E. Rocca

The model

Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in tinite time

Case α Lipschitz

continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

Fluid-Structure Interactions and Related Topics
Nečas Center for Mathematical Modelling
Prague, October 30-November 2, 2007

Plan of the Talk

Phase-field systems: a dual approach
E. Rocca

The model
Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in fintte time
Case α Lipschitz continuous: existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

Open related problems

Plan of the Talk

E. Rocca

The model

Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case a Lipschitz
continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

Plan of the Talk

E. Rocca

The model

Derivation of equations
Thermodynamical
consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz
continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

Plan of the Talk

- Discuss a phase transition model based on a dual formulation in the sense of Convex Analysis - of the energy balance
- Introduce the state variable: in particular, the entropy in place of the temperature
- Describe equilibria by the internal energy functional in place of the free energy
- Present our mathematical results: Existence and long-time behaviour of solutions for the resulting doubly nonlinear PDE system
[E. Bonetti, M. Frémond, E.R., to appear on J. Math. Pure Appl.]

Phase transitions and phase-field models

E. Rocca

The model

Derivation of equations
Thermodynamical
consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz
continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

Phase transitions and phase-field models

E. Rocca

The model

Derivation of equations
Thermodynamical
consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in flitite time
Case α Lipschitz
continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

Phase transitions and phase-field models

The model

Derivation of equations Thermodynamical consistency

The internal energy: a dual formulation

Phase-field systems:
a dual approach
E. Rocca

The model
Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz continuous: existence-uniqueness

An idea of the proof
The long-time behaviour of solutions

Open related problems

The internal energy: a dual formulation

The state variables: $\left(\vartheta, \widetilde{\nabla \vartheta}^{t}, \chi, \nabla \chi\right) \Longrightarrow\left(s, \widetilde{\nabla s}^{t}, \chi, \nabla \chi\right)$

Phase-field systems: a dual approach
E. Rocca

The model
Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

Open related problems

The internal energy: a dual formulation

The state variables: $\left(\vartheta, \widetilde{\nabla} \vartheta^{t}, \chi, \nabla \chi\right) \Longrightarrow\left(s, \widetilde{\nabla}^{t}, \chi, \nabla \chi\right)$ The functional: $\psi\left(\vartheta, \widetilde{\nabla v}^{t}, \chi, \nabla \chi\right) \Rightarrow E=E_{P}(s, \chi, \nabla \chi)+E_{H}\left(\widetilde{\nabla s}^{t}\right)$. We choose

The model

Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz
continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

The internal energy: a dual formulation

The state variables: $\left(\vartheta, \widetilde{\nabla} \vartheta^{t}, \chi, \nabla \chi\right) \Longrightarrow\left(s, \widetilde{\nabla s}^{t}, \chi, \nabla \chi\right)$
The functional: $\psi\left(\vartheta, \widetilde{\nabla v}^{t}, \chi, \nabla \chi\right) \Rightarrow E=E_{P}(s, \chi, \nabla \chi)+E_{H}(\widetilde{\nabla s})$. We choose

$$
E_{P}(s, \chi, \nabla \chi)=\widehat{\alpha}(s-\lambda(\chi))+\sigma(\chi)+\widehat{\beta}(\chi)+\frac{\nu}{2}|\nabla \chi|^{2}
$$

The model

Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz
continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

The internal energy: a dual formulation

The state variables: $\left(\vartheta, \widetilde{\nabla \vartheta}^{t}, \chi, \nabla \chi\right) \Longrightarrow\left(s, \widetilde{\nabla s}^{t}, \chi, \nabla \chi\right)$
The functional: $\psi\left(\vartheta, \widetilde{\nabla v}^{t}, \chi, \nabla \chi\right) \Rightarrow E=E_{P}(s, \chi, \nabla \chi)+E_{H}(\widetilde{\nabla s})$. We choose

$$
E_{P}(s, \chi, \nabla \chi)=\widehat{\alpha}(s-\lambda(\chi))+\sigma(\chi)+\widehat{\beta}(\chi)+\frac{\nu}{2}|\nabla \chi|^{2}
$$

where

- σ and λ are smooth functions accounting for the non-convex part and the latent heat in $E_{P}, \nu \geq 0$ an interfacial energy coefficient
- $\widehat{\beta}: \mathbb{R} \rightarrow[0, \infty]$ is a general proper convex and lower-semicontinuous function
- $\widehat{\alpha}: \mathbb{R} \rightarrow[0,+\infty)$ is convex, increasing, and suitably regular

The model

Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz
continuous:
existence-uniqueness
An idea of the proof

The internal energy: a dual formulation

The state variables: $\left(\vartheta, \widetilde{\nabla \vartheta}^{t}, \chi, \nabla \chi\right) \Longrightarrow\left(s, \widetilde{\nabla s}^{t}, \chi, \nabla \chi\right)$
The functional: $\psi\left(\vartheta, \widetilde{\nabla v}^{t}, \chi, \nabla \chi\right) \Rightarrow E=E_{P}(s, \chi, \nabla \chi)+E_{H}\left(\widetilde{\nabla s}^{t}\right)$. We choose

$$
E_{P}(s, \chi, \nabla \chi)=\widehat{\alpha}(s-\lambda(\chi))+\sigma(\chi)+\widehat{\beta}(\chi)+\frac{\nu}{2}|\nabla \chi|^{2}
$$

where

- σ and λ are smooth functions accounting for the non-convex part and the latent heat in $E_{P}, \nu \geq 0$ an interfacial energy coefficient
- $\widehat{\beta}: \mathbb{R} \rightarrow[0, \infty]$ is a general proper convex and lower-semicontinuous function
- $\widehat{\alpha}: \mathbb{R} \rightarrow[0,+\infty)$ is convex, increasing, and suitably regular

It corresponds

The internal energy: a dual formulation

The state variables: $\left(\vartheta, \widetilde{\nabla \vartheta}^{t}, \chi, \nabla \chi\right) \Longrightarrow\left(s, \widetilde{\nabla s}^{t}, \chi, \nabla \chi\right)$
The functional: $\psi\left(\vartheta, \widetilde{\nabla v}^{t}, \chi, \nabla \chi\right) \Rightarrow E=E_{P}(s, \chi, \nabla \chi)+E_{H}\left(\widetilde{\nabla s}^{t}\right)$. We choose

$$
E_{P}(s, \chi, \nabla \chi)=\widehat{\alpha}(s-\lambda(\chi))+\sigma(\chi)+\widehat{\beta}(\chi)+\frac{\nu}{2}|\nabla \chi|^{2}
$$

where

- σ and λ are smooth functions accounting for the non-convex part and the latent heat in $E_{P}, \nu \geq 0$ an interfacial energy coefficient
- $\widehat{\beta}: \mathbb{R} \rightarrow[0, \infty]$ is a general proper convex and lower-semicontinuous function
- $\widehat{\alpha}: \mathbb{R} \rightarrow[0,+\infty)$ is convex, increasing, and suitably regular

It corresponds - due to the standard thermodynamic relation linking $\Psi_{P}\left(=\Psi-\Psi_{H}\right)$ and E_{P} -

$$
\Psi_{P}(\vartheta, \chi, \nabla \chi)=-\left(E_{P}^{*}(\vartheta, \chi, \nabla \chi)\right)
$$

The model

Derivation of equations
Thermodynamical consistency
The PDE system

The internal energy: a dual formulation

The state variables: $\left(\vartheta, \widetilde{\nabla \vartheta}^{t}, \chi, \nabla \chi\right) \Longrightarrow\left(s, \widetilde{\nabla s}^{t}, \chi, \nabla \chi\right)$
The functional: $\psi\left(\vartheta, \widetilde{\nabla v}^{t}, \chi, \nabla \chi\right) \Rightarrow E=E_{P}(s, \chi, \nabla \chi)+E_{H}\left(\widetilde{\nabla s}^{t}\right)$.
We choose

$$
E_{P}(s, \chi, \nabla \chi)=\widehat{\alpha}(s-\lambda(\chi))+\sigma(\chi)+\widehat{\beta}(\chi)+\frac{\nu}{2}|\nabla \chi|^{2}
$$

where

- σ and λ are smooth functions accounting for the non-convex part and the latent heat in $E_{P}, \nu \geq 0$ an interfacial energy coefficient
- $\widehat{\beta}: \mathbb{R} \rightarrow[0, \infty]$ is a general proper convex and lower-semicontinuous function
- $\widehat{\alpha}: \mathbb{R} \rightarrow[0,+\infty)$ is convex, increasing, and suitably regular

It corresponds - due to the standard thermodynamic relation linking $\Psi_{P}\left(=\Psi-\Psi_{H}\right)$ and E_{P} -

$$
\Psi_{P}(\vartheta, \chi, \nabla \chi)=-\sup _{s}\left\{\langle\vartheta, s\rangle-E_{P}(s, \chi, \nabla \chi)\right\}, \vartheta=\frac{\partial E_{P}}{\partial s}
$$

The model

Derivation of equations
Thermodynamical consistency
The PDE system

The internal energy: a dual formulation

The state variables: $\left(\vartheta, \widetilde{\nabla \vartheta}^{t}, \chi, \nabla \chi\right) \Longrightarrow\left(s, \widetilde{\nabla s}^{t}, \chi, \nabla \chi\right)$
The functional: $\psi\left(\vartheta, \widetilde{\nabla v}^{t}, \chi, \nabla \chi\right) \Rightarrow E=E_{P}(s, \chi, \nabla \chi)+E_{H}\left(\widetilde{\nabla s}^{t}\right)$.
We choose

$$
E_{P}(s, \chi, \nabla \chi)=\widehat{\alpha}(s-\lambda(\chi))+\sigma(\chi)+\widehat{\beta}(\chi)+\frac{\nu}{2}|\nabla \chi|^{2}
$$

where

- σ and λ are smooth functions accounting for the non-convex part and the latent heat in $E_{P}, \nu \geq 0$ an interfacial energy coefficient
- $\widehat{\beta}: \mathbb{R} \rightarrow[0, \infty]$ is a general proper convex and lower-semicontinuous function
- $\widehat{\alpha}: \mathbb{R} \rightarrow[0,+\infty)$ is convex, increasing, and suitably regular

It corresponds to the following general free energy functional:

$$
\Psi_{P}(\vartheta, \chi, \nabla \chi)=-\widehat{\alpha}^{*}(\vartheta)-\lambda(\chi) \vartheta+\sigma(\chi)+\widehat{\beta}(\chi)+\frac{\nu}{2}|\nabla \chi|^{2}
$$

- $\widehat{\alpha}^{*}: \mathbb{R} \rightarrow \mathbb{R}$ is the convex conjugate of $\widehat{\alpha}$

The model

Derivation of equations
Thermodynamical consistency
The PDE system

The internal energy: a dual formulation

The state variables: $\left(\vartheta, \widetilde{\nabla \vartheta}^{t}, \chi, \nabla \chi\right) \Longrightarrow\left(s, \widetilde{\nabla s}^{t}, \chi, \nabla \chi\right)$
The functional: $\psi\left(\vartheta, \widetilde{\nabla v}^{t}, \chi, \nabla \chi\right) \Rightarrow E=E_{P}(s, \chi, \nabla \chi)+E_{H}\left(\widetilde{\nabla s}^{t}\right)$. We choose

$$
E_{P}(s, \chi, \nabla \chi)=\widehat{\alpha}(s-\lambda(\chi))+\sigma(\chi)+\widehat{\beta}(\chi)+\frac{\nu}{2}|\nabla \chi|^{2}
$$

where

- σ and λ are smooth functions accounting for the non-convex part and the latent heat in $E_{P}, \nu \geq 0$ an interfacial energy coefficient
- $\widehat{\beta}: \mathbb{R} \rightarrow[0, \infty]$ is a general proper convex and lower-semicontinuous function
- $\widehat{\alpha}: \mathbb{R} \rightarrow[0,+\infty)$ is convex, increasing, and suitably regular It corresponds to the standard one in case $\widehat{\alpha}^{*}(\vartheta)=c_{v} \vartheta(\log \vartheta-1)$:

$$
\Psi_{P}(\vartheta, \chi, \nabla \chi)=c_{v} \vartheta(1-\log \vartheta)-\lambda(\chi) \vartheta+\sigma(\chi)+\widehat{\beta}(\chi)+\frac{\nu}{2}|\nabla \chi|^{2}
$$

The model

Derivation of equations
Thermodynamical consistency
The PDE system

The History part of the internal energy

Phase-field systems:
a dual approach
E. Rocca

The model
Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz continuous: existence-uniqueness

An idea of the proof
The long-time behaviour of solutions

Open related problems

The History part of the internal energy

- We refer to the theory introduced in 1968 by [Gurtin and Pipkin] in order to model the fact that it is not reasonable to observe an immediate responce of the material to a disturbance at a distant point

The model

Derivation of equations
Thermodynamical
consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz
continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

The History part of the internal energy

- We refer to the theory introduced in 1968 by [Gurtin and Pipkin] in order to model the fact that it is not reasonable to observe an immediate responce of the material to a disturbance at a distant point
- In our dual formulation, we consider as state variable the summed past history of $\nabla \vartheta(\vartheta=\partial E / \partial s)$ up to time t :

$$
\widetilde{\nabla s}^{t}(\tau):=\int_{0}^{\tau} \nabla[\partial E / \partial s](t-\iota) d \iota
$$

The model

Derivation of equations
Thermodynamical
consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz
continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

The History part of the internal energy

- We refer to the theory introduced in 1968 by [Gurtin and Pipkin] in order to model the fact that it is not reasonable to observe an immediate responce of the material to a disturbance at a distant point
- In our dual formulation, we consider as state variable the summed past history of $\nabla \vartheta(\vartheta=\partial E / \partial s)$ up to time t :

$$
\widetilde{\nabla s}^{t}(\tau):=\int_{0}^{\tau} \nabla[\partial E / \partial s](t-\iota) d \iota .
$$

- Following the idea of Gurtin and Pipkin we choose as History part of the internal energy:

$$
E_{H}\left(\widetilde{\nabla s}^{t}\right):=\frac{1}{2} \int_{0}^{+\infty} h(\tau) \widetilde{\nabla s}^{t}(\tau) \cdot \widetilde{\nabla s}^{t}(\tau) d \tau
$$

where

- $h:(0,+\infty) \rightarrow(0,+\infty)$ denotes a continuous, decreasing
function such that $\int_{0}^{+\infty} \tau^{2} h(\tau) d \tau<\infty$.

