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Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy

sangalli@dimat.unipv.it

Received 15 January 2001
Revised 15 May 2001

Communicated by F. Brezzi

In this paper we present a numerical procedure to evaluate the efficiency of finite element
numerical methods. We improve some of the ideas proposed in previous works and give
a partly theoretical, partly empirical justification in a general framework. The proposed
procedure performs an eigenvalue computation, and requires the knowledge of the be-
havior of the exact operator in order to choose proper norms for the evaluations. In the
experiments we focus our attention on the 1-D advection–diffusion problem: we show
that our numerical procedure actually gives very sharp indications about the optimality
of the tested numerical methods.
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1. Introduction

It is well known that there exist differential problems that cannot be solved properly

with standard finite element methods. In this work we shall consider as a prototype

the very simple one-dimensional advection–diffusion operator:

Lw ≡ Lεw := −εw′′ + w′, (1.1)

and the related Dirichlet boundary value problem:
Lu = f in (0, 2π) ,

u(0) = 0 ,

u(2π) = 0 .

(1.2)

Though it is well known how to fix the standard Galerkin numerical approach for

this model, for more complex problems which we meet in real applications — for

example in computational fluid dynamics — a theoretical construction and analysis

of a numerical scheme is difficult. Sometimes there are different methods for the
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same problem, and the methods need to be tuned — we have to choose constants or

meshes — in order to give a satisfying performance. It is usual in this case to test

and compare methods by solving some particular model problems, with particular

source terms.

In this work we present an automatic numerical procedure which examines a

given method, and computes how far the method is from the optimal behavior. Our

procedure is inspired by the well-known Babuška1–Brezzi3 theory of finite element

methods. The procedure consists of an eigenvalue computation and is related to the

ones proposed by Bathe et al.2 and by Sangalli10; here we give a justification of it

based on partly theoretical and partly empirical arguments, and we apply it to the

model problem (1.1)–(1.2), obtaining very sharp results.

Procedures for similar purposes were also proposed for mixed finite element

formulations, in particular for the Stokes problem5 and for the plate problem.7

In Sec. 2 we present our procedure in a general framework. In order to perform

the evaluation of a given numerical scheme, we shall choose a couple of norms

for which the exact variational formulation of the problem under consideration

is well-posed. For the model problem we propose two different choices in Sec. 3

(fractional order norms) and in Sec. 4 (weighted norms): We develop the analysis for

the continuous operator and perform evaluation on the standard Galerkin method

and on the well-known SUPG method. Moreover, we shall show that either using

fractional order norms or weighted norms, our procedure allows us to tune up the

SUPG method: indeed, in this simple example, the best choice for the amount of

streamline diffusion is known theoretically, and we recover the same indications.

2. The General Framework

Let W and V be Hilbert spaces; let

L : W → V ′

be a linear differential operator and let

a : W × V → R

be the related bilinear form, i.e.

a(w, v) := V ′〈Lw, v〉V ; (2.1)

the associated variational problem reads{
find u ∈W such that

a(u, v) = V ′〈f, v〉V ∀ v ∈ V .
(2.2)

In the following we shall consider the advection–diffusion operator

L ≡ Lε : H1
0 (0, 2π)→ H−1(0, 2π) ,
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defined in (1.1), as the prototype of a parameter-dependent operator. Therefore we

get:

a(w, v) = ε

∫ 2π

0

w′(x)v′(x) dx+

∫ 2π

0

w′(x)v(x) dx . (2.3)

This leads to a singularly perturbed problem: When the parameter ε becomes small

the solution u of (1.1) and (1.2) exhibits a boundary layer near 2π: actually in the

limit case, for ε→ 0, the differential operator has a different order and the boundary

condition in 2π becomes meaningless.

In the sequel we shall make use of norms ‖·‖S and ‖·‖T onW and V respectively,

that differ from their natural norms. We assume that (W, ‖ · ‖S) and (V, ‖ · ‖T ) are

Hilbert spaces. We also assume that when a norm appears in a denominator, its

argument does not vanish. The following well-known theorem1 characterizes well-

posed problems (2.2) in terms of a(·, ·).

Theorem 2.1. The linear operator L : (W, ‖ · ‖S)→ (V, ‖ · ‖T )′ is an algebraic and

topological isomorphism if and only if the following three conditions are verified :

sup
w∈W

sup
v∈V

a(w, v)

‖w‖S‖v‖T
≤ κ < +∞ ; (2.4)

inf
w∈W

sup
v∈V

a(w, v)

‖w‖S‖v‖T
≥ γ > 0 ; (2.5)

∀ v ∈ V, ∃ w ∈W such that a(w, v) 6= 0 . (2.6)

Actually (2.4) states the continuity of L, the inf–sup condition (2.5) states that

L is an injective map and its rank is closed, and finally (2.6) gives the density

of the rank. Then Theorem 2.1 is a variant of the Banach’s closed rank theorem,

and (2.4)–(2.6) also give a measure of the well-posedness of problem (2.2): for any

perturbation δf of f , denoting by δu the related variation of the solution u we have

‖δu‖S
‖u‖S

≤ κ

γ
· ‖δf‖T

′

‖f‖T ′
, (2.7)

where ‖ · ‖T ′ is the dual norm of ‖ · ‖T .

