Weak formulation of a degenerating PDE system for phase transitions and damage

E. Rocca

$$
\begin{gathered}
\text { University of Milan, Italy } \\
\text { www.mat.unimi.it/users/rocca } \\
\text { MathProSpeM2012 - Rome, April 16-20, } 2012
\end{gathered}
$$

Contents

Part 1. Presentation of the problem and deduction of the PDE system via modelling

Part 2. Our most recent results (work in progress with Riccarda Rossi): weak solvability of the 3D degenerating PDE system

The scope

The analysis of the initial boundary-value problem for the following PDE system:

$$
\begin{aligned}
& \left.c(\vartheta) \vartheta_{t}+\chi_{t} \vartheta-\rho \vartheta \operatorname{div} \mathbf{u}_{t}-\operatorname{div}(k(\vartheta) \nabla \vartheta)\right)=g \\
& \mathbf{u}_{t t}-\operatorname{div}\left(a(\chi) \varepsilon\left(\mathbf{u}_{t}\right)+b(\chi) \varepsilon(\mathbf{u})-\rho \vartheta \mathbf{1}\right)=\mathbf{f} \\
& \chi_{t}+\mu \partial I_{(-\infty, 0]}\left(\chi_{t}\right)-\Delta_{\rho} \chi+W^{\prime}(\chi) \ni-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\vartheta
\end{aligned}
$$

which describes a thermoviscoelastic system in a reference domain $\Omega \subset \mathbb{R}^{d}, d \in\{2,3\}$ during a time interval $[0, T]$

The scope

The analysis of the initial boundary-value problem for the following PDE system:

$$
\begin{aligned}
& \left.\mathrm{c}(\vartheta) \vartheta_{t}+\chi_{t} \vartheta-\rho \vartheta \operatorname{div} \mathbf{u}_{t}-\operatorname{div}(k(\vartheta) \nabla \vartheta)\right)=g \\
& \mathbf{u}_{t t}-\operatorname{div}\left(a(\chi) \varepsilon\left(\mathbf{u}_{t}\right)+b(\chi) \varepsilon(\mathbf{u})-\rho \vartheta \mathbf{1}\right)=\mathbf{f} \\
& \chi_{t}+\mu \partial I_{(-\infty, 0]}\left(\chi_{t}\right)-\Delta_{p} \chi+W^{\prime}(\chi) \ni-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\vartheta
\end{aligned}
$$

which describes a thermoviscoelastic system in a reference domain $\Omega \subset \mathbb{R}^{d}, d \in\{2,3\}$ during a time interval $[0, T]$

- ϑ is the absolute temperature of the system
- u the vector of small displacements
- χ is the order parameter, standing for the local proportion of one of the two phases in phase transitions $(\chi=0$: solid phase and $\chi=1$: liquid phase, and $0<\chi<1$ in the so-called mushy regions)
- χ is the damage parameter, assessing the soundness of the material in damage (for the completely damaged $\chi=0$ and the undamaged state $\chi=1$, respectively, while $0<\chi<1$: partial damage)
- a and b can vanish at the threshold values 0 and 1

The aim: deal with the possible degeneracy in the momentum equation

Phase Transitions and
Damage
E. Rocca

The model

Thie antatysis

Main new results

Hypotheses
The non-degenerate case
The degenerating case

The aim: deal with the possible degeneracy in the momentum equation

Main aim: We shall let a and b vanish at the threshold values 0 and 1, not enforce separation of χ from the threshold values 0 and 1 , and accordingly we will allow for general initial configurations of χ

The aim: deal with the possible degeneracy in the momentum equation

Main aim: We shall let a and b vanish at the threshold values 0 and 1 , not enforce separation of χ from the threshold values 0 and 1 , and accordingly we will allow for general initial configurations of χ
$\Longrightarrow \mathrm{It}$ is not to be expected that either of the coefficients $a(\chi)$ and $b(\chi)$ stay away from 0 : elliptic degeneracy of the displacement equation

$$
\mathbf{u}_{t t}-\operatorname{div}\left(a(\chi) \varepsilon\left(\mathbf{u}_{t}\right)+b(\chi) \varepsilon(\mathbf{u})-\rho \vartheta \mathbf{1}\right)=\mathbf{f}
$$

The aim: deal with the possible degeneracy in the momentum equation

Main aim: We shall let a and b vanish at the threshold values 0 and 1 , not enforce separation of χ from the threshold values 0 and 1 , and accordingly we will allow for general initial configurations of χ
$\Longrightarrow \mathrm{It}$ is not to be expected that either of the coefficients $a(\chi)$ and $b(\chi)$ stay away from 0 : elliptic degeneracy of the displacement equation

$$
\mathbf{u}_{t t}-\operatorname{div}\left(a(\chi) \varepsilon\left(\mathbf{u}_{t}\right)+b(\chi) \varepsilon(\mathbf{u})-\rho \vartheta \mathbf{1}\right)=\mathbf{f}
$$

\Longrightarrow We shall approximate the system with a non-degenerating one, where we replace the momentum equation with

$$
\mathbf{u}_{t t}-\operatorname{div}\left((a(\chi)+\delta) \varepsilon\left(\mathbf{u}_{t}\right)+b(\chi) \varepsilon(\mathbf{u})-\rho \vartheta \mathbf{1}\right)=\mathbf{f} \quad \text { for } \delta>0
$$

The first results and the new goal

Phase Transitions and
Damage
E. Rocca

The model

The analysis

Main new results

Hypotheses
The non-degenerate case
The degenerating case

The first results and the new goal

Hypotheses

The non-degenerate case
The degenerating case

The first results and the new goal

[First Result.] Local in time well-posedness for a suitable formulation of the reversible problem ($\mu=0$ and $\rho=0$) using in

$$
\left.c(\vartheta) \vartheta_{t}+\chi_{t} \vartheta-\rho \vartheta \operatorname{div} \mathbf{u}_{t}-\operatorname{div}(k(\vartheta) \nabla \vartheta)\right)=g+\left|\chi_{t}\right|^{2}+a(\chi)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2} .
$$

the small perturbations assumption in the 3D (in space) setting [J. Differential Equations, 2008]
[SECOND RESULT.] Global well-posedness in the 1D case without small perturbations assumption [Appl. Math., Special Volume (2008)]

The first results and the new goal

[First Result.] Local in time well-posedness for a suitable formulation of the reversible problem ($\mu=0$ and $\rho=0$) using in

$$
\left.\mathrm{c}(\vartheta) \vartheta_{t}+\chi_{t} \vartheta-\rho \vartheta \operatorname{div} \mathbf{u}_{t}-\operatorname{div}(k(\vartheta) \nabla \vartheta)\right)=g+\left|\chi_{t}\right|^{2}+a(\chi)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}
$$

the small perturbations assumption in the 3D (in space) setting [J. Differential Equations, 2008]
[SECOND RESULT.] Global well-posedness in the 1D case without small perturbations assumption [Appl. Math., Special Volume (2008)]

Note: in both these results we assumed χ_{0} separated from the thresholds 0 and 1 and we prove (exploiting a sufficient coercivity condition on W at the thresholds 0 and 1) that the solution χ during the evolution continues to stay separated from 0 and $1 \Longrightarrow$ prevent degeneracy (the operators are uniformly elliptic)

The first results and the new goal

[First Result.] Local in time well-posedness for a suitable formulation of the reversible problem ($\mu=0$ and $\rho=0$) using in

$$
\left.\mathrm{c}(\vartheta) \vartheta_{t}+\chi_{t} \vartheta-\rho \vartheta \operatorname{div} \mathbf{u}_{t}-\operatorname{div}(k(\vartheta) \nabla \vartheta)\right)=g+\left|\chi_{t}\right|^{2}+a(\chi)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}
$$

the small perturbations assumption in the 3D (in space) setting [J. Differential Equations, 2008]
[SECOND RESULT.] Global well-posedness in the 1D case without small perturbations assumption [Appl. Math., Special Volume (2008)]

Note: in both these results we assumed χ_{0} separated from the thresholds 0 and 1 and we prove (exploiting a sufficient coercivity condition on W at the thresholds 0 and 1) that the solution χ during the evolution continues to stay separated from 0 and $1 \Longrightarrow$ prevent degeneracy (the operators are uniformly elliptic)

The goal (joint work in progress with R. Rossi): to establish a global existence result in 3D using a suitable notion of solution and without enforcing the separation property, i.e. allowing for degeneracy

Phase Transitions and
Damage
E. Rocca

The model
The analysis
Main new results
Hypotheses
The non-degenerate case
The degenerating case

The model

Free energy and Dissipation, cf. [Frémond]

Phase Transitions and Damage
E. Rocca

The model
The analysis
Main new results
Hypotheses
The non-degenerate case
The degenerating case

Free energy and Dissipation, cf. [Frémond]

The free-energy \mathcal{F} :
$\mathcal{F}=\int_{\Omega}\left(f(\vartheta)+b(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\frac{1}{p}|\nabla \chi|^{p}+W(\chi)+\rho \vartheta \operatorname{tr}(\varepsilon(\mathbf{u}))-\vartheta \chi\right) \mathrm{d} \chi$

- f is a concave function, $\rho \in \mathbb{R}$ a thermal expansion coefficient
- $b \in C^{2}(\mathbb{R} ;[0,+\infty))$, e.g., $b(\chi)=1-\chi$ in phase transitions, $b(\chi)=\chi$ in damage
- $p>d$: we need the embedding of $W^{1, p}(\Omega)$ into $C^{0}(\bar{\Omega})$
- $W=\widehat{\beta}+\widehat{\gamma}, \widehat{\gamma} \in C^{2}(\mathbb{R}), \widehat{\beta}$ proper, convex, I.s.c., $\overline{\operatorname{dom}(\widehat{\beta})}=[0,1]$

The model

The analysis

Hypotheses

The non-degenerate case
The degenerating case

Free energy and Dissipation, cf. [Frémond]