The model

Derivation of equations Thermodynamical consistency
The PDE system

Our main result

Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz
continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

Possible choices of $\widehat{\alpha}$'s

Phase-field systems:
a dual approach
E. Rocca

The model
Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz continuous: existence-uniqueness

An idea of the proof
The long-time behaviour of solutions

Open related problems

Possible choices of $\widehat{\alpha}$'s

Phase-field systems: a dual approach
E. Rocca

The model

Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz
continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

Open related problems

Possible choices of $\widehat{\alpha}$'s

Phase-field systems: a dual approach
E. Rocca

The model

Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz
continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

Possible choices of $\widehat{\alpha}$'s

Take the caloric part of the entropy $u=s-\lambda(\chi)$.

- If we consider the standard caloric part of the Free Energy $\widehat{\alpha}^{*}(\vartheta)=c_{v} \vartheta(\log \vartheta-1), c_{v}$ constant [standard Ginzburg-Landau Free energy functional]

The model

Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz
continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

Possible choices of $\widehat{\alpha}$'s

Take the caloric part of the entropy $u=s-\lambda(\chi)$.

- If we consider the standard caloric part of the Free Energy $\widehat{\alpha}^{*}(\vartheta)=c_{v} \vartheta(\log \vartheta-1), c_{v}$ constant [standard Ginzburg-Landau Free energy functional]
\qquad
$\widehat{\alpha}(u)=\exp (c u)$ for some $c \in \mathbb{R}$

The model

Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz
continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

Possible choices of $\widehat{\alpha}$'s

Phase-field systems:
E. Rocca

The model

Take the caloric part of the entropy $u=s-\lambda(\chi)$.

- If we consider the standard caloric part of the Free Energy $\widehat{\alpha}^{*}(\vartheta)=c_{v} \vartheta(\log \vartheta-1), c_{v}$ constant [standard Ginzburg-Landau Free energy functional]
\qquad
$\widehat{\alpha}(u)=\exp (c u)$ for some $c \in \mathbb{R}$
- Since, c_{v} in the applications may also not be constant, we can allow every form for $c_{v}=c_{v}(\vartheta)$ such that $\widehat{\alpha}^{*}(\vartheta)$ is convex - e.g., if $c_{V}(\vartheta)=\vartheta^{\sigma}$, for $\vartheta \in(0, \bar{\vartheta})$ with $\sigma \geq 0$ - since $c_{\nu}(\vartheta)=-\vartheta\left(\partial^{2} \Psi / \partial \vartheta^{2}\right)$, then we have $\widehat{\alpha}^{*}(\vartheta)=\vartheta^{\sigma+1} /[\sigma(\sigma+1)]$

Possible choices of $\widehat{\alpha}$'s

Phase-field systems:
E. Rocca

The model

Take the caloric part of the entropy $u=s-\lambda(\chi)$.

- If we consider the standard caloric part of the Free Energy $\widehat{\alpha}^{*}(\vartheta)=c_{v} \vartheta(\log \vartheta-1), c_{v}$ constant [standard Ginzburg-Landau Free energy functional]
\qquad
$\widehat{\alpha}(u)=\exp (c u)$ for some $c \in \mathbb{R}$
- Since, c_{v} in the applications may also not be constant, we can allow every form for $c_{v}=c_{v}(\vartheta)$ such that $\widehat{\alpha}^{*}(\vartheta)$ is convex - e.g., if $c_{V}(\vartheta)=\vartheta^{\sigma}$, for $\vartheta \in(0, \bar{\vartheta})$ with $\sigma \geq 0$ - since
$c_{v}(\vartheta)=-\vartheta\left(\partial^{2} \Psi / \partial \vartheta^{2}\right)$, then we have $\widehat{\alpha}^{*}(\vartheta)=\vartheta^{\sigma+1} /[\sigma(\sigma+1)]$
\Longrightarrow
$\widehat{\alpha}(u)=u^{\frac{\sigma+1}{\sigma}} /(\sigma+1)$

Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz
continuous:
existence-uniqueness
An idea of the proof

The pseudo-potential of dissipation

The dissipative variables: $\left(\nabla \vartheta, \chi_{t}\right) \Longrightarrow\left(\nabla u, \chi_{t}\right)$ being $u=s-\lambda(\chi)$

Phase-field systems: a dual approach

E. Rocca

The model
Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz continuous: existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

Open related problems

The pseudo-potential of dissipation

The dissipative variables: $\left(\nabla \vartheta, \chi_{t}\right) \Longrightarrow\left(\nabla u, \chi_{t}\right)$ being $u=s-\lambda(\chi)$ The pseudo-potential: $\Phi\left(\nabla \vartheta, \chi_{t}\right) \Rightarrow p=p\left(\nabla u, \chi_{t}\right)$.

Phase-field systems: a dual approach

E. Rocca

The model
Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz
continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

The pseudo-potential of dissipation

The dissipative variables: $\left(\nabla \vartheta, \chi_{t}\right) \Longrightarrow\left(\nabla u, \chi_{t}\right)$ being $u=s-\lambda(\chi)$ The pseudo-potential: $\Phi\left(\nabla \vartheta, \chi_{t}\right) \Rightarrow p=p\left(\nabla u, \chi_{t}\right)$.
We choose:

$$
p\left(\nabla u, \chi_{t}\right)=\frac{1}{2}\left|\chi_{t}\right|^{2}+\frac{\alpha^{\prime}(u)}{2}|\nabla u|^{2}
$$

Phase-field systems: a dual approach
E. Rocca

The model
Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz
continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

The pseudo-potential of dissipation

The dissipative variables: $\left(\nabla \vartheta, \chi_{t}\right) \Longrightarrow\left(\nabla u, \chi_{t}\right)$ being $u=s-\lambda(\chi)$ The pseudo-potential: $\Phi\left(\nabla \vartheta, \chi_{t}\right) \Rightarrow p=p\left(\nabla u, \chi_{t}\right)$.
We choose:

$$
p\left(\nabla u, \chi_{t}\right)=\frac{1}{2}\left|\chi_{t}\right|^{2}+\frac{\alpha^{\prime}(u)}{2}|\nabla u|^{2}
$$

Justification of this choice.

- We use the relation linking Φ and p - i.e.

$$
\Phi\left(\nabla \vartheta, \chi_{t}\right)=p^{*}\left(\nabla \vartheta, \chi_{t}\right)=\sup _{\nabla u}\left\{\langle\nabla u, \nabla \vartheta\rangle-p\left(\nabla u, \chi_{t}\right)\right\}
$$

The model

Derivation of equations

The pseudo-potential of dissipation

The dissipative variables: $\left(\nabla \vartheta, \chi_{t}\right) \Longrightarrow\left(\nabla u, \chi_{t}\right)$ being $u=s-\lambda(\chi)$ The pseudo-potential: $\Phi\left(\nabla \vartheta, \chi_{t}\right) \Rightarrow p=p\left(\nabla u, \chi_{t}\right)$.
We choose:

$$
p\left(\nabla u, \chi_{t}\right)=\frac{1}{2}\left|\chi_{t}\right|^{2}+\frac{\alpha^{\prime}(u)}{2}|\nabla u|^{2}
$$

Justification of this choice.

- We use the relation linking Φ and p - i.e.

$$
\Phi\left(\nabla \vartheta, \chi_{t}\right)=p^{*}\left(\nabla \vartheta, \chi_{t}\right)=\sup _{\nabla u}\left\{\langle\nabla u, \nabla \vartheta\rangle-p\left(\nabla u, \chi_{t}\right)\right\}
$$

- Then we have $\nabla \vartheta=\frac{\partial p}{\partial(\nabla u)}$, indeed $\nabla \vartheta=\nabla \alpha(u)=\alpha^{\prime}(u) \nabla u$

The model

Derivation of equations

The pseudo-potential of dissipation

The dissipative variables: $\left(\nabla \vartheta, \chi_{t}\right) \Longrightarrow\left(\nabla u, \chi_{t}\right)$ being $u=s-\lambda(\chi)$ The pseudo-potential: $\Phi\left(\nabla \vartheta, \chi_{t}\right) \Rightarrow p=p\left(\nabla u, \chi_{t}\right)$.
We choose:

$$
p\left(\nabla u, \chi_{t}\right)=\frac{1}{2}\left|\chi_{t}\right|^{2}+\frac{\alpha^{\prime}(u)}{2}|\nabla u|^{2}
$$

Justification of this choice.

- We use the relation linking Φ and p - i.e.

$$
\Phi\left(\nabla \vartheta, \chi_{t}\right)=p^{*}\left(\nabla \vartheta, \chi_{t}\right)=\sup _{\nabla u}\left\{\langle\nabla u, \nabla \vartheta\rangle-p\left(\nabla u, \chi_{t}\right)\right\}
$$

- Then we have $\nabla \vartheta=\frac{\partial p}{\partial(\nabla u)}$, indeed $\nabla \vartheta=\nabla \alpha(u)=\alpha^{\prime}(u) \nabla u$
- Hence, the choice of p corresponds to the general choice of the pseudo-potential of dissipation

$$
\Phi\left(\nabla \vartheta, \chi_{t}\right)=\frac{1}{2}\left|\chi_{t}\right|^{2}+\frac{1}{2 \alpha^{\prime}\left(\alpha^{-1}(\vartheta)\right)}|\nabla \vartheta|^{2}
$$

The model
Derivation of equations Thermodynamical consistency
The PDE system

Main Hypothesis
Existence of solutions in finite time

Case α Lipschitz

continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

The pseudo-potential of dissipation

The dissipative variables: $\left(\nabla \vartheta, \chi_{t}\right) \Longrightarrow\left(\nabla u, \chi_{t}\right)$ being $u=s-\lambda(\chi)$ The pseudo-potential: $\Phi\left(\nabla \vartheta, \chi_{t}\right) \Rightarrow p=p\left(\nabla u, \chi_{t}\right)$.
We choose:

$$
p\left(\nabla u, \chi_{t}\right)=\frac{1}{2}\left|\chi_{t}\right|^{2}+\frac{\alpha^{\prime}(u)}{2}|\nabla u|^{2}
$$

Justification of this choice.

