
Eigenvalues and eigenvectors

Let A ∈ Rn×n. If 0 6= v ∈ Cn and λ ∈ C satisfy

Av = λv

then λ is called eigenvalue, and v is called eigenvector.

Given a matrix, we want to approximate its eigenvalues and eigenvectors.
Some applications:

Structural engineering (natural frequency, heartquakes )

Electromagnetics (resonance cavity)

Google’s Pagerank algorithm

...
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The characteristic polynomial

The eigenvalues of a matrix are the roots of the characteristic
polynomial

p(λ) := det (λI − A) = 0

However, computing the roots of a polynomial is a very ill-conditioned
problem! We cannot use this approach to compute the eigenvalues.
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Eigenvalues and eigenvectors

Algorithms that compute the eigenvalues/eigenvectors of a matrix are
divided into two categories:

1 Methods that compute all the eigenvalues/eigenvectors at once.

2 Methods that compute only a few (possibly one)
eigenvalues/eigenvectors.

The methods are also different whether the matrix is symmetric or not. In
this lesson we will discuss methods of type 2.
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Diagonalizable matrices

Definition

We say that a matrix A ∈ Cn×n is diagonalizable if there exists a non
singular matrix U and a diagonal matrix D such that U−1AU = D.

The diagonal element of D are the eignevalue of A and the column ui of U
is an eigenvector of A relative to the eigenvalue Di ,i .

Since a scalar multiple of an eigenvector is still an eigenvector, we can
choose U such that ‖ui‖2 = 1 for i = 1, . . . , n.

Finally, we observe that if A is diagonalizable, since U is non singular, then
the vectors {u1, . . . , un} form a basis of Cn.

From now on, we assume that the eigenvalues are numbered in decreasing
order (in module), i.e.

|λ1| ≥ |λ2| ≥ . . . ≥ |λn|
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Eigenvalues/eigenvectors of a symmetric matrix

Theorem

All the eigenvalues of a real symmetric matrix are real. Moreover, there
exists a basis of eigenvectors u1, . . . , un, i.e.

Aui = λiui

that have real entries and are orthonormal, i.e.

(ui , uj) = δij
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The power method

We want to approximate the eigenvalue of A that is largest in module.

v0 = some vector with ‖v0‖ = 1.
for k = 1, 2, . . .

w = Avk−1 apply A
vk = w/ ‖w‖ normalize
µk = (vk)H Avk Reyleigh quotient

end

(vk)H denotes the transpose conjugate of the vector vk

if A is real and symmetric, since eigenvalues and eigenvectors are real,
we can just use real numbers in the algorithm above and
(vk)H = (vk)T is the transpose of the vector vk . This is the case we
will consider in all examples.

Theorem

Let A ∈ Cn×n be a diagonalizable matrix. Assume |λ1| > |λ2| and
v0 =

∑n
i=1 αiui , with α1 6= 0. Then there exists C > 0, independent of k ,

such that

‖ṽk − u1‖2 ≤ C

∣∣∣∣λ2λ1
∣∣∣∣k , where ṽk =

‖Akv0‖
α1λk1

vk .
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Proof
We expand v0 on the eigenvector basis {u1, . . . , un} choosen s.t. ‖ui‖ = 1 for
i = 1, . . . , n:

v0 =
n∑

i=1

αiui , with α1 6= 0

It holds

Akv0 =
n∑

i=1

αiλ
k
i ui and vk =

Akv0
‖Akv0‖

Hence, we can write

ṽk =
Akv0
α1λk

1

= u1 +
n∑

i=2

αi

α1

(
λi

λ1

)k

ui

At this point, it holds

‖ṽk − u1‖2 =

∥∥∥∥∥
n∑

i=2

αi

α1

(
λi

λ1

)k

ui

∥∥∥∥∥
2

≤
n∑

i=2

∥∥∥∥∥αi

α1

(
λi

λ1

)k

ui

∥∥∥∥∥
2

=
n∑

i=2

∣∣∣∣αi

α1

∣∣∣∣ ∣∣∣∣ λi

λ1

∣∣∣∣k
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So, we obtain

‖ṽk − u1‖2 ≤
n∑

i=2

∣∣∣∣αi

α1

∣∣∣∣ ∣∣∣∣ λiλ1
∣∣∣∣k ≤ (n − 1) · max

i=2,...,n

(∣∣∣∣αi

α1

∣∣∣∣) ∣∣∣∣λ2λ1
∣∣∣∣k = C

∣∣∣∣λ2λ1
∣∣∣∣k ,

where we have defined C = (n − 1) ·maxi=2,...,n

(∣∣∣ αi
α1

∣∣∣). Since C does not

depend on k , this concludes the proof.