The free-energy \mathcal{F} :

$\mathcal{F}=\int_{\Omega}\left(f(\vartheta)+b(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\frac{1}{p}|\nabla \chi|^{p}+W(\chi)+\rho \vartheta \operatorname{tr}(\varepsilon(\mathbf{u}))-\vartheta \chi\right) \mathrm{d} x$

- f is a concave function, $\rho \in \mathbb{R}$ a thermal expansion coefficient
- $b \in C^{2}(\mathbb{R} ;[0,+\infty))$, e.g., $b(\chi)=1-\chi$ in phase transitions, $b(\chi)=\chi$ in damage
- $p>d$: we need the embedding of $W^{1, p}(\Omega)$ into $C^{0}(\bar{\Omega})$
- $W=\widehat{\beta}+\widehat{\gamma}, \widehat{\gamma} \in C^{2}(\mathbb{R}), \widehat{\beta}$ proper, convex, I.s.c., $\overline{\operatorname{dom}(\widehat{\beta})}=[0,1]$

The pseudo-potential \mathcal{P} :

$$
\mathcal{P}=\frac{k(\vartheta)}{2}|\nabla \vartheta|^{2}+\frac{1}{2}\left|\chi_{t}\right|^{2}+a(\chi) \frac{\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}}{2}+\mu l_{(-\infty, 0]}\left(\chi_{t}\right)
$$

- k the heat conductivity: coupled conditions with the specific heat $c(\vartheta)=f(\vartheta)-\vartheta f^{\prime}(\vartheta)$
- $a \in C^{1}(\mathbb{R} ;[0,+\infty)$), e.g., $a(\chi)=\chi$
- $\mu=0$: reversible case, $\mu=1$: irreversible case

The modelling

Phase Transitions and Damage
E. Rocca

The momentum equation

$$
\begin{gathered}
\mathbf{u}_{t t}-\operatorname{div} \sigma=\mathbf{f} \quad\left(\sigma=\sigma^{n d}+\sigma^{d}=\frac{\partial \mathcal{F}}{\partial \varepsilon(\mathbf{u})}+\frac{\partial \mathcal{P}}{\partial \varepsilon\left(\mathbf{u}_{t}\right)}\right) \quad \text { becomes } \\
\mathbf{u}_{t t}-\operatorname{div}\left(a(\chi) \varepsilon\left(\mathbf{u}_{t}\right)+b(\chi) \varepsilon(\mathbf{u})-\rho \vartheta \mathbf{1}\right)=\mathbf{f}
\end{gathered}
$$

The modelling

The momentum equation

$$
\begin{gathered}
\mathbf{u}_{t t}-\operatorname{div} \sigma=\mathbf{f} \quad\left(\sigma=\sigma^{n d}+\sigma^{d}=\frac{\partial \mathcal{F}}{\partial \varepsilon(\mathbf{u})}+\frac{\partial \mathcal{P}}{\partial \varepsilon\left(\mathbf{u}_{t}\right)}\right) \quad \text { becomes } \\
\mathbf{u}_{t t}-\operatorname{div}\left(a(\chi) \varepsilon\left(\mathbf{u}_{t}\right)+b(\chi) \varepsilon(\mathbf{u})-\rho \vartheta \mathbf{1}\right)=\mathbf{f}
\end{gathered}
$$

The phase evolution

$$
B-\operatorname{div} \mathbf{H}=0 \quad\left(B=\frac{\partial \mathcal{F}}{\partial X}+\frac{\partial \mathcal{P}}{\partial X_{t}}, \mathbf{H}=\frac{\partial \mathcal{F}}{\partial \nabla X}\right) \quad \text { becomes }
$$

$$
\chi_{t}+\mu \partial I_{(-\infty, 0]}\left(\chi_{t}\right)-\Delta_{p} \chi+W^{\prime}(\chi) \ni-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\vartheta
$$

The modelling

The momentum equation

$$
\begin{gathered}
\mathbf{u}_{t t}-\operatorname{div} \sigma=\mathbf{f} \quad\left(\sigma=\sigma^{n d}+\sigma^{d}=\frac{\partial \mathcal{F}}{\partial \varepsilon(\mathbf{u})}+\frac{\partial \mathcal{P}}{\partial \varepsilon\left(\mathbf{u}_{t}\right)}\right) \quad \text { becomes } \\
\mathbf{u}_{t t}-\operatorname{div}\left(a(\chi) \varepsilon\left(\mathbf{u}_{t}\right)+b(\chi) \varepsilon(\mathbf{u})-\rho \vartheta \mathbf{1}\right)=\mathbf{f}
\end{gathered}
$$

The phase evolution

$$
B-\operatorname{div} \mathbf{H}=0 \quad\left(B=\frac{\partial \mathcal{F}}{\partial X}+\frac{\partial \mathcal{P}}{\partial X_{t}}, \mathbf{H}=\frac{\partial \mathcal{F}}{\partial \nabla X}\right) \quad \text { becomes }
$$

$$
\chi_{t}+\mu \partial I_{(-\infty, 0]}\left(\chi_{t}\right)-\Delta_{p} \chi+W^{\prime}(\chi) \ni-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\vartheta
$$

The internal energy balance
$e_{t}+\operatorname{div} \mathbf{q}=g+\sigma: \varepsilon\left(\mathbf{u}_{t}\right)+B \chi_{t}+\mathbf{H} \cdot \nabla \chi_{t} \quad\left(e=\mathcal{F}-\vartheta \frac{\partial \mathcal{F}}{\partial \vartheta}, \quad \mathbf{q}=\frac{\partial \mathcal{P}}{\partial \nabla \vartheta}\right)$
becomes

$$
\left.\mathrm{c}(\vartheta) \vartheta_{t}+\chi_{t} \vartheta-\rho \vartheta \operatorname{div} \mathbf{u}_{t}-\operatorname{div}(k(\vartheta) \nabla \vartheta)\right)=g+\left|\chi_{t}\right|^{2}+a(\chi)\left|\varepsilon\left(\mathbf{u}_{t}\right)\right|^{2}
$$

Phase Transitions and

E. Rocca

The model

The analysis

Main new results

Hypotheses
The non-degenerate case
The degenerating case

The analysis

Main mathematical difficulties

Phase Transitions and Damage
E. Rocca

The model

The analysis

Main new results

Hypotheses
The non-degenerate case
The degenerating case

Main mathematical difficulties

The model

The analysis
Main new results

Hypotheses

The non-degenerate case
The degenerating case

Main mathematical difficulties

1) the elliptic degeneracy of the momentum equation

$$
\mathbf{u}_{t t}-\operatorname{div}\left(a(\chi) \varepsilon\left(\mathbf{u}_{t}\right)+b(\chi) \varepsilon(\mathbf{u})-\rho \vartheta \mathbf{1}\right)=\mathbf{f}
$$

$a(\chi)$ and $b(\chi)$ can tend to zero simultaneously
2) the highly nonlinear coupling between the single equations: in the heat equation (even with the small perturbation assumption)

$$
\left.\mathrm{c}(\vartheta) \vartheta_{t}+\chi_{t} \vartheta-\rho \vartheta \operatorname{div} \mathbf{u}_{t}-\operatorname{div}(k(\vartheta) \nabla \vartheta)\right)=g
$$

and in the phase equation

$$
\chi_{t}+\mu \partial I_{(-\infty, 0]}\left(\chi_{t}\right)-\Delta_{p} \chi+\partial \widehat{\beta}(\chi)+(\widehat{\gamma})^{\prime}(\chi) \ni-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\vartheta
$$

Main mathematical difficulties

1) the elliptic degeneracy of the momentum equation

$$
\mathbf{u}_{t t}-\operatorname{div}\left(a(\chi) \varepsilon\left(\mathbf{u}_{t}\right)+b(\chi) \varepsilon(\mathbf{u})-\rho \vartheta \mathbf{1}\right)=\mathbf{f}
$$

$a(\chi)$ and $b(\chi)$ can tend to zero simultaneously
2) the highly nonlinear coupling between the single equations: in the heat equation (even with the small perturbation assumption)

$$
\left.\mathrm{c}(\vartheta) \vartheta_{t}+\chi_{t} \vartheta-\rho \vartheta \operatorname{div} \mathbf{u}_{t}-\operatorname{div}(k(\vartheta) \nabla \vartheta)\right)=g
$$

and in the phase equation

$$
\chi_{t}+\mu \partial I_{(-\infty, 0]}\left(\chi_{t}\right)-\Delta_{p} \chi+\partial \widehat{\beta}(\chi)+(\widehat{\gamma})^{\prime}(\chi) \ni-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\vartheta
$$

3) the low regularity of the temperature variable: difficulties in dealing with the coupling between ϑ and \mathbf{u} equations in case $\rho \neq 0$

Main mathematical difficulties

1) the elliptic degeneracy of the momentum equation

$$
\mathbf{u}_{t t}-\operatorname{div}\left(a(\chi) \varepsilon\left(\mathbf{u}_{t}\right)+b(\chi) \varepsilon(\mathbf{u})-\rho \vartheta \mathbf{1}\right)=\mathbf{f}
$$

$a(\chi)$ and $b(\chi)$ can tend to zero simultaneously
2) the highly nonlinear coupling between the single equations: in the heat equation (even with the small perturbation assumption)

$$
\left.\mathrm{c}(\vartheta) \vartheta_{t}+\chi_{t} \vartheta-\rho \vartheta \operatorname{div} \mathbf{u}_{t}-\operatorname{div}(k(\vartheta) \nabla \vartheta)\right)=g
$$

and in the phase equation

$$
\chi_{t}+\mu \partial I_{(-\infty, 0]}\left(\chi_{t}\right)-\Delta_{p} \chi+\partial \widehat{\beta}(\chi)+(\widehat{\gamma})^{\prime}(\chi) \ni-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\vartheta
$$