- We use the relation linking Φ and p - i.e.

$$
\Phi\left(\nabla \vartheta, \chi_{t}\right)=p^{*}\left(\nabla \vartheta, \chi_{t}\right)=\sup _{\nabla u}\left\{\langle\nabla u, \nabla \vartheta\rangle-p\left(\nabla u, \chi_{t}\right)\right\}
$$

- Then we have $\nabla \vartheta=\frac{\partial p}{\partial(\nabla u)}$, indeed $\nabla \vartheta=\nabla \alpha(u)=\alpha^{\prime}(u) \nabla u$
- Hence, the choice of p corresponds to the general choice of the pseudo-potential of dissipation

$$
\Phi\left(\nabla \vartheta, \chi_{t}\right)=\frac{1}{2}\left|\chi_{t}\right|^{2}+\frac{1}{2 \alpha^{\prime}\left(\alpha^{-1}(\vartheta)\right)}|\nabla \vartheta|^{2}
$$

- In case $\alpha(u)=c \exp (u)$ leads to the standard case

$$
\Phi\left(\nabla \vartheta, \chi_{t}\right)=\frac{1}{2}\left|\chi_{t}\right|^{2}+\frac{1}{2 \vartheta}|\nabla \vartheta|^{2}
$$

Principle of virtual power for microscopic motion

For any subdomain $D \subset \Omega$ and any virtual microscopic velocity v,

$$
P_{\mathrm{int}}(D, v)+P_{\mathrm{ext}}(D, v)=\mathbf{0}
$$

Phase-field systems: a dual approach
E. Rocca

Derivation of equations

Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz continuous: existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

Principle of virtual power for microscopic motion

E. Rocca

Derivation of equations

Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz
continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

Principle of virtual power for microscopic motion

For any subdomain $D \subset \Omega$ and any virtual microscopic velocity v,

$$
P_{\mathrm{int}}(D, v)+P_{\mathrm{ext}}(D, v)=\mathbf{0}
$$

where (B and \mathbf{H} new interior forces)

$$
\begin{aligned}
& P_{\mathrm{int}}(D, v):=-\int_{D}(B v+\mathbf{H} \cdot \nabla v) \\
& P_{\mathrm{ext}}(D, v):=\int_{D} A \cdot v+\int_{\partial D} a \cdot v=0
\end{aligned}
$$

Here

- B is an energy density per units of concentration χ
- H is an energy flux per density

Principle of virtual power for microscopic motion

For any subdomain $D \subset \Omega$ and any virtual microscopic velocity v,

$$
P_{\mathrm{int}}(D, v)+P_{\mathrm{ext}}(D, v)=\mathbf{0}
$$

where (B and \mathbf{H} new interior forces)

$$
\begin{aligned}
& P_{\mathrm{int}}(D, v):=-\int_{D}(B v+\mathbf{H} \cdot \nabla v), \\
& P_{\mathrm{ext}}(D, v):=\int_{D} A \cdot v+\int_{\partial D} a \cdot v=0 .
\end{aligned}
$$

Here

- B is an energy density per units of concentration χ
- \mathbf{H} is an energy flux per density
- A and a are the volume and surface amounts of mechanical energy provided to the system by microscopic actions (e.g. electrical, chemical, or radiative external actions).

Principle of virtual power for microscopic motion

For any subdomain $D \subset \Omega$ and any virtual microscopic velocity v,

$$
P_{\mathrm{int}}(D, v)+P_{\mathrm{ext}}(D, v)=\mathbf{0}
$$

where (B and \mathbf{H} new interior forces)

$$
\begin{aligned}
& P_{\mathrm{int}}(D, v):=-\int_{D}(B v+\mathbf{H} \cdot \nabla v), \\
& P_{\mathrm{ext}}(D, v):=\int_{D} A \cdot v+\int_{\partial D} a \cdot v=0 .
\end{aligned}
$$

Here

- B is an energy density per units of concentration χ
- \mathbf{H} is an energy flux per density
- A and a are the volume and surface amounts of mechanical energy provided to the system by microscopic actions (e.g. electrical, chemical, or radiative external actions).

In absence of external actions, we derive an equilibrium equation in Ω

$$
B-\operatorname{div} \mathbf{H}=0
$$

Principle of virtual power for microscopic motion

For any subdomain $D \subset \Omega$ and any virtual microscopic velocity v,

$$
P_{\mathrm{int}}(D, v)+P_{\mathrm{ext}}(D, v)=\mathbf{0}
$$

where (B and \mathbf{H} new interior forces)

$$
\begin{aligned}
& P_{\mathrm{int}}(D, v):=-\int_{D}(B v+\mathbf{H} \cdot \nabla v), \\
& P_{\mathrm{ext}}(D, v):=\int_{D} A \cdot v+\int_{\partial D} a \cdot v=0 .
\end{aligned}
$$

Here

- B is an energy density per units of concentration χ
- H is an energy flux per density
- A and a are the volume and surface amounts of mechanical energy provided to the system by microscopic actions (e.g. electrical, chemical, or radiative external actions).

In absence of external actions, we derive an equilibrium equation in Ω

$$
B-\operatorname{div} \mathbf{H}=0
$$

with the natural associated boundary condition on $\partial \Omega$

$$
\mathbf{H} \cdot \boldsymbol{n}=0 .
$$

The phase inclusion

Phase-field systems: a dual approach
E. Rocca

Using the constitutive laws

$$
B=\frac{\partial E_{P}}{\partial \chi}+\frac{\partial p}{\partial \chi_{t}}, \quad \mathbf{H}=\frac{\partial E_{P}}{\partial(\nabla \chi)}
$$

Derivation of equations

Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

Open related problems

The phase inclusion

Phase-field systems: a dual approach

E. Rocca

Derivation of equations

Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

The phase inclusion

E. Rocca

Derivation of equations

Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz continuous: existence-uniqueness

An idea of the proof

The long-time behaviour of solutions

$$
\chi_{t}-\nu \Delta \chi+\beta(\chi)+\sigma^{\prime}(\chi)-\alpha(s-\lambda(\chi)) \lambda^{\prime}(\chi) \ni 0 \quad \text { in } \Omega
$$

$$
\text { and } \partial_{\mathbf{n}} \chi=0 \text { on } \partial \Omega
$$

- $\alpha=\widehat{\alpha}^{\prime}$ and $\beta=\partial \widehat{\beta}$.

Possible choices of the potentials $\widehat{\beta}$

Phase-field systems:
a dual approach
E. Rocca

The model

Derivation of equations

Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz continuous: existence-untqueness

An idea of the proof
The long-time behaviour of solutions

Open related problems

Possible choices of the potentials $\widehat{\beta}$

Phase-field systems: a dual approach
E. Rocca

Subdifferential case: $\beta:=\partial \widehat{\beta}=\partial l_{[-1,1]}$:

Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz continuous: existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

Open related
problems

Possible choices of the potentials $\widehat{\beta}$

E. Rocca

Subdifferential case: $\beta:=\partial \widehat{\beta}=\partial l_{[-1,1]}$:

Logarithmic case: $\beta:=\partial \widehat{\beta}=\log (1+\chi)-\log (1-\chi)$:

The first Principle of Thermodynamics

For any subdomain $D \subset \Omega$ and in absence of external actions, it reads

$$
\frac{d}{d t} \int_{\mathcal{D}} E d \Omega=-\mathcal{P}_{i}\left(\mathcal{D}, \chi_{t}\right)
$$

Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz
continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

The first Principle of Thermodynamics

For any subdomain $D \subset \Omega$ and in absence of external actions, it reads

$$
\frac{d}{d t} \int_{\mathcal{D}} E d \Omega=-\mathcal{P}_{i}\left(\mathcal{D}, \chi_{t}\right)
$$

If, in agreement with [Frémond, 2002], we take the following form for the power of internal actions

$$
\mathcal{P}_{i}\left(\mathcal{D}, \chi_{t}\right)=-\int_{\mathcal{D}}\left(B \chi_{t}+\mathbf{H} \cdot \nabla \chi_{t}\right) d \Omega
$$

and remember that

$$
B=\frac{\partial E}{\partial \chi}+\frac{\partial p}{\partial \chi_{t}}, \quad \mathbf{H}=\frac{\partial E}{\partial(\nabla \chi)}
$$

The first Principle of Thermodynamics

For any subdomain $D \subset \Omega$ and in absence of external actions, it reads

$$
\frac{d}{d t} \int_{\mathcal{D}} E d \Omega=-\mathcal{P}_{i}\left(\mathcal{D}, \chi_{t}\right)
$$

If, in agreement with [Frémond, 2002], we take the following form for the power of internal actions

$$
\mathcal{P}_{i}\left(\mathcal{D}, \chi_{t}\right)=-\int_{\mathcal{D}}\left(B \chi_{t}+\mathbf{H} \cdot \nabla \chi_{t}\right) d \Omega
$$

and remember that

$$
B=\frac{\partial E}{\partial \chi}+\frac{\partial p}{\partial \chi_{t}}, \quad \mathbf{H}=\frac{\partial E}{\partial(\nabla \chi)}
$$

we get exactly that there exists \mathbf{q} such that

$$
E_{t}+\operatorname{div} \mathbf{q}=\frac{\partial E}{\partial \chi} \chi_{t}+\frac{\partial p}{\partial \chi_{t}} \chi_{t}+\frac{\partial E}{\partial(\nabla \chi)} \nabla \chi_{t} \quad \text { in } \Omega
$$

The energy balance

Phase-field systems: a dual approach
E. Rocca

The first principle of thermodynamics hence reads

$$
E_{t}+\operatorname{div} \mathbf{q}=\frac{\partial E}{\partial \chi} \chi_{t}+\frac{\partial E}{\partial(\nabla \chi)} \nabla \chi_{t}+\chi_{t}^{2} \quad \text { in } \Omega
$$

Derivation of equations

Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

Open related problems

The energy balance

The first principle of thermodynamics hence reads

$$
E_{t}+\operatorname{div} \mathbf{q}=\frac{\partial E}{\partial \chi} \chi_{t}+\frac{\partial E}{\partial(\nabla \chi)} \nabla \chi_{t}+\chi_{t}^{2} \quad \text { in } \Omega .
$$

With $E=E_{P}(s, \chi, \nabla \chi)+E_{H}\left(\widetilde{\nabla s}{ }^{t}\right)$ and

$$
\begin{aligned}
& E_{P}(s, \chi, \nabla \chi)=\widehat{\alpha}(s-\lambda(\chi))+\sigma(\chi)+\widehat{\beta}(\chi)+\frac{\nu}{2}|\nabla \chi|^{2} \\
& E_{H}\left(\widetilde{\nabla} s^{t}\right)=\frac{1}{2} \int_{0}^{+\infty} h(\tau) \widetilde{\nabla s}^{t}(\tau) \cdot \widetilde{\nabla s}^{t}(\tau) d \tau,
\end{aligned}
$$

and, denoting by $u=s-\lambda(\chi)$, it gives:

The energy balance

The first principle of thermodynamics hence reads

$$
E_{t}+\operatorname{div} \mathbf{q}=\frac{\partial E}{\partial \chi} \chi_{t}+\frac{\partial E}{\partial(\nabla \chi)} \nabla \chi_{t}+\chi_{t}^{2} \quad \text { in } \Omega .
$$

With $E=E_{P}(s, \chi, \nabla \chi)+E_{H}\left(\widetilde{\nabla s}^{t}\right)$ and

$$
\begin{aligned}
& E_{P}(s, \chi, \nabla \chi)=\widehat{\alpha}(s-\lambda(\chi))+\sigma(\chi)+\widehat{\beta}(\chi)+\frac{\nu}{2}|\nabla \chi|^{2} \\
& E_{H}\left(\widetilde{\nabla} s^{t}\right)=\frac{1}{2} \int_{0}^{+\infty} h(\tau) \widetilde{\nabla s}^{t}(\tau) \cdot \widetilde{\nabla s}^{t}(\tau) d \tau,
\end{aligned}
$$

and, denoting by $u=s-\lambda(\chi)$, it gives:

$$
\alpha(u)\left(s_{t}+\operatorname{div} \mathbf{Q}\right)=r^{\text {int }}+\alpha^{\prime}(u)|\nabla u|^{2}+\chi_{t}^{2} \text { in } \Omega
$$

where we have chosen

- $\mathbf{Q}=\frac{\mathbf{q}}{\alpha(u)}=-\int_{0}^{+\infty} h(\tau) \widetilde{\nabla s}{ }^{t}(\tau) d \tau-\nabla u$
- $\alpha(u)=\widehat{\alpha}^{\prime}(u)\left(=\vartheta=\frac{\partial E}{\partial s}\right), r^{\text {int }}=\frac{1}{2} \int_{0}^{+\infty} h(\tau) \frac{d}{d \tau}\left|\widetilde{\nabla s}^{t}(\tau)\right|^{2} d \tau$.

