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Summary In this paper we obtain a family of optimal estimates
for the linear advection-diffusion operator. More precisely we de-
fine norms on the domain of the operator, and norms on its image,
such that it behaves as an isomorphism: it stays bounded as well as
its inverse does, uniformly with respect to the diffusion parameter.
The analysis makes use of the interpolation theory between function
spaces. One motivation of the present work is our interest in the
theoretical properties of stable numerical methods for this kind of
problem: we will only give some hints here and we will take a deeper
look in a further paper.

1 Introduction

We consider the linear advection-diffusion operator

Lε := −ε∆ + c · ∇, (1)

and the related p.d.e. problem{Lεu = f in Ω

u = 0 on ∂Ω,
(2)

where the unknown u ≡ uε is a real function on a bounded polygonal
domain Ω ⊂ R2 (or Rn) and f is the source term. The diffusion coef-
ficient ε is assumed to be constant, while the advection velocity c is a
vector field on Ω. When ε is strictly positive and with some assump-
tions on c, the operator Lε is elliptic—it fits into the Lax-Milgram
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framework—and in particular it is an algebraic and topological iso-
morphism from H1

0 (Ω) into H−1(Ω) ≡ (H1
0 (Ω))∗. Nevertheless its

inverse L−1
ε , which gives the solution to (2), is not uniformly bounded

with respect to ε:

‖L−1
ε ‖L(H−1;H1

0 ) := sup
φ∈H−1

‖L−1
ε φ‖H1

0

‖φ‖H−1

' ε−1.

On the other hand one easily recognizes—for example by computing,
when possible, the solutions of (2) related to regular source terms—
that the problem is in some way well conditioned—also for very small
values of ε, even though boundary layers or internal layers appear:
actually the solution, as ε → 0+, approaches the solution of the purely
hyperbolic problem, with ε = 0 and suitable boundary conditions.

This leads us to define a couple of Banach spaces W and V ∗ in such
a way that Lε behaves as a uniformly bounded isomorphism between
the two spaces, with uniformly bounded inverse (with respect to ε);
using notation (7), it will read:

‖Lε‖L(W ;V ∗) ' ‖L−1
ε ‖L(V ∗;W ) ' 1. (3)

By introducing the bilinear form aε : W × V → R defined as

aε(w, v) := V ∗〈Lεw, v〉V

and by using the Banach’s closed range theorem, (3) is equivalent to
the conditions

sup
w∈W

sup
v∈V

aε(w, v)
‖w‖W ‖v‖V

≤ κ < +∞; (4)

inf
w∈W

sup
v∈V

aε(w, v)
‖w‖W ‖v‖V

≥ γ > 0; (5)

∀v ∈ V \{0},∃w ∈ W such that aε(w, v) 6= 0, (6)

with κ and γ independent of ε. In this work we construct a family of
spaces W and V that give (3): from the algebraic point of view we
shall set W ≡ V ≡ H1

0 (Ω), but their norms ‖ · ‖W and ‖ · ‖V will take
into account the anisotropic effect due to the convection term of the
operator and the dependence on ε of the diffusive regularization. As
a result, we are able to make the well posedness of the problem (2)
precise, as one gets from (4)–(6) that a perturbation δf (in the source
term f of (2)) yields a variation δu (of the solution u) which is smaller
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in relative magnitude (up to a multiplicative constant independent
of ε):

‖δu‖W

‖u‖W
≤ κγ−1 ‖δf‖V ∗

‖f‖V ∗
.

We obtain our results by means of the interpolation theory of function
spaces (see [21] and [26]). Actually our result will be true for a more
general class of operators, where a skew-symmetric part is singularly
perturbed by a symmetric higher order term.

Different estimates for (1) have been proposed by many authors;
we particularly refer the interested reader to [23] for a wide survey, to
the very recent [14], where estimates in anisotropic Lebesgue spaces
are proposed and applied to the analysis of numerical methods, and
also to [3], where estimates are derived by interpolation. As far as we
know, our work is the first one in which estimates like (3) have been
derived.

There is a huge literature devoted to numerical methods for (2)
(see, for example, [23] and the reference therein), which is indeed a
model problem for more complex situations arising, for example, in
computational fluid dynamic. Actually, our interest in the present
analysis of the advection-diffusion differential operator is mainly mo-
tivated by its relevance for the construction and understanding of
finite element methods for solving (2): in the last part of the present
paper we shall briefly show how (3) is related to the classical a priori
error theory. A deeper investigation of numerical aspects will be the
subject of further works.

The outline of the paper is as follows: in §2 we present the notation
and assumptions while §3 is devoted to the analysis. Finally in §4, as
mentioned above, we briefly discuss some consequences for numerical
methods.