3) the low regularity of the temperature variable: difficulties in dealing with the coupling between ϑ and \mathbf{u} equations in case $\rho \neq 0$
4) the doubly nonlinear character of the phase equation:

- the nonsmooth graph $\partial \widehat{\beta}$,
- the nonlinear p-Laplacian operator $-\Delta_{p} \chi$ (however regularizing)
- the non-smooth constraint $\partial I_{(-\infty, 0]}\left(\chi_{t}\right)$ in the irreversible case $\mu=1$

Phase Transitions and
Damage
E. Rocca

The model

Thie anatysis

Main new results
Hypotheses
The non-degenerate case
The degenerating case

Main new results

Main results

Phase Transitions and
Damage
E. Rocca

The model

The anatysis

Main new results
Hypotheses
The non-degenerate case
The degenerating case

Main results

Phase Transitions and Damage
E. Rocca

The model

The anatysis

$$
\begin{equation*}
\mathbf{u}_{t t}-\operatorname{div}\left((a(\chi)+\delta) \varepsilon\left(\mathbf{u}_{t}\right)+b(\chi) \varepsilon(\mathbf{u})-\rho \vartheta \mathbf{1}\right)=\mathbf{f}, \quad \delta>0 \tag{1}
\end{equation*}
$$

Main new results

The non-degenerate case
The degenerating case

Main results

- We replace the momentum equation with a non-degenerating one

$$
\begin{equation*}
\mathbf{u}_{t t}-\operatorname{div}\left((a(\chi)+\delta) \varepsilon\left(\mathbf{u}_{t}\right)+b(\chi) \varepsilon(\mathbf{u})-\rho \vartheta \mathbf{1}\right)=\mathbf{f}, \quad \delta>0 \tag{1}
\end{equation*}
$$

- Our first result states the existence of solutions to the non-degenerating

The model

The amalueic

Main new results
Hypotheses
The non-degenerate case
The degenerating case system in the reversible case, i.e. with $\mu=0$ in

$$
\begin{equation*}
\chi_{t}+\mu \partial I_{(-\infty, 0]}\left(\chi_{t}\right)-\Delta_{p} \chi+W^{\prime}(\chi) \ni-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\vartheta \tag{2}
\end{equation*}
$$

Main results

- We replace the momentum equation with a non-degenerating one

$$
\begin{equation*}
\mathbf{u}_{t t}-\operatorname{div}\left((a(\chi)+\delta) \varepsilon\left(\mathbf{u}_{t}\right)+b(\chi) \varepsilon(\mathbf{u})-\rho \vartheta \mathbf{1}\right)=\mathbf{f}, \quad \delta>0 \tag{1}
\end{equation*}
$$

- Our first result states the existence of solutions to the non-degenerating
- In the irreversible case $(\mu=1)$ a major difficulty stems from the simultaneous presence in (2) of $\partial I_{(-\infty, 0]}\left(\chi_{t}\right), W^{\prime}(\chi)$, and $-\Delta_{p} \chi$. We follow the approach of [Heinemann, Kraus, 2010] and consider a suitable weak formulation of (2) consisting of a one-sided variational inequality and of an energy inequality

Main results

- We replace the momentum equation with a non-degenerating one

$$
\begin{equation*}
\mathbf{u}_{t t}-\operatorname{div}\left((a(\chi)+\delta) \varepsilon\left(\mathbf{u}_{t}\right)+b(\chi) \varepsilon(\mathbf{u})-\rho \vartheta \mathbf{1}\right)=\mathbf{f}, \quad \delta>0 \tag{1}
\end{equation*}
$$

- Our first result states the existence of solutions to the non-degenerating
- In the irreversible case $(\mu=1)$ a major difficulty stems from the simultaneous presence in (2) of $\partial I_{(-\infty, 0]}\left(\chi_{t}\right), W^{\prime}(\chi)$, and $-\Delta_{p} \chi$. We simultaneous presence in
follow the approach of [Heinemann, Kraus, 2010] and consider a suitable weak formulation of (2) consisting of a one-sided variational inequality and of an energy inequality
- For the analysis of the degenerate limit $\delta \searrow 0$ we have carefully adapted techniques from [Bouchitté, Mielke, Roubíček, 2009] and [Mielke,
Roubíček, Zeman, 2011] to the case of a rate-dependent equation for χ, techniques from [Bouchitté, Mielke, Roubíček, 2009] and [Mielke,
Roubíček, Zeman, 2011] to the case of a rate-dependent equation for χ, also coupled with the temperature equation

Main new results
Hypotheses
The non-degenerate case
The degenerating case system in the reversible case, i.e. with $\mu=0$ in

$$
\begin{equation*}
\chi_{t}+\mu \partial \iota_{(-\infty, 0]}\left(\chi_{t}\right)-\Delta_{p} \chi+W^{\prime}(\chi) \ni-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\vartheta \tag{2}
\end{equation*}
$$

Energy vs Enthalpy

In order to deal with the low regularity of ϑ, rewrite the internal energy equation

$$
\left.c(\vartheta) \vartheta_{t}+\chi_{t} \vartheta-\rho \vartheta \operatorname{div} \mathbf{u}_{t}-\operatorname{div}(k(\vartheta) \nabla \vartheta)\right)=g
$$

as the enthalpy equation

$$
\begin{gathered}
\left.w_{t}+\chi_{t} \Theta(w)-\rho \Theta(w) \operatorname{div} \mathbf{u}_{t}-\operatorname{div}(K(w) \nabla w)\right)=g \text { where } \\
w=h(\vartheta):=\int_{0}^{\vartheta} c(s) \mathrm{d} s, \quad \Theta(w):=\left\{\begin{array}{ll}
h^{-1}(w) & \text { if } w \geq 0, \\
0 & \text { if } w<0,
\end{array} \quad K(w):=\frac{k(\Theta(w))}{c(\Theta(w))}\right.
\end{gathered}
$$

Energy vs Enthalpy

In order to deal with the low regularity of ϑ, rewrite the internal energy equation

$$
\left.\mathrm{c}(\vartheta) \vartheta_{t}+\chi_{t} \vartheta-\rho \vartheta \operatorname{div} \mathbf{u}_{t}-\operatorname{div}(k(\vartheta) \nabla \vartheta)\right)=g
$$

as the enthalpy equation

$$
\begin{gathered}
\left.w_{t}+\chi_{t} \Theta(w)-\rho \Theta(w) \operatorname{div} \mathbf{u}_{t}-\operatorname{div}(K(w) \nabla w)\right)=g \text { where } \\
w=h(\vartheta):=\int_{0}^{\vartheta} c(s) \operatorname{ds}, \quad \Theta(w):= \begin{cases}h^{-1}(w) & \text { if } w \geq 0, \quad K(w):=\frac{k(\Theta(w))}{c(\Theta(w))} \\
0 & \text { if } w<0,\end{cases}
\end{gathered}
$$

We assume that

- $c \in C^{0}([0,+\infty) ;[0,+\infty))$
- $\exists \sigma_{1} \geq \sigma>\frac{2 d}{d+2}: \quad c_{0}(1+\vartheta)^{\sigma-1} \leq \mathrm{c}(\vartheta) \leq c_{1}(1+\vartheta)^{\sigma_{1}-1} \Longrightarrow h$ is strictly increasing

Energy vs Enthalpy

In order to deal with the low regularity of ϑ, rewrite the internal energy equation

$$
\left.c(\vartheta) \vartheta_{t}+\chi_{t} \vartheta-\rho \vartheta \operatorname{div} \mathbf{u}_{t}-\operatorname{div}(k(\vartheta) \nabla \vartheta)\right)=g
$$

as the enthalpy equation

$$
\begin{gathered}
\left.w_{t}+\chi_{t} \Theta(w)-\rho \Theta(w) \operatorname{div} \mathbf{u}_{t}-\operatorname{div}(K(w) \nabla w)\right)=g \quad \text { where } \\
w=h(\vartheta):=\int_{0}^{\vartheta} c(s) \operatorname{ds}, \quad \Theta(w):= \begin{cases}h^{-1}(w) & \text { if } w \geq 0, \quad K(w):=\frac{k(\Theta(w))}{c(\Theta(w))} \\
0 & \text { if } w<0,\end{cases}
\end{gathered}
$$

We assume that

- $c \in C^{0}([0,+\infty) ;[0,+\infty))$
- $\exists \sigma_{1} \geq \sigma>\frac{2 d}{d+2}: \quad c_{0}(1+\vartheta)^{\sigma-1} \leq \mathrm{c}(\vartheta) \leq c_{1}(1+\vartheta)^{\sigma_{1}-1} \Longrightarrow h$ is strictly increasing
Assume moreover
[If $\rho=0$:] the function $k:[0,+\infty) \rightarrow[0,+\infty)$ is continuous, and

$$
\begin{gathered}
\exists c_{2}, c_{3}>0 \quad \forall \vartheta \in[0,+\infty): \quad c_{2} c(\vartheta) \leq k(\vartheta) \leq c_{3}(c(\vartheta)+1) \\
{[\text { If } \rho \neq 0:] \exists c_{\rho}>0 \exists q>\frac{d+2}{2 d}: K(w)=c_{\rho}\left(|w|^{2 q}+1\right) \quad \forall w \in[0,+\infty)}
\end{gathered}
$$