Thermodynamical consistency

Phase-field systems:
a dual approach
E. Rocca

The model
Derivation of equations

Thermodynamical

consistency

The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz continuous: existence-uniqueness

An idea of the proof
The long-time behaviour of solutions

Open related problems

Thermodynamical consistency

Phase-field systems: a dual approach
E. Rocca

Assume that in

$$
\alpha(u)\left(s_{t}+\operatorname{div} \mathbf{Q}\right)=r^{i n t}+\alpha^{\prime}(u)|\nabla u|^{2}+\chi_{t}^{2}
$$

Thermodynamical consistency

Assume that in

$$
\alpha(u)\left(s_{t}+\operatorname{div} \mathbf{Q}\right)=r^{i n t}+\alpha^{\prime}(u)|\nabla u|^{2}+\chi_{t}^{2}
$$

- $\alpha(u)=\alpha(s-\lambda(\chi))=\widehat{\alpha}^{\prime}(s-\lambda(\chi))=\frac{\partial E}{\partial s}(=\vartheta)>0(\vartheta$ is the absolute temperature), $\alpha^{\prime}>0$ ($\widehat{\alpha}$ is convex), and

The model

Derivation of equations

Thermodynamical

 consistencyThe PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz
continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

Thermodynamical consistency

Assume that in

$$
\alpha(u)\left(s_{t}+\operatorname{div} \mathbf{Q}\right)=r^{i n t}+\alpha^{\prime}(u)|\nabla u|^{2}+\chi_{t}^{2}
$$

- $\alpha(u)=\alpha(s-\lambda(\chi))=\widehat{\alpha}^{\prime}(s-\lambda(\chi))=\frac{\partial E}{\partial s}(=\vartheta)>0(\vartheta$ is the absolute temperature), $\alpha^{\prime}>0$ ($\widehat{\alpha}$ is convex), and
- $r^{\text {int }}\left(=\frac{1}{2} \int_{0}^{+\infty} h(\tau) \frac{d}{d \tau}\left|\widetilde{\nabla s}^{t}(\tau)\right|^{2} d \tau\right) \geq 0$

The model

Derivation of equations

Thermodynamical

 consistencyThe PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz
continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

Thermodynamical consistency

Assume that in

$$
\alpha(u)\left(s_{t}+\operatorname{div} \mathbf{Q}\right)=r^{\text {int }}+\alpha^{\prime}(u)|\nabla u|^{2}+\chi_{t}^{2}
$$

- $\alpha(u)=\alpha(s-\lambda(\chi))=\widehat{\alpha}^{\prime}(s-\lambda(\chi))=\frac{\partial E}{\partial s}(=\vartheta)>0(\vartheta$ is the absolute temperature), $\alpha^{\prime}>0$ ($\widehat{\alpha}$ is convex), and
- $r^{\text {int }}\left(=\frac{1}{2} \int_{0}^{+\infty} h(\tau) \frac{d}{d \tau}\left|\widetilde{\nabla s}^{t}(\tau)\right|^{2} d \tau\right) \geq 0$
- This can be done introducing the auxiliary kernel k such that $h=-k^{\prime}$, with $k, k^{\prime}, k^{\prime \prime} \in L^{1}(0,+\infty)$ and $\lim _{\tau \rightarrow+\infty} k(\tau)=0$, then $r^{\text {int }}=\frac{1}{2} \int_{0}^{+\infty} k^{\prime \prime}(\tau)\left|\widetilde{\nabla s}^{t}(\tau)\right|^{2} d \tau$ with $k^{\prime \prime} \geq 0$ (being h decreasing), and hence $r^{\text {int }} \geq 0$

Thermodynamical consistency

Assume that in

$$
\alpha(u)\left(s_{t}+\operatorname{div} \mathbf{Q}\right)=r^{i n t}+\alpha^{\prime}(u)|\nabla u|^{2}+\chi_{t}^{2}
$$

- $\alpha(u)=\alpha(s-\lambda(\chi))=\widehat{\alpha}^{\prime}(s-\lambda(\chi))=\frac{\partial E}{\partial s}(=\vartheta)>0(\vartheta$ is the absolute temperature), $\alpha^{\prime}>0$ ($\widehat{\alpha}$ is convex), and
- $r^{\text {int }}\left(=\frac{1}{2} \int_{0}^{+\infty} h(\tau) \frac{d}{d \tau}\left|\widetilde{\nabla s}^{t}(\tau)\right|^{2} d \tau\right) \geq 0$
- This can be done introducing the auxiliary kernel k such that $h=-k^{\prime}$, with $k, k^{\prime}, k^{\prime \prime} \in L^{1}(0,+\infty)$ and $\lim _{\tau \rightarrow+\infty} k(\tau)=0$, then $r^{\text {int }}=\frac{1}{2} \int_{0}^{+\infty} k^{\prime \prime}(\tau)\left|\widetilde{\nabla s}^{t}(\tau)\right|^{2} d \tau$ with $k^{\prime \prime} \geq 0$ (being h decreasing), and hence $r^{\text {int }} \geq 0$

Dividing by $\alpha(u)>0$ the internal energy balance, we get

$$
s_{t}+\operatorname{div}\left(\frac{\mathbf{q}}{\vartheta}\right)=s_{t}+\operatorname{div} \mathbf{Q} \geq 0
$$

that is just the pointwise Clausius-Duhem inequality

Derivation of equations

Thermodynamical

 consistencyThe PDE system

The PDE equation for u

Phase-field systems:
a dual approach
E. Rocca

The model
Derivation of equations
Thermodynamical consistency

The PDE system

Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz continuous: existence-untqueness

An idea of the proof
The long-time behaviour of solutions

Open related problems

The PDE equation for u

- Use the following energy conservation principle

$$
\alpha(u)\left(\boldsymbol{s}_{t}+\operatorname{div} \mathbf{Q}\right)=r^{i n t}+\alpha^{\prime}(u)|\nabla u|^{2}+\chi_{t}^{2}
$$

where $u=s-\lambda(\chi)$

The model

Derivation of equations
Thermodynamical consistency

The PDE system

Our main results

Main Hypothesis

Existence of solutions in finite time
Case α Lipschitz continuous: existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

The PDE equation for u

- Use the following energy conservation principle

$$
\alpha(u)\left(s_{t}+\operatorname{div} \mathbf{Q}\right)=r^{i n t}+\alpha^{\prime}(u)|\nabla u|^{2}+\chi_{t}^{2}
$$

where $u=s-\lambda(\chi)$

- Divide by $\alpha(u)$

The model

Derivation of equations
Thermodynamical consistency

The PDE system

Our main results

Main Hypothesis

Existence of solutions in finite time
Case α Lipschitz continuous: existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

The PDE equation for u

- Use the following energy conservation principle

$$
\alpha(u)\left(s_{t}+\operatorname{div} \mathbf{Q}\right)=r^{\text {int }}+\alpha^{\prime}(u)|\nabla u|^{2}+\chi_{t}^{2}
$$

where $u=s-\lambda(\chi)$

- Divide by $\alpha(u)$
- Use the small perturbations assumption (cf. [Germain]) - which allows to neglect the higher order dissipative contributions on the right hand side - smaller with respect to the other terms

The model

Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz
continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

The PDE equation for u

- Use the following energy conservation principle

$$
\alpha(u)\left(s_{t}+\operatorname{div} \mathbf{Q}\right)=r^{\text {int }}+\alpha^{\prime}(u)|\nabla u|^{2}+\chi_{t}^{2}
$$

where $u=s-\lambda(\chi)$

- Divide by $\alpha(u)$
- Use the small perturbations assumption (cf. [Germain]) - which allows to neglect the higher order dissipative contributions on the right hand side - smaller with respect to the other terms

The model
 Derivation of equations

Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz
continuous:
existence-uniqueness
An idea of the proof

- Recall the form of the entropy flux
$\mathbf{Q}=-\int_{-\infty}^{t} k(t-\tau) \nabla \alpha(u(\tau)) d \tau-\nabla u$

The PDE equation for u

- Use the following energy conservation principle

$$
\alpha(u)\left(s_{t}+\operatorname{div} \mathbf{Q}\right)=r^{\text {int }}+\alpha^{\prime}(u)|\nabla u|^{2}+\chi_{t}^{2}
$$

where $u=s-\lambda(\chi)$

- Divide by $\alpha(u)$
- Use the small perturbations assumption (cf. [Germain]) - which allows to neglect the higher order dissipative contributions on the right hand side - smaller with respect to the other terms

The model
 Derivation of equations

Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz
continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

- Recall the form of the entropy flux

$$
\mathbf{Q}=-\int_{-\infty}^{t} k(t-\tau) \nabla \alpha(u(\tau)) d \tau-\nabla u
$$

we obtain the following equation for u

The PDE equation for u

- Use the following energy conservation principle

$$
\alpha(u)\left(s_{t}+\operatorname{div} \mathbf{Q}\right)=r^{\text {int }}+\alpha^{\prime}(u)|\nabla u|^{2}+\chi_{t}^{2}
$$

where $u=s-\lambda(\chi)$

- Divide by $\alpha(u)$
- Use the small perturbations assumption (cf. [Germain]) - which allows to neglect the higher order dissipative contributions on the right hand side - smaller with respect to the other terms
- Recall the form of the entropy flux

$$
\mathbf{Q}=-\int_{-\infty}^{t} k(t-\tau) \nabla \alpha(u(\tau)) d \tau-\nabla u
$$

we obtain the following equation for u

$$
(u+\lambda(\chi))_{t}-\Delta u-\operatorname{div} \int_{-\infty}^{t} k(t-\tau) \nabla \alpha(u(\tau)) d \tau=0
$$

The PDE system

Phase-field systems:
a dual approach
E. Rocca

The model
Derivation of equations
Thermodynamical consistency

The PDE system

Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz continuous: existence-uniqueness

An idea of the proof
The long-time behaviour of solutions

Open related problems

The PDE system

Phase-field systems: a dual approach
E. Rocca

We generalize now the system:

- let $\alpha=\partial \widehat{\alpha}$ be a general maximal monotone graph (maybe also multivalued)

The model

Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz continuous: existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

Open related problems

The PDE system

Phase-field systems: a dual approach
E. Rocca

We generalize now the system:

- let $\alpha=\partial \widehat{\alpha}$ be a general maximal monotone graph (maybe also multivalued)
Take the auxiliary variable $u=s-\lambda(\chi)$

The model
Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz continuous: existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

The PDE system

We generalize now the system:

- let $\alpha=\partial \widehat{\alpha}$ be a general maximal monotone graph (maybe also multivalued)
Take the auxiliary variable $u=s-\lambda(\chi)$ and suppose the past
history term div $\int_{-\infty}^{0} k(t-\tau) \nabla \alpha(u(\tau)) d \tau$ to be known - put it on the right hand side.

E. Rocca

Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz continuous: existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

The PDE system

We generalize now the system:

- let $\alpha=\partial \widehat{\alpha}$ be a general maximal monotone graph (maybe also multivalued)
Take the auxiliary variable $u=s-\lambda(\chi)$ and suppose the past
history term $\operatorname{div} \int_{-\infty}^{0} k(t-\tau) \nabla \alpha(u(\tau)) d \tau$ to be known - put it on the right hand side.
Aim: find suitably regular (u, χ) solving in a proper functional framework the following initial-boundary value problem:

The model

Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in tinite time
Case α Lipschitz
continuous:
existence-uniqueness
An idea of the proof

The PDE system

We generalize now the system:

- let $\alpha=\partial \widehat{\alpha}$ be a general maximal monotone graph (maybe also multivalued)
Take the auxiliary variable $u=s-\lambda(\chi)$ and suppose the past
history term div $\int_{-\infty}^{0} k(t-\tau) \nabla \alpha(u(\tau)) d \tau$ to be known - put it on the right hand side.
Aim: find suitably regular (u, χ) solving in a proper functional framework the following initial-boundary value problem:

$$
\begin{aligned}
& (u+\lambda(\chi))_{t}-\Delta(u+k * \alpha(u)) \ni r \quad \text { in } \Omega \times(0, T) \\
& \partial_{\mathbf{n}}(u+k * \alpha(u)) \ni g \quad \text { on } \partial \Omega \times(0, T) \\
& \chi_{t}-\nu \Delta \chi+\beta(\chi)+\sigma^{\prime}(\chi)-\lambda^{\prime}(\chi) \alpha(u) \ni 0 \quad \text { in } \Omega \times(0, T) \\
& \partial_{\mathbf{n}} \chi=0 \quad \text { on } \partial \Omega \times(0, T) \\
& u(0)=u_{0}, \quad \chi(0)=\chi_{0} \quad \text { in } \Omega
\end{aligned}
$$

where $(k * \alpha(u))(t):=\int_{0}^{t} k(t-s) \alpha(u)(s) d s$.

