Formulazione duale per un modello di transizione di fase: buona positura e comportamento per tempi lunghi

E. Rocca

Università degli Studi di Milano

Colloquium Lagrangianum 2006 Scilla, 7–10 dicembre, 2006

joint work with E. Bonetti (Pavia) and M. Frémond (Paris)

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis The case of a general α :

Meaningful lpha 's

The case α Lipschitz continuous

The case $\alpha = \exp \left[- \frac{1}{2} + \frac{1}$

We discuss here a new approach to phase transitions with thermal memory based on a new formulation of the internal energy balance by means of the entropy leading to a nonlinear and possibly singular PDE system. We proceed as follows:

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis The case of a general α : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left[-\frac{1}{2} + \exp \left[-\frac{1}{2} +$

We discuss here a new approach to phase transitions with thermal memory based on a new formulation of the internal energy balance by means of the entropy leading to a nonlinear and possibly singular PDE system. We proceed as follows:

 we explain how this formulation turns out to be convenient in order to prove thermodynamical consistency of the model

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis The case of a general lpha : existence result

Meaningful lpha 's

The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} + \frac{1}{2} + \frac{1}{$

We discuss here a new approach to phase transitions with thermal memory based on a new formulation of the internal energy balance by means of the entropy leading to a nonlinear and possibly singular PDE system. We proceed as follows:

- we explain how this formulation turns out to be convenient in order to prove thermodynamical consistency of the model
- we point out the existence (of solutions) result for the general PDE system

E. Bonetti, M. Frémond, E.R., work in progress

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis The case of a general lpha : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left[- \frac{1}{2} + \frac{1}$

We discuss here a new approach to phase transitions with thermal memory based on a new formulation of the internal energy balance by means of the entropy leading to a nonlinear and possibly singular PDE system. We proceed as follows:

- we explain how this formulation turns out to be convenient in order to prove thermodynamical consistency of the model
- we point out the existence (of solutions) result for the general PDE system

E. Bonetti, M. Frémond, E.R., work in progress

we state the long-time behaviour results holding true for particular choices of the nonlinearities involved

E. Bonetti, E.R., Commun. Pure Appl. Anal., to appear

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis The case of a general α : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left[- \frac{1}{2} + \frac{1}$

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis The case of a general α : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \alpha$

The internal energy: a dual formulation The state variables: $(\vartheta, \chi, \nabla \chi) \Longrightarrow (s, \chi, \nabla \chi)$

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of nicroscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis The case of a general α : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \alpha$

The state variables: $(\vartheta, \chi, \nabla \chi) \Longrightarrow (s, \chi, \nabla \chi)$ The functional: $\Psi(\vartheta, \chi, \nabla \chi) \Longrightarrow E(s, \chi, \nabla \chi)$ Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis The case of a general α :

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \alpha$

The state variables: $(\vartheta, \chi, \nabla \chi) \Longrightarrow (s, \chi, \nabla \chi)$ The functional: $\Psi(\vartheta, \chi, \nabla \chi) \Longrightarrow E(s, \chi, \nabla \chi)$ We choose

$$\boldsymbol{E}(\boldsymbol{s},\boldsymbol{\chi},\nabla\boldsymbol{\chi}) = \widehat{\alpha}(\boldsymbol{s}-\boldsymbol{\lambda}(\boldsymbol{\chi})) + \sigma(\boldsymbol{\chi}) + \widehat{\beta}(\boldsymbol{\chi}) + \frac{\nu}{2}|\nabla\boldsymbol{\chi}|^2$$

where

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis

The case of a general lpha : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} - \exp \left(-\frac{1}{2} + \exp \left(-\frac{1}{2} +$

The state variables: $(\vartheta, \chi, \nabla \chi) \Longrightarrow (s, \chi, \nabla \chi)$ The functional: $\Psi(\vartheta, \chi, \nabla \chi) \Longrightarrow E(s, \chi, \nabla \chi)$ We choose

$$\boldsymbol{E}(\boldsymbol{s},\boldsymbol{\chi},\nabla\boldsymbol{\chi}) = \widehat{\alpha}(\boldsymbol{s}-\boldsymbol{\lambda}(\boldsymbol{\chi})) + \sigma(\boldsymbol{\chi}) + \widehat{\beta}(\boldsymbol{\chi}) + \frac{\nu}{2}|\nabla\boldsymbol{\chi}|^2$$

where

- σ and λ are smooth functions accounting for the non-convex part of the internal energy and the latent heat, respectively
- ► $\widehat{\beta} : \mathbb{R} \to [0, \infty]$ is a general proper, convex, and lower-semicontinuous function
- $\widehat{\alpha} : \mathbb{R} \to \mathbb{R}$ is a convex, increasing, l.s.c. function

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis The case of a general lpha : existence result

Meaningful α 's The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} + \frac{1}{2} + \frac{1}{$

The state variables: $(\vartheta, \chi, \nabla \chi) \Longrightarrow (s, \chi, \nabla \chi)$ The functional: $\Psi(\vartheta, \chi, \nabla \chi) \Longrightarrow E(s, \chi, \nabla \chi)$ We choose

$$\boldsymbol{E}(\boldsymbol{s},\boldsymbol{\chi},\nabla\boldsymbol{\chi}) = \widehat{\alpha}(\boldsymbol{s}-\boldsymbol{\lambda}(\boldsymbol{\chi})) + \sigma(\boldsymbol{\chi}) + \widehat{\beta}(\boldsymbol{\chi}) + \frac{\nu}{2}|\nabla\boldsymbol{\chi}|^2$$

where

- σ and λ are smooth functions accounting for the non-convex part of the internal energy and the latent heat, respectively
- ► $\widehat{\beta} : \mathbb{R} \to [0, \infty]$ is a general proper, convex, and lower-semicontinuous function

• $\widehat{\alpha} : \mathbb{R} \to \mathbb{R}$ is a convex, increasing, l.s.c. function It corresponds - due to the standard thermodynamic relation linking Ψ and E -

 $\Psi(\vartheta,\chi,\nabla\chi) = -(\boldsymbol{E}^*(\vartheta,\chi,\nabla\chi))$

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis The case of a general lpha : existence result

The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} + \frac{1}{2} + \frac{1}{$

The state variables: $(\vartheta, \chi, \nabla \chi) \Longrightarrow (s, \chi, \nabla \chi)$ The functional: $\Psi(\vartheta, \chi, \nabla \chi) \Longrightarrow E(s, \chi, \nabla \chi)$ We choose

$$\boldsymbol{E}(\boldsymbol{s},\boldsymbol{\chi},\nabla\boldsymbol{\chi}) = \widehat{\alpha}(\boldsymbol{s}-\boldsymbol{\lambda}(\boldsymbol{\chi})) + \sigma(\boldsymbol{\chi}) + \widehat{\beta}(\boldsymbol{\chi}) + \frac{\nu}{2}|\nabla\boldsymbol{\chi}|^2$$

where

- σ and λ are smooth functions accounting for the non-convex part of the internal energy and the latent heat, respectively
- ► $\widehat{\beta} : \mathbb{R} \to [0, \infty]$ is a general proper, convex, and lower-semicontinuous function

• $\widehat{\alpha} : \mathbb{R} \to \mathbb{R}$ is a convex, increasing, l.s.c. function It corresponds - due to the standard thermodynamic relation linking Ψ and E -

 $\Psi(\vartheta, \chi, \nabla \chi) = -\sup_{s} \{ \langle \vartheta, s \rangle - E(s, \chi, \nabla \chi) \}, \ \vartheta = \frac{\partial E}{\partial s} = \widehat{\alpha}'(s - \lambda(\chi))$

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis The case of a general lpha : existence result

Meaningful α 's The case α Lipschitz continuous

The case $\alpha = \exp \left[- \frac{1}{2} \exp \left[-$

The state variables: $(\vartheta, \chi, \nabla \chi) \Longrightarrow (s, \chi, \nabla \chi)$ The functional: $\Psi(\vartheta, \chi, \nabla \chi) \Longrightarrow E(s, \chi, \nabla \chi)$ We choose

$$\boldsymbol{E}(\boldsymbol{s},\boldsymbol{\chi},\nabla\boldsymbol{\chi}) = \widehat{\alpha}(\boldsymbol{s}-\boldsymbol{\lambda}(\boldsymbol{\chi})) + \sigma(\boldsymbol{\chi}) + \widehat{\beta}(\boldsymbol{\chi}) + \frac{\nu}{2}|\nabla\boldsymbol{\chi}|^2$$

where

- σ and λ are smooth functions accounting for the non-convex part of the internal energy and the latent heat, respectively
- → β̂: ℝ → [0,∞] is a general proper, convex, and lower-semicontinuous function
- ► $\widehat{\alpha}$: $\mathbb{R} \to \mathbb{R}$ is a convex, increasing, l.s.c. function

It corresponds

to the following general free energy functional:

$$\Psi(\vartheta, \chi, \nabla \chi) = -\widehat{\alpha}^*(\vartheta) - \lambda(\chi)\vartheta + \sigma(\chi) + \widehat{\beta}(\chi) + \frac{\nu}{2}|\nabla \chi|^2$$

• $\widehat{\alpha}^* : \mathbb{R} \to \mathbb{R}$ is the convex conjugate of $\widehat{\alpha}$

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis The case of a general lpha : existence result

Meaningful α 's The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} + \frac{1}{2} + \frac{1}{$

The state variables: $(\vartheta, \chi, \nabla \chi) \Longrightarrow (s, \chi, \nabla \chi)$ The functional: $\Psi(\vartheta, \chi, \nabla \chi) \Longrightarrow E(s, \chi, \nabla \chi)$ We choose

$$\boldsymbol{E}(\boldsymbol{s},\boldsymbol{\chi},\nabla\boldsymbol{\chi}) = \widehat{\alpha}(\boldsymbol{s}-\boldsymbol{\lambda}(\boldsymbol{\chi})) + \sigma(\boldsymbol{\chi}) + \widehat{\beta}(\boldsymbol{\chi}) + \frac{\nu}{2}|\nabla\boldsymbol{\chi}|^2$$

where

- σ and λ are smooth functions accounting for the non-convex part of the internal energy and the latent heat, respectively
- → β̂: ℝ → [0,∞] is a general proper, convex, and lower-semicontinuous function

► $\widehat{\alpha} : \mathbb{R} \to \mathbb{R}$ is a convex, increasing, l.s.c. function It corresponds

to the standard one in case $\widehat{\alpha}^*(\vartheta) = c_v \vartheta(\log \vartheta - 1)$:

$$\Psi(\vartheta, \chi, \nabla \chi) = c_{\nu} \vartheta(1 - \log \vartheta) - \lambda(\chi) \vartheta + \sigma(\chi) + \widehat{\beta}(\chi) + \frac{\nu}{2} |\nabla \chi|^2$$

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis The case of a general lpha : existence result

The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} + \frac{1}{2} + \frac{1}{$

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of nicroscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis The case of a general α : existence result

Meaningful lpha's

The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} - \exp \left(-\frac{1}{2} + \exp \left(-\frac{1}{2} +$

Take the caloric part of the entropy
$$u = s - \lambda(\chi)$$
.