Hypotheses

The non-degenerate case

Phase Transitions and
Damage
E. Rocca

The model

Thie antatysis

Main new results

Hypotheses
The non-degenerate case
The degenerating case

The non-degenerate case

The approximating non-degenerate Problem $\left[\mathbf{P}_{\delta}\right]$

Given $\delta>0, \mu \in\{0,1\}$, find (measurable) functions

$$
\begin{aligned}
& w \in L^{r}\left(0, T ; W^{1, r}(\Omega)\right) \cap L^{\infty}\left(0, T ; L^{1}(\Omega)\right) \cap \operatorname{BV}\left([0, T] ; W^{1, r^{\prime}}(\Omega)^{*}\right) \\
& \mathbf{u} \in H^{1}\left(0, T ; H^{2}\left(\Omega ; \mathbb{R}^{d}\right)\right) \cap W^{1, \infty}\left(0, T ; H_{0}^{1}(\Omega)\right) \cap H^{2}\left(0, T ; L^{2}\left(\Omega ; \mathbb{R}^{d}\right)\right) \\
& \chi \in L^{\infty}\left(0, T ; W^{1, p}(\Omega)\right) \cap H^{1}\left(0, T ; L^{2}(\Omega)\right)
\end{aligned}
$$

for every $1 \leq r<\frac{d+2}{d+1}$, fulfilling the initial conditions

$$
\begin{array}{ll}
\mathbf{u}(0, x)=\mathbf{u}_{0}(x), \quad \mathbf{u}_{t}(0, x)=\mathbf{v}_{0}(x) & \text { for a.e. } x \in \Omega \\
\chi(0, x)=\chi_{0}(x) & \text { for a.e. } x \in \Omega
\end{array}
$$

the equations (for every $\varphi \in \mathrm{C}^{0}\left([0, T] ; W^{1, r^{\prime}}(\Omega)\right) \cap W^{1, r^{\prime}}\left(0, T ; L^{r^{\prime}}(\Omega)\right)$ and $t \in(0, T])$

$$
\begin{aligned}
& \int_{\Omega} \varphi(t) w(t)(\mathrm{d} x)-\int_{0}^{t} \int_{\Omega} w \varphi_{t} \mathrm{~d} x+\int_{0}^{t} \int_{\Omega} \chi_{t} \Theta(w) \varphi \mathrm{d} x \\
& -\rho \int_{0}^{t} \int_{\Omega} \operatorname{div} \mathbf{u}_{t} \Theta(w) \varphi \mathrm{d} x+\int_{0}^{t} \int_{\Omega} K(w) \nabla w \nabla \varphi \mathrm{~d} x=\int_{0}^{t} \int_{\Omega} g \varphi+\int_{\Omega} w_{0} \varphi(0) \mathrm{d} x \\
& \mathbf{u}_{t t}-\operatorname{div}\left((a(\chi)+\delta) \varepsilon\left(\mathbf{u}_{t}\right)+b(\chi) \varepsilon(\mathbf{u})\right)-\rho \nabla \Theta(w)=\mathbf{f} \text { in } H^{-1}\left(\Omega ; \mathbb{R}^{d}\right) \text { a.e. in }(0, T)
\end{aligned}
$$

and the subdifferential inclusion (in $W^{1, p}(\Omega)^{*}$ and a.e. in $(0, T)$)

$$
\chi_{t}+\mu \partial I_{(-\infty, 0]}\left(\chi_{t}\right)-\Delta_{p} \chi+\beta(\chi)+\gamma(\chi) \ni-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\Theta(w)
$$

Theorem 1 [The reversible case $\mu=0$]

Phase Transitions and Damage
E. Rocca

The model

The analysis

Main new results

Hypotheses
The non-degenerate case
The degenerating case

Theorem 1 [The reversible case $\mu=0$]

Let $\mu=0$ and $\rho=0$, assume the previous Hypotheses and the conditions:

$$
\begin{aligned}
& \mathbf{f} \in L^{2}\left(0, T ; L^{2}(\Omega)\right), \quad g \in L^{1}\left(0, T ; L^{1}(\Omega)\right) \cap L^{2}\left(0, T ; H^{1}(\Omega)^{\prime}\right) \\
& \vartheta_{0} \in L^{\sigma_{1}}(\Omega) \quad \text { whence } \quad w_{0}:=h\left(\vartheta_{0}\right) \in L^{1}(\Omega) \\
& \mathbf{u}_{0} \in H_{0}^{2}(\Omega), \quad \mathbf{v}_{0} \in H_{0}^{1}(\Omega) \quad \chi_{0} \in \operatorname{dom}\left(\Delta_{p}\right), \quad \widehat{\beta}\left(\chi_{0}\right) \in L^{1}(\Omega)
\end{aligned}
$$

Theorem 1 [The reversible case $\mu=0$]

Let $\mu=0$ and $\rho=0$, assume the previous Hypotheses and the conditions:

$$
\begin{aligned}
& \mathbf{f} \in L^{2}\left(0, T ; L^{2}(\Omega)\right), \quad g \in L^{1}\left(0, T ; L^{1}(\Omega)\right) \cap L^{2}\left(0, T ; H^{1}(\Omega)^{\prime}\right) \\
& \vartheta_{0} \in L^{\sigma_{1}}(\Omega) \quad \text { whence } \quad w_{0}:=h\left(\vartheta_{0}\right) \in L^{1}(\Omega) \\
& \mathbf{u}_{0} \in H_{0}^{2}(\Omega), \quad \mathbf{v}_{0} \in H_{0}^{1}(\Omega) \quad \chi_{0} \in \operatorname{dom}\left(\Delta_{p}\right), \quad \widehat{\beta}\left(\chi_{0}\right) \in L^{1}(\Omega)
\end{aligned}
$$

Then,

1. Problem $\left[\mathrm{P}_{\delta}\right]$ admits a solution $(~ w, \mathbf{u}, \chi)$, such that there exists

$$
\begin{aligned}
& \xi \in L^{2}\left(0, T ; L^{2}(\Omega)\right), \xi(x, t) \in \beta(\chi(x, t)) \text { for a.e. }(x, t) \in \Omega \times(0, T): \\
& \chi_{t}-\Delta_{\rho} \chi+\xi+\gamma(\chi)=-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\Theta(w) \quad \text { a.e. in } \Omega \times(0, T)
\end{aligned}
$$

Theorem 1 [The reversible case $\mu=0$]

Let $\mu=0$ and $\rho=0$, assume the previous Hypotheses and the conditions:

$$
\begin{aligned}
& \mathbf{f} \in L^{2}\left(0, T ; L^{2}(\Omega)\right), \quad g \in L^{1}\left(0, T ; L^{1}(\Omega)\right) \cap L^{2}\left(0, T ; H^{1}(\Omega)^{\prime}\right) \\
& \vartheta_{0} \in L^{\sigma_{1}}(\Omega) \quad \text { whence } \quad w_{0}:=h\left(\vartheta_{0}\right) \in L^{1}(\Omega) \\
& \mathbf{u}_{0} \in H_{0}^{2}(\Omega), \quad \mathbf{v}_{0} \in H_{0}^{1}(\Omega) \quad \chi_{0} \in \operatorname{dom}\left(\Delta_{p}\right), \quad \widehat{\beta}\left(\chi_{0}\right) \in L^{1}(\Omega)
\end{aligned}
$$

Then,

1. Problem $\left[\mathrm{P}_{\delta}\right]$ admits a solution (w, \mathbf{u}, χ), such that there exists

$$
\begin{aligned}
& \xi \in L^{2}\left(0, T ; L^{2}(\Omega)\right), \xi(x, t) \in \beta(\chi(x, t)) \text { for a.e. }(x, t) \in \Omega \times(0, T): \\
& \chi_{t}-\Delta_{\rho} \chi+\xi+\gamma(\chi)=-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\Theta(w) \quad \text { a.e. in } \Omega \times(0, T)
\end{aligned}
$$

2. Suppose that $g(x, t) \geq 0$ a.e. Then, $w \geq 0$ a.e., hence $\vartheta(x, t):=\Theta(w(x, t)) \geq 0$ a.e.

Theorem 1 [The reversible case $\mu=0$]

Let $\mu=0$ and $\rho=0$, assume the previous Hypotheses and the conditions:

$$
\begin{aligned}
& \mathbf{f} \in L^{2}\left(0, T ; L^{2}(\Omega)\right), \quad g \in L^{1}\left(0, T ; L^{1}(\Omega)\right) \cap L^{2}\left(0, T ; H^{1}(\Omega)^{\prime}\right) \\
& \vartheta_{0} \in L^{\sigma_{1}}(\Omega) \quad \text { whence } \quad w_{0}:=h\left(\vartheta_{0}\right) \in L^{1}(\Omega) \\
& \mathbf{u}_{0} \in H_{0}^{2}(\Omega), \quad \mathbf{v}_{0} \in H_{0}^{1}(\Omega) \quad \chi_{0} \in \operatorname{dom}\left(\Delta_{p}\right), \quad \widehat{\beta}\left(\chi_{0}\right) \in L^{1}(\Omega)
\end{aligned}
$$

Then,

1. Problem $\left[\mathrm{P}_{\delta}\right]$ admits a solution (w, \mathbf{u}, χ), such that there exists

$$
\begin{aligned}
& \xi \in L^{2}\left(0, T ; L^{2}(\Omega)\right), \xi(x, t) \in \beta(\chi(x, t)) \text { for a.e. }(x, t) \in \Omega \times(0, T): \\
& \chi_{t}-\Delta_{\rho} \chi+\xi+\gamma(\chi)=-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\Theta(w) \quad \text { a.e. in } \Omega \times(0, T)
\end{aligned}
$$

2. Suppose that $g(x, t) \geq 0$ a.e. Then, $w \geq 0$ a.e., hence $\vartheta(x, t):=\Theta(w(x, t)) \geq 0$ a.e.
3. In case $\rho \neq 0, w_{0} \in L^{2}(\Omega)$, and $K(w)=c_{\rho}\left(|w|^{2 q}+1\right)$, $q>(d+2) / 2 d$.