The PDE system

We generalize now the system:

- let $\alpha=\partial \widehat{\alpha}$ be a general maximal monotone graph (maybe also multivalued)
Take the auxiliary variable $u=s-\lambda(\chi)$ and suppose the past
history term div $\int_{-\infty}^{0} k(t-\tau) \nabla \alpha(u(\tau)) d \tau$ to be known - put it on the right hand side.
Aim: find suitably regular (u, χ) solving in a proper functional framework the following initial-boundary value problem:

$$
\begin{aligned}
& (u+\lambda(\chi))_{t}-\Delta(u+k * \alpha(u)) \ni r \quad \text { in } \Omega \times(0, T) \\
& \partial_{\mathbf{n}}(u+k * \alpha(u)) \ni g \quad \text { on } \partial \Omega \times(0, T) \\
& \chi_{t}-\nu \Delta \chi+\beta(\chi)+\sigma^{\prime}(\chi)-\lambda^{\prime}(\chi) \alpha(u) \ni 0 \quad \text { in } \Omega \times(0, T) \\
& \partial_{\mathbf{n}} \chi=0 \quad \text { on } \partial \Omega \times(0, T) \\
& u(0)=u_{0}, \quad \chi(0)=\chi_{0} \quad \text { in } \Omega
\end{aligned}
$$

where $(k * \alpha(u))(t):=\int_{0}^{t} k(t-s) \alpha(u)(s) d s$. We must suppose from now on λ^{\prime} constant ($=1$ for simplicity).

Our main results

Phase-field systems:

a dual approach
E. Rocca

The model
Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz continuous: existence-uniqueness

An idea of the proof
The long-time behaviour of solutions

Our main results

E. Rocca

The model

Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz continuous: existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

Our main results

- Existence of (weak) solutions
- under general assumptions on the nonlinearity α, for a graph β with domain the whole \mathbb{R} and with at most a polynomial growth at ∞
- in case $\alpha=\exp$ and for a general β

Our main results

E. Rocca

The model

Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz continuous: existence-uniqueness

- Long-time behaviour of solutions: analysis of the ω-limit in both cases

Our main results

- Existence of (weak) solutions
- under general assumptions on the nonlinearity α, for a graph β with domain the whole \mathbb{R} and with at most a polynomial growth at ∞
- in case $\alpha=\exp$ and for a general β
- Long-time behaviour of solutions: analysis of the ω-limit in both cases
- Uniqueness of solutions in case α is Lipschitz-continuous and for a general β

Hypothesis 1

Phase-field systems:
a dual approach
E. Rocca

The model
Derivation of equations
Thermodynamical consistency
The PDE system

Our main results

Main Hypothesis

Existence of solutions in finite time
Case α Lipschitz continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

Open related problems

Hypothesis 1

Phase-field systems: a dual approach
E. Rocca

The model

Derivation of equations

Hypothesis 1

- $\Omega \subset \mathbb{R}^{3}$ bdd connected domain with Lipschitz boundary $\Gamma:=\partial \Omega$
- $t \in[0, \infty], Q_{t}:=\Omega \times(0, t), \Sigma_{t}:=\Gamma \times(0, t)$,
- $V:=H^{1}(\Omega) \hookrightarrow H:=L^{2}(\Omega) \equiv H^{\prime} \hookrightarrow V^{\prime}$ the Hilbert triplet.

Suppose moreover that
$\widehat{\beta}, \widehat{\alpha}: \mathbb{R} \rightarrow[0,+\infty]$ are proper, convex, I.s.c. function, $\alpha:=\partial \widehat{\alpha}, \beta:=\partial \widehat{\beta}$ $|\xi| \leq c_{\beta}+c_{\beta}^{\prime} \min \left\{|r|^{5-\eta},|\widehat{\beta}(r)|\right\} \quad \forall r \in \mathbb{R}, \xi \in \beta(r)$, and for some $\eta>0$
$\sigma \in C^{2}(\mathbb{R}), \quad \sigma^{\prime \prime} \in L^{\infty}(\mathbb{R})$
$k \in W^{2,1}(\mathbb{R}), \quad k(0)>0, \quad \nu>0$
$\langle F(t), v\rangle=\int_{\Omega} r(\cdot, t) v+\int_{\Gamma} g(\cdot, v) v_{\mid r}, \quad v \in V, \quad F \in W^{1,1}\left(0, T ; V^{\prime}\right)$
$u_{0} \in H, \quad \widehat{\alpha}\left(u_{0}\right) \in L^{1}(\Omega), \quad \chi_{0} \in V$
being c_{β} and c_{β}^{\prime} two positive constants depending only on β.

Maximal monotone operators in $V^{\prime}-V$

Associate to $\widehat{\alpha}$ the functionals $\widehat{\alpha}_{H}$ and $\widehat{\alpha}_{V}$ (defined on H and V respectively)

$$
\begin{aligned}
& \widehat{\alpha}_{H}(v)=\int_{\Omega} \widehat{\alpha}(v(x)) d x \quad \text { if } \quad v \in H \quad \text { and } \quad \widehat{\alpha}(v) \in L^{1}(\Omega), \\
& \widehat{\alpha}_{H}(v)=+\infty \quad \text { if } \quad v \in H \quad \text { and } \quad \widehat{\alpha}(v) \notin L^{1}(\Omega), \\
& \widehat{\alpha}_{V}(v)=\widehat{\alpha}_{H}(v) \text { if } \quad v \in V .
\end{aligned}
$$

The model

Derivation of equations
Thermodynamical consistency
The PDE system

Our main results

Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz
continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

Maximal monotone operators in $V^{\prime}-V$

Associate to $\widehat{\alpha}$ the functionals $\widehat{\alpha}_{H}$ and $\widehat{\alpha}_{V}$ (defined on H and V respectively)

$$
\begin{aligned}
& \widehat{\alpha}_{H}(v)=\int_{\Omega} \widehat{\alpha}(v(x)) d x \quad \text { if } \quad v \in H \quad \text { and } \quad \widehat{\alpha}(v) \in L^{1}(\Omega), \\
& \widehat{\alpha}_{H}(v)=+\infty \quad \text { if } v \in H \quad \text { and } \widehat{\alpha}(v) \notin L^{1}(\Omega), \\
& \widehat{\alpha}_{V}(v)=\widehat{\alpha}_{H}(v) \text { if } v \in V .
\end{aligned}
$$

Their subdifferentials (cf. [Barbu, '76])

$$
\mathcal{A}:=\partial_{V, v^{\prime}} \widehat{\alpha}_{V}: V \rightarrow 2^{V^{\prime}}
$$

and (cf. [Brezis, '73])

$$
\partial_{H} \widehat{\alpha}_{H}: H \rightarrow 2^{H}
$$

are maximal monotone operators.

Existence result for a general α

Phase-field systems:
a dual approach
E. Rocca

The model
Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz continuous: existence-uniqueness

An idea of the proof
The long-time behaviour of solutions

Open related problems

Existence result for a general α

PROBLEM 1. Find $(u, \chi, \vartheta, \xi)$ with the regularity properties

$$
\begin{aligned}
& u \in H^{1}\left(0, T ; V^{\prime}\right) \cap L^{2}(0, T ; V), \vartheta \in L^{2}\left(0, T ; V^{\prime}\right) \\
& k * \vartheta \in L^{2}(0, T ; V) \cap C^{0}([0, T] ; H) \\
& \chi \in H^{1}(0, T ; H) \cap L^{\infty}(0, T ; V), \xi \in L^{\infty}\left(0, T ; L^{6 /(5-\eta)}(\Omega)\right)
\end{aligned}
$$

and satisfying

$$
\begin{align*}
& \partial_{t}(u+\chi)+A u+A(k * \vartheta)=F \quad \text { in } V^{\prime}, \quad \text { a.e. in }(0, T), \tag{1}\\
& \partial_{t} \chi+\nu A(\chi)+\xi+\sigma^{\prime}(\chi)-\vartheta=0 \quad \text { in } V^{\prime}, \quad \text { a.e. in }(0, T), \tag{2}\\
& \vartheta \in \mathcal{A}(u) \text { in } V^{\prime} \text { a.e. in }(0, T), \quad \xi \in \beta(\chi) \text { a.e. in } Q_{T}, \\
& u(0)=u_{0}, \quad \chi(0)=\chi_{0} \quad \text { a.e. in } \Omega .
\end{align*}
$$

Existence result for a general α

PRoblem 1. Find $(u, \chi, \vartheta, \xi)$ with the regularity properties

$$
\begin{aligned}
& u \in H^{1}\left(0, T ; V^{\prime}\right) \cap L^{2}(0, T ; V), \vartheta \in L^{2}\left(0, T ; V^{\prime}\right) \\
& k * \vartheta \in L^{2}(0, T ; V) \cap C^{0}([0, T] ; H) \\
& \chi \in H^{1}(0, T ; H) \cap L^{\infty}(0, T ; V), \xi \in L^{\infty}\left(0, T ; L^{6 /(5-\eta)}(\Omega)\right)
\end{aligned}
$$

and satisfying

$$
\begin{align*}
& \partial_{t}(u+\chi)+A u+A(k * \vartheta)=F \quad \text { in } V^{\prime}, \quad \text { a.e. in }(0, T), \tag{1}\\
& \partial_{t} \chi+\nu A(\chi)+\xi+\sigma^{\prime}(\chi)-\vartheta=0 \quad \text { in } V^{\prime}, \quad \text { a.e. in }(0, T), \tag{2}\\
& \vartheta \in \mathcal{A}(u) \text { in } V^{\prime} \text { a.e. in }(0, T), \quad \xi \in \beta(\chi) \text { a.e. in } Q_{T}, \\
& u(0)=u_{0}, \quad \chi(0)=\chi_{0} \quad \text { a.e. in } \Omega .
\end{align*}
$$

THEOREM 1. Let T be a positive final time and let HYPOTHESIS 1 be satisfied, then Problem 1 has at least a solution $(u, \chi, \vartheta, \xi)$ on the time interval $(0, T)$.

Phase-field systems:
a dual approach
E. Rocca

The model

Derivation of equations
Thermodynamical consistency
The PDE system

Our main results

Main Hypothesis

Existence of solutions in finite time
Case α Lipschitz continuous: existence-uniqueness

An idea of the proof
The long-time behaviour of solutions

Open related
problems

Phase-field systems:
a dual approach
E. Rocca

The model
Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz
continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

Open related
problems

Choices of α

E. Rocca

The model

Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz

Choices of α

- $\alpha(u)=\exp (u)(=\vartheta)$: we recover the model proposed by [Bonetti, Colli, Frémond, '03]

$$
\begin{aligned}
& (u+\chi)_{t}-\Delta(u+k * \exp (u))=r \\
& \chi_{t}-\nu \Delta \chi+\beta(\chi)+\sigma^{\prime}(\chi)-\exp (u) \ni 0 .
\end{aligned}
$$

With the choice $\mathbf{q}=-\kappa \nabla\left(\alpha^{2}(u)\right)$ we recover the model proposed by [Bonetti, Colli, Fabrizio, Gilardi, '06]

$$
\begin{aligned}
& (u+\chi)_{t}-\Delta(\exp (u)+k * \exp (u))=r \\
& \chi_{t}-\nu \Delta \chi+\beta(\chi)+\sigma^{\prime}(\chi)-\exp (u) \ni 0
\end{aligned}
$$

- $\alpha(u)=-1 / u$: we recover, e.g., the Penrose-Fife system

Choices of α

- $\alpha(u)=\exp (u)(=\vartheta)$: we recover the model proposed by [Bonetti, Colli, Frémond, '03]

$$
\begin{aligned}
& (u+\chi)_{t}-\Delta(u+k * \exp (u))=r \\
& \chi_{t}-\nu \Delta \chi+\beta(\chi)+\sigma^{\prime}(\chi)-\exp (u) \ni 0 .
\end{aligned}
$$

With the choice $\mathbf{q}=-\kappa \nabla\left(\alpha^{2}(u)\right)$ we recover the model proposed by [Bonetti, Colli, Fabrizio, Gilardi, '06]

$$
\begin{aligned}
& (u+\chi)_{t}-\Delta(\exp (u)+k * \exp (u))=r \\
& \chi_{t}-\nu \Delta \chi+\beta(\chi)+\sigma^{\prime}(\chi)-\exp (u) \ni 0
\end{aligned}
$$

- $\alpha(u)=-1 / u$: we recover, e.g., the Penrose-Fife system

Choices of β

Choices of α

- $\alpha(u)=\exp (u)(=\vartheta)$: we recover the model proposed by [Bonetti, Colli, Frémond, '03]

$$
\begin{aligned}
& (u+\chi)_{t}-\Delta(u+k * \exp (u))=r \\
& \chi_{t}-\nu \Delta \chi+\beta(\chi)+\sigma^{\prime}(\chi)-\exp (u) \ni 0 .
\end{aligned}
$$

With the choice $\mathbf{q}=-\kappa \nabla\left(\alpha^{2}(u)\right)$ we recover the model proposed by [Bonetti, Colli, Fabrizio, Gilardi, '06]

$$
\begin{aligned}
& (u+\chi)_{t}-\Delta(\exp (u)+k * \exp (u))=r \\
& \chi_{t}-\nu \Delta \chi+\beta(\chi)+\sigma^{\prime}(\chi)-\exp (u) \ni 0
\end{aligned}
$$

- $\alpha(u)=-1 / u$: we recover, e.g., the Penrose-Fife system

Choices of β

- The growth condition of $\widehat{\beta}(r)$ at most like a power $(6-\eta)(\eta>0)$ as $|r| \nearrow \infty$ is needed only in the 3D (in space) case
- This condition exclude the choice $\widehat{\beta}=I_{[0,1]}$, but it includes the smooth double-well potential $\beta(\chi)+\sigma^{\prime}(\chi) \sim \chi^{3}-\chi$, e.g.