The model problem here considered depends on the parameter ε and we are

particularly interested in its arbitrarily small values. Actually the left-hand sides

of (2.4) and (2.5) may depend on ε. Nevertheless we look for κ and γ which do

not depend on it, so that (2.7) states a uniform well-posedness: for this purpose we

shall define in the sequel suitable norms ‖ · ‖S and ‖ · ‖T .

We therefore assume that (2.4)–(2.6) are proven as specified above, and we turn

our attention to numerical methods. A generic finite element discretization reads{
find uh ∈Wh such that

ah(uh, vh) = V ′h
〈Dhf, vh〉Vh , ∀ vh ∈ Vh ,

(2.8)

where Wh ∈ W and Vh ∈ V are spaces with the same finite dimension, ah is a

bilinear full-ranked form on Wh × Vh and the linear operator Dh : V ′ → V ′h gives
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the discrete source term. We assume that the method is consistent, i.e. when the

solution of (2.2) belongs to Wh, then it also solves (2.8); in other words

ah(wh, vh) = V ′〈Dh(Lwh), vh〉V , ∀ wh ∈Wh, ∀ vh ∈ Vh . (2.9)

We present now a simple variation of the usual technique for error analysis in

FEM, which has the advantage of allowing a computer implementation. We denote

by Πh : W → Wh the orthogonal projection onto Wh, i.e. Πhu is the best possible

approximation of u in Wh with respect to the norm ‖ · ‖S ; moreover we denote

by Ph : W → Wh the Galerkin projection, i.e. following our previous notation,

Ph(u) := uh. As proven by Xu and Zikatanov,12 when u varies in W the maximum

ratio between the error of the method ‖u − Ph(u)‖S and the error for the best

approximation ‖u−Πh(u)‖S is given by ‖Ph‖, where

‖Ph‖ := sup
u∈W

‖Phu‖S
‖u‖S

. (2.10)

Therefore the larger is (2.10) — the worst scenario (with respect to the chosen norm

‖ · ‖S and for the chosen finite element space Wh). Our aim would be to compute

(2.10), but unfortunately it is a difficult task — as we discuss in Remark 2.2.1 below

— and in order to approximate it, we empirically assume that

‖Ph‖ ≈ ‖Ph|Uh‖ := sup
u∈Uh

‖Phu‖S
‖u‖S

, (2.11)

where Uh ∈W is a set of solutions related to a set Φh ∈ V ′ of representative source

terms (i.e. LUh = Φh). Moreover, instead of comparing directly ‖Phu‖S with ‖u‖S,

we compare ‖Phu‖S with ‖Lu‖T ′ and ‖Lu‖T ′ with ‖u‖S. This last step is given by

Theorem 2.1: indeed (2.4) and (2.5) give γ‖u‖S ≤ ‖Lu‖T ′ ≤ κ‖u‖S. Assume for a

moment that we can approximate the norm ‖ · ‖T ′ with its discrete counterpart:

‖Lu‖T ′ ≈ sup
vh∈Vh

V ′〈Lu, vh〉V
‖vh‖T

, when u ∈ Uh, (2.12)

and assume that, given a generic vh ∈ Vh, we are able to find ṽh ∈ Vh such that

V ′〈φh, vh〉V = V ′h
〈Dhφh, ṽh〉Vh , ∀ φh ∈ Φh ; (2.13)

then, in order to evaluate (2.11), it remains to compute the (reciprocal of the)

saddle point value

inf
u∈Uh

1

‖Phu‖S
sup
vh∈Vh

V ′〈Lu, vh〉V
‖vh‖T

= inf
u∈Uh

sup
vh∈Vh

V ′h
〈DhLu, ṽh〉Vh
‖Phu‖S‖vh‖T

= inf
u∈Uh

sup
vh∈Vh

ah(Phu, ṽh)
‖Phu‖S‖vh‖T

= inf
uh∈Wh

sup
ṽh∈Vh

ah(uh, ṽh)

‖uh‖S‖ṽh‖Th
,
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where we have set ‖ṽh‖Th := ‖vh‖T . From (2.13) we get ṽh = (Dh(R|Φh)−1)tvh,

where (·)t denotes the transpose operator and R : V ′ → V ′h denotes the restriction

V ′h
〈Rf, vh〉Vh := V ′〈f, vh〉V , for all vh ∈ Vh — therefore R|Φh maps Φh into V ′h.

We give a precise statement in the next proposition, which justifies the later

procedure; for the reader’s convenience a detailed proof is provided.

Proposition 2.1. Following the previous notation (with κ and γ given by (2.4)

and (2.5)), assume that Dh and R are both bijective maps from Φh ∈ V ′ onto V ′h.