2 Preliminaries

We denote by Lp ≡ Lp(Ω), the usual Lebesgue spaces endowed with
the norm ‖·‖Lp , and by H1 ≡ H1(Ω) the usual Sobolev space endowed
with the norm ‖ · ‖H1 and seminorm | · |H1 ≡ ‖∇ · ‖L2 ; H1

0 ≡ H1
0 (Ω)

is the space of functions contained in H1(Ω) with zero trace on ∂Ω,
endowed with the norm |·|H1 ; finally H−1 ≡ H−1(Ω) denotes the dual
space of H1

0 (Ω) endowed with the dual norm ‖ · ‖H−1 and the usual
pairing H−1〈·, ·〉H1

0
. We shall make use of the interpolation theory of

function spaces; more specifically we shall use the K-method and we
refer to [26] for its definition, notation and properties.
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In the sequel C denotes a generic constant whose value, possibly
different at any occurrence, does not depend on any other mathemat-
ical quantity appearing in the analysis (e.g., ε, c, θ, p, w, v, f). We
also adopt the notational convention

α � β ⇐⇒ α ≤ Cβ,

α ' β ⇐⇒ α � β and β � α.
(7)

We restrict ourselves to the case of smooth and skew-symmetric ad-
vection terms, that means

div(c) = 0; (H1)

this also gives the coercivity of aε on H1
0 ×H1

0 (without uniformity
with respect to ε). With small changes in the analysis, one could also
take into account fields c with non-positive divergence.

L0 is an hyperbolic operator and therefore it has a different nature
from Lε, ε > 0; the associated p.d.e. problem (compare with (2)) now
reads {

L0u0 = f in Ω

u0 = 0 on ∂Ω−,
(8)

where ∂Ω− denotes the inflow boundary

∂Ω− := {x ∈ ∂Ω such that c(x) · n(x) < 0} , (9)

and n denotes the outward normal unit vector defined almost every-
where on ∂Ω. In some parts of our analysis we need problem (8) to
be well posed too: this is in fact a very natural assumption, in order
to have problem (2) well conditioned when ε is very small. Under the
assumption:

there exists a smooth η : Ω → R such that ∇η · c ≥ C > 0, (H2)

problem (8) turns out to be well posed for any f ∈ L2; we refer to [15]
for the details.

3 Main results

Let us define the following norms (and spaces):

‖w‖A0 := ε|w|H1 + ‖c · ∇w‖H−1 , ∀w ∈ A0 := H1
0

‖w‖A1 := |w|H1 , ∀w ∈ A1 := H1
0

‖φ‖B0 := ‖φ‖A∗1
= sup

v∈H1
0

H−1〈φ, v〉H1
0

‖v‖A1

∀φ ∈ B0 := H−1

‖φ‖B1 := ‖φ‖A∗0
= sup

v∈H1
0

H−1〈φ, v〉H1
0

‖v‖A0

∀φ ∈ B1 := H−1.

(10)
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We prove now two unusual estimates for Lε, with respect to the
norms defined above.

Proposition 1 Under assumption (H1) we have

‖w‖A0 ' ‖Lεw‖B0 , ∀w ∈ H1
0 , (11)

‖w‖A1 ' ‖Lεw‖B1 , ∀w ∈ H1
0 . (12)

Proof Let w be a generic function in H1
0 . The continuity of Lε is

trivial in both cases:

‖Lεw‖Bi � ‖w‖Ai , i = 1, 2.

Thanks to the coercivity of Lε

H−1〈Lεw,w〉H1
0

= ε|w|2H1 ,

one easily gets ε|w|H1 ≤ ‖Lεw‖H−1 = ‖Lεw‖B0 . Therefore

‖c · ∇w‖H−1 ≤ ‖Lεw‖H−1 + ‖ε∆w‖H−1

≤ ‖Lεw‖H−1 + ε|w|H1

� ‖Lεw‖H−1 ,

and so

‖w‖A0 � ‖Lεw‖B0 ,

that gives (11).
An analogous estimate holds true for the transpose L∗ε := −ε∆−

c ·∇, and therefore (12) is obtained by a standard duality argument:
given w, we define w̃ ∈ H1

0 as the solution of L∗εw̃ = ∆w; integrating
by parts we have

‖∆w‖B0 = sup
v∈H1

0

H−1〈∆w, v〉H1
0

|v|H1

= sup
v∈H1

0

∫
Ω ∇w(x) · ∇v(x) dx

|v|H1

= |w|H1

= ‖w‖A1 ,

(13)
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which, together with ‖w̃‖A0 � ‖L∗εw̃‖B0 , gives

‖w‖2
A1

= H−1〈∆w, w〉H1
0

= H−1〈L∗εw̃, w〉H1
0

= H−1〈Lεw, w̃〉H1
0

≤ ‖Lεw‖A∗0
‖w̃‖A0

� ‖Lεw‖B1‖w‖A1 ,

and (12) follows.