The case α Lipschitz continuous

Propsition 1. Suppose, beside Hypothesis 1 that $D(\widehat{\alpha}) \equiv \mathbb{R}$.

Phase-field systems: a dual approach
E. Rocca

The model
Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in flitte time
Case α Lipschitz
continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

Open related problems

The case α Lipschitz continuous

Propsition 1. Suppose, beside Hypothesis 1 that $D(\widehat{\alpha}) \equiv \mathbb{R}$. Then $\vartheta(t) \in L^{1}(\Omega)$ for all $t \in[0, T]$ and the relation $\vartheta \in \mathcal{A}(u)$ can be rewritten as

$$
\vartheta \in \alpha(u) \quad \text { a.e. in } Q_{T} .
$$

Phase-field systems: a dual approach
E. Rocca

The model

Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz
continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

The case α Lipschitz continuous

PROPSItion 1. Suppose, beside Hypothesis 1 that $D(\widehat{\alpha}) \equiv \mathbb{R}$.Then $\vartheta(t) \in L^{1}(\Omega)$ for all $t \in[0, T]$ and the relation $\vartheta \in \mathcal{A}(u)$ can be rewritten as

$$
\vartheta \in \alpha(u) \quad \text { a.e. in } Q_{T} .
$$

Proposition 2. Let us prescribe, in addition to Hypothesis 1, the following hypothesis
α is a Lipschitz continuous function on \mathbb{R}.

The model

Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz

The case α Lipschitz continuous

Propsition 1. Suppose, beside Hypothesis 1 that $D(\widehat{\alpha}) \equiv \mathbb{R}$.Then $\vartheta(t) \in L^{1}(\Omega)$ for all $t \in[0, T]$ and the relation $\vartheta \in \mathcal{A}(u)$ can be rewritten as

$$
\vartheta \in \alpha(u) \quad \text { a.e. in } Q_{T} .
$$

Proposition 2. Let us prescribe, in addition to Hypothesis 1, the following hypothesis

$$
\alpha \text { is a Lipschitz continuous function on } \mathbb{R} \text {. }
$$

Then, Problem 1 (where relation $\vartheta \in \mathcal{A}(u)$ in V^{\prime} can be rewritten as $\vartheta \in \alpha(u)$ a.e. in Q_{T}, due to Proposition 1) admits a unique solution with the further regularity:

$$
u, \vartheta \in H^{1}\left(0, T ; V^{\prime}\right) \cap L^{2}(0, T ; V) \cap C^{0}([0, T] ; H) .
$$

The case α Lipschitz continuous

Propsition 1. Suppose, beside Hypothesis 1 that $D(\widehat{\alpha}) \equiv \mathbb{R}$.Then $\vartheta(t) \in L^{1}(\Omega)$ for all $t \in[0, T]$ and the relation $\vartheta \in \mathcal{A}(u)$ can be rewritten as

$$
\vartheta \in \alpha(u) \quad \text { a.e. in } Q_{T} .
$$

Proposition 2. Let us prescribe, in addition to Hypothesis 1, the following hypothesis

$$
\alpha \text { is a Lipschitz continuous function on } \mathbb{R} \text {. }
$$

Then, Problem 1 (where relation $\vartheta \in \mathcal{A}(u)$ in V^{\prime} can be rewritten as $\vartheta \in \alpha(u)$ a.e. in Q_{T}, due to Proposition 1) admits a unique solution with the further regularity:

$$
u, \vartheta \in H^{1}\left(0, T ; V^{\prime}\right) \cap L^{2}(0, T ; V) \cap C^{0}([0, T] ; H) .
$$

Note: Proposition 2 still holds true under the following weaker assumptions on the data

$$
\begin{aligned}
& k \in W^{1,1}(0, T), k(0) \geq 0, k \equiv 0 \text { if } k(0)=0, \\
& \beta \text { proper, convex, I.s.c., without growth conditions, } \\
& F \in L^{2}\left(0, T ; V^{\prime}\right), \quad \nu \geq 0 .
\end{aligned}
$$

Remark in case $\alpha=\exp$

Phase-field systems:
a dual approach
E. Rocca

The model
Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz
continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

Open related problems

Remark in case $\alpha=\exp$

Remark 1. In case $\alpha=\exp$ (cf. [Bonetti, Colli, Frémond, 2003]) one can prove the existence of solutions on $[0, T]$ under the following more general assumptions on β
$\nu \geq 0$ if $D(\beta)$ is bounded and $\nu>0$ if $D(\beta)$ is unbounded.

The model
Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz
continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

Remark in case $\alpha=\exp$

Remark 1. In case $\alpha=\exp$ (cf. [Bonetti, Colli, Frémond, 2003]) one can prove the existence of solutions on $[0, T]$ under the following more general assumptions on β

$$
\nu \geq 0 \text { if } D(\beta) \text { is bounded and } \nu>0 \text { if } D(\beta) \text { is unbounded. }
$$

Moreover, in this case, due to Proposition 1, the relation $\vartheta \in \alpha(u)$ holds true a.e. and the solution has the following regularity

$$
\begin{aligned}
& u \in H^{1}\left(0, T ; V^{\prime}\right) \cap L^{2}(0, T ; V), \quad \vartheta \in L^{5 / 3}\left(Q_{T}\right), \\
& \chi \in H^{1}(0, T ; H), \quad \nu \chi \in L^{\infty}(0, T ; V) \cap L^{5 / 3}\left(0, T ; W^{2,5 / 3}(\Omega)\right), \\
& \xi \in L^{5 / 3}\left(Q_{T}\right), \quad k(0)(1 * \vartheta) \in L^{\infty}(0, T ; V) .
\end{aligned}
$$

Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz
continuous:
existence-uniqueness
An idea of the proof

Remark in case $\alpha=\exp$

Remark 1. In case $\alpha=\exp$ (cf. [Bonetti, Colli, Frémond, 2003]) one can prove the existence of solutions on $[0, T]$ under the following more general assumptions on β

$$
\nu \geq 0 \text { if } D(\beta) \text { is bounded and } \nu>0 \text { if } D(\beta) \text { is unbounded. }
$$

Moreover, in this case, due to Proposition 1, the relation $\vartheta \in \alpha(u)$ holds true a.e. and the solution has the following regularity

$$
\begin{aligned}
& u \in H^{1}\left(0, T ; V^{\prime}\right) \cap L^{2}(0, T ; V), \quad \vartheta \in L^{5 / 3}\left(Q_{T}\right), \\
& \chi \in H^{1}(0, T ; H), \quad \nu \chi \in L^{\infty}(0, T ; V) \cap L^{5 / 3}\left(0, T ; W^{2,5 / 3}(\Omega)\right), \\
& \xi \in L^{5 / 3}\left(Q_{T}\right), \quad k(0)(1 * \vartheta) \in L^{\infty}(0, T ; V) .
\end{aligned}
$$

Remark 2. In [Bonetti, E.R., '07] the long-time behaviour of solutions has been studied for this system.

The CASE $\nu, k=0$ has been studied in [Bonetti, Frémond, 2003] and in [Bonetti, in "Dissipative phase transitions" (ed. P. Colli, N.
Kenmochi, J. Sprekels), 2006]

Derivation of equations
Thermodynamical consistency
The PDE system

Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz continuous: existence-uniqueness

Main difficulty: lack of regularity in the ϑ-component

The case α "general".

Phase-field systems: a dual approach
E. Rocca

The model

Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz
continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

Open related problems

Main difficulty: lack of regularity in the ϑ-component

The case α "general". Approximate the problem:
regularizing α and $\beta \Longrightarrow \alpha_{\varepsilon}$ and β_{ε} (their Yosida approximation).

The model

Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in flitite time
Case α Lipschitz continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

Main difficulty: lack of regularity in the ϑ-component

E. Rocca

The model

Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz
continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

Main difficulty: lack of regularity in the ϑ-component

The case α "general". Approximate the problem:
regularizing α and $\beta \Longrightarrow \alpha_{\varepsilon}$ and β_{ε} (their Yosida approximation).
(i) Test "formally" $(1) \times \vartheta+(2) \times \chi_{t}$ (" $\left.\vartheta \in \alpha(u)^{\prime \prime}\right)$:

- handle $\int_{0}^{t}\left\langle F, \vartheta-(\vartheta)_{\Omega}\right\rangle$ by means of $k(0)|\nabla(1 * \vartheta)(t)|_{H}^{2}$ on the I.h.s. and by Poincaré inequality

The model

Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz
continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

Main difficulty: lack of regularity in the ϑ-component

The case α "general". Approximate the problem:
regularizing α and $\beta \Longrightarrow \alpha_{\varepsilon}$ and β_{ε} (their Yosida approximation).
(i) Test "formally" $(1) \times \vartheta+(2) \times \chi_{t}$ (" $\left.\vartheta \in \alpha(u)^{\prime \prime}\right)$:

- handle $\int_{0}^{t}\left\langle F, \vartheta-(\vartheta)_{\Omega}\right\rangle$ by means of $k(0)|\nabla(1 * \vartheta)(t)|_{H}^{2}$ on the I.h.s. and by Poincaré inequality
- estimate $\int_{0}^{t}\left\langle F,(\vartheta)_{\Omega}\right\rangle$ testing (2) $\times 1$ and using $|\beta(\chi)| \leq c_{\beta}+c_{\beta^{\prime}}|\widehat{\beta}(\chi)|$ (cf. HYPOTHESIS 1)

The model

Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz
continuous:
existence-uniqueness

An idea of the proof

The long-time behaviour of solutions

Main difficulty: lack of regularity in the ϑ-component

The case α "general". Approximate the problem:
regularizing α and $\beta \Longrightarrow \alpha_{\varepsilon}$ and β_{ε} (their Yosida approximation).
(i) Test "formally" $(1) \times \vartheta+(2) \times \chi_{t}$ (" $\left.\vartheta \in \alpha(u)^{\prime \prime}\right)$:

- handle $\int_{0}^{t}\left\langle F, \vartheta-(\vartheta)_{\Omega}\right\rangle$ by means of $k(0)|\nabla(1 * \vartheta)(t)|_{H}^{2}$ on the I.h.s. and by Poincaré inequality
- estimate $\int_{0}^{t}\left\langle F,(\vartheta)_{\Omega}\right\rangle$ testing (2) $\times 1$ and using $|\beta(\chi)| \leq c_{\beta}+c_{\beta^{\prime}}|\widehat{\beta}(\chi)|$ (cf. HYPOTHESIS 1)
This gives $|\nabla(1 * \vartheta)|_{\left\llcorner^{\infty}(0, T ; H)\right.},|\chi|_{H^{1}(0, T ; H) \cap L^{\infty}(0, T ; V)}$, $|\widehat{\beta}(\chi)|_{L \infty\left(0, T ; L^{1}(\Omega)\right)} \leq c$.

Main difficulty: lack of regularity in the ϑ-component

The case α "general". Approximate the problem:
regularizing α and $\beta \Longrightarrow \alpha_{\varepsilon}$ and β_{ε} (their Yosida approximation).
(i) Test "formally" $(1) \times \vartheta+(2) \times \chi_{t}$ (" $\left.\vartheta \in \alpha(u)^{\prime \prime}\right)$:

- handle $\int_{0}^{t}\left\langle F, \vartheta-(\vartheta)_{\Omega}\right\rangle$ by means of $k(0)|\nabla(1 * \vartheta)(t)|_{H}^{2}$ on the I.h.s. and by Poincaré inequality
- estimate $\int_{0}^{t}\left\langle F,(\vartheta)_{\Omega}\right\rangle$ testing (2) $\times 1$ and using

$$
|\beta(\chi)| \leq c_{\beta}+c_{\beta^{\prime}}|\widehat{\beta}(\chi)|(\text { cf. HYPOTHESIS 1) }
$$

This gives $|\nabla(1 * \vartheta)|_{L^{\infty}(0, T ; H)},|\chi|_{H^{1}(0, T ; H) \cap L^{\infty}(0, T ; V)}$, $|\widehat{\beta}(\chi)|_{L^{\infty}\left(0, T ; L^{1}(\Omega)\right)} \leq c$.