Define ‖vh‖Th := ‖(Dh(R|Φh)−1)t vh‖T ,∀ vh ∈ Vh. Moreover set

γh := inf
wh∈Wh

sup
vh∈Vh

ah(wh, vh)

‖wh‖S‖vh‖Th
, (2.14)

αh := inf
φh∈Φh

sup
vh∈Vh

V ′〈φh, vh〉V
‖φh‖T ′‖v‖T

. (2.15)

Then

γαhγ
−1
h ≤ ‖Ph|Uh‖ ≤ κγ−1

h . (2.16)

Proof. Given a generic u ∈ Uh we have

γh‖Phu‖S ≤ sup
vh∈Vh

ah(Phu, vh)
‖vh‖Th

(using (2.14))

= sup
vh∈Vh

V ′h
〈DhLu, vh〉Vh
‖vh‖Th

(by definition of Ph)

= sup
vh∈Vh

V ′h
〈(DhR−1

|Φh)RLu, vh〉Vh
‖vh‖Th

(since Lu ∈ Φh)

= sup
vh∈Vh

V ′
h
〈RLu, (DhR−1

|Φh)
tvh〉

Vh

‖(DhR−1
|Φh)

tvh‖T
(by definition of ‖ · ‖Th)

= sup
vh∈Vh

V ′h
〈RLu, vh〉Vh
‖vh‖T

(since (DhR−1
|Φh)

t is one-to-one)

≤ sup
v∈V

V ′〈Lu, v〉V
‖v‖T

(since Vh ⊂ V )

= sup
v∈V

a(u, v)

‖v‖T
(using (2.1))

≤ κ‖u‖S (using (2.4))

and the second inequality in (2.16) follows. Moreover, thanks to our hypotheses,

Ph turns out to be a one-to-one map from Uh onto Wh; therefore, setting ū ∈ Uh
such that

γh‖Phū‖S = sup
vh∈Vh

ah(Phū, vh)
‖vh‖Th

,
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we get

γh‖Phū‖S = sup
vh∈Vh

V ′〈Lū, vh〉V
‖vh‖T

(similarly as before)

≥ αh sup
v∈V

V ′〈Lū, v〉V
‖v‖T

(using (2.15))

≥ αhγ‖ū‖S (using (2.5))

that completes the proof of (2.16).

In Proposition 2.1 we assumed to be able to find a proper space Φh, included

in V ′, which turns out to have the same dimension of the finite element space Vh
and such that the bilinear forms

Φh × Vh 3 (φh, vh) 7→ V ′
h
〈Dhφh, vh〉Vh (2.17)

and

Φh × Vh 3 (φh, vh) 7→ V ′
h
〈Rφh, vh〉Vh , (2.18)

are both full-ranked.

Note also that the value of αh depends only on the norm ‖ · ‖T and on the

discrete spaces Vh and Φh; it is related to the equivalence

αh‖φh‖T ′ ≤ sup
vh∈Vh

V ′〈φh, vh〉V
‖vh‖T

≤ ‖φh‖T ′ , ∀ φh ∈ Φh ; (2.19)

that is in fact (2.12); roughly speaking, αh should have approximately unitary order

of magnitude for a good choice of the norms and discrete spaces.

Given a differential operator in the context of Theorem 2.1, and given a numer-

ical method, we can therefore evaluate its optimality for a set of different meshsizes

h, or a set of different parameters (either inherent to the continuous operator or to

its discretizations):

• we choose a proper set of sources Φh, in order to verify the hypotheses of Propo-

sition 2.1; we also check that

αh stays uniformly away from zero. (2.20)

We can check (2.20) by hand, or obtain (2.15) by computer (possibly approxi-

mating it, if we cannot obtain a computable expression for ‖ · ‖T ′).
• we get γh by solving numerically the related saddle point problem (2.14) and we

plot

ρ := κγ−1
h . (2.21)

The more ρ is near to 1, the better the method behaves.
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Remark 2.1. It is worth noting that our restriction u ∈ Uh (i.e. Lu ∈ Φh) in (2.11)

and in the following analysis is due to the use of (DhR−1
|Φh)

t : Vh → Vh instead of

Dth : Vh → V ; this is because Dth could be difficult to compute, while one can easily

get (DhR−1
|Φh)

t numerically. Also note that in the proof of Proposition 2.1 we have

used a weaker version of (2.4) and (2.5), with the same restriction u ∈ Uh (instead

of u ∈W ); we shall take advantage of it in Sec. 4.

We now turn our attention to the model problem (1.1)–(1.2): we consider a

uniform subdivision of (0, 2π) into open elements Ti of size h:

Ti ≡ Ti,h := {x : (i− 1)h < x < ih} , ∀ i = 1, 2, . . . , 2πh−1 ,

and the corresponding space of continuous piecewise linear elements:

Wh ≡ Vh := v ∈ H1
0 (0, 2π) : v|Ti is affine, ∀ i = 1, . . . , 2πh−1 ;

in this case we shall indicate both spaces with Vh. We deal with the stan-

dard Galerkin (SG) method and the streamline upwind Petrov–Galerkin (SUPG)

method: the SG formulation does not introduce any modification in the operator a

in (2.3); this leads to our general framework (2.8) setting:

ah(w, v) ≡ aSG
h (w, v) := a(w, v),

Dh = DSG
h = R .