The previous proposition suggests two different choices for the spaces
W and V in order to reach condition (3): in fact Lε is a uniform iso-
morphism between A0 and B0, as well as between A1 and B1. Never-
theless both these choices are not fully satisfactory for our purposes.
We easily recognize that the norm ‖ · ‖A0 appearing in the left hand
side of (11) is very weak, because the part of it which is independent
of ε—i.e., ‖c · ∇(·)‖H−1—is only a seminorm; roughly speaking, for
very small ε one can have solutions u with ‖u‖L2 large and ‖u‖A0

very small. On the other hand the norm ‖ · ‖B1 that appears in the
left hand side of (12) is too strong: e.g., a constant source term f = 1
gives ‖f‖B1 ' ε−1/2, as one expects in this case; indeed, because
of the boundary layer, one also gets ‖u‖A1 ' ε−1/2 for the related
solution u, in agreement with (12).

Since the norms in (11) are too week, and the norms in (12) are too
strong, we construct a family of intermediate estimates by means of
the function spaces interpolation. We follow the notation and the defi-
nitions of [26]; for the reader’s convenience, we recall the fundamental
definition of interpolated norm: given 0 < θ < 1 and 1 ≤ p ≤ +∞ we
define

‖w‖(A0,A1)θ,p
:=∫ +∞

0
inf

w0∈A0,w1∈A1,
w0+w1=w

(
t−θ‖w0‖A0 + t1−θ‖w1‖A1

)p dt

t

 1
p

.
(14)

Typically A0 and A1 are different from the algebraic point of view;
in our case instead, given the definitions (10), w,w0, w1 belong to H1

0

and (14) is just a new norm on H1
0 . Similarly here ‖w‖(B0,B1) is a

new norm on H−1.
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Proposition 2 Assume (H1), 0 < θ < 1 and 1 ≤ p ≤ +∞; then we
have

‖w‖(A0,A1)θ,p
' ‖Lεw‖(A0,A1)∗

1−θ,p′
, ∀w ∈ H1

0 , (15)

where 1/p + 1/p′ = 1.

Proof By Proposition 1 Lε is a linear operator uniformly bounded
(with respect to ε) from Ai to Bi, i = 1, 2. Thanks to the interpolation
theorem (see [26, §1.3.3]) Lε is an uniformly bounded operator from
(A0, A1)θ,p into (B0, B1)θ,p, with 0 < θ < 1 and 1 ≤ p ≤ +∞. In the
same way L−1

ε turns out to be uniformly bounded from (B0, B1)θ,p

to (A0, A1)θ,p. Therefore

‖w‖(A0,A1)θ,p
' ‖Lεw‖(B0,B1)θ,p

. (16)

Recall we are not constructing spaces with different regularity—
w ∈ (A0, A1)θ,p if and only if w ∈ H1

0 as well as φ ∈ (B0, B1)θ,p if and
only if φ ∈ H−1—as from the algebraic point of view A0 ≡ A1 ≡ H1

0

and B0 ≡ B1 ≡ H−1; we are just defining norms having a different
dependence on the parameter ε, as we shall see in the sequel. Note
moreover that the estimate (16) is uniform and independent of θ and
p because we are using an exact interpolator functor (see [26, §1.2.2,
Definition 2]).

When p > 1, the estimate (15) is equivalent to (16), thanks
to [26, §1.11.2]. For p = 1 the referred theory gives (B0, B1)θ,1 ≡
[(A0, A1)01−θ,+∞]∗, where (A0, A1)01−θ,+∞ denotes the closure of A0 ∩
A1 in the topology of (A0, A1)1−θ,+∞. Since in our case we have
A0 + A1 ≡ A0 ∩A1 ≡ H1

0 in the algebraic sense, as mentioned above,
we get (A0, A1)01−θ,+∞ ≡ (A0, A1)1−θ,+∞, and (15) follows.

In order to understand the structure of the norms appearing in
Proposition 2, we separate the diffusive part (depending on ε) from
the advective part. For this purpose, we introduce a new pair of
spaces C0 and C1. We set C0 ≡ H−1, endowed with the natural norm
‖φ‖C0 := ‖φ‖H−1 . We denote by C1 the set of functions φ = L0Φ,
where Φ is a generic function belonging to H1

0 , and define ‖φ‖C1 :=
|Φ|H1 ; in other words C1 = L0(H1

0 ), endowed with the norm which
makes L0 an isometry between H1

0 and C1. The definition of C1 makes
sense under assumption (H2).