Theorem 1 [The reversible case $\mu=0$]

Let $\mu=0$ and $\rho=0$, assume the previous Hypotheses and the conditions:

$$
\begin{aligned}
& \mathbf{f} \in L^{2}\left(0, T ; L^{2}(\Omega)\right), \quad g \in L^{1}\left(0, T ; L^{1}(\Omega)\right) \cap L^{2}\left(0, T ; H^{1}(\Omega)^{\prime}\right) \\
& \vartheta_{0} \in L^{\sigma_{1}}(\Omega) \quad \text { whence } \quad w_{0}:=h\left(\vartheta_{0}\right) \in L^{1}(\Omega) \\
& \mathbf{u}_{0} \in H_{0}^{2}(\Omega), \quad \mathbf{v}_{0} \in H_{0}^{1}(\Omega) \quad \chi_{0} \in \operatorname{dom}\left(\Delta_{p}\right), \quad \widehat{\beta}\left(\chi_{0}\right) \in L^{1}(\Omega)
\end{aligned}
$$

Then,

1. Problem $\left[\mathrm{P}_{\delta}\right]$ admits a solution (w, \mathbf{u}, χ), such that there exists

$$
\begin{aligned}
& \xi \in L^{2}\left(0, T ; L^{2}(\Omega)\right), \xi(x, t) \in \beta(\chi(x, t)) \text { for a.e. }(x, t) \in \Omega \times(0, T): \\
& \chi_{t}-\Delta_{p} \chi+\xi+\gamma(\chi)=-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\Theta(w) \quad \text { a.e. in } \Omega \times(0, T)
\end{aligned}
$$

2. Suppose that $g(x, t) \geq 0$ a.e. Then, $w \geq 0$ a.e., hence $\vartheta(x, t):=\Theta(w(x, t)) \geq 0$ a.e.
3. In case $\rho \neq 0, w_{0} \in L^{2}(\Omega)$, and $K(w)=c_{\rho}\left(|w|^{2 q}+1\right)$, $q>(d+2) / 2 d$. Then, w has the further regularity $w \in L^{2}\left(0, T ; H^{1}(\Omega)\right) \cap L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \cap W^{1, r(q)}\left((0, T) ; W^{2,-s(q)}(\Omega)\right)$

Theorem 2 [The irreversible case $\mu=1$]

Let $\mu=1, \rho=0$, and take the previous assumptions with $\widehat{\beta}=I_{[0,+\infty)}$. Then, [1.] Problem $\left[\mathrm{P}_{\delta}\right]$ admits a weak solution (w, \mathbf{u}, χ), which, beside fulfilling the enthalpy and momentum equations, satisfies $\chi_{t}(x, t) \leq 0$ for almost all $t \in(0, T)$, and $\left(\forall \varphi \in L^{p}\left(0, T ; W_{-}^{1, p}(\Omega)\right) \cap L^{\infty}(Q)\right)$ the one-sided inequality

$$
\int_{0}^{T} \int_{\Omega} \chi_{t} \varphi+|\nabla \chi|^{p-2} \nabla \chi \cdot \nabla \varphi+\xi \varphi+\gamma(\chi) \varphi+b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2} \varphi-\Theta(w) \varphi \geq 0
$$

with $\xi \in \partial I_{[0,+\infty)}(\chi)$ in the following sense:
$\xi \in L^{1}\left(0, T ; L^{1}(\Omega)\right),\langle\xi(t), \varphi-\chi(t)\rangle_{W^{1, p}(\Omega)} \leq 0 \forall \varphi \in W_{+}^{1, p}(\Omega)$, a.e. $t \in(0, T)$

Theorem 2 [The irreversible case $\mu=1$]

Let $\mu=1, \rho=0$, and take the previous assumptions with $\widehat{\beta}=I_{[0,+\infty)}$. Then, [1.] Problem $\left[\mathrm{P}_{\delta}\right]$ admits a weak solution (w, \mathbf{u}, χ), which, beside fulfilling the enthalpy and momentum equations, satisfies $\chi_{t}(x, t) \leq 0$ for almost all $t \in(0, T)$, and $\left(\forall \varphi \in L^{p}\left(0, T ; W_{-}^{1, p}(\Omega)\right) \cap L^{\infty}(Q)\right)$ the one-sided inequality

$$
\int_{0}^{T} \int_{\Omega} \chi_{t} \varphi+|\nabla \chi|^{p-2} \nabla \chi \cdot \nabla \varphi+\xi \varphi+\gamma(\chi) \varphi+b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2} \varphi-\Theta(w) \varphi \geq 0
$$

Hypotheses

The non-degenerate case
with $\xi \in \partial I_{[0,+\infty)}(\chi)$ in the following sense:

$$
\xi \in L^{1}\left(0, T ; L^{1}(\Omega)\right),\langle\xi(t), \varphi-\chi(t)\rangle_{W^{1, p}(\Omega)} \leq 0 \forall \varphi \in W_{+}^{1, p}(\Omega), \text { a.e. } t \in(0, T)
$$

and the energy inequality for all $t \in(0, T]$, for $s=0$, and for almost all $0<s \leq t$:

$$
\begin{aligned}
& \int_{s}^{t} \int_{\Omega}\left|\chi_{t}\right|^{2} \mathrm{~d} x \mathrm{~d} r+\frac{1}{p}|\nabla \chi(t)|^{p}+\int_{\Omega} W(\chi(t)) \mathrm{d} x \\
& \leq \frac{1}{p}|\nabla \chi(s)|^{p}+\int_{\Omega} W(\chi(s)) \mathrm{d} x+\int_{s}^{t} \int_{\Omega} \chi_{t}\left(-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\Theta(w)\right) \mathrm{d} x \mathrm{~d} r
\end{aligned}
$$

Theorem 2 [The irreversible case $\mu=1$]

Let $\mu=1, \rho=0$, and take the previous assumptions with $\widehat{\beta}=I_{[0,+\infty)}$. Then, [1.] Problem $\left[\mathrm{P}_{\delta}\right]$ admits a weak solution (w, \mathbf{u}, χ), which, beside fulfilling the enthalpy and momentum equations, satisfies $\chi_{t}(x, t) \leq 0$ for almost all $t \in(0, T)$, and $\left(\forall \varphi \in L^{p}\left(0, T ; W_{-}^{1, p}(\Omega)\right) \cap L^{\infty}(Q)\right)$ the one-sided inequality

$$
\int_{0}^{T} \int_{\Omega} \chi_{t} \varphi+|\nabla \chi|^{p-2} \nabla \chi \cdot \nabla \varphi+\xi \varphi+\gamma(\chi) \varphi+b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2} \varphi-\Theta(w) \varphi \geq 0
$$

with $\xi \in \partial I_{[0,+\infty)}(\chi)$ in the following sense:
$\xi \in L^{1}\left(0, T ; L^{1}(\Omega)\right),\langle\xi(t), \varphi-\chi(t)\rangle_{W^{1, p}(\Omega)} \leq 0 \forall \varphi \in W_{+}^{1, p}(\Omega)$, a.e. $t \in(0, T)$
and the energy inequality for all $t \in(0, T]$, for $s=0$, and for almost all $0<s \leq t$:

$$
\begin{aligned}
& \int_{s}^{t} \int_{\Omega}\left|\chi_{t}\right|^{2} \mathrm{~d} x \mathrm{~d} r+\frac{1}{p}|\nabla \chi(t)|^{p}+\int_{\Omega} W(\chi(t)) \mathrm{d} x \\
& \leq \frac{1}{p}|\nabla \chi(s)|^{p}+\int_{\Omega} W(\chi(s)) \mathrm{d} x+\int_{s}^{t} \int_{\Omega} \chi_{t}\left(-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\Theta(w)\right) \mathrm{d} x \mathrm{~d} r
\end{aligned}
$$

[2.] Suppose in addition that $g(x, t) \geq 0, \vartheta_{0}>\underline{\vartheta}_{0} \geq 0$ a.e. Then $\vartheta(x, t):=\Theta(w(x, t)) \geq \underline{\vartheta}_{0} \geq 0$ a.e.

Theorem 2 [The irreversible case $\mu=1$]

Let $\mu=1, \rho=0$, and take the previous assumptions with $\widehat{\beta}=I_{[0,+\infty)}$. Then, [1.] Problem $\left[\mathrm{P}_{\delta}\right]$ admits a weak solution (w, \mathbf{u}, χ), which, beside fulfilling the enthalpy and momentum equations, satisfies $\chi_{t}(x, t) \leq 0$ for almost all $t \in(0, T)$, and $\left(\forall \varphi \in L^{p}\left(0, T ; W_{-}^{1, p}(\Omega)\right) \cap L^{\infty}(Q)\right)$ the one-sided inequality

$$
\int_{0}^{T} \int_{\Omega} \chi_{t} \varphi+|\nabla \chi|^{p-2} \nabla \chi \cdot \nabla \varphi+\xi \varphi+\gamma(\chi) \varphi+b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2} \varphi-\Theta(w) \varphi \geq 0
$$

with $\xi \in \partial I_{[0,+\infty)}(\chi)$ in the following sense:
$\xi \in L^{1}\left(0, T ; L^{1}(\Omega)\right),\langle\xi(t), \varphi-\chi(t)\rangle_{W^{1, p}(\Omega)} \leq 0 \forall \varphi \in W_{+}^{1, p}(\Omega)$, a.e. $t \in(0, T)$
and the energy inequality for all $t \in(0, T]$, for $s=0$, and for almost all $0<s \leq t$:

$$
\begin{aligned}
& \int_{s}^{t} \int_{\Omega}\left|\chi_{t}\right|^{2} \mathrm{~d} x \mathrm{~d} r+\frac{1}{p}|\nabla \chi(t)|^{p}+\int_{\Omega} W(\chi(t)) \mathrm{d} x \\
& \leq \frac{1}{p}|\nabla \chi(s)|^{p}+\int_{\Omega} W(\chi(s)) \mathrm{d} x+\int_{s}^{t} \int_{\Omega} \chi_{t}\left(-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\Theta(w)\right) \mathrm{d} x \mathrm{~d} r
\end{aligned}
$$

[2.] Suppose in addition that $g(x, t) \geq 0, \vartheta_{0}>\underline{\vartheta}_{0} \geq 0$ a.e. Then $\vartheta(x, t):=\Theta(w(x, t)) \geq \underline{\vartheta}_{0} \geq 0$ a.e.
[3.] In case $\rho \neq 0$ an analogous statement to the reversible case holds true

The isothermal case: uniqueness

the function a is constant
Then, the isothermal reversible system admits a unique solution (\mathbf{u}, χ) which continuously depends on the data

The isothermal case: uniqueness

Let $\rho \in \mathbb{R}$. In addition to the previous hypotheses, assume that the function a is constant

Then, the isothermal reversible system admits a unique solution (\mathbf{u}, χ) which continuously depends on the data

Uniqueness of solutions for the irreversible system, even in the isothermal case, is still an open problem. This is mainly due to the triply nonlinear character of the χ equation.