On the other hand, the SUPG method, proposed by Hughes and coworkers,6 adds

a weighted residual stabilization:

ah(wh, vh) ≡ aSUPG
h (wh, vh) := a(wh, vh) +

2πh−1∑
i=1

τ

∫
Ti

(Lwh)(x) v′h(x) dx ,

V ′
h
〈Dhf, vh〉Vh ≡ V ′

h
〈DSUPG

h f, vh〉Vh := V ′〈f, vh〉V +
2πh−1∑
i=1

τ

∫
Ti

f(x) v′h(x) dx;

this last definition requires f to be regular in the interior of the elements: this is not

restrictive for real applications, as it is not restrictive for our procedure (after all,

we only require the evaluation of Dh on Φh). The amount of streamline diffusion τ

is a parameter of the method; for 1-D problems there is an ideal choice, referred to

as exponential fitting:

τef :=
h

2
coth

(
h

2ε

)
− ε ; (2.22)

in this case the numerical solution uh is the interpolant of the exact solution u

at the mesh points xi (see, for instance, the paper of Brezzi and Russo4 for more

details).

Proposition 2.1, although complicated at first sight, leads to a quite simple nu-

merical procedure. We postpone the particular choice of the norms ‖·‖S and ‖·‖T to

later sections: indeed the usual choice ‖·‖S ≡ ‖·‖T ≡ ‖·‖H1
0(0,2π) is inadequate, since
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we get γ ≈ ε1/2 in (2.5). We shall try two possibilities: first we shall consider norms

of fractional order, which allow boundary layers, and then we shall use weighted

norms, that cut off the layer region. Given these norms, we then set Φh = Vh (by

the L2 scalar product representation): obviously (φh, vh) 7→
∫
φh(x) vh(x) dx is a

full rank positive form and, for what concerns the SUPG method, Dh ≡ DSUPG
h

leads to the bilinear form (φh, vh) 7→
∫
φh(x) (vh(x) + τv′h(x)) dx, which is a skew

symmetric modification of the previous one and therefore it is also positive definite.

With this choice for Φh and Vh, (2.20) is a reasonable property of good discrete

norms, that we shall discuss later. Finally, introducing a basis for Vh, we can write

the matrix representations: A for ah, S and T for the scalar products related to

‖ · ‖S and ‖ · ‖T , M and D for the L2 scalar product and for the representation of

DSUPG
h , respectively . Then, in the case of SUPG we get T̃ := (M−1D)TT(M−1D)

as scalar product related to ‖ · ‖Th , by computer. Following Bathe et al.,2 for the

standard Galerkin method γh equals the square root of the smallest generalized

eigenvalue λmin in

ATT−1Ax = λSx , (2.23)

while for the SUPG case it is substituted by

ATT̃−1Ax = λSx . (2.24)

3. Fractional Order Norms

3.1. Analysis of the continuous operator

Since we consider a simple one-dimensional problem, we introduce fractional or-

der norms by Fourier expansions, avoiding any theoretical and computational

complication.

Given a function v ∈ L2(0, 2π) we have

v(x) =
av0
2

+
∞∑
k=1

avk cos(kx) + bvk sin(kx) , (3.1)

where

avk = π−1

∫ 2π

0

v(x) cos(kx) dx ∀ k ≥ 0 ,

bvk = π−1

∫ 2π

0

v(x) sin(kx) dx ∀ k ≥ 1 .

We define for any v ∈ H1
0 (0, 2π) and s ∈ (0, 1)

|||v|||2s := π

∞∑
k=1

(
ε2−2sk2 + k2s

) [
(avk)

2 + (bvk)
2 ]

;

note that

|||v|||2s ≤ 2π
∑

1≤k≤ε−1

k2s
[
(avk)

2 + (bvk)
2
]
+ 2π

∑
k>ε−1

ε2−2sk2
[
(avk)

2 + (bvk)
2
]
. (3.2)
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The following proposition holds true:

Proposition 3.1. The continuity estimate (2.4) and the inf–sup condition (2.5)

hold uniformly with respect to ε with the choice

‖ · ‖S := ||| · |||s ,
‖ · ‖T := ||| · |||1−s ,

(3.3)

for any s ∈ (0, 1).

Proof. First of all note that we can write the bilinear form a in terms of Fourier

coefficients of its arguments:

a(w, v) = π

∞∑
k=1

εk2 (awk a
v
k + bwk b

v
k) + k (bwk a

v
k − awk bvk) ;

then, using the Cauchy–Schwartz inequality for series we get

a(w, v) = π

∞∑
k=1

(
ε1−skawk

)
(εskavk) + π

∞∑
k=1

(
ε1−skbwk

)
(εskbvk)

+ π

∞∑
k=1

(ksbwk )
(
k1−savk

)
− π

∞∑
k=1

(ksawk )
(
k1−sbvk

)
≤ ‖w‖S‖v‖T

and (2.4) is proved, with κ = 1 independent of ε.