Proposition 3 Assume (H1), (H2), 0 < θ < 1 and 1 ≤ p ≤ +∞; we
have

‖w‖(A0,A1)θ,p
' ε1−θ|w|H1 + ‖c · ∇w‖(C0,C1)θ,p

, ∀w ∈ H1
0 . (17)
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Proof We first prove ε1−θ|w|H1 + ‖c · ∇w‖(C0,C1)θ,p
� ‖w‖(A0,A1)θ,p

.
For any w ∈ H1

0 we have

|w|H1 ≤ ε−1‖w‖A0 ,

|w|H1 ≤ ‖w‖A1 ,

therefore, as a simple consequence of the interpolation theorem (see
[26, §1.3.3]) applied to the identity operator, we obtain ε1−θ|w|H1 ≤
‖w‖(A0,A1)θ,p

. We also have

‖c · ∇w‖C0 ≤ ‖w‖A0 ,

‖c · ∇w‖C1 ≤ ‖w‖A1 ,

which gives ‖c · ∇w‖(C0,C1)θ,p
� ‖w‖(A0,A1)θ,p

.
In order to complete the proof of (17) we directly deal with the

definition of interpolation norm. For any t > 0 consider a generic
splitting

w = w0(t) + w1(t), with wi(t) ∈ H1
0 , i = 1, 2, (18)

and similarly

c · ∇w = φ0(t) + φ1(t), with φ0(t) ∈ C0, φ1(t) ∈ C1. (19)

Let w̃0(t) ∈ H1
0 be the solution of

Lεw̃0(t) = −ε∆w0(t) + φ0(t)

and let w̃1(t) ∈ H1
0 be the solution of

Lεw̃1(t) = −ε∆w1(t) + φ1(t).

As

Lε(w̃0(t) + w̃1(t)) = −ε∆(w0(t) + w1(t)) + φ0(t) + φ1(t) = Lεw,

we have w = w̃0(t) + w̃1(t). Moreover, thanks to (11), we also have

‖w̃0(t)‖A0 � ε|w0(t)|H1 + ‖φ0(t)‖C0 ,
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and, using (12) and denoting by Φ1(t) ∈ H1
0 the solution of L0Φ1(t) =

φ1(t), we obtain

‖w̃1(t)‖A1 � sup
v∈H1

0

H−1〈−ε∆w1(t) + φ1(t), v〉H1
0

|v|A0

� sup
v∈H1

0

H−1〈−∆w1(t), v〉H1
0

|v|H1

+ sup
v∈H1

0

H−1〈φ1(t), v〉H1
0

‖c · ∇v‖H−1

� sup
v∈H1

0

∫
Ω ∇w1(t)(x) · ∇v(x) dx

|v|H1

+ sup
v∈H1

0

∫
Ω Φ1(t)(x) c · ∇v(x) dx

‖c · ∇v‖H−1

� |w1(t)|H1 + ‖φ1(t)‖C1 .

Therefore, by the triangle inequality and recalling [26, §1.3.2] we have

‖w‖(A0,A1)θ,p
≤

[∫ +∞

0

(
t−θ‖w̃0(t)‖A0 + t1−θ‖w̃1(t)‖A1

)p dt

t

]1/p

�

[ ∫ +∞

0

(
t−θε|w0(t)|H1 + t−θ‖φ0(t)‖C0

+ t1−θ|w1(t)|H1 + t1−θ‖φ1(t)‖C1

)p dt

t

]1/p

�
[∫ +∞

0

(
t−θε|w0(t)|H1 + t1−θ|w1(t)|H1

)p dt

t

]1/p

+
[∫ +∞

0

(
t−θ‖φ0(t)‖C0 + t1−θ‖φ1(t)‖C1

)p dt

t

]1/p

;

finally, taking the infimum over all w0, w1, φ0 and φ1 under the
constraints given in (18)–(19) and using [26, 1.3.3.(f)], this yields
‖w‖(A0,A1)θ,p

� ε1−θ|w|H1 + ‖c · ∇w‖(C0,C1)θ,p
.

At this point, one may ask what happens to the estimate (15) for
ε = 0. Actually, (17) suggests that in this case we obtain a useless
relation between suitable norms of c · ∇w. In other words we are not
investigating the structure of problem (8)—though it has a very sim-
ple structure in this model case—whereas we are only investigating
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the coupling between diffusive and advective terms. On the opposite
side, when ε ≥ diam(Ω)‖c‖L∞ one has ‖w‖(A0,A1)θ,p

' ε1−θ|w|H1 ,
and we recover from (15) the classical elliptic estimate; notice that
in this case the value of p has no effect.

In the following proposition we prove a useful statement that holds
true for our norm ‖·‖(A0,A1)θ,p

: it will turn out that, for our purposes,
the parameter p has a minor effect on the norm, even for small ε.