The techniques used in the proof

Phase Transitions and
Damage
E. Rocca

The model

The anatysis

Main new results

Hypotheses
The non-degenerate case
The degenerating case

The techniques used in the proof

Phase Transitions and Damage
E. Rocca

The model

The antatys

Main new results

Hypotheses
The non-degenerate case
The degenerating case

The techniques used in the proof

- We pass to the limit in a carefully designed time-discretization scheme
- A key role is played by
- the presence of the p-Laplacian with $p>d \Longrightarrow$ an estimate for χ in $L^{\infty}\left(0, T ; W^{1, p}(\Omega)\right) \Longrightarrow$ a suitable regularity estimate on the displacement variable $\mathbf{u} \Longrightarrow$ a global-in-time bound on the quadratic nonlinearity $|\varepsilon(\mathbf{u})|^{2}$ on the right-hand side of

$$
\chi_{t}+\mu \partial I_{(-\infty, 0]}\left(\chi_{t}\right)-\Delta_{p} \chi+W^{\prime}(\chi) \ni-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\vartheta
$$

Main new results

Hypotheses
The non-degenerate case
The degenerating case

The techniques used in the proof

- We pass to the limit in a carefully designed time-discretization scheme
- A key role is played by
- the presence of the p-Laplacian with $p>d \Longrightarrow$ an estimate for χ in $L^{\infty}\left(0, T ; W^{1, p}(\Omega)\right) \Longrightarrow$ a suitable regularity estimate on the displacement variable $\mathbf{u} \Longrightarrow$ a global-in-time bound on the quadratic nonlinearity $|\varepsilon(\mathbf{u})|^{2}$ on the right-hand side of

$$
\chi_{t}+\mu \partial I_{(-\infty, 0]}\left(\chi_{t}\right)-\Delta_{p} \chi+W^{\prime}(\chi) \ni-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\vartheta
$$

- the Boccardo-Gallouët-type estimates combined with the Gagliardo-Nirenberg inequality applied to the enthalpy equation in order to obtain an $L^{r}\left(0, T ; W^{1, r}(\Omega)\right)$-estimate on the enthalpy w

Phase Transitions and
Damage
E. Rocca

The model
The amatysis
Main new results
Hypotheses
The non-degenerate
case
The degenerating case

The degenerating case

Hypotheses

Consider the irreversible case with the s-Laplacian (the previous results still hold true in this case), $\rho=0$, and $a(\chi)=\chi, b(\chi)=\chi+\delta$:

Phase Transitions and Damage
E. Rocca

Hypotheses

Consider the irreversible case with the s-Laplacian (the previous results still hold true in this case), $\rho=0$, and $a(\chi)=\chi, b(\chi)=\chi+\delta$:

$$
\begin{aligned}
& \int_{\Omega} \varphi(t) w(t)(\mathrm{d} x)-\int_{0}^{t} \int_{\Omega} w \varphi_{t} \mathrm{~d} x+\int_{0}^{t} \int_{\Omega} \chi_{t} \Theta(w) \varphi \mathrm{d} x \\
& +\int_{0}^{t} \int_{\Omega} K(w) \nabla w \nabla \varphi \mathrm{~d} x=\int_{0}^{t} \int_{\Omega} g \varphi+\int_{\Omega} w_{0} \varphi(0) \mathrm{d} x \\
& \mathbf{u}_{t t}-\operatorname{div}\left((\chi+\delta) \varepsilon\left(\mathbf{u}_{t}\right)+(\chi+\delta) \varepsilon(\mathbf{u})\right)=\mathbf{f} \text { in } H^{-1}\left(\Omega ; \mathbb{R}^{d}\right) \text { a.e. in }(0, T)
\end{aligned}
$$

$$
\text { and the subdifferential inclusion (in } W^{1, p}(\Omega)^{*} \text { and a.e. in }(0, T) \text {) }
$$

$$
\chi_{t}+\partial I_{(-\infty, 0]}\left(\chi_{t}\right)+A_{s}(\chi)+\partial I_{[0,+\infty)}(\chi)+\gamma(\chi) \ni-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\Theta(w)
$$

Hypotheses

Consider the irreversible case with the s-Laplacian (the previous results still hold true in this case), $\rho=0$, and $a(\chi)=\chi, b(\chi)=\chi+\delta$:

$$
\begin{aligned}
& \int_{\Omega} \varphi(t) w(t)(\mathrm{d} x)-\int_{0}^{t} \int_{\Omega} w \varphi_{t} \mathrm{~d} x+\int_{0}^{t} \int_{\Omega} \chi_{t} \Theta(w) \varphi \mathrm{d} x \\
& +\int_{0}^{t} \int_{\Omega} K(w) \nabla w \nabla \varphi \mathrm{~d} x=\int_{0}^{t} \int_{\Omega} g \varphi+\int_{\Omega} w_{0} \varphi(0) \mathrm{d} x \\
& \mathbf{u}_{t t}-\operatorname{div}\left((\chi+\delta) \varepsilon\left(\mathbf{u}_{t}\right)+(\chi+\delta) \varepsilon(\mathbf{u})\right)=\mathbf{f} \text { in } H^{-1}\left(\Omega ; \mathbb{R}^{d}\right) \text { a.e. in }(0, T)
\end{aligned}
$$

and the subdifferential inclusion (in $W^{1, p}(\Omega)^{*}$ and a.e. in $(0, T)$)
$\chi_{t}+\partial I_{(-\infty, 0]}\left(\chi_{t}\right)+A_{s}(\chi)+\partial I_{[0,+\infty)}(\chi)+\gamma(\chi) \ni-b^{\prime}(\chi) \frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\Theta(w)$ where

$$
\begin{aligned}
& A_{s}: H^{s}(\Omega) \rightarrow H^{s}(\Omega)^{*} \quad \text { with } s>\frac{d}{2}, \quad\left\langle A_{s} \chi, w\right\rangle_{H^{s}(\Omega)}:=a_{s}(\chi, w) \text { and } \\
& a_{s}\left(z_{1}, z_{2}\right):=\int_{\Omega} \int_{\Omega} \frac{\left(\nabla z_{1}(x)-\nabla z_{1}(y)\right) \cdot\left(\nabla z_{2}(x)-\nabla z_{2}(y)\right)}{|x-y|^{d+2(s-1)}} \mathrm{d} x \mathrm{~d} y
\end{aligned}
$$

The energy estimate

Rewrite the momentum equation

$$
\partial_{t}^{2} \mathbf{u}_{\delta}-\operatorname{div}\left((\chi+\delta) \varepsilon\left(\partial_{t} \mathbf{u}_{\delta}\right)\right)-\operatorname{div}\left((\chi+\delta) \varepsilon\left(\mathbf{u}_{\delta}\right)\right)=\mathbf{f}
$$

using the new variables (quasi-stresses) $\boldsymbol{\mu}_{\delta}:=\sqrt{\chi_{\delta}+\delta} \varepsilon\left(\partial_{t} \mathbf{u}_{\delta}\right)$, and $\boldsymbol{\eta}_{\delta}:=\sqrt{\chi_{\delta}+\delta} \varepsilon\left(\mathbf{u}_{\delta}\right):$

$$
\partial_{t}^{2} \mathbf{u}_{\delta}-\operatorname{div}\left(\sqrt{\chi+\delta} \boldsymbol{\mu}_{\delta}\right)-\operatorname{div}\left(\sqrt{\chi+\delta} \boldsymbol{\eta}_{\delta}\right)=\mathbf{f}
$$

The energy estimate

Rewrite the momentum equation

$$
\partial_{t}^{2} \mathbf{u}_{\delta}-\operatorname{div}\left((\chi+\delta) \varepsilon\left(\partial_{t} \mathbf{u}_{\delta}\right)\right)-\operatorname{div}\left((\chi+\delta) \varepsilon\left(\mathbf{u}_{\delta}\right)\right)=\mathbf{f}
$$

using the new variables (quasi-stresses) $\boldsymbol{\mu}_{\delta}:=\sqrt{\chi_{\delta}+\delta} \varepsilon\left(\partial_{t} \mathbf{u}_{\delta}\right)$, and $\boldsymbol{\eta}_{\delta}:=\sqrt{\chi_{\delta}+\delta} \varepsilon\left(\mathbf{u}_{\delta}\right):$

$$
\partial_{t}^{2} \mathbf{u}_{\delta}-\operatorname{div}\left(\sqrt{\chi+\delta} \boldsymbol{\mu}_{\delta}\right)-\operatorname{div}\left(\sqrt{\chi+\delta} \boldsymbol{\eta}_{\delta}\right)=\mathbf{f}
$$

