ;V ),

|β̂(χ)|L∞(0,T ;L1(Ω)) ≤ c.

(ii) Estimate β(χ) in L∞(0, T ; L4/3(Ω)) by using |β(s)| ≤ cβ + c′β |s|p,
p < 5 (cf. HYPOTHESIS 1), the Sobolev embedding in 3D
domains, and the boundedness of χ in L∞(0, T ; V )

(iii) Then (1)× u gives |u|L∞(0,T ;H)∩L2(0,T ;V ) ≤ c and, by comparison,
|∂tu|L2(0,T ;V ′) ≤ c

(iv) Pass to the limit proving a strong convergence of ∇χε in H by a
Cauchy argument and identify β and α by means of monotonicity
arguments
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The case α(u) = exp(u).

The system can be rewritten as

∂t(log ϑ + χ) + A(log ϑ) + A(k ∗ ϑ) = F a.e. in QT , (1L)

∂tχ + νA(χ) + β(χ) + σ′(χ)− ϑ 3 0 a.e. in QT . (2L)

The main issue here is to prove sufficient regularity in ϑ to pass to the
limit in the “approximation scheme”.

(i) Testing “formally” (1L)× ϑ + (2L)× χt we get

ϑ1/2 ∈ L∞(0, T ; H) ∩ L2(0, T ; V )

(ii) Using the 3D Gagliardo Nieremberg inequality

‖ϑ1/2‖L10/3(Ω) ≤ C‖ϑ1/2‖3/5
V ‖ϑ1/2‖2/5

H ∀v ∈ V .

we get ϑ ∈ L5/3(QT ) (more than L1) which is sufficient to pass to
the limit but not to get uniqueness of solutions, which follows
instead authomatically in case α is Lipschitz continuous on R

(iii) Note that in this case we do not need to estimate ϑ from the
second equation, hence we do not have restrictions on the
growth of β
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The long-time behaviour of solutions for general α

THEOREM 2. Let HYPOTHESIS 1 hold and suppose that

(i) k ∈ W 1,1(0,∞) is of strongly positive type, i.e. ∃ η > 0 such that

k̃(t) := k(t)− η exp(−t) is of positive type

(ii) r , h sufficiently regular, lim|r|→+∞ |r |−2β̂(r) = +∞.

Then, the ω-limit of a single trajectory (u, χ):

ω(u, χ) :={(u∞, χ∞) ∈ H × V : there exists tn ↗∞,

(u(tn), χ(tn)) → (u∞, χ∞) in V ′ × H}

is a nonempty, compact, and connected subset of V ′ × H.
∀ (u∞, χ∞) ∈ ω(u, χ) ∃ ϑ∞ ∈ V ′, ξ∞ ∈ L6/(5−η)(Ω)
s.t. (u∞, χ∞, ξ∞, ϑ∞) solves

u∞ =
1
|Ω|

(
−

∫
Ω

χ∞ + c0 + m
)

a.e. in Ω,

νAχ∞ + ξ∞ + σ′(χ∞)− ϑ∞ = 0 in V ′,

ξ∞ ∈ β(χ∞) a.e. in Ω, ϑ∞ ∈ A
(

1
|Ω|

(
−

∫
Ω

χ∞ + c0 + m
))

in V ′,

where c0 :=
∫

Ω
u0 +

∫
Ω

χ0, m :=
∫∞

0

(∫
Ω

r(s) +
∫

Γ
h(s)

)
ds.
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PROPSITION 3. Under the assumptions of THEOREM 2, letting
σ′(χ) ≡ ϑc and supposing that

α is not multivalued,

we can conclude in addition to THEOREM 2 that χ∞ is constant a.e. in
Ω.

Moreover, if we assume in addition that

β + α̃ is injective, where α̃(·) := −α

(
−(·) +

1
|Ω| (c0 + m)

)
,

then the couple (u∞, χ∞) ∈ ω(u, χ) is uniquely determined as the
solution of the following system

u∞ = −χ∞ +
1
|Ω| (c0 + m),

β(χ∞)− α

(
−χ∞ +

1
|Ω| (c0 + m)

)
3 −ϑc a.e. in Ω,

being c0 and m defined as before. In particular, the whole trajectory
(u(t), χ(t)) tends to (u∞, χ∞) weakly in H × V and strongly in V ′ × H
as t ↗∞.
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Regarding well-posedness in finite time intervals

− To prove uniqueness in case of a general α (not
Lipschitz-continuous). Problem: the doubly-nonlinear character
of the system.

− To study the case of two general multivalued operators α (as in
our case) and β in the phase equation (e.g. β = ∂I[0,1]).

− To study the general inclusion

α(u) (ut + `χt) + div q 3 χ2
t

without the small perturbations assumption for a suitable
nonlinear function α and suitable choices of the heat flux q
and of the phase dynamics (cf. [Feireisl, 2005] for an entropy
inequality appoach and a different notion of solution)
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Regarding the long-time behaviour

− To study the convergence of the whole trajectories in case the
anti-monotone part σ′ is present in the phase equation: no
uniqueness of the stationary states is expected

−ν∆χ∞ + β(χ∞) + σ′(χ∞) 3 exp(u∞)

by employing the Lojasiewicz technique in case of analytical
potentials (cf., e.g., [Aizicovici, Feireisl, 2001] ↪→ Caginalp model
with memory; [Feireisl, Schimperna, 2005] ↪→ Penrose-Fife
systems; [Grasselli, Petzeltova, Schimperna, 2007], etc.). Or use
other techniques , cf. [Krejčı́, Zheng, 2005] ↪→ phase-relaxation
systems with non-smooth potentials

− To study the existence of the attractors : in case α Lipschitz
continuous ↪→ uniqueness of solutions and in case α = exp or
more general α’s ↪→ no uniqueness, cf. the theories of J. Ball,
Vishik, etc.

− The problem both for recovering uniqueness of solutions and
existence of the attractor is the lack of regularity of the
ϑ-component
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other techniques , cf. [Krejčı́, Zheng, 2005] ↪→ phase-relaxation
systems with non-smooth potentials

− To study the existence of the attractors : in case α Lipschitz
continuous ↪→ uniqueness of solutions and in case α = exp or
more general α’s ↪→ no uniqueness, cf. the theories of J. Ball,
Vishik, etc.

− The problem both for recovering uniqueness of solutions and
existence of the attractor is the lack of regularity of the
ϑ-component



Phase-field systems:
a dual approach

E. Rocca

The model
Derivation of equations

Thermodynamical
consistency

The PDE system

Our main results
Main Hypothesis

Existence of solutions in
finite time

Case α Lipschitz
continuous:
existence-uniqueness

An idea of the proof

The long-time behaviour
of solutions

Open related
problems

Regarding the long-time behaviour

− To study the convergence of the whole trajectories in case the
anti-monotone part σ′ is present in the phase equation: no
uniqueness of the stationary states is expected

−ν∆χ∞ + β(χ∞) + σ′(χ∞) 3 exp(u∞)

by employing the Lojasiewicz technique in case of analytical
potentials (cf., e.g., [Aizicovici, Feireisl, 2001] ↪→ Caginalp model
with memory; [Feireisl, Schimperna, 2005] ↪→ Penrose-Fife
systems; [Grasselli, Petzeltova, Schimperna, 2007], etc.).

Or use
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