Proposition 4 Assume (H1), 0 < θ < 1, 1 ≤ p < q ≤ +∞ and
ε < 1; then we have for all w ∈ H1

0

‖w‖(A0,A1)θ,p
≤

{
(p− θp)−1/p + (θp)−1/p

+ | log ε|1/p−1/q
}
‖w‖(A0,A1)θ,q

.
(20)

Proof We have, by definition and by the triangle inequality,

‖w‖(A0,A1)θ,p
≤

[∫ +∞

0

(
t−θ‖w0(t)‖A0 + t1−θ‖w1(t)‖A1

)p dt

t

]1/p

≤
[∫ ε

0

(
t−θ‖w0(t)‖A0 + t1−θ‖w1(t)‖A1

)p dt

t

]1/p

+
[∫ 1

ε

(
t−θ‖w0(t)‖A0 + t1−θ‖w1(t)‖A1

)p dt

t

]1/p

+
[∫ +∞

1

(
t−θ‖w0(t)‖A0 + t1−θ‖w1(t)‖A1

)p dt

t

]1/p

= I + II + III

for any w0(t) and w1(t) with w = w0(t) + w1(t), wi(t) ∈ H1
0 , i = 1, 2

and 0 < t < +∞. Taking w0(t) = 0 and w1(t) = w for 0 < t < ε we
have

I ≤
[∫ ε

0
t(1−θ)p−1dt

]1/p

‖w‖A1

≤ [(1− θ)p]−1/p ε1−θ‖w‖A1 .

In a very similar way we deal with the third term, taking w0(t) = w
and w1(t) = 0 for t > ε instead:

III ≤
[∫ +∞

1
t−(1+θp)dt

]1/p

‖w‖A0

≤ (θp)−1/p ‖w‖A0 .
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Assume for a moment q 6= +∞. Thanks to the Hölder inequality we
have∫ 1

ε

(
t−θ‖w0(t)‖A0 + t1−θ‖w1(t)‖A1

)p dt

t

≤
[∫ 1

ε

1
t

dt

](q−p)/q

·
[∫ 1

ε

(
t−θ‖w0(t)‖A0 + t1−θ‖w1(t)‖A1

)q dt

t

]p/q

≤

{
[− log(ε)]1/p−1/q

·
[∫ 1

ε

(
t−θ‖w0(t)‖A0 + t1−θ‖w1(t)‖A1

)q dt

t

]1/q
}p

(21)

that holds true for any choice of w0(t) and w1(t) on ε < t < 1; taking
the infimum on w0, w1 we obtain

II ≤ [− log(ε)]1/p−1/q ‖w‖(A0,A1)θ,q
.

The case q = +∞ is similar.
Finally, recalling

ε1−θ‖w‖A1 ≤ ‖w‖(A0,A1)θ,q

and
‖w‖A0 ≤ ‖w‖(A0,A1)θ,q

,

(20) follows from the previous estimates.

Estimate (20) is likely non-optimal when θ → 0 or θ → 1; this is
not so relevant in the sequel, since the more interesting case is indeed
θ = 1/2, for which (20)reduces to

‖w‖(A0,A1)1/2,p
� | log ε|1/p−1/q‖w‖(A0,A1)1/2,q

, ∀w ∈ H1
0 , (22)

because the terms (p− θp)−1/p |θ=1/2 and (θp)−1/p |θ=1/2 are uni-
formly bounded with respect to p. It is worth recalling that, as a
general result of the interpolation theory (see, e.g., [26, 1.3.3.d]), we
also have

‖w‖(A0,A1)θ,q
� ‖w‖(A0,A1)θ,p

, ∀w ∈ H1
0 , (23)

for 0 < θ < 1 and 1 ≤ p < q ≤ +∞. More generally, for a fixed θ the
norms ‖·‖(A0,A1)θ,p

and ‖·‖(A0,A1)θ,q
are equivalent up to a (log ε)-like

factor.
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As mentioned above, one reason to use interpolation is that we are
interested in constructing a norm that is neither too weak (as ‖ · ‖A0

is) nor too strong (as ‖ · ‖A1 is). The following proposition states a
Poincaré-like inequality that gives the answer.

Proposition 5 Under assumptions (H1) and (H2), there exists a
constant γ = γ(c, Ω) (i.e., only dependent on c and Ω) such that

‖w‖L2 ≤ γ‖c · ∇w‖(C0,C1)1/2,1
, ∀w ∈ H1

0 . (24)

Proof Let η be the solution of (8) for the source term f ≡ 1 (i.e.,
c · ∇η = 1 with η|∂Ω− = 0). Given w ∈ H1

0 , integrating by parts,
using the Cauchy-Schwartz inequality and (H1) we have

‖w‖2
L2 =

∫
Ω

c(x) · ∇η(x) w2(x) dx

= −2
∫

Ω
η(x)w(x) c(x) · ∇w(x) dx

� ‖c · ∇w‖H−1 |ηw|H1 .