The total energy inequality for $\left(w_{\delta}, \mathbf{u}_{\delta}, \chi_{\delta}\right)$ is

$$
\begin{aligned}
& \int_{\Omega} w_{\delta}(t)(\mathrm{d} x)+\frac{1}{2} \int_{\Omega}\left|\partial_{t} \mathbf{u}_{\delta}(t)\right|^{2} \mathrm{~d} x+\int_{s}^{t} \int_{\Omega}\left|\partial_{t} \chi_{\delta}\right|^{2} \mathrm{~d} x+\frac{1}{2} \int_{s}^{t}\left|\boldsymbol{\mu}_{\delta}(r)\right|^{2} \\
& \quad+\frac{\left|\boldsymbol{\eta}_{\delta}(t)\right|^{2}}{2}+\frac{1}{2} a_{s}\left(\chi_{\delta}(t), \chi_{\delta}(t)\right)+\int_{\Omega} W\left(\chi_{\delta}(t)\right) \mathrm{d} x \\
& \leq \int_{\Omega} w_{\delta}(s)(\mathrm{d} x)+\frac{1}{2} \int_{\Omega}\left|\partial_{t} \mathbf{u}_{\delta}(s)\right|^{2} \mathrm{~d} x+\frac{\left|\boldsymbol{\eta}_{\delta}(s)\right|^{2}}{2}+\frac{1}{2} a_{s}\left(\chi_{\delta}(s), \chi_{\delta}(s)\right) \\
& \quad+\int_{\Omega} W\left(\chi_{\delta}(s)\right) \mathrm{d} x+\int_{s}^{t} \int_{\Omega} \mathbf{f} \cdot \partial_{t} \mathbf{u}_{\delta} \mathrm{d} x+\int_{s}^{t} \int_{\Omega} g \mathrm{~d} x
\end{aligned}
$$

Phase Transitions and
Damage
E. Rocca

The model
Thic amatysis
Main new results
Hypotheses
The non-degenerate
case
The degenerating case

Passage to the limit for $\delta \searrow 0$

Theorem 3 [The degenerate case]

Under the previous assumptions, there exist
$\mathbf{u} \in W^{1, \infty}\left(0, T ; L^{2}(\Omega)\right) \cap H^{2}\left(0, T ; H^{-1}(\Omega)\right), \boldsymbol{\mu} \in L^{2}\left(0, T ; L^{2}(\Omega)\right), \boldsymbol{\eta} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$, $w \in L^{r}\left(0, T ; W^{1, r}(\Omega)\right) \cap L^{\infty}\left(0, T ; L^{1}(\Omega)\right) \cap \operatorname{BV}\left([0, T] ; W^{1, r^{\prime}}(\Omega)^{*}\right)$ $\chi \in L^{\infty}\left(0, T ; H^{s}(\Omega)\right) \cap H^{1}\left(0, T ; L^{2}(\Omega)\right), \quad \chi(x, t) \geq 0, \quad \chi_{t}(x, t) \leq 0$ a.e. such that

Theorem 3 [The degenerate case]

Under the previous assumptions, there exist
$\mathbf{u} \in W^{1, \infty}\left(0, T ; L^{2}(\Omega)\right) \cap H^{2}\left(0, T ; H^{-1}(\Omega)\right), \boldsymbol{\mu} \in L^{2}\left(0, T ; L^{2}(\Omega)\right), \boldsymbol{\eta} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$, $w \in L^{r}\left(0, T ; W^{1, r}(\Omega)\right) \cap L^{\infty}\left(0, T ; L^{1}(\Omega)\right) \cap \operatorname{BV}\left([0, T] ; W^{1, r^{\prime}}(\Omega)^{*}\right)$
$\chi \in L^{\infty}\left(0, T ; H^{s}(\Omega)\right) \cap H^{1}\left(0, T ; L^{2}(\Omega)\right), \quad \chi(x, t) \geq 0, \quad \chi_{t}(x, t) \leq 0$ a.e.
such that it holds true (a.e. in any open set $A \subset \Omega \times(0, T): \chi>0$ a.e. in A)

$$
\boldsymbol{\mu}=\sqrt{\chi} \varepsilon\left(\mathbf{u}_{t}\right), \boldsymbol{\eta}=\sqrt{\chi} \varepsilon(\mathbf{u}),
$$

Theorem 3 [The degenerate case]

Under the previous assumptions, there exist
$\mathbf{u} \in W^{1, \infty}\left(0, T ; L^{2}(\Omega)\right) \cap H^{2}\left(0, T ; H^{-1}(\Omega)\right), \boldsymbol{\mu} \in L^{2}\left(0, T ; L^{2}(\Omega)\right), \boldsymbol{\eta} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$,
$w \in L^{r}\left(0, T ; W^{1, r}(\Omega)\right) \cap L^{\infty}\left(0, T ; L^{1}(\Omega)\right) \cap \operatorname{BV}\left([0, T] ; W^{1, r^{\prime}}(\Omega)^{*}\right)$
$\chi \in L^{\infty}\left(0, T ; H^{s}(\Omega)\right) \cap H^{1}\left(0, T ; L^{2}(\Omega)\right), \quad \chi(x, t) \geq 0, \quad \chi_{t}(x, t) \leq 0$ a.e.
such that it holds true (a.e. in any open set $A \subset \Omega \times(0, T): \chi>0$ a.e. in A)

$$
\boldsymbol{\mu}=\sqrt{\chi} \varepsilon\left(\mathbf{u}_{t}\right), \boldsymbol{\eta}=\sqrt{\chi} \varepsilon(\mathbf{u}),
$$

the weak enthalpy equation and the weak momentum and phase relations

$$
\begin{gathered}
\left.\partial_{t}^{2} \mathbf{u}-\operatorname{div}(\sqrt{\chi} \boldsymbol{\mu})-\operatorname{div}(\sqrt{\chi} \boldsymbol{\eta})\right)=\mathbf{f} \text { in } H^{-1}\left(\Omega ; \mathbb{R}^{d}\right) \text {, a.e. in }(0, T), \\
\int_{0}^{T} \int_{\Omega}\left(\partial_{t} \chi+\gamma(\chi)\right) \varphi \mathrm{d} x+\int_{0}^{T} a_{s}(\chi, \varphi) \leq \int_{0}^{T} \int_{\Omega}\left(-\frac{1}{2 \chi}|\boldsymbol{\eta}|^{2}+\Theta(w)\right) \varphi \mathrm{d} x \\
\quad \text { for all } \varphi \in L^{2}\left(0, T ; W_{+}^{s, 2}(\Omega)\right) \cap L^{\infty}(Q) \text { with } \operatorname{supp}(\varphi) \subset\{\chi>0\},
\end{gathered}
$$

Theorem 3 [The degenerate case]

Under the previous assumptions, there exist
$\mathbf{u} \in W^{1, \infty}\left(0, T ; L^{2}(\Omega)\right) \cap H^{2}\left(0, T ; H^{-1}(\Omega)\right), \boldsymbol{\mu} \in L^{2}\left(0, T ; L^{2}(\Omega)\right), \boldsymbol{\eta} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$,
$w \in L^{r}\left(0, T ; W^{1, r}(\Omega)\right) \cap L^{\infty}\left(0, T ; L^{1}(\Omega)\right) \cap \operatorname{BV}\left([0, T] ; W^{1, r^{\prime}}(\Omega)^{*}\right)$
$\chi \in L^{\infty}\left(0, T ; H^{s}(\Omega)\right) \cap H^{1}\left(0, T ; L^{2}(\Omega)\right), \quad \chi(x, t) \geq 0, \quad \chi_{t}(x, t) \leq 0$ a.e.
such that it holds true (a.e. in any open set $A \subset \Omega \times(0, T): \chi>0$ a.e. in A)

$$
\boldsymbol{\mu}=\sqrt{\chi} \varepsilon\left(\mathbf{u}_{t}\right), \boldsymbol{\eta}=\sqrt{\chi} \varepsilon(\mathbf{u})
$$

the weak enthalpy equation and the weak momentum and phase relations

$$
\begin{gathered}
\left.\partial_{t}^{2} \mathbf{u}-\operatorname{div}(\sqrt{\chi} \boldsymbol{\mu})-\operatorname{div}(\sqrt{\chi} \boldsymbol{\eta})\right)=\mathbf{f} \quad \text { in } H^{-1}\left(\Omega ; \mathbb{R}^{d}\right), \text { a.e. in }(0, T) \\
\int_{0}^{T} \int_{\Omega}\left(\partial_{t} \chi+\gamma(\chi)\right) \varphi \mathrm{d} x+\int_{0}^{T} a_{s}(\chi, \varphi) \leq \int_{0}^{T} \int_{\Omega}\left(-\frac{1}{2 \chi}|\boldsymbol{\eta}|^{2}+\Theta(w)\right) \varphi \mathrm{d} x
\end{gathered}
$$

$$
\text { for all } \varphi \in L^{2}\left(0, T ; W_{+}^{s, 2}(\Omega)\right) \cap L^{\infty}(Q) \text { with } \operatorname{supp}(\varphi) \subset\{\chi>0\}
$$

together with the total energy inequality (for almost all $t \in(0, T]$)

$$
\begin{aligned}
\int_{\Omega} w(t)(\mathrm{d} x)+ & \int_{0}^{t} \int_{\Omega}\left|\chi_{t}\right|^{2} \mathrm{~d} x+\frac{1}{2} \int_{0}^{t}|\boldsymbol{\mu}(r)|^{2}+\int_{\Omega} W(\chi(t)) \mathrm{d} x+\mathcal{J}(t) \\
=\int_{\Omega} w_{0} \mathrm{~d} x+ & \frac{1}{2} \int_{\Omega}\left|\mathbf{v}_{0}\right|^{2} \mathrm{~d} x+\frac{1}{2} b\left(\chi_{0}\right)\left|\varepsilon\left(\mathbf{u}_{0}\right)\right|^{2}+\frac{1}{2} a_{s}\left(\chi_{0}, \chi_{0}\right)+\int_{\Omega} W\left(\chi_{0}\right) \mathrm{d} x \\
& +\int_{0}^{t} \int_{\Omega} \mathbf{f} \cdot \mathbf{u}_{t} \mathrm{~d} x \mathrm{~d} r+\int_{0}^{t} \int_{\Omega} g \mathrm{~d} x \text { with } \\
\int_{0}^{t} \mathcal{J}(r) \mathrm{d} r \geq & \frac{1}{2} \int_{0}^{t}\left(\int_{\Omega}\left|\mathbf{u}_{t}(r)\right|^{2} \mathrm{~d} x+|\boldsymbol{\eta}(r)|^{2}+a_{s}(\chi(r), \chi(r))\right)
\end{aligned}
$$

A comparison between the solution notions

Weak solution to the degenerating irreversible full system \Longleftrightarrow weak solution to the non-degenerating irreversible full system in the case of the s-Laplacian

A comparison between the solution notions

Weak solution to the degenerating irreversible full system \Longleftrightarrow weak solution to the non-degenerating irreversible full system in the case of the s-Laplacian
Suppose that the solution is more regular and $\chi>0$ a.e.