Now consider a generic w ∈ H1
0 (0, 2π) and define w̃ as the function with Fourier

coefficients

aw̃k := k2s−1bwk ∀ k : 1 ≤ k ≤ ε−1 , (3.4)

bw̃k := −k2s−1awk ∀ k : 1 ≤ k ≤ ε−1 , (3.5)

aw̃k := ε1−2sawk ∀ k > ε−1 , (3.6)

bw̃k := ε1−2sbwk ∀ k > ε−1 , (3.7)

aw̃0 := −2
∞∑
k=1

aw̃k . (3.8)

The last condition (3.8) sets the homogeneous boundary values; this is well-posed

because, by (3.6)–(3.7), the function w̃ belongs to H1(0, 2π). In particular we have,

using (3.2)

‖w̃‖2T ≤ 2π
∑

1≤k≤ε−1

k2s
[
(awk )2 + (bwk )2

]
+ 2π

∑
k>ε−1

ε2−2sk2
[
(awk )2 + (bwk )2

]
. (3.9)

Moreover

a(w, w̃) = π
∑

1≤k≤ε−1

k2s
[
(awk )2 + (bwk )2

]
+ π

∑
k>ε−1

ε2−2sk2
[
(awk )2 + (bwk )2

]
. (3.10)
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Finally, using (3.2), (3.9) and (3.10), we get

sup
v∈V

a(w, v)

‖w‖S‖v‖T
≥ a(w, w̃)

‖w‖S‖w̃‖T
≥ 1

2
(3.11)

and (2.5) follows, with γ = 1/2.

This completes the analysis of the behavior of the continuous operator, as in-

dicated in Sec. 2. As a result, we obtain the uniform estimate (2.7). However, to

be sure that (2.7) is really useful, we have to guarantee that there is no hidden

dependence on ε in ‖f‖T ′ for the source terms f we are considering. This is not

obvious and actually it does not hold for all s considered up to now: the following

proposition clarifies it, by comparing ‖ · ‖T ′ with ‖ · ‖L2 . In the sequel we shall

denote by C any generic constant independent of ε, h, f , u and uh.

Proposition 3.2. With the previous notation and s ∈ (0, 1/2) we have

‖f‖T ′ ≤ C‖f‖L2(0,2π), ∀ f ∈ L2(0, 2π), ∀ ε > 0 . (3.12)

Moreover if s = 1/2, then

‖f‖T ′ ≤ C| log ε|1/2‖f‖L2(0,2π), ∀ f ∈ L2(0, 2π), ∀ ε : 1/2 ≥ ε > 0 . (3.13)

Proof. This is a simple consequence of the Poincaré-type inequality

‖v‖L2(0,2π) ≤ α‖v‖T , ∀ v ∈ H1
0 (0, 2π) (3.14)

with α = C or α = C| log ε|1/2 depending on the condition s ≤ 1/2 or s = 1/2.

Indeed, using (3.14), we get

‖f‖T ′ = sup
v∈V

V ′〈f, v〉V
‖v‖T

≤ α sup
v∈V

∫ 2π

0
f(x)v(x) dx

‖v‖T

= α‖f‖L2(0,2π) .

In order to prove (3.14), we write the left-hand side in terms of the Fourier

coefficients:

‖v‖2L2(0,2π) =
π

2
(av0)

2
+ π

∞∑
k=1

(avk)
2

+ (bvk)
2

= I + II ;

for the second term we get immediately

II ≤ C‖v‖T ;

for the first term, the homogeneous boundary conditions and the Cauchy–Schwartz

inequality yield
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I = 2π

( ∞∑
k=1

avk

)2

≤ 2π
∞∑
k=1

(
ε2sk2 + k2−2s

)−1
∞∑
k=1

(
ε2sk2 + k2−2s

)
(avk)

2

≤ 2‖v‖2T
∞∑
k=1

(
ε2sk2 + k2−2s

)−1
;

when s < 1/2 we get

∞∑
k=1

(
ε2sk2 + k2−2s

)−1 ≤
∞∑
k=1

k2s−2 < C ;

while, if s = 1/2 and 0 < ε ≤ 1/2 we get

∞∑
k=1

(
εk2 + k

)−1 ≤ (ε+ 1)−1 +

∫ +∞

1

(
εt2 + t

)−1
dt

= (ε+ 1)
−1

+ log(ε−1) + log (ε+ 1)

≤ C log(ε−1) ,

which concludes the proof.

3.2. Numerical evaluation of the discretization

In Proposition 3.2 we restricted the interesting values of s to 0 < s < 1/2; in the

sequel we consider s = 1/4. For what concerns the computation of fractional order

scalar products — i.e. the computation of S and T in (2.23) and (2.24) — we do it

by truncating the series of coefficients (3.2) in order to reach a prescribed relative

accuracy of 10−6. Moreover, as one can expect or check by computer, condition

(2.20) holds true.