(25)

Using the classical Poincaré inequality we easily obtain

|ηw|H1 � (‖η‖L∞ + ‖∇η‖(L∞)2)|w|H1 . (26)

Actually, thanks to (H2), we have ‖η‖L∞ + ‖∇η‖(L∞)2 < +∞ (e.g.,
see [15, Theorem 3.2]), whence

‖w‖2
L2 ≤ γ‖c · ∇w‖H−1 |w|H1 ,

which gives
‖w‖L2 ≤ γ‖c · ∇w‖1/2

C0
‖c · ∇w‖1/2

C1
, (27)

where γ depends on η, namely on c and Ω. Finally (27) yields (24) by
means of a classical theorem of Lions and Peetre (see [22]), applied
to the linear operator L−1

0 : C1 → H1
0 .

Hypothesis (H2) is essential in proving (24). Moreover the estimate
is optimal in the sense that we can replace the right hand side of (24)
only by ‖c · ∇w‖(C0,C1)θ,p

with θ > 1/2, as stated in the following
corollary.

Corollary 1 Under assumptions of Proposition 5, we also have

‖w‖L2 ≤ γ‖w‖(A0,A1)θ,p
,∀w ∈ H1

0

⇔ θ > 1/2 or (θ, p) = (1/2, 1),
(28)

and
‖φ‖(A0,A1)∗θ,p

≤ γ‖φ‖L2 ,∀φ ∈ L2

⇔ θ > 1/2 or (θ, p) = (1/2, 1).
(29)
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Proof The two conditions

‖w‖L2 ≤ γ‖w‖(A0,A1)θ,p
,∀w ∈ H1

0 (30)

and

‖φ‖(A0,A1)∗θ,p
≤ γ‖φ‖L2 ,∀φ ∈ L2 (31)

are equivalent—for a given (θ, p) they are both true or false—because
the norms in (31) are the dual of those in (30). Further, (30) is equiv-
alent to

‖w‖L2 ≤ γ‖c · ∇w‖(C0,C1)θ,p
,∀w ∈ H1

0 ; (32)

indeed, the left hand side of (30) is independent of ε, so we can take
as a right hand side the inf

ε>0
γ‖w‖(A0,A1)θ,p

= γ‖c · ∇w‖(C0,C1)θ,p
.

¿From (24), using [26, Theorem 1.3.3.e], one easily gets (32) for
each θ > 1/2.

Assume in the sequel of the proof that θ < 1/2, or θ = 1/2 and
p > 1. Then it remains to show that (32) fails; one can restrict to the
case θ = 1/2 and p > 1 only, because of [26, Theorem 1.3.3.e]. For
the sake of simplicity, we just give a sketch of the construction of a
sequence {wn} of functions which verify

‖wn‖L2([0,1]2) → C > 0 (33)

and ∥∥∥∥ ∂

∂x
wn

∥∥∥∥
(C0([0,1]2),C1([0,1]2))1/2,p

→ 0, (34)

which is a counterexample to (32) in the very simple case of Ω =
[0, 1]2, and c = [1 0]. We start from a sequence of functions {w̄n} on
[0, 1] which verifies the one-dimensional counterpart of (33)– (34):

‖w̄n‖L2(0,1) → 1 and
∥∥∥∥ d

dx
w̄n

∥∥∥∥
(H−1(0,1),L2

0(0,1))1/2,p

→ 0, (35)

where L2
0(0, 1) ⊂ L2(0, 1) is the subspace of zero mean value func-

tions, and is indeed the one-dimensional counterpart of C1 (see [25]).
We can take, for example, a sequence {w̄n} of functions in C∞

0 (0, 1)
converging to the constant 1 in the space (L2(0, 1),H1(0, 1))1/2,p

(see [24, §2.2.4] and recall that now p > 1) which is not restrictive to
assume symmetric, in the sense that w̄n(x) = w̄n(1 − x). Therefore
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‖w̄n‖L2(0,1) → 1, and∥∥∥∥ d

dx
w̄n

∥∥∥∥
(H−1(0,1),L2

0(0,1))θ,p

=
∥∥∥∥ d

dx
(w̄n − 1)

∥∥∥∥
(H−1(0,1),L2

0(0,1))1/2,p

� ‖w̄n − 1‖(L2
] (0,1),H1

] (0,1))1/2,p

= ‖w̄n − 1‖(L2(0,1),H1(0,1))1/2,p

→ 0,

using [25, Proposition 1] and the symmetry of w̄n, respectively; we
used the notation L2

] (0, 1) and H1
] (0, 1) to refer to spaces of periodic

functions, see [25] for all the details. Finally one can easily check that
wn(x, y) = y(1− y)w̄n(x) satisfy (33)–(34).