Derivation of equations
Thermodynamical consistency
The PDE system
Our matin results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz
continuous:
existence-uniqueness

An idea of the proof

The long-time behaviour of solutions
(ii) Estimate $\beta(\chi)$ in $L^{\infty}\left(0, T ; L^{4 / 3}(\Omega)\right)$ by using $|\beta(s)| \leq c_{\beta}+c_{\beta}^{\prime}|s|^{p}$, $p<5$ (cf. HYPOTHESIS 1), the Sobolev embedding in 3D domains, and the boundedness of χ in $L^{\infty}(0, T ; V)$

Main difficulty: lack of regularity in the ϑ-component

The case α "general". Approximate the problem:
regularizing α and $\beta \Longrightarrow \alpha_{\varepsilon}$ and β_{ε} (their Yosida approximation).
(i) Test "formally" $(1) \times \vartheta+(2) \times \chi_{t}$ (" $\left.\vartheta \in \alpha(u)^{\prime \prime}\right)$:

- handle $\int_{0}^{t}\left\langle F, \vartheta-(\vartheta)_{\Omega}\right\rangle$ by means of $k(0)|\nabla(1 * \vartheta)(t)|_{H}^{2}$ on the I.h.s. and by Poincaré inequality
- estimate $\int_{0}^{t}\left\langle F,(\vartheta)_{\Omega}\right\rangle$ testing (2) $\times 1$ and using

$$
|\beta(\chi)| \leq c_{\beta}+c_{\beta^{\prime}}|\widehat{\beta}(\chi)| \text { (cf. HYPOTHESIS 1) }
$$

This gives $|\nabla(1 * \vartheta)|_{L^{\infty}(0, T ; H)},|\chi|_{H^{1}(0, T ; H) \cap L^{\infty}(0, T ; V)}$, $|\widehat{\beta}(\chi)|_{L^{\infty}\left(0, T ; L^{1}(\Omega)\right)} \leq c$.

An idea of the proof

The long-time behaviour of solutions
(ii) Estimate $\beta(\chi)$ in $L^{\infty}\left(0, T ; L^{4 / 3}(\Omega)\right)$ by using $|\beta(s)| \leq c_{\beta}+c_{\beta}^{\prime}|s|^{p}$, $p<5$ (cf. HYPOTHESIS 1), the Sobolev embedding in 3D domains, and the boundedness of χ in $L^{\infty}(0, T ; V)$
(iii) Then (1) $\times u$ gives $|u|_{L^{\infty}(0, T ; H) \cap L^{2}(0, T ; V)} \leq c$ and, by comparison, $\left|\partial_{t} u\right|_{L^{2}\left(0, T ; V^{\prime}\right)} \leq c$

Main difficulty: lack of regularity in the ϑ-component

The case α "general". Approximate the problem:
regularizing α and $\beta \Longrightarrow \alpha_{\varepsilon}$ and β_{ε} (their Yosida approximation).
(i) Test "formally" $(1) \times \vartheta+(2) \times \chi_{t}$ (" $\left.\vartheta \in \alpha(u)^{\prime \prime}\right)$:

- handle $\int_{0}^{t}\left\langle F, \vartheta-(\vartheta)_{\Omega}\right\rangle$ by means of $k(0)|\nabla(1 * \vartheta)(t)|_{H}^{2}$ on the l.h.s. and by Poincaré inequality
- estimate $\int_{0}^{t}\left\langle F,(\vartheta)_{\Omega}\right\rangle$ testing (2) $\times 1$ and using

$$
|\beta(\chi)| \leq c_{\beta}+c_{\beta^{\prime}}|\widehat{\beta}(\chi)| \text { (cf. HYPOTHESIS 1) }
$$

This gives $|\nabla(1 * \vartheta)|_{L^{\infty}(0, T ; H)},|\chi|_{H^{1}(0, T ; H) \cap L^{\infty}(0, T ; V)}$, $|\widehat{\beta}(\chi)|_{L \infty\left(0, T ; L^{1}(\Omega)\right)} \leq c$.

An idea of the proof

The long-time behaviour of solutions
(ii) Estimate $\beta(\chi)$ in $L^{\infty}\left(0, T ; L^{4 / 3}(\Omega)\right)$ by using $|\beta(s)| \leq c_{\beta}+c_{\beta}^{\prime}|s|^{p}$, $p<5$ (cf. HYPOTHESIS 1), the Sobolev embedding in 3D domains, and the boundedness of χ in $L^{\infty}(0, T ; V)$
(iii) Then (1) $\times u$ gives $|u|_{L^{\infty}(0, T ; H) \cap L^{2}(0, T ; V)} \leq c$ and, by comparison, $\left|\partial_{t} u\right|_{L^{2}\left(0, T ; V^{\prime}\right)} \leq c$
(iv) Pass to the limit proving a strong convergence of $\nabla \chi_{\varepsilon}$ in H by a Cauchy argument and identify β and α by means of monotonicity arguments

Main difficulty: lack of regularity in the ϑ-component

The case $\alpha(u)=\exp (u)$.

Phase-field systems: a dual approach
E. Rocca

The model

Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

Open related problems

Main difficulty: lack of regularity in the ϑ-component

E. Rocca

The model

Derivation of equations
Thermodynamical consistency The PDE system

Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz continuous:
existence-uniqueness

An idea of the proof

The long-time behaviour of solutions

Main difficulty: lack of regularity in the ϑ-component

The case $\alpha(u)=\exp (u)$. The system can be rewritten as

$$
\begin{align*}
& \partial_{t}(\log \vartheta+\chi)+A(\log \vartheta)+A(k * \vartheta)=F \text { a.e. in } Q_{T}, \tag{1L}\\
& \partial_{t} \chi+\nu A(\chi)+\beta(\chi)+\sigma^{\prime}(\chi)-\vartheta \ni 0 \quad \text { a.e. in } Q_{T} . \tag{2L}
\end{align*}
$$

The main issue here is to prove sufficient regularity in ϑ to pass to the limit in the "approximation scheme".

E. Rocca

The model
Derivation of equations
Thermodynamical consistency The PDE system

Our matin results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz
continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

Main difficulty: lack of regularity in the ϑ-component

Phase-field systems: a dual approach
E. Rocca

The case $\alpha(u)=\exp (u)$. The system can be rewritten as

$$
\begin{align*}
& \partial_{t}(\log \vartheta+\chi)+A(\log \vartheta)+A(k * \vartheta)=F \quad \text { a.e. in } Q_{T} \tag{1L}\\
& \partial_{t} \chi+\nu A(\chi)+\beta(\chi)+\sigma^{\prime}(\chi)-\vartheta \ni 0 \quad \text { a.e. in } Q_{T} . \tag{2L}
\end{align*}
$$

The main issue here is to prove sufficient regularity in ϑ to pass to the limit in the "approximation scheme".
(i) Testing "formally" $(1 L) \times \vartheta+(2 L) \times \chi_{t}$ we get

$$
\vartheta^{1 / 2} \in L^{\infty}(0, T ; H) \cap L^{2}(0, T ; V)
$$

Main difficulty: lack of regularity in the ϑ-component

The case $\alpha(u)=\exp (u)$. The system can be rewritten as

$$
\begin{align*}
& \partial_{t}(\log \vartheta+\chi)+A(\log \vartheta)+A(k * \vartheta)=F \quad \text { a.e. in } Q_{T}, \tag{1L}\\
& \partial_{t} \chi+\nu A(\chi)+\beta(\chi)+\sigma^{\prime}(\chi)-\vartheta \ni 0 \quad \text { a.e. in } Q_{T} . \tag{2L}
\end{align*}
$$

The main issue here is to prove sufficient regularity in ϑ to pass to the limit in the "approximation scheme".
(i) Testing "formally" $(1 L) \times \vartheta+(2 L) \times \chi_{t}$ we get

$$
\vartheta^{1 / 2} \in L^{\infty}(0, T ; H) \cap L^{2}(0, T ; V)
$$

(ii) Using the 3D Gagliardo Nieremberg inequality

$$
\left\|\vartheta^{1 / 2}\right\|_{L^{10 / 3}(\Omega)} \leq C\left\|\vartheta^{1 / 2}\right\|_{V}^{3 / 5}\left\|\vartheta^{1 / 2}\right\|_{H}^{2 / 5} \quad \forall V \in V
$$

we get $\vartheta \in L^{5 / 3}\left(Q_{T}\right)$ (more than L^{1}) which is sufficient to pass to the limit

Main difficulty: lack of regularity in the ϑ-component

The case $\alpha(u)=\exp (u)$. The system can be rewritten as

$$
\begin{align*}
& \partial_{t}(\log \vartheta+\chi)+A(\log \vartheta)+A(k * \vartheta)=F \quad \text { a.e. in } Q_{T} \tag{1L}\\
& \partial_{t} \chi+\nu A(\chi)+\beta(\chi)+\sigma^{\prime}(\chi)-\vartheta \ni 0 \quad \text { a.e. in } Q_{T} \tag{2L}
\end{align*}
$$

The main issue here is to prove sufficient regularity in ϑ to pass to the limit in the "approximation scheme".
(i) Testing "formally" $(1 L) \times \vartheta+(2 L) \times \chi_{t}$ we get

$$
\vartheta^{1 / 2} \in L^{\infty}(0, T ; H) \cap L^{2}(0, T ; V)
$$

(ii) Using the 3D Gagliardo Nieremberg inequality

$$
\left\|\vartheta^{1 / 2}\right\|_{L^{10 / 3}(\Omega)} \leq C\left\|\vartheta^{1 / 2}\right\|_{V}^{3 / 5}\left\|\vartheta^{1 / 2}\right\|_{H}^{2 / 5} \quad \forall V \in V
$$

we get $\vartheta \in L^{5 / 3}\left(Q_{T}\right)$ (more than L^{1}) which is sufficient to pass to the limit but not to get uniqueness of solutions, which follows instead authomatically in case α is Lipschitz continuous on \mathbb{R}

Main difficulty: lack of regularity in the ϑ-component

The case $\alpha(u)=\exp (u)$. The system can be rewritten as

$$
\begin{align*}
& \partial_{t}(\log \vartheta+\chi)+A(\log \vartheta)+A(k * \vartheta)=F \text { a.e. in } Q_{T}, \tag{1L}\\
& \partial_{t} \chi+\nu A(\chi)+\beta(\chi)+\sigma^{\prime}(\chi)-\vartheta \ni 0 \quad \text { a.e. in } Q_{T} . \tag{2L}
\end{align*}
$$

The main issue here is to prove sufficient regularity in ϑ to pass to the limit in the "approximation scheme".
(i) Testing "formally" $(1 L) \times \vartheta+(2 L) \times \chi_{t}$ we get

$$
\vartheta^{1 / 2} \in L^{\infty}(0, T ; H) \cap L^{2}(0, T ; V)
$$

(ii) Using the 3D Gagliardo Nieremberg inequality

$$
\left\|\vartheta^{1 / 2}\right\|_{L^{10 / 3}(\Omega)} \leq C\left\|\vartheta^{1 / 2}\right\|_{V}^{3 / 5}\left\|\vartheta^{1 / 2}\right\|_{H}^{2 / 5} \quad \forall V \in V .
$$

we get $\vartheta \in L^{5 / 3}\left(Q_{T}\right)$ (more than L^{1}) which is sufficient to pass to the limit but not to get uniqueness of solutions, which follows instead authomatically in case α is Lipschitz continuous on \mathbb{R}
(iii) Note that in this case we do not need to estimate ϑ from the second equation, hence we do not have restrictions on the growth of β

The long-time behaviour of solutions for general α

E. Rocca

The model

Derivation of equations Thermodynamical consistency The PDE system

Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz
continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

The long-time behaviour of solutions for general α

THEOREM 2. Let HYPOTHESIS 1 hold and suppose that
(i) $k \in W^{1,1}(0, \infty)$ is of strongly positive type, i.e. $\exists \eta>0$ such that

$$
\widetilde{k}(t):=k(t)-\eta \exp (-t) \quad \text { is of positive type }
$$

(ii) r, h sufficiently regular, $\lim _{|r| \rightarrow+\infty}|r|^{-2} \widehat{\beta}(r)=+\infty$.