In the first two tests we compare the standard Galerkin scheme and the SUPG

scheme with the exponential fitting stabilization (2.22). In the case of the standard

Galerkin scheme we distinguish between meshes with an even number of elements

and meshes with an odd number of elements: in the first case the scheme becomes

singular, and then any simple minded eigenvalue analysis of the related matrix can

detect the bad behavior of the method; on the other hand, in the second case it is

more difficult to recognize the unstable behavior of the scheme (see also the analysis

of Bathe et al.2).

In Fig. 1 we plot the values of ρ for ε varying from 10−5 up to 10−1, with a grid

of 100 and 101 elements for the standard Galerkin method (“S.G. even” and “S.G.

odd”, respectively), and with a grid of 100 elements for SUPG. We can see that

the value of ρ is always small for SUPG, near to the optimal value ρ = 1, while

standard Galerkin on both meshes gives small values of ρ only when the problem is
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Fig. 1. Plot of ρ for 100–101 elements and ε varying.

Fig. 2. Plot of ρ for 10 up to 103 elements and ε = 10−2.
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Fig. 3. SUPG: plot of the optimal stabilization τ = τef in the (τ, h) domain. This is the same
domain for Fig. 4 (and Fig. 11), while significant sections (in dash-dotted lines) are considered in
Figs. 5 and 6 (and Figs. 12 and 13).

diffusion-dominated, but not in the advection-dominated case, where the method

is actually unstable. We have drawn the edge between the two regions, where the

mesh Péclet number Pe := h/ε is 2.

In Fig. 2 we compare the methods with ε = 10−2 on different meshes, from 10

up to 103 elements. The standard Galerkin method turns out to be not accurate.

Now we focus our attention on the SUPG scheme and in particular on the effect

of a change in τ . Figure 3 clarifies the subsequent Figs. 4–6: it shows a (τ, h) region,

h ranging in [2π · 10−3, 2π · 10−1] — namely the number of elements ranges from 10

up to 103 — and τ varying in [10−3, 10−1]. Then, in Fig. 4, we show the computed ρ

for these τ and h, related to the SUPG method with a very small diffusion coefficient

ε = 10−7. The valley shaped surface shows a minimum region that represents the

suggested optimal value of τ , depending on a given h. Our interest is to compare

this minimum region with τ = τef — since ε� h we can actually take τef ≈ h/2, as

shown in Fig. 3 — that gives a sort of theoretical optimality, as we pointed out in

the introduction. Figures 5 and 6 are sections of Fig. 4, for h = 1.1 ·10−1, 4.2 ·10−2,

1.6 · 10−2 and respectively τ = 4.8 · 10−2, 1.8 · 10−2, 2.6 · 10−3, as represented also

in Fig. 3 by dash-dotted lines. As clearly shown, our procedure recognizes τ = τef

as the optimal stabilization for SUPG.

4. Weighted Norms

4.1. Analysis of the continuous operator

This section presents a second approach for the analysis of (1.2). For very small
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Fig. 4. SUPG: plot of ρ as a function of both τ and h.

values of ε, the actual solution u looks regular, apart from the strong boundary

layer. However we know where it occurs: roughly speaking, it affects the last ε-

wide part of the domain. This suggests to define ‖ · ‖S as the H1
0 -norm modified

by a weight ψ that damps down the layer part. There is a large literature devoted

to error estimates in weighted norms; for what concerns the advection–diffusion

operator we refer e.g. to Refs. 9 and 11. The approach followed here is inspired by

these works, with variations needed to recover the framework of Theorem 2.1.

Let ψ a positive function on [0, 2π] (which, in what follows, will depend on ε

and h). We define ‖ · ‖ψ as

‖v‖ψ := ‖v ψ1/2‖L2(0,2π) ;

and we define ‖v‖ψ−1 in a similar way. Then we set

‖w‖2S := 2‖w′‖2ψ, ∀ w ∈ H1
0 (0, 2π),

‖v‖2T := ε2‖v′‖2ψ−1 + ‖v‖2ψ−1 , ∀ v ∈ H1
0 (0, 2π) .

(4.1)

The later analysis of the continuous operator requires the three following con-

dition on ψ:

|ψ′| ≤ (2ε)−1ψ (4.2)∫ 2π

0

ψ−1(x) dx ≤ Cεψ−1(2π) (4.3)

ε‖v′‖ψ ≤ C‖v‖ψ, ∀ v ∈ Vh ; (4.4)
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Fig. 5. SUPG: plot of ρ for h = 1.1 · 10−1, 4.2 · 10−2, 1.6 · 10−2 and τ varying.

moreover, in order to apply our evaluation procedure, we also need that (2.20)

holds. If Pe ≤ 2 we set (see Fig. 7)

ψ(x) :=

{
1 if 0 ≤ x ≤ x̄ := 2π + 2σε log(2ε)

e(x̄−x)/(2ε) if x̄ < x ≤ 2π,
(Pe ≤ 2 case)

where the parameter σ > 1 will be determined later; conditions (2.20), (4.2) and

(4.3) follow by simple computation, while (4.4) holds true provided Pe is “not too
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Fig. 6. SUPG: plot of ρ for τ = 4.8 · 10−2, 1.8 · 10−2, 2.6 · 10−3 and h varying.