As a consequence of (15), (17), (28) and (29), the choice θ = 1/2
turns out to be the most interesting. For example we have for all
w ∈ H1

0

ε1/2|w|H1 + ‖c · ∇w‖(C0,C1)1/2,+∞ ' ‖Lεw‖(A0,A1)∗
1/2,1

≤ γ‖Lεw‖L2 ,
(36)

as well as

γ−1‖w‖L2 ≤ ε1/2|w|H1 + ‖c · ∇w‖(C0,C1)1/2,1

' ‖Lεw‖(A0,A1)∗
1/2,+∞

;
(37)

the case with p = 2 is also of special interest as ‖ · ‖V ≡ ‖ · ‖W are
Hilbertian norms, and (15) becomes

[
ε|w|2H1 + ‖c · ∇w‖2

(C0,C1)1/2,2

]1/2

' sup
v∈H1

0

H−1〈Lεw, v〉H1
0[

ε|v|2
H1 + ‖c · ∇v‖2

(C0,C1)1/2,2

]1/2
.

(38)

Roughly speaking, in the present framework we can not derive
estimates like (3) for a norm ‖ · ‖W which is stronger than the usual
‖ · ‖L2 and such that ‖u‖W remains bounded with respect to ε even
in presence of internal or boundary layers; nevertheless we are very
close to this (up to | log ε| factors) when θ = 1/2.
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4 Connections to numerical methods

First of all we recall the classical theory due to Babuška and Brezzi
(see [1,4]): let aε,h be a discretization of aε on W ×Vh , where Vh de-
notes a finite dimensional subspace of V ; similarly, in the sequel, Wh

will denote a finite dimensional subspace of W . The related numerical
method reads:{

find uh ∈ Wh such that
aε,h(uh, vh) = V ′

h
〈fh, vh〉Vh

, ∀vh ∈ Vh,
(39)

which we assume to be consistent, i.e., aε,h(u − uh, vh) = 0 for any
vh ∈ Vh and for u and uh given by (2) and (39), respectively. If the
discrete counterpart of (4)–(5) holds true, i.e.,

sup
w∈W

sup
vh∈Vh

aε,h(w, vh)
‖w‖W ‖vh‖V

≤ κ̃ < +∞, (40)

inf
wh∈Wh

sup
vh∈Vh

aε,h(wh, vh)
‖wh‖W ‖vh‖V

≥ γ̃ > 0, (41)

then the method is quasi-optimal, as one gets from (40)–(41):

‖u− uh‖W ≤ (κ̃γ̃−1 + 1) inf
wh∈Wh

‖u− wh‖W . (42)

The error estimate (42) is of practical interest when κ̃ and γ̃ do not
depend on ε. Moreover the norm ‖·‖W , which appears in (42), should
allow boundary layers without being too weak, as we discussed in
details in the previous section.

The standard Galerkin formulation—given by aε,h ≡ aε—is un-
stable for small values of ε. In the eighties effective improvements
have been proposed by Hughes and coworkers (see [12, 18, 19]) with
the Streamline-Upwind Petrov-Galerkin (SUPG) and Galerkin Least-
Squares (GaLS) methods. Even though they are quite satisfactory for
practical purposes, there is no proof, up to now, that they fit into the
classical framework (40)–(41), for suitable choices of the norms ‖ ·‖W

and ‖ · ‖V , e.g., for norms that give (4)–(5). Actually the analysis of
this kind of methods follows a slightly different argument: roughly
speaking, (40) and (41) are proved with the same ‖ · ‖V but with
different ‖ · ‖W . The final error estimates obtained in this way are
based on unrealistic regularity assumptions on the exact solution u.

In the last few years further improvements or reinterpretations of
previous methods have been proposed, e.g.,

– enriched formulations (Bubbles, e.g., RFB or subgrid viscosity
methods) by Brezzi et al. (see [2, 5–11]),
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– multi-scale methods by Hughes et al. (see [16,17]),
– least squares formulations by Lazarov et al. (see [20]),
– methods with a negative order stabilization by Canuto et al. (see

[3]).

The error analysis proposed for these methods is similar to the anal-
ysis for SUPG and GaLS mentioned before, but nevertheless these
methods are, roughly speaking, closer to the framework (40)–(41).
Among them, the negative order stabilization technique is the most
interesting one from this point of view, and we shall come back to it
in a moment.