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency

Our main results

Main Hypothesis The case of a general α : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} - \exp \left(-\frac{1}{2} + \exp \left(-\frac{1}{2} +$

Take the caloric part of the entropy $u = s - \lambda(\chi)$.

• If we consider the standard caloric part of the Free Energy

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis

The case of a general lpha : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left[- \frac{1}{2} \exp \left(-$

Take the caloric part of the entropy $u = s - \lambda(\chi)$.

 If we consider the standard caloric part of the Free Energy α^{*}(ϑ) = c_v ϑ(log ϑ − 1) [standard Ginzburg-Landau Free energy functional] Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis

The case of a general lpha : existence result

Meaningful lpha's

The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} + \frac{1}{2} + \frac{1}{$

Take the caloric part of the entropy $u = s - \lambda(\chi)$.

 If we consider the standard caloric part of the Free Energy α^{*}(ϑ) = c_v ϑ(log ϑ − 1) [standard Ginzburg-Landau Free energy functional]

 $\Longrightarrow \widehat{\alpha}(u) = c \exp(u)$

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis

The case of a general lpha : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} + \frac{1}{2} + \frac{1}{$

Take the caloric part of the entropy $u = s - \lambda(\chi)$.

 If we consider the standard caloric part of the Free Energy α^{*}(ϑ) = c_vϑ(log ϑ − 1) [standard Ginzburg-Landau Free energy functional]

 $\Longrightarrow \widehat{\alpha}(u) = c \exp(u)$

Since, c_ν in the applications may also not be constant, we can allow every form for c_ν = c_ν(ϑ) such that â(ϑ) is convex - e.g., if c_ν(ϑ) = ϑ^γ, for ϑ ∈ (0, ϑ) with γ ≥ 0 - since c_ν(ϑ) = -ϑ (∂²Ψ/∂ϑ²), then we have â^{*}(ϑ) = ϑ^{γ+1}/[γ(γ + 1)]

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis The case of a general lpha :

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left[-\frac{1}{2} + \exp \left[-\frac{1}{2} +$

Take the caloric part of the entropy $u = s - \lambda(\chi)$.

 If we consider the standard caloric part of the Free Energy α^{*}(ϑ) = c_v ϑ(log ϑ − 1) [standard Ginzburg-Landau Free energy functional]

 $\Longrightarrow \widehat{\alpha}(u) = c \exp(u)$

Since, c_v in the applications may also not be constant, we can allow every form for c_v = c_v(ϑ) such that â(ϑ) is convex - e.g., if c_v(ϑ) = ϑ^γ, for ϑ ∈ (0, ϑ) with γ ≥ 0 - since c_v(ϑ) = -ϑ (∂²Ψ/∂ϑ²), then we have â^{*}(ϑ) = ϑ^{γ+1}/[γ(γ + 1)]

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis

The case of a general α : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} + \frac{1}{2} + \frac{1}{$

Open problems

 $\widehat{\alpha}(u) = u^{\frac{\gamma+1}{\gamma}}/(\gamma+1)$

We follow the approach of [Moreau, 1971].

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis The case of a general α : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} - \exp \left(-\frac{1}{2} + \exp \left(-\frac{1}{2} +$

We follow the approach of [Moreau, 1971]. The dissipative variables: $(\nabla \vartheta, \chi_t) \Longrightarrow (-\mathbf{Q}, \chi_t)$ Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency

Our main results

Main Hypothesis The case of a general α :

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} - \exp \left(-\frac{1}{2} + \exp \left(-\frac{1}{2} +$

We follow the approach of [Moreau, 1971]. The dissipative variables: $(\nabla \vartheta, \chi_t) \Longrightarrow (-\mathbf{Q}, \chi_t)$ The functional: $\Phi(\nabla \vartheta, \chi_t) \Longrightarrow p(-\mathbf{Q}, \chi_t)$ Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

 $\label{eq:main-Hypothesis} \begin{array}{l} \mbox{Main-Hypothesis} \\ \mbox{The case of a general } \alpha \end{tabular} \end{array}$

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \alpha$

We follow the approach of [Moreau, 1971]. The dissipative variables: $(\nabla \vartheta, \chi_t) \Longrightarrow (-\mathbf{Q}, \chi_t)$ The functional: $\Phi(\nabla \vartheta, \chi_t) \Longrightarrow p(-\mathbf{Q}, \chi_t)$ We choose

$$\boldsymbol{p}(\boldsymbol{\chi}_t, -\mathbf{Q}) = \frac{1}{2}|\boldsymbol{\chi}_t|^2 + \frac{1}{2}\alpha'(\boldsymbol{u})| - \mathbf{Q}|^2.$$

where $u = s - \lambda(\chi)$, $\alpha = \hat{\alpha}'$, $\Phi = p^*$, and

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis

The case of a general lpha : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} + \frac{1}{2} + \frac{1}{$

We follow the approach of [Moreau, 1971]. The dissipative variables: $(\nabla \vartheta, \chi_t) \Longrightarrow (-\mathbf{Q}, \chi_t)$ The functional: $\Phi(\nabla \vartheta, \chi_t) \Longrightarrow p(-\mathbf{Q}, \chi_t)$ We choose

$$\boldsymbol{\rho}(\boldsymbol{\chi}_t, -\mathbf{Q}) = \frac{1}{2} |\boldsymbol{\chi}_t|^2 + \frac{1}{2} \alpha'(\boldsymbol{u})| - \mathbf{Q}|^2.$$

where
$$u = s - \lambda(\chi)$$
, $\alpha = \hat{\alpha}'$, $\Phi = p^*$, and
• $-\mathbf{Q} = \frac{\partial \Phi}{\partial(\nabla \vartheta)}$ the dual conjugate variable of $\nabla \vartheta$,
i.e. the entropy flux and

▶ since $\hat{\alpha}$ is convex, *p* is convex with respect to $-\mathbf{Q}$.

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis The case of a general α : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} + \frac{1}{2} + \frac{1}{$

We follow the approach of [Moreau, 1971]. The dissipative variables: $(\nabla \vartheta, \chi_t) \Longrightarrow (-\mathbf{Q}, \chi_t)$ The functional: $\Phi(\nabla \vartheta, \chi_t) \Longrightarrow p(-\mathbf{Q}, \chi_t)$ We choose

$$\boldsymbol{p}(\boldsymbol{\chi}_t, -\mathbf{Q}) = \frac{1}{2}|\boldsymbol{\chi}_t|^2 + \frac{1}{2}\alpha'(\boldsymbol{u})| - \mathbf{Q}|^2.$$

where
$$u = s - \lambda(\chi)$$
, $\alpha = \hat{\alpha}', \Phi = p^*$, and $\partial \Phi$

• $-\mathbf{Q} = \frac{\partial \Psi}{\partial (\nabla \vartheta)}$ the dual conjugate variable of $\nabla \vartheta$, i.e. the entropy flux and

► since $\widehat{\alpha}$ is convex, *p* is convex with respect to $-\mathbf{Q}$.

Indeed, we can compute the conjugate function

 $| \boldsymbol{\rho}^*(\boldsymbol{\chi}_t, \nabla \vartheta) = \sup_{-\mathbf{Q}} \{ -\nabla \vartheta \cdot \mathbf{Q} - \boldsymbol{\rho}(\boldsymbol{\chi}_t, -\mathbf{Q}) \}, | \text{from which} |$

it follows $\nabla \vartheta = -\alpha'(u)\mathbf{Q}$ and $-\mathbf{Q} = \nabla u$ because $\vartheta = \alpha(u)$.

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis The case of a general α : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} + \frac{1}{2} + \frac{1}{$

We follow the approach of [Moreau, 1971]. The dissipative variables: $(\nabla \vartheta, \chi_t) \Longrightarrow (-\mathbf{Q}, \chi_t)$ The functional: $\Phi(\nabla \vartheta, \chi_t) \Longrightarrow p(-\mathbf{Q}, \chi_t)$ We choose

$$p(\chi_t, -\mathbf{Q}) = \frac{1}{2}|\chi_t|^2 + \frac{1}{2}\alpha'(u)| - \mathbf{Q}|^2.$$

▶ since $\hat{\alpha}$ is convex, *p* is convex with respect to $-\mathbf{Q}$.

Hence, we recover the following form for the pseudopotential of dissipation

$$\Phi(\chi_t, \nabla \vartheta) = \boldsymbol{\rho}^*(\chi_t, \nabla \vartheta) = \frac{1}{2} |\chi_t|^2 + \frac{1}{2\alpha'(\alpha^{-1}(\vartheta))} |\nabla \vartheta|^2$$

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis The case of a general α : existence result

Meaningful lpha's

The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} + \frac{1}{2} + \frac{1}{$

We follow the approach of [Moreau, 1971]. The dissipative variables: $(\nabla \vartheta, \chi_t) \Longrightarrow (-\mathbf{Q}, \chi_t)$ The functional: $\Phi(\nabla \vartheta, \chi_t) \Longrightarrow p(-\mathbf{Q}, \chi_t)$ We choose

$$p(\chi_t, -\mathbf{Q}) = \frac{1}{2}|\chi_t|^2 + \frac{1}{2}\alpha'(u)| - \mathbf{Q}|^2.$$

where
$$u = s - \lambda(\chi)$$
, $\alpha = \hat{\alpha}'$, $\Phi = p^*$, and
• $-\mathbf{Q} = \frac{\partial \Phi}{\partial(\nabla \vartheta)}$ the dual conjugate variable of $\nabla \vartheta$,
i.e. the entropy flux and

▶ since $\hat{\alpha}$ is convex, *p* is convex with respect to $-\mathbf{Q}$.