Then, the ω-limit of a single trajectory (u, χ) :

$$
\begin{aligned}
\omega(u, \chi):= & \left\{\left(u_{\infty}, \chi_{\infty}\right) \in H \times V: \text { there exists } t_{n} \nearrow \infty\right. \\
& \left.\left(u\left(t_{n}\right), \chi\left(t_{n}\right)\right) \rightarrow\left(u_{\infty}, \chi_{\infty}\right) \text { in } V^{\prime} \times H\right\}
\end{aligned}
$$

is a nonempty, compact, and connected subset of $V^{\prime} \times H$.

The long-time behaviour of solutions for general α

Theorem 2. Let Hypothesis 1 hold and suppose that
(i) $k \in W^{1,1}(0, \infty)$ is of strongly positive type, i.e. $\exists \eta>0$ such that

$$
\widetilde{k}(t):=k(t)-\eta \exp (-t) \quad \text { is of positive type }
$$

(ii) r, h sufficiently regular, $\lim _{|r| \rightarrow+\infty}|r|^{-2} \widehat{\beta}(r)=+\infty$.

Then, the ω-limit of a single trajectory (u, χ) :

$$
\begin{aligned}
\omega(u, \chi):= & \left\{\left(u_{\infty}, \chi_{\infty}\right) \in H \times V: \text { there exists } t_{n} \nearrow \infty\right. \\
& \left.\left(u\left(t_{n}\right), \chi\left(t_{n}\right)\right) \rightarrow\left(u_{\infty}, \chi_{\infty}\right) \text { in } V^{\prime} \times H\right\}
\end{aligned}
$$

is a nonempty, compact, and connected subset of $V^{\prime} \times H$.
$\forall\left(u_{\infty}, \chi_{\infty}\right) \in \omega(u, \chi) \exists \vartheta_{\infty} \in V^{\prime}, \xi_{\infty} \in L^{6 /(5-\eta)}(\Omega)$
s.t. $\left(u_{\infty}, \chi_{\infty}, \xi_{\infty}, \vartheta_{\infty}\right)$ solves

The long-time behaviour of solutions for general α

Theorem 2. Let Hypothesis 1 hold and suppose that
(i) $k \in W^{1,1}(0, \infty)$ is of strongly positive type, i.e. $\exists \eta>0$ such that

$$
\widetilde{k}(t):=k(t)-\eta \exp (-t) \quad \text { is of positive type }
$$

(ii) r, h sufficiently regular, $\lim _{|r| \rightarrow+\infty}|r|^{-2} \widehat{\beta}(r)=+\infty$.

Then, the ω-limit of a single trajectory (u, χ) :

$$
\begin{aligned}
\omega(u, \chi):= & \left\{\left(u_{\infty}, \chi_{\infty}\right) \in H \times V: \text { there exists } t_{n} \nearrow \infty,\right. \\
& \left.\left(u\left(t_{n}\right), \chi\left(t_{n}\right)\right) \rightarrow\left(u_{\infty}, \chi_{\infty}\right) \text { in } V^{\prime} \times H\right\}
\end{aligned}
$$

is a nonempty, compact, and connected subset of $V^{\prime} \times H$.
$\forall\left(u_{\infty}, \chi_{\infty}\right) \in \omega(u, \chi) \exists \vartheta_{\infty} \in V^{\prime}, \xi_{\infty} \in L^{6 /(5-\eta)}(\Omega)$
s.t. $\left(u_{\infty}, \chi_{\infty}, \xi_{\infty}, \vartheta_{\infty}\right)$ solves
$u_{\infty}=\frac{1}{|\Omega|}\left(-\int_{\Omega} \chi_{\infty}+c_{0}+m\right) \quad$ a.e. in Ω,
$\nu A \chi_{\infty}+\xi_{\infty}+\sigma^{\prime}\left(\chi_{\infty}\right)-\vartheta_{\infty}=0$ in V^{\prime},
$\xi_{\infty} \in \beta\left(\chi_{\infty}\right) \quad$ a.e. in $\Omega, \quad \vartheta_{\infty} \in \mathcal{A}\left(\frac{1}{|\Omega|}\left(-\int_{\Omega} \chi_{\infty}+c_{0}+m\right)\right) \quad$ in V^{\prime},
where $c_{0}:=\int_{\Omega} u_{0}+\int_{\Omega} \chi_{0}, m:=\int_{0}^{\infty}\left(\int_{\Omega} r(s)+\int_{\Gamma} h(s)\right) d s$.

Convergence of the whole trajectories for special nonlinearities

Propsition 3. Under the assumptions of Theorem 2, letting $\sigma^{\prime}(\chi) \equiv \vartheta_{c}$ and supposing that
α is not multivalued, we can conclude in addition to THEOREM 2 that χ_{∞} is constant a.e. in Ω.

Convergence of the whole trajectories for special nonlinearities

Propsition 3. Under the assumptions of Theorem 2, letting $\sigma^{\prime}(\chi) \equiv \vartheta_{c}$ and supposing that
α is not multivalued,
we can conclude in addition to THEOREM 2 that χ_{∞} is constant a.e. in Ω. Moreover, if we assume in addition that

$$
\beta+\widetilde{\alpha} \text { is injective, where } \widetilde{\alpha}(\cdot):=-\alpha\left(-(\cdot)+\frac{1}{|\Omega|}\left(c_{0}+m\right)\right)
$$

then the couple $\left(u_{\infty}, \chi_{\infty}\right) \in \omega(u, \chi)$ is uniquely determined as the solution of the following system

$$
\begin{aligned}
& u_{\infty}=-\chi_{\infty}+\frac{1}{|\Omega|}\left(c_{0}+m\right) \\
& \beta\left(\chi_{\infty}\right)-\alpha\left(-\chi_{\infty}+\frac{1}{|\Omega|}\left(c_{0}+m\right)\right) \ni-\vartheta_{c} \quad \text { a.e. in } \Omega
\end{aligned}
$$

being c_{0} and m defined as before.

Convergence of the whole trajectories for special nonlinearities

Propsition 3. Under the assumptions of Theorem 2, letting $\sigma^{\prime}(\chi) \equiv \vartheta_{c}$ and supposing that

$$
\alpha \text { is not multivalued, }
$$

we can conclude in addition to THEOREM 2 that χ_{∞} is constant a.e. in Ω. Moreover, if we assume in addition that

$$
\beta+\widetilde{\alpha} \text { is injective, where } \widetilde{\alpha}(\cdot):=-\alpha\left(-(\cdot)+\frac{1}{|\Omega|}\left(c_{0}+m\right)\right)
$$

then the couple $\left(u_{\infty}, \chi_{\infty}\right) \in \omega(u, \chi)$ is uniquely determined as the solution of the following system

$$
\begin{aligned}
& u_{\infty}=-\chi_{\infty}+\frac{1}{|\Omega|}\left(c_{0}+m\right) \\
& \beta\left(\chi_{\infty}\right)-\alpha\left(-\chi_{\infty}+\frac{1}{|\Omega|}\left(c_{0}+m\right)\right) \ni-\vartheta_{c} \quad \text { a.e. in } \Omega
\end{aligned}
$$

being c_{0} and m defined as before. In particular, the whole trajectory $(u(t), \chi(t))$ tends to $\left(u_{\infty}, \chi_{\infty}\right)$ weakly in $H \times V$ and strongly in $V^{\prime} \times H$ as $t \nearrow \infty$.

Regarding well-posedness in finite time intervals

Phase-field systems:
a dual approach
E. Rocca

The model
Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz continuous: existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

Open related problems

Regarding well-posedness in finite time intervals

E. Rocca

The model

Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz
continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

Open related problems

Regarding well-posedness in finite time intervals

- To prove uniqueness in case of a general α (not Lipschitz-continuous). Problem: the doubly-nonlinear character of the system.
- To study the case of two general multivalued operators α (as in our case) and β in the phase equation (e.g. $\beta=\partial I_{[0,1]}$).

The model

Derivation of equations
Thermodynamical

Regarding well-posedness in finite time intervals

- To prove uniqueness in case of a general α (not Lipschitz-continuous). Problem: the doubly-nonlinear character of the system.
- To study the case of two general multivalued operators α (as in our case) and β in the phase equation (e.g. $\beta=\partial I_{[0,1]}$).
- To study the general inclusion

$$
\alpha(u)\left(u_{t}+\ell \chi_{t}\right)+\operatorname{div} \mathbf{q} \ni \chi_{t}^{2}
$$

without the small perturbations assumption for a suitable nonlinear function α and suitable choices of the heat flux q and of the phase dynamics (cf. [Feireisl, 2005] for an entropy inequality appoach and a different notion of solution)

Regarding the long-time behaviour

Phase-field systems:
a dual approach
E. Rocca

The model
Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz continuous: existence-uniqueness

An idea of the proof
The long-time behaviour of solutions

Open related problems

Regarding the long-time behaviour

E. Rocca

- To study the convergence of the whole trajectories in case the anti-monotone part σ^{\prime} is present in the phase equation:

The model
Derivation of equations
Thermodynamical consistency
The PDE system
Our main results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz continuous: existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

Open related problems

Regarding the long-time behaviour

- To study the convergence of the whole trajectories in case the anti-monotone part σ^{\prime} is present in the phase equation: no uniqueness of the stationary states is expected

$$
-\nu \Delta \chi_{\infty}+\beta\left(\chi_{\infty}\right)+\sigma^{\prime}\left(\chi_{\infty}\right) \ni \exp \left(u_{\infty}\right)
$$

by employing the Lojasiewicz technique in case of analytical potentials (cf., e.g., [Aizicovici, Feireisl, 2001] \hookrightarrow Caginalp model with memory; [Feireisl, Schimperna, 2005] \hookrightarrow Penrose-Fife systems; [Grasselli, Petzeltova, Schimperna, 2007], etc.).

The model
Derivation of equations
Thermodynamical consistency
The PDE system
Our matin results
Main Hypothesis
Existence of solutions in finite time
Case α Lipschitz
continuous:
existence-uniqueness
An idea of the proof
The long-time behaviour of solutions

Regarding the long-time behaviour

- To study the convergence of the whole trajectories in case the anti-monotone part σ^{\prime} is present in the phase equation: no uniqueness of the stationary states is expected

$$
-\nu \Delta \chi_{\infty}+\beta\left(\chi_{\infty}\right)+\sigma^{\prime}\left(\chi_{\infty}\right) \ni \exp \left(u_{\infty}\right)
$$

by employing the Lojasiewicz technique in case of analytical potentials (cf., e.g., [Aizicovici, Feireisl, 2001] \hookrightarrow Caginalp model with memory; [Feireisl, Schimperna, 2005] \hookrightarrow Penrose-Fife systems; [Grasselli, Petzeltova, Schimperna, 2007], etc.). Or use other techniques, cf. [Krejčí, Zheng, 2005] \hookrightarrow phase-relaxation systems with non-smooth potentials

Regarding the long-time behaviour

- To study the convergence of the whole trajectories in case the anti-monotone part σ^{\prime} is present in the phase equation: no uniqueness of the stationary states is expected

$$
-\nu \Delta \chi_{\infty}+\beta\left(\chi_{\infty}\right)+\sigma^{\prime}\left(\chi_{\infty}\right) \ni \exp \left(u_{\infty}\right)
$$

by employing the Lojasiewicz technique in case of analytical potentials (cf., e.g., [Aizicovici, Feireisl, 2001] \hookrightarrow Caginalp model with memory; [Feireisl, Schimperna, 2005] \hookrightarrow Penrose-Fife systems; [Grasselli, Petzeltova, Schimperna, 2007], etc.). Or use other techniques, cf. [Krejčí, Zheng, 2005] \hookrightarrow phase-relaxation

Regarding the long-time behaviour

- To study the convergence of the whole trajectories in case the anti-monotone part σ^{\prime} is present in the phase equation: no uniqueness of the stationary states is expected

$$
-\nu \Delta \chi_{\infty}+\beta\left(\chi_{\infty}\right)+\sigma^{\prime}\left(\chi_{\infty}\right) \ni \exp \left(u_{\infty}\right)
$$

by employing the Lojasiewicz technique in case of analytical potentials (cf., e.g., [Aizicovici, Feireisl, 2001] \hookrightarrow Caginalp model with memory; [Feireisl, Schimperna, 2005] \hookrightarrow Penrose-Fife systems; [Grasselli, Petzeltova, Schimperna, 2007], etc.). Or use other techniques, cf. [Krejčí, Zheng, 2005] \hookrightarrow phase-relaxation systems with non-smooth potentials

- To study the existence of the attractors: in case α Lipschitz continuous \hookrightarrow uniqueness of solutions and in case $\alpha=\exp$ or more general α 's \hookrightarrow no uniqueness, cf. the theories of J . Ball, Vishik, etc.
- The problem both for recovering uniqueness of solutions and existence of the attractor is the lack of regularity of the ϑ-component