A comparison between the solution notions

Weak solution to the degenerating irreversible full system \Longleftrightarrow weak solution to the non-degenerating irreversible full system in the case of the s-Laplacian
Suppose that the solution is more regular and $\chi>0$ a.e. Then

$$
\boldsymbol{\mu}=\sqrt{\chi} \varepsilon\left(\mathbf{u}_{t}\right), \boldsymbol{\eta}=\sqrt{\chi} \varepsilon(\mathbf{u}) \text { a.e. in } \Omega \times(0, T)
$$

Hence

A comparison between the solution notions

Weak solution to the degenerating irreversible full system \Longleftrightarrow weak solution to the non-degenerating irreversible full system in the case of the s-Laplacian
Suppose that the solution is more regular and $\chi>0$ a.e. Then

$$
\boldsymbol{\mu}=\sqrt{\chi} \varepsilon\left(\mathbf{u}_{t}\right), \boldsymbol{\eta}=\sqrt{\chi} \varepsilon(\mathbf{u}) \text { a.e. in } \Omega \times(0, T)
$$

Hence

$$
\begin{gathered}
\int_{0}^{T} \int_{\Omega}\left(\partial_{t} \chi+\gamma(\chi)\right) \varphi \mathrm{d} x+\int_{0}^{T} a_{s}(\chi, \varphi) \leq \int_{0}^{T} \int_{\Omega}\left(-\frac{1}{2 \chi}|\boldsymbol{\eta}|^{2}+\Theta(w)\right) \varphi \mathrm{d} x \\
\quad \text { for all } \varphi \in L^{2}\left(0, T ; W_{+}^{s, 2}(\Omega)\right) \cap L^{\infty}(Q) \text { with } \operatorname{supp}(\varphi) \subset\{\chi>0\}
\end{gathered}
$$

coincides with

$$
\int_{0}^{T} \int_{\Omega} \chi_{t} \varphi+|\nabla \chi|^{p-2} \nabla \chi \cdot \nabla \varphi+\xi \varphi+\gamma(\chi) \varphi+\frac{|\varepsilon(\mathbf{u})|^{2}}{2} \varphi-\Theta(w) \varphi \geq 0
$$

A comparison between the solution notions

Weak solution to the degenerating irreversible full system \Longleftrightarrow weak solution to the non-degenerating irreversible full system in the case of the s-Laplacian
Suppose that the solution is more regular and $\chi>0$ a.e. Then

$$
\boldsymbol{\mu}=\sqrt{\chi} \varepsilon\left(\mathbf{u}_{t}\right), \boldsymbol{\eta}=\sqrt{\chi} \varepsilon(\mathbf{u}) \text { a.e. in } \Omega \times(0, T)
$$

Hence

$$
\begin{gathered}
\int_{0}^{T} \int_{\Omega}\left(\partial_{t} \chi+\gamma(\chi)\right) \varphi \mathrm{d} x+\int_{0}^{T} a_{s}(\chi, \varphi) \leq \int_{0}^{T} \int_{\Omega}\left(-\frac{1}{2 \chi}|\boldsymbol{\eta}|^{2}+\Theta(w)\right) \varphi \mathrm{d} x \\
\quad \text { for all } \varphi \in L^{2}\left(0, T ; W_{+}^{s, 2}(\Omega)\right) \cap L^{\infty}(Q) \text { with } \operatorname{supp}(\varphi) \subset\{\chi>0\}
\end{gathered}
$$

coincides with

$$
\int_{0}^{T} \int_{\Omega} \chi_{t} \varphi+|\nabla \chi|^{p-2} \nabla \chi \cdot \nabla \varphi+\xi \varphi+\gamma(\chi) \varphi+\frac{|\varepsilon(\mathbf{u})|^{2}}{2} \varphi-\Theta(w) \varphi \geq 0
$$

Subtracting from the degenerate energy inequality the weak enthalpy equation tested by 1 , we recover (a.e. in ($0, T$) :

$$
\begin{aligned}
& \int_{0}^{t} \int_{\Omega}\left|\chi_{t}\right|^{2} \mathrm{~d} x \mathrm{~d} r+\|\chi(t)\|_{H^{s}(\Omega)}^{2}+\int_{\Omega} W(\chi(t)) \mathrm{d} x \\
& \leq\left\|\chi_{0}\right\|_{H^{s}(\Omega)}^{2}+\int_{\Omega} W\left(\chi_{0}\right) \mathrm{d} x+\int_{0}^{t} \int_{\Omega} \chi_{t}\left(-\frac{|\varepsilon(\mathbf{u})|^{2}}{2}+\Theta(w)\right) \mathrm{d} x \mathrm{~d} r
\end{aligned}
$$

Hypotheses

The non-degenerate case
The degenerating case

Remarks

Phase Transitions and
Damage
E. Rocca

The model

The anatysis
Main new results
Hypotheses
The non-degenerate
The degenerating
case

Remarks

Phase Transitions and Damage
E. Rocca

The proof of Theorem 3 strongly relies on the following properties:

The model

The analysis

Main new results
Hypotheses
The non-degenerate case
The degenerating case

Remarks

The proof of Theorem 3 strongly relies on the following properties:

1. the compact embedding of $H^{5}(\Omega)$ into $\mathrm{C}^{0}(\bar{\Omega})$;

The model

The antatys

Main new results

Hypotheses
The non-degenerate case
The degenerating case

Remarks

The proof of Theorem 3 strongly relies on the following properties:

1. the compact embedding of $H^{s}(\Omega)$ into $\mathrm{C}^{0}(\bar{\Omega})$;
2. the fact that the s-Laplacian operator is linear: if instead we had stayed with the p-Laplacian operator, we would have not been able to pass to the limit in the nonlinear term $\left|\nabla \chi_{\delta}\right|^{p-2} \nabla \chi_{\delta} \nabla \zeta$ featuring in the χ-inequality in place of $a_{s}\left(\chi_{\delta}, \zeta\right)$;

Remarks

The proof of Theorem 3 strongly relies on the following properties:

1. the compact embedding of $H^{s}(\Omega)$ into $\mathrm{C}^{0}(\bar{\Omega})$;
2. the fact that the s-Laplacian operator is linear: if instead we had stayed with the p-Laplacian operator, we would have not been able to pass to the limit in the nonlinear term $\left|\nabla \chi_{\delta}\right|^{p-2} \nabla \chi_{\delta} \nabla \zeta$ featuring in the χ-inequality in place of $a_{s}\left(\chi_{\delta}, \zeta\right)$;
3. the fact that $t \mapsto \chi_{\delta}(t, x)$ is nonincreasing for all $x \in \bar{\Omega}$, which follows from the irreversibility constraint;

Remarks

The proof of Theorem 3 strongly relies on the following properties:

1. the compact embedding of $H^{5}(\Omega)$ into $\mathrm{C}^{0}(\bar{\Omega})$;
2. the fact that the s-Laplacian operator is linear: if instead we had stayed with the p-Laplacian operator, we would have not been able to pass to the limit in the nonlinear term $\left|\nabla \chi_{\delta}\right|^{p-2} \nabla \chi_{\delta} \nabla \zeta$ featuring in the χ-inequality in place of $a_{s}\left(\chi_{\delta}, \zeta\right)$;
3. the fact that $t \mapsto \chi_{\delta}(t, x)$ is nonincreasing for all $x \in \bar{\Omega}$, which follows from the irreversibility constraint;
4. the fact that we neglige the thermal expansion, i.e. we take $\rho=0$, is due to the low regularity estimates we have on $\operatorname{div} \mathbf{u}_{t}$ for $\delta=0$, which does not allow to pass to the limit in $\rho \operatorname{div}\left(\mathbf{u}_{t}\right) \Theta(w)$ when $\delta \searrow 0$

Remarks

The proof of Theorem 3 strongly relies on the following properties:

1. the compact embedding of $H^{5}(\Omega)$ into $\mathrm{C}^{0}(\bar{\Omega})$;
2. the fact that the s-Laplacian operator is linear: if instead we had stayed with the p-Laplacian operator, we would have not been able to pass to the limit in the nonlinear term $\left|\nabla \chi_{\delta}\right|^{p-2} \nabla \chi_{\delta} \nabla \zeta$ featuring in the χ-inequality in place of $a_{s}\left(\chi_{\delta}, \zeta\right)$;
3. the fact that $t \mapsto \chi_{\delta}(t, x)$ is nonincreasing for all $x \in \bar{\Omega}$, which follows from the irreversibility constraint;
4. the fact that we neglige the thermal expansion, i.e. we take $\rho=0$, is due to the low regularity estimates we have on $\operatorname{div} \mathbf{u}_{t}$ for $\delta=0$, which does not allow to pass to the limit in $\rho \operatorname{div}\left(\mathbf{u}_{t}\right) \Theta(w)$ when $\delta \searrow 0$
These are the reasons why we have restricted the analysis of the degenerate limit to the irreversible system, with the nonlocal s-Laplacian operator.