From which, if $\alpha'(\alpha^{-1}(\vartheta)) = \vartheta$, like, e.g., in case $\alpha(u) = \exp(u)$, we recover the standard form of Φ : $\Phi(\chi_t, \nabla \vartheta) = \frac{1}{2} |\chi_t|^2 + \frac{|\nabla \vartheta|^2}{2\vartheta}$. Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis The case of a general α : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} + \frac{1}{2} + \frac{1}{$

We deduce the equation of microscopic motion for χ from the generalized principle of virtual power (cf. [M. Frémond, 2002])

Formulazione duale di modelli di phase-field

E. Rocca

The mode

The equation of microscopic motion

The internal energy alance

Thermodynamica consistency

The PDE system

Our main results

Main Hypothesis

The case of a general lpha : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} - \exp \left(-\frac{1}{2} + \exp \left(-\frac{1}{2} +$

We deduce the equation of microscopic motion for χ from the generalized principle of virtual power (cf. [M. Frémond, 2002])

THE PRINCIPLE OF VIRTUAL POWER for microscopic motion - for any subdomain $D \subset \Omega$ and any virtual microscopic velocity v - reads

 $P_{\rm int}(D, v) + P_{\rm ext}(D, v) = \mathbf{0},$

where (B and H are new interior forces)

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion

'he internal energy alance

Thermodynamical consistency

The PDE system

Our main results

Main Hypothesis

The case of a general $\alpha \colon$ existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} + \frac{1}{2} + \frac{1}{$

We deduce the equation of microscopic motion for χ from the generalized principle of virtual power (cf. [M. Frémond, 2002])

THE PRINCIPLE OF VIRTUAL POWER for microscopic motion - for any subdomain $D \subset \Omega$ and any virtual microscopic velocity v - reads

 $P_{\rm int}(D, v) + P_{\rm ext}(D, v) = \mathbf{0},$

where (B and H are new interior forces)

$$egin{aligned} & \mathcal{P}_{ ext{int}}(D, v) := -\int_D (B\,v + \mathbf{H} \cdot
abla v), \ & \mathcal{P}_{ ext{ext}}(D, v) := \int_D A\,v + \int_{\partial D} a\,v = 0. \end{aligned}$$

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion

'he internal energy alance

Thermodynamical consistency

The PDE system

Our main results

Main Hypothesis

The case of a general $\alpha \colon$ existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} + \frac{1}{2} + \frac{1}{$

We deduce the equation of microscopic motion for χ from the generalized principle of virtual power (cf. [M. Frémond, 2002])

THE PRINCIPLE OF VIRTUAL POWER for microscopic motion - for any subdomain $D \subset \Omega$ and any virtual microscopic velocity v - reads

 $P_{\rm int}(D, v) + P_{\rm ext}(D, v) = \mathbf{0},$

where (B and H are new interior forces)

$$egin{aligned} & P_{ ext{int}}(D,v) := -\int_D (B\,v+\mathbf{H}\cdot
abla v), \ & P_{ ext{ext}}(D,v) := \int_D A\,v + \int_{\partial D} a\,v = 0. \end{aligned}$$

In absence of external actions we get

 $|B - \operatorname{div} \mathbf{H} = \mathbf{0}$ in Ω with $\mathbf{H} \cdot \mathbf{n} = \mathbf{0}$ on $\partial \Omega$.

Formulazione duale di modelli di phase-field

E. Rocca

The mode

The equation of microscopic motion

'he internal energy alance

consistency

The PDE system

Our main results

Main Hypothesis

The case of a general $\alpha\colon$ existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left[- \frac{1}{2} \exp \left[-$

The phase inclusion

The equilibrium equation

 $B - \operatorname{div} \mathbf{H} = 0 \text{ in } \Omega + \mathbf{H} \cdot \mathbf{n} = 0 \text{ on } \partial \Omega,$

Formulazione duale di modelli di phase-field

E. Rocca

The mode

The equation of microscopic motion

'he internal energy alance

Thermodynamical consistency

The PDE system

Our main results

Main Hypothesis

The case of a general $\alpha\colon$ existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} - \exp \left(-\frac{1}{2} + \exp \left(-\frac{1}{2} +$

The phase inclusion

The equilibrium equation

$$B - \operatorname{div} \mathbf{H} = \mathbf{0} \text{ in } \Omega + \mathbf{H} \cdot \mathbf{n} = \mathbf{0} \text{ on } \partial\Omega,$$

where
$$B = \frac{\partial E}{\partial \chi} + \frac{\partial p}{\partial \chi_t}, \quad \mathbf{H} = \frac{\partial E}{\partial (\nabla \chi)},$$

Formulazione duale di modelli di phase-field

E. Rocca

The mode

The equation of microscopic motion

he internal energy alance

Thermodynamical consistency

The PDE system

Our main results

Main Hypothesis

The case of a general α : existence result

Meaningful lpha's

The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} - \exp \left(-\frac{1}{2} + \exp \left(-\frac{1}{2} +$

The phase inclusion

The equilibrium equation

$$B - \operatorname{div} \mathbf{H} = 0 \text{ in } \Omega + \mathbf{H} \cdot \mathbf{n} = 0 \text{ on } \partial\Omega,$$

where
$$B = \frac{\partial E}{\partial \chi} + \frac{\partial p}{\partial \chi_t}, \quad \mathbf{H} = \frac{\partial E}{\partial (\nabla \chi)},$$

and
$$E(s, \chi, \nabla \chi) = \widehat{\alpha}(s - \lambda(\chi)) + \sigma(\chi) + \widehat{\beta}(\chi) + \frac{\nu}{2} |\nabla \chi|^2$$
$$\rho = (\chi_t, -\mathbf{Q}) = \frac{1}{2} |\chi_t|^2 + \frac{1}{2} \alpha'(s - \lambda(\chi))| - \mathbf{Q}|^2$$
$$\downarrow$$

Formulazione duale di modelli di phase-field

E. Rocca

The mode

The equation of microscopic motion

'he internal energy balance 'hermodynamical

consistency

The PDE system

Our main results

Main Hypothesis The case of a general α : existence result

Meaningful α 's

,

The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} - \exp \left(-\frac{1}{2} -$

The phase inclusion

The equilibrium equation

$$B - \operatorname{div} \mathbf{H} = 0 \text{ in } \Omega + \mathbf{H} \cdot \mathbf{n} = 0 \text{ on } \partial\Omega,$$

where
$$B = \frac{\partial E}{\partial \chi} + \frac{\partial p}{\partial \chi_t}, \quad \mathbf{H} = \frac{\partial E}{\partial (\nabla \chi)},$$

and
$$E(s, \chi, \nabla \chi) = \widehat{\alpha}(s - \lambda(\chi)) + \sigma(\chi) + \widehat{\beta}(\chi) + \frac{\nu}{2} |\nabla \chi|^2,$$

$$p = (\chi_t, -\mathbf{Q}) = \frac{1}{2} |\chi_t|^2 + \frac{1}{2} \alpha'(s - \lambda(\chi))| - \mathbf{Q}|^2$$
$$\downarrow$$

$$\chi_t - \nu \Delta \chi + \beta(\chi) + \sigma'(\chi) - \alpha(s - \lambda(\chi))\lambda'(\chi) \ge 0 \quad \text{in } \Omega$$

and
$$\partial_{\mathbf{n}} \chi = \mathbf{0}$$
 on $\partial \Omega$

where $\alpha = \widehat{\alpha}'$ and $\beta = \partial \widehat{\beta}$.

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion

The internal energy balance Thermodynamical

The PDE system

Our main results

Main Hypothesis The case of a general α : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left[- \frac{1}{2} \exp \left(-$

Possible choices of the potentials $\widehat{\beta}$

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion

'he internal energy palance

consistency

The PDE system

Our main results

Main Hypothesis

The case of a general $\alpha\colon$ existence result

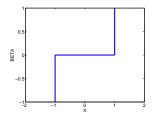
Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \alpha$

Possible choices of the potentials $\widehat{\beta}$

Subdifferential case: $\beta := \partial \widehat{\beta} = \partial I_{[-1,1]}$:



Formulazione duale di modelli di phase-field

E. Rocca

The mode

The equation of microscopic motion

he internal energy alance

Thermodynamica consistency

The PDE system

Our main results

Main Hypothesis

The case of a general $\alpha\colon$ existence result

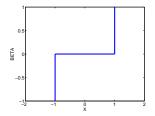
Meaningful α 's

The case α Lipschitz continuous

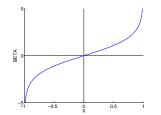
The case $\alpha = \exp \alpha$

Possible choices of the potentials $\widehat{\beta}$

Subdifferential case: $\beta := \partial \widehat{\beta} = \partial I_{[-1,1]}$:



Logarithmic case: $\beta := \partial \hat{\beta} = \log(1 + \chi) - \log(1 - \chi)$:



Formulazione duale di modelli di phase-field

E. Rocca

The mode

The equation of microscopic motion

he internal energy alance bermodynamical

consistency

The PDE system

Our main results

Main Hypothesis

The case of a general lpha : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp -$

The first Principle

For any subdomain $D \subset \Omega$ and in absence of external actions, it reads

$$\frac{d}{dt}\int_{D} E \, d\Omega = -P_{\rm int}(D, \chi_t).$$

Formulazione duale di modelli di phase-field

E. Rocca

The mode

The equation of microscopic motion

The internal energy balance

Thermodynamical consistency

The PDE system

Our main results

Main Hypothesis

The case of a general α : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left[- \frac{1}{2} \exp \left(-$

The first Principle

For any subdomain $D \subset \Omega$ and in absence of external actions, it reads

$$\frac{d}{dt}\int_{D} \boldsymbol{E} \, \boldsymbol{d}\Omega = -\boldsymbol{P}_{\rm int}(\boldsymbol{D},\boldsymbol{\chi}_t).$$