close to zero”. For instance, if Pe ≥ Pe0 > 0, we have

εmax
x∈Ti

ψ(x) ≤ C(Pe0)hmin
x∈Ti

ψ(x), ∀ i = 1, 2, . . . , 2πh−1 . (4.5)

On the other hand, when Pe > 2, condition (2.20) becomes more delicate. It

is more convenient to distinguish between the discrete layer, involving the last

element, and the continuous layer. For the discrete layer we set

ψ1(x) :=

{
1 if 0 ≤ x ≤ x̄1 := 2π + σh log(h)

e(x̄1−x)/h if x̄1 < x ≤ 2π ,
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Fig. 7. Qualitative plot of ψ in the case Pe ≤ 2.

while for the continuous layer we set

ψ2(x) :=

1 if 0 ≤ x ≤ x̄2 := 2π +
2εh

h− 2ε
log
(
2εh−1

)
e
h−2ε
2εh (x̄2−x) if x̄2 < x ≤ 2π ,

and finally

ψ := ψ1 ψ2; (Pe > 2 case)

in order to clarify this last definition, note that

ψ :=


1 if 0 ≤ x ≤ x̄1

c1e
−x/h if x̄1 < x ≤ x̄2

c2e
−x/(2ε) if x̄2 < x ≤ 2π ,

(Pe > 2 case)

where c1 and c2 are proper positive constants (depending on h and ε) that give

the continuity in x̄1 and x̄2 (see Fig. 8). In this case ψ also verifies (4.2) and (4.4),

because of (4.5). An annoying but direct calculation yields (4.3) and (2.20), whose

details have been omitted.

The continuity estimate (2.4) with respect to weighted norms follows easily from

the Cauchy–Schwartz inequality, as stated in the following proposition.

Fig. 8. Qualitative plot of ψ in the case Pe > 2.
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Proposition 4.1. Assuming (4.1) we have

|a(w, v)| ≤ ‖w‖S‖v‖T , ∀ w, v ∈ H1
0 (0, 2π) .

Moreover, we can prove the following stability estimate:

Lemma 4.1. Assuming (4.1)and h ≤ 1 we have

‖w‖S ≤ C‖Lw‖ψ, ∀ w ∈ H1
0 (0, 2π) ∩H2(0, 2π). (4.6)

Proof. In the diffusion dominated regime, say ε ≥ 1/4, (4.6) is a straightforward

consequence of the elliptic regularity, since 0 < C ≤ ψ ≤ 1. Now we focus our

attention on the case ε < 1/4. We have

‖Lw‖2ψ =

∫ 2π

0

(εw′′(x))2ψ(x) dx+

∫ 2π

0

(w′(x))2ψ(x)dx

−
∫ 2π

0

ε(2w′(x)w′′(x))ψ(x) dx ≥ ‖w‖2S −
∫ 2π

0

ε((w′(x))2)′ψ(x) dx .

(4.7)

Integrating by parts, the last addendum yields

−
∫ 2π

0

ε((w′(x))2)′ψ(x)dx =

∫ 2π

0

ε(w′(x))2ψ′(x)dx− [ε(w′(x))2ψ(x)]2π0

= I + II . (4.8)

Using (4.2) we get

|I| ≤ 1

2
‖w‖2S , (4.9)

while, by our assumption on ε, we have ψ(2π) ≤ 1/2 whence

II ≥ ψ(2π)
(
2ε(w′(0))2 − ε(w′(2π))2

)
. (4.10)

Note that, since w assumes homogeneous boundary conditions, we have

εw′(2π)− εw′(0) =

∫ 2π

0

Lw(x) dx ; (4.11)

then

(εw′(2π))2 =

(
εw′(0) +

∫ 2π

0

Lw(x) dx

)2

≤ 2(εw′(0))2 + 2

(∫ 2π

0

Lw(x) dx

)2

(4.12)

and, using the Cauchy–Schwartz inequality and (4.3), we obtain(∫ 2π

0

Lw(x) dx

)2

≤
∫ 2π

0

(Lw(x))2ψ(x) dx ·
∫ 2π

0

ψ−1(x) dx

≤ Cεψ−1(2π)‖Lw‖2ψ ; (4.13)
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hence (4.12) and (4.13) yield

(εw′(2π))2 − 2(εw′(0))2 ≤ Cεψ−1(2π)‖Lw‖2ψ , (4.14)

that is

II ≥ −C‖Lw‖2ψ . (4.15)

Finally (4.7)–(4.9) and (4.15) give (4.6).

We can now prove the inf–sup condition (2.5): we restrict ourselves to the case

Pe ≥ 1/2 and w ∈ Uh (i.e. Lw ∈ Φh ≡ Vh); as mentioned in Remark 2.1, this is not

restrictive for our analysis.