The analysis proposed in the previous section, and in particular
(38), suggests in some sense how a stabilization by improved coer-
civity should work. Consider for example the “ideal” least squares
formulation, whose numerical solution uh ∈ Vh is given by

(Lεuh,Lεvh)(A0,A1)∗
1/2,2

= (f,Lεvh)(A0,A1)∗
1/2,2

, ∀vh ∈ Vh, (43)

where (·, ·)(A0,A1)∗
1/2,2

denotes the scalar product related to the Hilbert
norm ‖·‖(A0,A1)∗

1/2,2
; the method fits into the framework (39) with the

definitions aLS
ε,h(w, v) := (Lεw,Lεv)(A0,A1)∗

1/2,2
and V ′

h
〈fLS

h , vh〉Vh
:=

(f,Lεvh)(A0,A1)∗
1/2,2

. The bilinear form aLS
ε,h(·, ·) easily verifies (40) and

(41), with respect to ‖ · ‖W ≡ ‖ · ‖V := ‖ · ‖(A0,A1)1/2,2
, thanks to

Proposition 2; e.g., (41) follows by coercivity:

aLS
ε,h(v, v) = ‖Lεv‖2

(A0,A1)∗
1/2,2

' ‖v‖2
(A0,A1)1/2,2

. (44)

Therefore this “ideal” formulation turns out to be quasi-optimal.
Following a similar reasoning, one can consider an “ideal” SUPG

discretization, which we shall describe for the advection-dominated
case (i.e., we assume ε/‖c‖ smaller than the mesh-size h). Recall that
our bilinear form aε(·, ·) verifies (4)–(6) if we take ‖w‖2

W ≡ ‖w‖2
V :=

‖w‖(A0,A1)1/2,2
' ε|w|2H1 + ‖c · ∇w‖2

(C0,C1)1/2,2
, while the standard

Galerkin numerical method is unstable because the discrete inf-sup
condition (41) does not hold true for usual choices of Wh and Vh.
In fact by means of coercivity (aε(w,w) = ε|w|2H1) one can only
prove a very weak discrete inf-sup condition, without any control
on ‖c · ∇w‖(C0,C1)1/2,2

. We would like the numerical bilinear form
aSUPG

ε,h (·, ·) to be coercive with respect to ε| · |2H1 +‖c ·∇(·)‖2
(C0,C1)1/2,2

,
as in the previous example (see (44)), without losing consistency.
Therefore we set:

aSUPG
ε,h (w, v) := aε(w, v) + (Lεw, c · ∇v)(C0,C1)1/2,2

; (45)
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and accordingly

V ′
h
〈fSUPG

h , vh〉Vh
:= V ′〈f, vh〉V +(f, c · ∇vh)(C0,C1)1/2,2

, ∀vh ∈ Vh,

(46)
where (·, ·)(C0,C1)1/2,2

denotes the scalar product related to the norm
‖ · ‖(C0,C1)1/2,2

, and the definition (45)–(46) is intended for w and v

regular enough. With a minor modification of the previous norms,
i.e.,

‖w‖2
W := ε|w|2H1 + ‖c · ∇w‖2

(C0,C1)1/2,2
+ ‖ε∆w‖2

(C0,C1)1/2,2

‖v‖2
V := ε|v|2H1 + ‖c · ∇v‖2

(C0,C1)1/2,2
,

and assuming the inverse inequality

2‖ε∆wh‖2
(C0,C1)1/2,2

≤ ε|wh|2H1 + ‖c · ∇wh‖2
(C0,C1)1/2,2

—which requires regular enough elements and small enough ε— we
recover the discrete continuity (40) and the discrete infsup (41). As
a result, the method is quasi optimal, as stated in (42).

The main drawback of those “ideal” formulation is that the prac-
tical computation of the unusual scalar products (·, ·)(A0,A1)∗

1/2,2
and

(·, ·)(C0,C1)1/2,2
is difficult. Nevertheless a lot has been done in this

direction by Bertoluzza, Canuto and Tabacco in their work [3] men-
tioned above. They propose a wavelet element method (WEM) for
a Galerkin formulation stabilized by adding (Lεw,Lεv)(H−1,L2)1/2,2

.
Their stabilization acts as (c · ∇w, c · ∇v)(H−1,L2)1/2,2

at the discrete
level, and is based on the scalar product (·, ·)(H−1,L2)1/2,2

, which is of
order −1/2. To make a comparison, our “ideal” SUPG formulation
is stabilized by the term (c · ∇w, c · ∇v)(C0,C1)1/2,2

, and the stronger
scalar product (·, ·)(C0,C1)1/2,2

has order −1/2 only in the c direc-
tion, and order 0 in the orthogonal directions. Recently Canuto and
Tabacco (in [13]) have also proposed and implemented (for a constant
advection field c) a formulation with non-isotropic stabilizing scalar
products, which turn out to be very similar to the “ideal” formulation
mentioned above.

In conclusion we think that the analysis of the previous section
can lead to a deeper understanding of the numerical discretization
of the advection-diffusion problem (2), it can suggest new numerical
methods—e.g., based on the “ideal” formulations described above
and implemented by means of WEM—and, finally, our technique
could improve the theoretical analysis of the more popular numer-
ical methods for (2)—see, for example, our work [25].
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