Then, if we take - as before - the following form for the power of internal actions:

$$\boldsymbol{P}_{\text{int}}(\boldsymbol{D},\boldsymbol{\chi}_t) = -\int_{\boldsymbol{D}} \left(\boldsymbol{B}\boldsymbol{\chi}_t + \boldsymbol{\mathsf{H}}\cdot\nabla\boldsymbol{\chi}_t\right)\,\boldsymbol{d}\boldsymbol{\Omega},$$

with

$$\boldsymbol{B} = \frac{\partial \boldsymbol{E}}{\partial \boldsymbol{\chi}} + \frac{\partial \boldsymbol{p}}{\partial \boldsymbol{\chi}_t}, \quad \boldsymbol{\mathsf{H}} = \frac{\partial \boldsymbol{E}}{\partial (\nabla \boldsymbol{\chi})},$$

Formulazione duale di modelli di phase-field

E. Rocca

The mode

The equation of microscopic motion

The internal energy balance

Thermodynamical consistency

Our main results

Main Hypothesis

existence result

Meaningful lpha 's

The case α Lipschitz continuous

The case $\alpha = \exp -$

The first Principle

For any subdomain $D \subset \Omega$ and in absence of external actions, it reads

$$\frac{d}{dt}\int_{D} E \, d\Omega = - P_{\rm int}(D, \chi_t).$$

Then, if we take - as before - the following form for the power of internal actions:

$$\boldsymbol{P}_{\text{int}}(\boldsymbol{D},\boldsymbol{\chi}_t) = -\int_{\boldsymbol{D}} \left(\boldsymbol{B}\boldsymbol{\chi}_t + \boldsymbol{\mathsf{H}}\cdot\nabla\boldsymbol{\chi}_t\right)\,\boldsymbol{d}\boldsymbol{\Omega},$$

with

$$\boldsymbol{B} = \frac{\partial \boldsymbol{E}}{\partial \boldsymbol{\chi}} + \frac{\partial \boldsymbol{p}}{\partial \boldsymbol{\chi}_t}, \quad \boldsymbol{H} = \frac{\partial \boldsymbol{E}}{\partial (\nabla \boldsymbol{\chi})},$$

we get exactly that there exists q such that

$$\boldsymbol{E}_t + \operatorname{div} \mathbf{q} = \frac{\partial \boldsymbol{E}}{\partial \boldsymbol{\chi}} \boldsymbol{\chi}_t + \frac{\partial \boldsymbol{p}}{\partial \boldsymbol{\chi}_t} \boldsymbol{\chi}_t + \frac{\partial \boldsymbol{E}}{\partial (\nabla \boldsymbol{\chi})} \nabla \boldsymbol{\chi}_t \quad \text{in } \boldsymbol{\Omega}.$$

Formulazione duale di modelli di phase-field

E. Rocca

The mode

The equation of microscopic motion

The internal energy balance

Thermodynamical consistency

Our main results

Main Hypothesis

existence result

Meaningful lpha's

The case α Lipschitz continuous

The case $\alpha = \exp \left[- \frac{1}{2} \exp \left(-$

The energy balance

Hence, the first principle of thermodynamics reads

$$\boldsymbol{E}_t + \operatorname{div} \mathbf{q} = \frac{\partial \boldsymbol{E}}{\partial \boldsymbol{\chi}} \boldsymbol{\chi}_t + \frac{\partial \boldsymbol{p}}{\partial \boldsymbol{\chi}_t} \boldsymbol{\chi}_t + \frac{\partial \boldsymbol{E}}{\partial (\nabla \boldsymbol{\chi})} \nabla \boldsymbol{\chi}_t \quad \text{in } \boldsymbol{\Omega}.$$

Formulazione duale di modelli di phase-field

E. Rocca

The mode

The equation of microscopic motion

The internal energy balance

Thermodynamical consistency

The PDE system

Our main results

Main Hypothesis

The case of a general α : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} - \exp \left(-\frac{1}{2} + \exp \left(-\frac{1}{2} +$

The energy balance

Hence, the first principle of thermodynamics reads

$$\boldsymbol{E}_t + \operatorname{div} \mathbf{q} = \frac{\partial \boldsymbol{E}}{\partial \boldsymbol{\chi}} \boldsymbol{\chi}_t + \frac{\partial \boldsymbol{p}}{\partial \boldsymbol{\chi}_t} \boldsymbol{\chi}_t + \frac{\partial \boldsymbol{E}}{\partial (\nabla \boldsymbol{\chi})} \nabla \boldsymbol{\chi}_t \quad \text{in } \boldsymbol{\Omega}.$$

With

$$E(\boldsymbol{s},\boldsymbol{\chi},\nabla\boldsymbol{\chi}) = \widehat{\alpha}(\boldsymbol{s}-\boldsymbol{\lambda}(\boldsymbol{\chi})) + \sigma(\boldsymbol{\chi}) + \widehat{\beta}(\boldsymbol{\chi}) + \frac{\nu}{2}|\nabla\boldsymbol{\chi}|^{2},$$
$$\boldsymbol{\rho} = (\boldsymbol{\chi}_{t},-\mathbf{Q}) = \frac{1}{2}|\boldsymbol{\chi}_{t}|^{2} + \frac{1}{2}\alpha'(\boldsymbol{s}-\boldsymbol{\lambda}(\boldsymbol{\chi}))| - \mathbf{Q}|^{2},$$

and, denoting by $u = s - \lambda(\chi)$, it gives:

Formulazione duale di modelli di phase-field

E. Rocca

The mode

The equation of microscopic motion

The internal energy balance

Thermodynamical consistency

Our main results

Main Hypothesis The case of a general α :

Meaningful $\alpha {\rm 's}$

The case α Lipschitz continuous

The case $\alpha = \exp \left[- \frac{1}{2} \exp \left(-$

The energy balance

Hence, the first principle of thermodynamics reads

$$\boldsymbol{E}_t + \operatorname{div} \mathbf{q} = \frac{\partial \boldsymbol{E}}{\partial \boldsymbol{\chi}} \boldsymbol{\chi}_t + \frac{\partial \boldsymbol{p}}{\partial \boldsymbol{\chi}_t} \boldsymbol{\chi}_t + \frac{\partial \boldsymbol{E}}{\partial (\nabla \boldsymbol{\chi})} \nabla \boldsymbol{\chi}_t \quad \text{in } \boldsymbol{\Omega}.$$

With

$$E(s, \chi, \nabla \chi) = \widehat{\alpha}(s - \lambda(\chi)) + \sigma(\chi) + \widehat{\beta}(\chi) + \frac{\nu}{2} |\nabla \chi|^2,$$

$$\rho = (\chi_t, -\mathbf{Q}) = \frac{1}{2} |\chi_t|^2 + \frac{1}{2} \alpha'(s - \lambda(\chi))| - \mathbf{Q}|^2,$$

and, denoting by $u = s - \lambda(\chi)$, it gives:

$$\alpha(u) (s_t + \operatorname{div} \mathbf{Q}) = \alpha'(u) |\nabla u|^2 + \chi_t^2 \text{ in } \Omega$$

where

- we recall that $\alpha(s \lambda(\chi)) = \widehat{\alpha}'(s \lambda(\chi)) = \frac{\partial E}{\partial s}$,
- and we have chosen **q** such that $\mathbf{q}/\alpha(u) = \mathbf{Q} = -\nabla u$.

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion

The internal energy balance

Thermodynamical consistency

Our main results

Main Hypothesis The case of a general α :

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left[- \frac{1}{2} + \frac{1}$

Formulazione duale di modelli di phase-field

E. Rocca

The mode

The equation of microscopic motion The internal energy balance

Thermodynamical consistency

The PDE system

Our main results

Main Hypothesis

The case of a general α : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left[- \frac{1}{2} \exp \left(-$

Moreover, in

$$\alpha(\boldsymbol{u}) \left(\boldsymbol{s}_t + \operatorname{div} \mathbf{Q}\right) = \alpha'(\boldsymbol{u}) |\nabla \boldsymbol{u}|^2 + \chi_t^2$$

we have

Formulazione duale di modelli di phase-field

E. Rocca

The mode

The equation of microscopic motion The internal energy balance

Thermodynamical consistency

The PDE system

Our main results

Main Hypothesis

The case of a general $\alpha\colon$ existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} - \exp \left(-\frac{1}{2} + \exp \left(-\frac{1}{2} +$

Moreover, in

$$\alpha(\boldsymbol{u}) \left(\boldsymbol{s}_t + \operatorname{div} \mathbf{Q}\right) = \alpha'(\boldsymbol{u}) |\nabla \boldsymbol{u}|^2 + \chi_t^2$$

we have

•
$$\alpha(u) = \alpha(s - \lambda(\chi)) = \widehat{\alpha}'(s - \lambda(\chi)) = \frac{\partial E}{\partial s}(=\vartheta) > 0$$

(ϑ is the absolute temperature) – because we have

assumed $\hat{\alpha}$ to be increasing,

• $\alpha' > 0$ – because we have assumed $\widehat{\alpha}$ to be convex.

Formulazione duale di modelli di phase-field

E. Rocca

The mode

The equation of microscopic motion The internal energy balance

Thermodynamical consistency

The PDE system

Our main results

Main Hypothesis The case of a general α : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} - \exp \left(-\frac{1}{2} -$

Moreover, in

$$\alpha(\boldsymbol{u}) \left(\boldsymbol{s}_t + \operatorname{div} \mathbf{Q} \right) = \alpha'(\boldsymbol{u}) |\nabla \boldsymbol{u}|^2 + \chi_t^2$$

we have

•
$$\alpha(u) = \alpha(s - \lambda(\chi)) = \widehat{\alpha}'(s - \lambda(\chi)) = \frac{\partial E}{\partial s}(=\vartheta) > 0$$

(ϑ is the absolute temperature) – because we have

assumed $\hat{\alpha}$ to be increasing,

• $\alpha' > 0$ – because we have assumed $\hat{\alpha}$ to be convex.