Proposition 4.2. Assuming (4.1), h ≤ 1 and Pe ≥ 1/2, we have

inf
w∈Uh

sup
v∈H1

0

a(w, v)

‖w‖S‖v‖T
≥ γ > 0 ; (4.16)

with γ independent of ε and h.

Proof. Let t(·, ·) be the scalar product associated with the norm ‖ · ‖T , i.e.

t(v1, v2) := ε2

∫ 2π

0

v′1(x)v
′
2(x)ψ

−1(x) dx+

∫ 2π

0

v1(x)v2(x)ψ
−1(x) dx ,

and let η = η(w) be the solution of the variational problem:

t(η, w) = a(w, v), ∀ v ∈ Vh . (4.17)

Then we can express the sup in (4.16) in terms of η:

inf
w∈Uh

sup
v∈V

a(w, v)

‖w‖S‖v‖T
= inf
w∈Uh

sup
v∈V

t(η, v)

‖w‖S‖v‖T
= inf
w∈Uh

‖η‖T
‖w‖S

, (4.18)

and we have to prove that

‖w‖S ≤ C‖η‖T . (4.19)

We choose v = Lwψ in (4.17). Notice that w ∈ Uh implies Lwψ ∈ H1
0 (0, 2π).

Integrating by parts we have

‖Lw‖2ψ = a(w,Lw ψ)

= t(η,Lwψ)

= ε2

∫ 2π

0

η′(x)(Lw)′(x) dx

+ ε2

∫ 2π

0

η′(x)Lw(x)ψ′(x)ψ−1(x) dx

+

∫ 2π

0

η(x)Lw(x) dx

= I + II + III .
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Using the Cauchy–Schwartz inequality and (4.4) we obtain

I ≤ ‖εη′‖ψ−1‖ε(Lw)′‖ψ ≤ ‖η‖T ‖Lw‖ψ ;

using (4.2) and the Cauchy–Schwartz inequality yields

II ≤ ε

2

∫ 2π

0

|η′(x)||Lw| dx ≤ ‖η‖T‖Lw‖ψ ,

while, simply using the Cauchy–Schwartz inequality

III ≤ ‖η‖ψ−1‖Lw‖ψ ≤ ‖η‖T‖Lw‖ψ .

Hence ‖Lw‖ψ ≤ C‖η‖T , and Lemma 4.1 gives us (4.19).

4.2. Numerical evaluation of the discretizations

The weight ψ defined in the previous section depends on a parameter σ that can

influence its effect: the bigger is σ, the stronger is the damping in the layer region, as

shown in Figs. 7 and 8. Here we use σ = 5, but different choices of σ, say 2 ≤ σ ≤ 8,

give similar qualitative results (in the sense that we still clearly recognize the merits

and demerits of the methods under analysis).

The results we are showing are the counterpart of the ones of Sec. 3. In Figs. 9

and 10 we compare the standard Galerkin method and the SUPG method for

Fig. 9. Plot of ρ for 100–101 elements and ε varying.
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Fig. 10. Plot of ρ for 10 up to 103 elements and ε = 10−2.

Fig. 11. SUPG: plot of ρ as a function of both τ and h.
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Fig. 12. SUPG: plot of ρ for h = 1.1 · 10−1, 4.2 · 10−2, 1.6 · 10−2 and τ varying.

different values of ε (from 10−5 up to 10−1) and for different number of elements

(from 10 up to 103) respectively. We can draw the same conclusion, and in particular

we see that here there is a larger gap between good and bad methods: this is due

to the particular structure of the norms used, that allow a stronger control outside

the layer region. Figures 11–13 deal with the effect of τ in SUPG. Keeping in mind

Fig. 3, it can be seen in Fig. 11 and in its significant sections plotted as Figs. 12–13

that again our procedure recognizes the optimal behavior of SUPG for τ = τef .
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Fig. 13. SUPG: plot of ρ for τ = 4.8 · 10−2, 1.8 · 10−2, 2.6 · 10−3 and h varying.

5. Conclusion

In this work we have proposed an automatic procedure to evaluate the accuracy of

various finite element discretizations of linear differential problems. We have tested

it on the one-dimensional advection–diffusion differential operator, for advection-

dominated regimes. The paper is mostly devoted to the analysis of the behavior

of this operator: besides being interesting in view of numerical methods, it is also

a preparatory step for our procedure. We have proposed two different analyses
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of this operator in Secs. 3 and 4. In both cases we have introduced a class of

norms, depending on parameters, which brings the advection–diffusion operator

into the framework of Theorem 2.1, uniformly in ε. This leads to two different

implementations of the procedure.

We point out the main improvements of the present procedure with respect to

the previous ones2,10:

• after the analysis of the continuous operator, Proposition 2.1 gives a systematic

way to obtain the discrete procedure,

• we have focused the crucial points in order to obtain a very sharp evaluation.

As a consequence, our procedure goes well beyond the rough classification (Standard

Galerkin = bad, SUPG = good), but is able to distinguish, in SUPG methods,

among the different values of the stabilizing parameter τ , and split the optimal one.

In this respect, we can say that the present analysis allows a much finer evaluation

of the quality of the different methods.
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