The previous theorem implies that the sequence {ṽk} converges to the
eigenvector u1. Since ṽk is a scalar multiple of vk , they have the same
direction and this direction converges to the direction of u1. As a result,
for k that goes to +∞ the vector vk tends to have the same direction of
u1. Thus vk tends to be an eigenvector relaltive to λ1.

Remark

if |λ2| � |λ1| the convergence will be fast. On the other hand, if λ2 ≈ λ1
the convergence will be slow.
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We also have a convergence results for the approximation of the
eigenvalue λ1.

Corollary

Let A ∈ Cn×n be a diagonalizable matrix. Assume |λ1| > |λ2| and
v0 =

∑n
i=1 αiui , with α1 6= 0. Then it holds

|µk − λ1| = O

(∣∣∣∣λ2λ1
∣∣∣∣k
)
, for k → +∞.

For symmetric real matrices, we have a better convergence results:

Corollary

Let A ∈ Rn×n be a symmetric matrix. Assume |λ1| > |λ2| and
v0 =

∑n
i=1 αiui , with α1 6= 0. Then it holds

|µk − λ1| = O

(∣∣∣∣λ2λ1
∣∣∣∣2k
)
, for k → +∞.
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Some observations

One of the hypothesis of the previous results is α1 6= 0, where αi are
defined such that v0 =

∑n
i=1 αiui . Clearly, u1, . . . , un are unknown and we

cannot check if v0 satisfies this hypothesis.
Practically this is not a real obstacle. Consider for simplicity the case of
A ∈ Rn×n symmetric. If we choose v0 s.t α1 = 0 then:

in exact arithmetic, we get limk→+∞ ṽk = u2 and limk→+∞ µk = λ2,
as long as |λ2| > |λ3| and α2 6= 0.

in finite arithmetic, during the iterations of the Power Method,
round-off errors cause the appearance of a non-zero component in the
direction of u1, in a certain vk . When this happens, the method starts
to converge towards the dominant eigenvalue λ1 and its
corresponding eigenvector u1.

For more general A ∈ Cn×n (possibly, real and non symmetric) the same
happens but one has to use complex finite arithmetic and initialize v0 as a
vector with nonzero real and imaginary entries.
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Stopping criterion

A simple stopping criterion for the power method is based on the residual:

Stop when ‖Avk − µkvk‖ ≤ tol
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How can we compute other eigenvalues and eigenvectors?

Let µ ∈ C a user-specified parameter that is not an eigenvalue of A, we
want to approximate the closest eigenvalue of A to µ, i.e.

λJ = argmin
i
|µ− λi |

Inverse Power method

Input: A ∈ Cn×n, v0 ∈ Cn with ‖v0‖ = 1, MAXITER ∈ N, tol ∈ R+.
for k = 1, 2, . . . ,MAXITER

w = (A− µI )−1 vk−1 (equivalently, solve (A− µI )w = vk−1)
vk = w/ ‖w‖
µk = (vk)H Avk (Rayleigh quotient with A)
Check the Stopping criterion

end
Output: µk and vk .

Since µ is not an eigenvalue of A, the matrix A− µI is non singular.
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Since Aui = λiui , then (A− µI )ui = (λi − µ)ui , and then
1

λi−µui = (A− µI )−1ui . Let λJ be the eigenvalue of A closest to µ, the

largest (in module) eigenvalue of (A− µI )−1 is then 1
λJ−µ , and the relative

eigenvector is uJ . The inverse power method is just a power method
applied to (A− µI )−1, and the previous results apply: ṽk converges to uJ .
Since the Rayleigh quotient µk is computed with A instead of (A− µI )−1,
it converges to λJ .

Theorem

Assume |µ− λJ | < |µ− λi | ∀ i = 1, . . . , n, i 6= J and v0 =
∑n

i=1 αiui ,
with αJ 6= 0. Then

lim
k→+∞

µk = λJ

and

lim
k→+∞

‖ṽk − uJ‖2 = 0, where ṽk =
‖Akv0‖
α1λk1

vk .

Note that if µ = 0, the method approximates the eigenvalue of A that is
smallest in module.
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