Divide by $\alpha(u) > 0$ the internal energy balance, getting

 $s_t + \operatorname{div} \mathbf{Q} \ge 0$,

that is just the pointwise Clausius-Duhem inequality .

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance

Thermodynamical consistency

The PDE system

Our main results

Main Hypothesis The case of a general α : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left[- \frac{1}{2} \exp \left(-$

Formulazione duale di modelli di phase-field

E. Rocca

The mode

The equation of microscopic motion The internal energy balance

Thermodynamical consistency

The PDE system

Our main results

Main Hypothesis

The case of a general α : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left[- \frac{1}{2} \exp \left(-$

From the following energy conservation principle

$$\alpha(\boldsymbol{u}) \left(\boldsymbol{s}_t + \operatorname{div} \mathbf{Q}\right) = \alpha'(\boldsymbol{u}) |\nabla \boldsymbol{u}|^2 + \chi_t^2$$

where $u = s - \lambda(\chi)$,

Formulazione duale di modelli di phase-field

E. Rocca

The mode

The equation of microscopic motion The internal energy balance

Thermodynamical consistency

The PDE system

Our main results

Main Hypothesis

The case of a general α : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left[- \frac{1}{2} \exp \left(-$

From the following energy conservation principle

$$\alpha(\boldsymbol{u}) \left(\boldsymbol{s}_t + \operatorname{div} \mathbf{Q}\right) = \alpha'(\boldsymbol{u}) |\nabla \boldsymbol{u}|^2 + \chi_t^2$$

where $u = s - \lambda(\chi)$, dividing by $\alpha(u)$,

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance

Thermodynamical consistency

The PDE system

Our main results

Main Hypothesis

The case of a general α : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left[- \frac{1}{2} \exp \left(-$

From the following energy conservation principle

$$\alpha(\boldsymbol{u})(\boldsymbol{s}_t + \operatorname{div} \mathbf{Q}) = \alpha'(\boldsymbol{u})|\nabla \boldsymbol{u}|^2 + \chi_t^2$$

where $u = s - \lambda(\chi)$, dividing by $\alpha(u)$, and using the small perturbations assumption (cf. [Germain]) - which allow us to neglect the higher order dissipative contributions on the right hand side -

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance

Thermodynamical consistency

The PDE system

Our main results

Main Hypothesis The case of a general lpha :

Meaningful lpha 's

The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} + \frac{1}{2} + \frac{1}{$

From the following energy conservation principle

 $\alpha(\boldsymbol{u}) \left(\boldsymbol{s}_t + \operatorname{div} \mathbf{Q} \right) = \alpha'(\boldsymbol{u}) |\nabla \boldsymbol{u}|^2 + \chi_t^2$

where $u = s - \lambda(\chi)$, dividing by $\alpha(u)$, and using the small perturbations assumption (cf. [Germain]) - which allow us to neglect the higher order dissipative contributions on the right hand side - we obtain the following equation for u

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance

Thermodynamical consistency

The PDE system

Our main results

fain Hypothesis The case of a general lpha :

Meaningful α 's The case α Lipschitz

The case $\alpha = \exp \alpha$

. ...

From the following energy conservation principle

$$\alpha(\boldsymbol{u}) \left(\boldsymbol{s}_t + \operatorname{div} \mathbf{Q} \right) = \alpha'(\boldsymbol{u}) |\nabla \boldsymbol{u}|^2 + \chi_t^2$$

where $u = s - \lambda(\chi)$, dividing by $\alpha(u)$, and using the small perturbations assumption (cf. [Germain]) - which allow us to neglect the higher order dissipative contributions on the right hand side - we obtain the following equation for u

$$(u+\lambda(\chi))_t-\Delta u=0,$$

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance

Thermodynamical consistency

The PDE system

Our main results

Main Hypothesis The case of a general lpha : existence result

Meaningful α 's The case α Lipschitz

(EB)

continuous

The case $\alpha = \exp \left(-\frac{1}{2} + \frac{1}{2} + \frac{1}{$

From the following energy conservation principle

 $\alpha(\boldsymbol{u}) \left(\boldsymbol{s}_t + \operatorname{div} \mathbf{Q}\right) = \alpha'(\boldsymbol{u}) |\nabla \boldsymbol{u}|^2 + \chi_t^2$

where $u = s - \lambda(\chi)$, dividing by $\alpha(u)$, and using the small perturbations assumption (cf. [Germain]) - which allow us to neglect the higher order dissipative contributions on the right hand side - we obtain the following equation for u

$$(u + \lambda(\chi))_t - \Delta u = 0, \tag{EB}$$

where we have taken - as before - $\mathbf{Q} = -\nabla u$.

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance

Thermodynamical consistency

The PDE system

Our main results

lain Hypothesis The case of a general lpha : existence result

Meaningful α 's The case α Lipschitz

ontinuous

The case $\alpha = \exp \left(-\frac{1}{2} + \frac{1}{2} + \frac{1}{$

From the following energy conservation principle

 $\alpha(\boldsymbol{u}) \left(\boldsymbol{s}_t + \operatorname{div} \mathbf{Q}\right) = \alpha'(\boldsymbol{u}) |\nabla \boldsymbol{u}|^2 + \chi_t^2$

where $u = s - \lambda(\chi)$, dividing by $\alpha(u)$, and using the small perturbations assumption (cf. [Germain]) - which allow us to neglect the higher order dissipative contributions on the right hand side - we obtain the following equation for u

$$(u + \lambda(\chi))_t - \Delta u = 0,$$
 (EB)

where we have taken - as before - $\mathbf{Q} = -\nabla u$. We generalize now the system in this direction:

► we let $\alpha = \partial \widehat{\alpha}$ be a general MAXIMAL MONOTONE GRAPH (maybe also multivalued),

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance

Thermodynamical consistency

The PDE system

Our main results

lain Hypothesis The case of a general lpha : existence result

Meaningful α 's The case α Lipschitz

continuous

The case $\alpha = \exp \left(-\frac{1}{2} + \frac{1}{2} + \frac{1}{$

From the following energy conservation principle

 $\alpha(\boldsymbol{u}) (\boldsymbol{s}_t + \operatorname{div} \mathbf{Q}) = \alpha'(\boldsymbol{u}) |\nabla \boldsymbol{u}|^2 + \chi_t^2$

where $u = s - \lambda(\chi)$, dividing by $\alpha(u)$, and using the small perturbations assumption (cf. [Germain]) - which allow us to neglect the higher order dissipative contributions on the right hand side - we obtain the following equation for u

$$(u+\lambda(\chi))_t-\Delta u=0,$$

where we have taken - as before - $\mathbf{Q} = -\nabla u$. We generalize now the system in this direction:

- ► we let $\alpha = \partial \widehat{\alpha}$ be a general MAXIMAL MONOTONE GRAPH (maybe also multivalued),
- ▶ we include in the internal energy balance memory effects, i.e. the term $-\operatorname{div} \int_{-\infty}^{t} k(t-\tau) \nabla \alpha(u(\tau)) d\tau$ on the left hand side of (EB).

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance

Thermodynamical consistency

The PDE system

Our main results

lain Hypothesis The case of a general lpha : existence result

Meaningful α 's The case α Lipschitz

(EB)

ontinuous

The case $\alpha = \exp \left(-\frac{1}{2} + \frac{1}{2} + \frac{1}{$

Formulazione duale di modelli di phase-field

E. Rocca

The mode

The equation of microscopic motion The internal energy balance

consistency

The PDE system

Our main results

Main Hypothesis

The case of a general α : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} - \exp \left(-\frac{1}{2} + \exp \left(-\frac{1}{2} +$

Take the auxiliary variable $u = s - \lambda(\chi)$

Formulazione duale di modelli di phase-field

E. Rocca

The mode

The equation of microscopic motion The internal energy balance

Thermodynamical consistency

The PDE system

Our main results

Main Hypothesis

The case of a general α : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \alpha$

Take the auxiliary variable $u = s - \lambda(\chi)$ and suppose to know the past history of $\alpha(u) = \vartheta$ up to time t = 0,

Formulazione duale di modelli di phase-field

E. Rocca

The mode

The equation of microscopic motion The internal energy balance

Thermodynamical consistency

The PDE system

Our main results

Main Hypothesis

The case of a general lpha : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} - \exp \left(-\frac{1}{2} + \exp \left(-\frac{1}{2} +$

Take the auxiliary variable $u = s - \lambda(\chi)$ and suppose to know the past history of $\alpha(u) = \vartheta$ up to time t = 0, i.e. suppose the history term:

 $\operatorname{div} \int_{-\infty}^{0} k(t-\tau) \nabla \alpha(u(\tau)) \, d\tau$ to be known.

Put it on the right hand side.

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance

consistency

The PDE system

Our main results

Main Hypothesis

The case of a general lpha : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} + \frac{1}{2} + \frac{1}{$

Take the auxiliary variable $u = s - \lambda(\chi)$ and suppose to know the past history of $\alpha(u) = \vartheta$ up to time t = 0, i.e. suppose the history term:

div $\int_{-\infty}^{0} k(t-\tau) \nabla \alpha(u(\tau)) d\tau$ to be known.

Put it on the right hand side. Then, we aim to find suitably regular (u, χ) solving in a proper sense:

$$(u + \lambda(\chi))_t - \Delta(u + k * \alpha(u)) \ni r \text{ in } \Omega$$

$$\partial_{\mathbf{n}}(u + k * \alpha(u)) \ni h \text{ on } \partial \Omega$$

$$\chi_t - \nu \Delta \chi + \beta(\chi) + \sigma'(\chi) - \lambda'(\chi)\alpha(u) \ni 0 \text{ in } \Omega$$

$$\partial_{\mathbf{n}}\chi = 0 \text{ on } \partial \Omega$$

$$u(0) = u_0, \quad \chi(0) = \chi_0 \text{ in } \Omega.$$

We must suppose from now on λ' constant (= 1 for simplicity).

Formulazione duale di modelli di phase-field

E. Rocca

The mode

The equation of microscopic motion The internal energy balance Thermodynamical consistency

The PDE system

Our main results

fain Hypothesis 'he case of a general α : xistence result

Meaningful α 's The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} + \frac{1}{2} + \frac{1}{$

Our main results

An existence (of weak solutions) result under general assumptions on the nonlinearity α for a graph β with domain the whole R and with at most a polynomial growth at ∞

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis The case of a general α : existence result

Meaningful α 's The case α Lipschitz

The case $\alpha = \exp i \phi$

Our main results

- An existence (of weak solutions) result under general assumptions on the nonlinearity α for a graph β with domain the whole R and with at most a polynomial growth at ∞
- An existence-uniqueness-long-time behaviour (of solutions) result in case α is Lipschitz-continuous and for a general β

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis The case of a general α : existence result

Meaningful α 's The case α Lipschitz

The case $\alpha = \exp \left(-\frac{1}{2} + \frac{1}{2} + \frac{1}{$

Our main results

- An existence (of weak solutions) result under general assumptions on the nonlinearity *α* for a graph *β* with domain the whole ℝ and with at most a polynomial growth at ∞
- An existence-uniqueness-long-time behaviour (of solutions) result in case α is Lipschitz-continuous and for a general β
- An existence-long-time behaviour (of solutions) result in case α = exp and for a general β

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis The case of a general α : existence result

The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} + \frac{1}{2} + \frac{1}{$

Hypotheses 1

Formulazione duale di modelli di phase-field

E. Rocca

The mode

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis

The case of a general α : existence result

Meaningful α 's The case α Lipschitz continuous

The case $\alpha = \exp i \phi$

Hypotheses 1

- $\Omega \subset \mathbb{R}^3$ bdd connected domain with sufficiently smooth boundary $\Gamma := \partial \Omega$
- ► $t \in [0,\infty], Q_t := \Omega \times (0,t), \Sigma_t := \Gamma \times (0,t),$
- $V := H^1(\Omega) \hookrightarrow H := L^2(\Omega) \equiv H' \hookrightarrow V'$ the Hilbert triplet.

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis

The case of a general α : existence result

Meaningful α 's The case α Lipschitz

continuous

The case $\alpha = \exp \left(-\frac{1}{2} + \frac{1}{2} + \frac{1}{$

Hypotheses 1

- Ω ⊂ ℝ³ bdd connected domain with sufficiently smooth boundary Γ := ∂Ω
- ► $t \in [0,\infty], Q_t := \Omega \times (0,t), \Sigma_t := \Gamma \times (0,t),$
- $V := H^1(\Omega) \hookrightarrow H := L^2(\Omega) \equiv H' \hookrightarrow V'$ the Hilbert triplet.

Suppose moreover that

 $\beta = \partial \widehat{\beta}, \ \alpha = \partial \widehat{\alpha}, \quad \text{with } \widehat{\beta}, \ \widehat{\alpha} : \mathbb{R} \to (-\infty, +\infty] \text{ are proper},$ convex, and lower semicontinuous $\sigma \in C^2(D(\beta)), \quad \sigma'' \in L^\infty(D(\beta)), \quad \nu > 0$ $k \in W^{2,1}(0,t), \quad k(0) \ge 0, \quad k \equiv 0 \text{ if } k(0) = 0,$ $r \in L^2(Q_t) \cap L^1(0, T; L^{\infty}(\Omega)), \quad h \in L^{\infty}(\Sigma_t),$ $\langle \boldsymbol{R}(t), \boldsymbol{v} \rangle = \int_{\Omega} \boldsymbol{r}(\cdot, t) \boldsymbol{v} + \int_{\Gamma} \boldsymbol{h}(\cdot, \boldsymbol{v}) \boldsymbol{v}_{|_{\Gamma}} \quad \forall \boldsymbol{v} \in \boldsymbol{V}$ $u_0 \in H, \ \widehat{\alpha}(u_0) \in L^1(\Omega), \ \chi_0 \in H, \ \nu \chi_0 \in V, \ \widehat{\beta}(\chi_0) \in L^1(\Omega).$

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis

The case of a general α : existence result

Meaningful α 's The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} + \frac{1}{2} + \frac{1}{$

Existence result for a general α

Formulazione duale di modelli di phase-field

E. Rocca

The mode

The equation of microscopic motion The internal energy balance Thermodynamical consistency

Our main results

Main Hypothesis

The case of a general $\alpha\colon$ existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left[- \frac{1}{2} \exp \left(-$

Existence result for a general α

Thm 1.Let *T* be a positive final time, HYPOTHESIS 1 be satisfied with t = T, and suppose moreover that $\nu > 0$, k(0) > 0, and there exists p < 5 such that

 $|eta(s)| \leq c_eta + c_eta' \min\{|s|^p, |\widehateta(s)|\} \quad orall s \in \mathbb{R},$ (beta)

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis

The case of a general α : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \alpha$

Existence result for a general α

Thm 1.Let *T* be a positive final time, HYPOTHESIS 1 be satisfied with t = T, and suppose moreover that $\nu > 0$, k(0) > 0, and there exists p < 5 such that

 $|eta(s)| \leq c_eta + c_eta' \min\{|s|^p, |\widehateta(s)|\} \quad orall s \in \mathbb{R},$ (beta)

then there exists at least a couple (u, χ) with the regularity properties

 $u \in H^{1}(0, T; V') \cap L^{2}(0, T; V), \ \chi \in H^{1}(0, T; H) \cap L^{\infty}(0, T; V),$ $\alpha_{V', V}(u) \in L^{2}(0, T; V'),$ $1 * \alpha_{V', V}(u) \in L^{2}(0, T; V) \cap C^{0}(0, T; H)$

solving, a.e. in (0, T), the PDE system:

$$\partial_t(u+\chi) + Au + A(k * \alpha_{V',V}(u)) \ni R, \quad \text{in } V', \tag{1}$$

$$\partial_t \chi + \nu A \chi + \beta(\chi) + \sigma'(\chi) - \alpha_{V',V}(U) \ni 0 \quad \text{in } V', \quad (2 u(0) = u_0, \quad \chi(0) = \chi_0 \quad \text{a.e. in } \Omega.$$

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis

The case of a general α : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp$

Formulazione duale di modelli di phase-field

E. Rocca

The mode

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis The case of a general α : existence result

Meaningful $\alpha{}'\!\mathrm{s}$

The case α Lipschitz continuous

The case $\, \alpha \, = \, \exp \,$

α(u) = exp(u)(= ϑ)
 we recover the model proposed by [Bonetti, Colli, Frémond, '03]

$$(u + \chi)_t - \Delta(u + k * \exp(u)) = r$$

$$\chi_t - \nu \Delta \chi + \beta(\chi) + \sigma'(\chi) - \exp(u) \ni 0.$$

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency

Our main results

Main Hypothesis The case of a general α : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} - \exp \left(-\frac{1}{2} + \exp \left(-\frac{1}{2} +$

α(u) = exp(u)(= ϑ)
 we recover the model proposed by [Bonetti, Colli, Frémond, '03]

$$(u + \chi)_t - \Delta(u + k * \exp(u)) = r$$

$$\chi_t - \nu \Delta \chi + \beta(\chi) + \sigma'(\chi) - \exp(u) \ni 0.$$

Choosing a different heat flux law $\mathbf{q} = -\nabla(\alpha^2(u))$ we recover the model proposed by [Bonetti, Colli, Fabrizio, Gilardi, '06]

$$(u + \chi)_t - \Delta(\exp(u) + k * \exp(u)) = r$$

$$\chi_t - \nu \Delta \chi + \beta(\chi) + \sigma'(\chi) - \exp(u) \ni 0$$

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

```
Main Hypothesis
The case of a general lpha :
existence result
```

Meaningful α 's

The case α Lipschitz continuous The case $\alpha = \exp (-1)^{1/2}$

α(u) = exp(u)(= ϑ): we recover the model proposed by [Bonetti, Colli, Frémond, '03]

$$(u + \chi)_t - \Delta(u + k * \exp(u)) = r$$

$$\chi_t - \nu \Delta \chi + \beta(\chi) + \sigma'(\chi) - \exp(u) \ni 0.$$

Choosing a different heat flux law $\mathbf{q} = -\nabla(\alpha^2(u))$ we recover the model proposed by [Bonetti, Colli, Fabrizio, Gilardi, '06]

$$(u + \chi)_t - \Delta(\exp(u) + k * \exp(u)) = r$$

$$\chi_t - \nu \Delta \chi + \beta(\chi) + \sigma'(\chi) - \exp(u) \ni 0$$

• α(u) = −1/u: we recover, e.g., the Penrose-Fife system

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

```
Main Hypothesis
The case of a general lpha :
existence result
```

Meaningful α 's

The case α Lipschitz continuous The case $\alpha = \exp (\alpha + 1)$

Formulazione duale di modelli di phase-field

E. Rocca

The mode

The equation of microscopic motion The internal energy balance Thermodynamical consistency

Our main results

Main Hypothesis

The case of a general α : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left[- \frac{1}{2} \exp \left(-$

Open problems

The case α Lipschitz continuous

Thm 2. Let *T* be a positive final time and HYPOTHESIS 1, with t = T, hold and assume that α is a Lipschitz continuous function.

Formulazione duale di modelli di phase-field

E. Rocca

The mode

The equation of microscopic motion The internal energy balance Thermodynamical consistency

Our main results

Main Hypothesis

The case of a general lpha : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} \right)$

Thm 2. Let *T* be a positive final time and HYPOTHESIS 1, with t = T, hold and assume that α is a Lipschitz continuous function. Then, there exists (u, χ, ξ) (with $\xi \in \beta(\chi)$ a.e.) solving (1–2) (a.e. in Q_T) + initial conditions and satisfying

$$\begin{split} & u \in C^0([0,T];H) \cap L^2(0,T;V), \quad \xi \in L^2(Q_T), \\ & \chi \in H^1(0,T;H), \quad \nu \chi \in L^\infty(0,T;V) \cap L^2(0,T;H^2(\Omega)). \end{split}$$

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis

he case of a general α : xistence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \alpha$

Thm 2. Let *T* be a positive final time and HYPOTHESIS 1, with t = T, hold and assume that α is a Lipschitz continuous function. Then, there exists (u, χ, ξ) (with $\xi \in \beta(\chi)$ a.e.) solving (1–2) (a.e. in Q_T) + initial conditions and satisfying

$$\begin{split} & u \in C^0([0,T];H) \cap L^2(0,T;V), \quad \xi \in L^2(Q_T), \\ & \chi \in H^1(0,T;H), \quad \nu \chi \in L^\infty(0,T;V) \cap L^2(0,T;H^2(\Omega)). \end{split}$$

The components u and χ of such a solution are uniquely determined.

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis The case of a general α : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left[-\frac{1}{2} + \exp \left[-\frac{1}{2} +$

Thm 2. Let *T* be a positive final time and HYPOTHESIS 1, with t = T, hold and assume that α is a Lipschitz continuous function. Then, there exists (u, χ, ξ) (with $\xi \in \beta(\chi)$ a.e.) solving (1–2) (a.e. in Q_T) + initial conditions and satisfying

$$\begin{split} & u \in C^0([0,T];H) \cap L^2(0,T;V), \quad \xi \in L^2(Q_T), \\ & \chi \in H^1(0,T;H), \quad \nu \chi \in L^\infty(0,T;V) \cap L^2(0,T;H^2(\Omega)). \end{split}$$

The components u and χ of such a solution are uniquely determined.

Note that in this case $\alpha_{V',V}$ in (2) can be identified with the standard $\partial \hat{\alpha}$ (defined a.e. in Q_T) in the sense of Convex Analysis.

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis The case of a general α : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} + \frac{1}{2} + \frac{1}{$

Thm 2. Let *T* be a positive final time and HYPOTHESIS 1, with t = T, hold and assume that α is a Lipschitz continuous function. Then, there exists (u, χ, ξ) (with $\xi \in \beta(\chi)$ a.e.) solving (1–2) (a.e. in Q_T) + initial conditions and satisfying

$$\begin{split} & u \in C^0([0,T];H) \cap L^2(0,T;V), \quad \xi \in L^2(Q_T), \\ & \chi \in H^1(0,T;H), \quad \nu \chi \in L^\infty(0,T;V) \cap L^2(0,T;H^2(\Omega)). \end{split}$$

The components u and χ of such a solution are uniquely determined.

Note that in this case $\alpha_{V',V}$ in (2) can be identified with the standard $\partial \hat{\alpha}$ (defined a.e. in Q_T) in the sense of Convex Analysis.

The proof is a suitable adaptation of the one of [Bonetti, Colli, Frémond, 2003] holding true in case $\beta = \partial I_{[0,1]}, \sigma' = \vartheta_c$

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

/lain Hypothesis The case of a general lpha : ixistence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left[-\frac{1}{2} + \exp \left[-\frac{1}{2} +$

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The DDE suptom

Our main results

Main Hypothesis

The case of a general α : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} - \exp \left(-\frac{1}{2} + \exp \left(-\frac{1}{2} +$

The long-time behaviour of solutions Thm 3. Let HYPOTHESIS 1 hold and suppose that (i) $k \in W^{1,1}(0,\infty)$ is of strongly positive type, i.e. $\exists \eta > 0$ such that

 $\widetilde{k}(t) := k(t) - \eta \exp(-t)$ is of positive type;

(ii) r, h sufficiently regular.

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency

.

Main Hypothesis

The case of a general $\alpha\colon$ existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left(-\frac{1}{2} + \frac{1}{2} + \frac{1}{$

The long-time behaviour of solutions Thm 3. Let HYPOTHESIS 1 hold and suppose that (i) $k \in W^{1,1}(0,\infty)$ is of strongly positive type, i.e. $\exists \eta > 0$ such that

 $\widetilde{k}(t) := k(t) - \eta \exp(-t)$ is of positive type;

(ii) *r*, *h* sufficiently regular.

Then, the ω -limit:

$$\omega(u_0, \chi_0, \nu) := \{ (u_\infty, \chi_\infty) \in H \times H, \nu \chi_\infty \in V : \exists t_n \to +\infty, \\ (u(t_n), \chi(t_n)) \to (u_\infty, \chi_\infty) \text{ in } V' \times (V' \cap \nu H) \}$$

is a compact, connected subset ($\neq \emptyset$) of $V' \times (V' \cap \nu H)$

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis The case of a general α : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left[-\frac{1}{2} + \exp \left[-\frac{1}{2} +$

The long-time behaviour of solutions Thm 3. Let HYPOTHESIS 1 hold and suppose that (i) $k \in W^{1,1}(0,\infty)$ is of strongly positive type, i.e. $\exists \eta > 0$ such that

 $\widetilde{k}(t) := k(t) - \eta \exp(-t)$ is of positive type;

(ii) *r*, *h* sufficiently regular.

Then, the ω -limit:

$$\begin{split} \omega(\boldsymbol{u}_0,\boldsymbol{\chi}_0,\boldsymbol{\nu}) &:= \{ (\boldsymbol{u}_\infty,\boldsymbol{\chi}_\infty) \in \boldsymbol{H} \times \boldsymbol{H}, \boldsymbol{\nu}\boldsymbol{\chi}_\infty \in \boldsymbol{V} : \; \exists \; \boldsymbol{t}_n \to +\infty, \\ (\boldsymbol{u}(\boldsymbol{t}_n),\boldsymbol{\chi}(\boldsymbol{t}_n)) \to (\boldsymbol{u}_\infty,\boldsymbol{\chi}_\infty) \; \text{in} \; \boldsymbol{V}' \times (\boldsymbol{V}' \cap \boldsymbol{\nu}\boldsymbol{H}) \} \end{split}$$

is a compact, connected subset $(\neq \emptyset)$ of $V' \times (V' \cap \nu H)$ and $\forall (u_{\infty}, \chi_{\infty}) \in \omega(u_0, \chi_0, \nu), \exists \xi_{\infty} \in \beta(\chi_{\infty})$ such that:

$$\begin{split} u_{\infty} &= \frac{1}{|\Omega|} \left(-\int_{\Omega} \chi_{\infty} + c_0 + m \right), \\ \nu A \chi_{\infty} + \xi_{\infty} + \sigma'(\chi_{\infty}) &= \alpha \left(\frac{1}{|\Omega|} \left(-\int_{\Omega} \chi_{\infty} + c_0 + m \right) \right), \\ \text{where } c_0 &= \int_{\Omega} u_0 + \int_{\Omega} \chi_0, \ m = \int_0^{\infty} \left(\int_{\Omega} r(s) + \int_{\Gamma} h(s) \right) ds. \end{split}$$

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis The case of a general α : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left[-\frac{1}{2} + \exp \left[-\frac{1}{2} +$

Formulazione duale di modelli di phase-field

E. Rocca

The mode

The equation of microscopic motion The internal energy balance Thermodynamical consistency The DDE output

Our main results

Main Hypothesis

The case of a general α : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp$

The existence result

Formulazione duale di modelli di phase-field

E. Rocca

The mode

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis The case of a general α :

existence result Meaningful α 's

The case α Lipschitz continuous

The case $\alpha\,=\,\exp$

The existence result

THM 4. Fix T > 0 and assume that HYPOTHESIS 1 hold with t = T. Suppose moreover that

(i) $\nu \ge 0$ if $D(\beta)$ is bounded and $\nu > 0$ if $D(\beta)$ is unbounded.

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis

The case of a general lpha : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha\,=\,\exp$

The existence result

THM 4. Fix T > 0 and assume that HYPOTHESIS 1 hold with t = T. Suppose moreover that

(i) $\nu \ge 0$ if $D(\beta)$ is bounded and $\nu > 0$ if $D(\beta)$ is unbounded.

Then, there exists at least a quadruple $(u, \vartheta, \chi, \xi)$ such that $\vartheta = \alpha(u) = \exp(u), \xi \in \beta(\chi)$ a.e.,

$$\begin{split} & u \in H^{1}(0, T; V') \cap L^{2}(0, T; V), \quad \vartheta \in L^{5/3}(Q_{T}), \\ & \chi \in H^{1}(0, T; H), \quad \nu \chi \in L^{\infty}(0, T; V) \cap L^{5/3}(0, T; W^{2, 5/3}(\Omega)), \\ & \xi \in L^{5/3}(Q_{T}), \quad k(0)(1 * \vartheta) \in L^{\infty}(0, T; V), \end{split}$$

satisfying system (1–2) a.e. in Q_T and the same initial conditions as before.

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

```
Main Hypothesis
The case of a general lpha:
existence result
```

Meaningful α 's The case α Lipschitz

The case α Lipschitz continuous

The case $\alpha = \exp$

Formulazione duale di modelli di phase-field

E. Rocca

The mode

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis

The case of a general $\alpha\colon$ existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp$

Thm 5. Under the assumptions of existence and (i) $k \in W^{1,1}(0,\infty)$ is of strongly positive type; (ii) r, h sufficiently regular, $\nu > 0$;

(i) $\lim_{|r|\to+\infty} |r|^{-2}\widehat{\beta}(r) = +\infty.$

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The DDE suptom

Our main results

Main Hypothesis

The case of a general lpha : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha\,=\,\exp$

Thm 5. Under the assumptions of existence and (i) $k \in W^{1,1}(0,\infty)$ is of strongly positive type; (ii) r, h sufficiently regular, $\nu > 0$; (i) $\lim_{|r|\to+\infty} |r|^{-2}\widehat{\beta}(r) = +\infty$. Let $(u, \chi) : (0, \infty) \to H \times V$ be a solution on $(0, +\infty)$ associated to (u_0, χ_0) .

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis

The case of a general lpha : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha\,=\,\exp$

- Thm 5. Under the assumptions of existence and
 - (i) $k \in W^{1,1}(0,\infty)$ is of strongly positive type;
 - (ii) r, h sufficiently regular, $\nu > 0$;
 - (i) $\lim_{|r|\to+\infty} |r|^{-2}\widehat{\beta}(r) = +\infty.$

Let (u, χ) : $(0, \infty) \rightarrow H \times V$ be a solution on $(0, +\infty)$ associated to (u_0, χ_0) . Then, the ω -limit set of a single trajectory (u, χ) defined in $(0, +\infty)$:

$$\omega(\boldsymbol{u},\boldsymbol{\chi}) := \{ (\boldsymbol{u}_{\infty},\boldsymbol{\chi}_{\infty}) \in \boldsymbol{H} \times \boldsymbol{V} : \exists t_n \to +\infty, \\ (\boldsymbol{u}(t_n),\boldsymbol{\chi}(t_n)) \to (\boldsymbol{u}_{\infty},\boldsymbol{\chi}_{\infty}) \text{ in } \boldsymbol{V}' \times \boldsymbol{H} \}$$

is a nonempty, compact, and connected subset of $V' \times H$.

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency

Our main results

Main Hypothesis The case of a general lpha : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp$

- Thm 5. Under the assumptions of existence and
 - (i) $k \in W^{1,1}(0,\infty)$ is of strongly positive type;
 - (ii) *r*, *h* sufficiently regular, $\nu > 0$;
 - (i) $\lim_{|r|\to+\infty} |r|^{-2}\widehat{\beta}(r) = +\infty$.

Let $(u, \tilde{\chi})$: $(0, \infty) \rightarrow H \times V$ be a solution on $(0, +\infty)$ associated to (u_0, χ_0) . Then, the ω -limit set of a single trajectory (u, χ) defined in $(0, +\infty)$:

$$\omega(u, \chi) := \{ (u_{\infty}, \chi_{\infty}) \in H \times V : \exists t_n \to +\infty, \\ (u(t_n), \chi(t_n)) \to (u_{\infty}, \chi_{\infty}) \text{ in } V' \times H \}.$$

is a nonempty, compact, and connected subset of $V' \times H$. Moreover, for any $(u_{\infty}, \chi_{\infty}) \in \omega(u, \chi)$ there exists $\xi_{\infty} \in L^{5/3}(\Omega), \xi_{\infty} \in \beta(\chi_{\infty})$ such that $(u_{\infty}, \chi_{\infty}, \xi_{\infty})$ solves the corresponding stationary problem (a.e. in Ω).

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency

Our main results

Main Hypothesis The case of a general lpha: existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp$

- Thm 5. Under the assumptions of existence and
 - (i) $k \in W^{1,1}(0,\infty)$ is of strongly positive type;
 - (ii) r, h sufficiently regular, $\nu > 0$;
 - (i) $\lim_{|r|\to+\infty} |r|^{-2}\widehat{\beta}(r) = +\infty$.

Let $(u, \tilde{\chi})$: $(0, \infty) \rightarrow H \times V$ be a solution on $(0, +\infty)$ associated to (u_0, χ_0) . Then, the ω -limit set of a single trajectory (u, χ) defined in $(0, +\infty)$:

$$\omega(\boldsymbol{u},\boldsymbol{\chi}) := \{ (\boldsymbol{u}_{\infty},\boldsymbol{\chi}_{\infty}) \in \boldsymbol{H} \times \boldsymbol{V} : \exists t_n \to +\infty, \\ (\boldsymbol{u}(t_n),\boldsymbol{\chi}(t_n)) \to (\boldsymbol{u}_{\infty},\boldsymbol{\chi}_{\infty}) \text{ in } \boldsymbol{V}' \times \boldsymbol{H} \}.$$

is a nonempty, compact, and connected subset of $V' \times H$. Moreover, for any $(u_{\infty}, \chi_{\infty}) \in \omega(u, \chi)$ there exists $\xi_{\infty} \in L^{5/3}(\Omega), \xi_{\infty} \in \beta(\chi_{\infty})$ such that $(u_{\infty}, \chi_{\infty}, \xi_{\infty})$ solves the corresponding stationary problem (a.e. in Ω).

THE CASE ν , k = 0 has been studied in [Bonetti, in "Dissipative phase transitions" (ed. P. Colli, N. Kenmochi, J. Sprekels) (2006)]

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency

Our main results

Main Hypothesis The case of a general lpha: existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp$

Formulazione duale di modelli di phase-field

E. Rocca

The mode

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis

The case of a general $\alpha\colon$ existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp$

In general, we cannot conclude that the whole trajectory $\{(u(t), \chi(t)) \ t \ge 0\}$ tends to $(u_{\infty}, \chi_{\infty})$ weakly in $H \times V$ and strongly in $V' \times H$ as $t \to +\infty$. This is mainly due to the presence of the anti-monotone term $\sigma'(\chi_{\infty})$.

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis

The case of a general α : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha\,=\,\exp$

In general, we cannot conclude that the whole trajectory $\{(u(t), \chi(t)) \ t \ge 0\}$ tends to $(u_{\infty}, \chi_{\infty})$ weakly in $H \times V$ and strongly in $V' \times H$ as $t \to +\infty$. This is mainly due to the presence of the anti-monotone term $\sigma'(\chi_{\infty})$. Indeed if

$$\beta = \partial I_{[0,1]}, \quad \sigma'(\chi) = \theta_c,$$

then we can conclude in addition that both u_{∞} and χ_{∞} are constants a.e. in Ω

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis The case of a general α :

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp$

In general, we cannot conclude that the whole trajectory $\{(u(t), \chi(t)) \ t \ge 0\}$ tends to $(u_{\infty}, \chi_{\infty})$ weakly in $H \times V$ and strongly in $V' \times H$ as $t \to +\infty$. This is mainly due to the presence of the anti-monotone term $\sigma'(\chi_{\infty})$. Indeed if

$$\beta = \partial I_{[0,1]}, \quad \sigma'(\chi) = \theta_c,$$

then we can conclude in addition that both u_{∞} and χ_{∞} are constants a.e. in Ω and that $(u_{\infty}, \chi_{\infty}) \in \omega(u, \chi)$ is uniquely determined by

$$\begin{split} u_{\infty} &= -\chi_{\infty} + \frac{1}{|\Omega|} (\boldsymbol{c}_{0} + \boldsymbol{m}), \\ \partial \boldsymbol{I}_{[0,1]}(\chi_{\infty}) - \exp\left(-\chi_{\infty} + \frac{1}{|\Omega|} (\boldsymbol{c}_{0} + \boldsymbol{m})\right) \ni -\theta_{\boldsymbol{c}}, \end{split}$$

being c_0 and m defined as before.

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis The case of a general α : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp$

In general, we cannot conclude that the whole trajectory $\{(u(t), \chi(t)) \ t \ge 0\}$ tends to $(u_{\infty}, \chi_{\infty})$ weakly in $H \times V$ and strongly in $V' \times H$ as $t \to +\infty$. This is mainly due to the presence of the anti-monotone term $\sigma'(\chi_{\infty})$. Indeed if

$$\beta = \partial I_{[0,1]}, \quad \sigma'(\chi) = \theta_c,$$

then we can conclude in addition that both u_{∞} and χ_{∞} are constants a.e. in Ω and that $(u_{\infty}, \chi_{\infty}) \in \omega(u, \chi)$ is uniquely determined by

$$\begin{split} u_{\infty} &= -\chi_{\infty} + \frac{1}{|\Omega|} (c_0 + m), \\ \partial I_{[0,1]}(\chi_{\infty}) &- \exp\left(-\chi_{\infty} + \frac{1}{|\Omega|} (c_0 + m)\right) \ni -\theta_c, \end{split}$$

being c_0 and m defined as before. In particular, the whole trajectory $(u(t), \chi(t))$ tends to $(u_{\infty}, \chi_{\infty})$ weakly in $H \times V$ and strongly in $V' \times H$ as $t \to +\infty$.

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis The case of a general lpha : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp$

Formulazione duale di modelli di phase-field

E. Rocca

The mode

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis The case of a general α : existence result

Meaningful lpha's

The case α Lipschitz continuous

The case $\alpha = \exp \left[- \frac{1}{2} \exp \left(-$

 To study the convergence of the whole trajectories in case the anti-monotone part σ' is present in the phase equation:

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

Main Hypothesis

The case of a general lpha : existence result

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \alpha$

 To study the convergence of the whole trajectories in case the anti-monotone part σ' is present in the phase equation: no uniqueness of the stationary states is expected

 $-\nu\Delta\chi_{\infty} + \beta(\chi_{\infty}) + \sigma'(\chi_{\infty}) \ni \exp(u_{\infty})$

by employing the Lojasiewicz technique in case of analytical potentials β , cf., e.g., [Feireisl, Schimperna, to appear] \hookrightarrow Penrose-Fife systems.

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

```
Main Hypothesis The case of a general \alpha: existence result
```

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left[-\frac{1}{2} + \exp \left[-\frac{1}{2} +$

 To study the convergence of the whole trajectories in case the anti-monotone part σ' is present in the phase equation: no uniqueness of the stationary states is expected

 $-\nu\Delta\chi_{\infty} + \beta(\chi_{\infty}) + \sigma'(\chi_{\infty}) \ni \exp(u_{\infty})$

by employing the Lojasiewicz technique in case of analytical potentials β , cf., e.g., [Feireisl, Schimperna, to appear] \hookrightarrow Penrose-Fife systems. Or use other techniques, cf. [Krejčí, Zheng, 2005] \hookrightarrow phase-relaxation systems with non-smooth potentials.

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

```
Main Hypothesis
The case of a general lpha :
existence result
```

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp$

• To study the convergence of the whole trajectories in case the anti-monotone part σ' is present in the phase equation: no uniqueness of the stationary states is expected

 $-\nu\Delta\chi_{\infty} + \beta(\chi_{\infty}) + \sigma'(\chi_{\infty}) \ni \exp(u_{\infty})$

- by employing the Lojasiewicz technique in case of analytical potentials β , cf., e.g., [Feireisl, Schimperna, to appear] \hookrightarrow Penrose-Fife systems. Or use other techniques, cf. [Krejčí, Zheng, 2005] \hookrightarrow phase-relaxation systems with non-smooth potentials.
- To get uniqueness in case of a general α (not Lipschitz-continuous). Problem: the doubly-nonlinear character of the system.

Formulazione duale di modelli di phase-field

E. Rocca

The model

The equation of microscopic motion The internal energy balance Thermodynamical consistency The PDE system

Our main results

```
Main Hypothesis
The case of a general lpha:
existence result
```

Meaningful α 's

The case α Lipschitz continuous

The case $\alpha = \exp \left[- \frac{1}{2} \exp \left(-$