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Introduction

Nematic liquid crystals are an intermediate phase of matter. They are
composed by rigid, rod–shaped molecules which

- can flow freely, as in liquid,

- but tend to align locally, recovering some orientational order (as in
crystalline solid phases)
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Examples of Schlieren textures.

Disclinations of strength +1/2 and −1/2.
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Liquid crystal modeling: statistical mechanics

• Let µ : B(S2)→ [0, 1] be a probability on the sphere S2.
µ(A) is the probability that, at a given point, the molecules are pointing in
a direction contained in A ⊂ S2.

• Head–to–tail symmetry of molecules: µ(A) = µ(−A) for all A ∈ B(S2).

• We consider the second–order momentum

Q :=

∫
S2

p⊗2 dµ(p)− 1
3

Id3

which is a symmetric traceless 3× 3 matrix. Here(
p⊗2
)

ij
:= pipj for all p ∈ S2.
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Liquid crystals modeling: Q–tensors

• We represent the local configurations by matrices:

S0 :=
{

Q ∈ M3×3(R) : Q = QT, tr Q = 0
}
.

• Each Q ∈ S0 can be written as

Q = s
{(

n⊗2 − 1
3

Id
)

+ r
(

m⊗2 − 1
3

Id
)}

where (n, m) is an orthonormal pair in R3, s ≥ 0 and 0 ≤ r ≤ 1.

• The configurations are classified according to the eigenvalues of Q:
- isotropic: Q = 0 (s = 0)
- uniaxial: Q 6= 0 and two eigenvalues coincide (s > 0, r ∈ {0, 1})
- biaxial: all the eigenvalues are distinct (s > 0, 0 < r < 1).

• For uniaxial configurations, n gives the local preferred orientation of the
molecules.
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The variational problem

• Let Ω ⊆ R2 be a bounded, smooth domain, and g : ∂Ω→ S0 a smooth
boundary datum. Let

H1
g(Ω, S0) :=

{
Q ∈ H1(Ω, S0) : Q|∂Ω = g

}
.

• We consider the Landau–de Gennes problem

min
Q∈H1

g(Ω, S0)
Eε(Q), Eε(Q) :=

∫
Ω

{
1
2
|∇Q|2 +

1
ε2 f (Q)

}
(Pε)

where ε2 is an elastic constant (' 10−11 J/m) and f is the potential energy:

f (Q) := k− a
2

tr Q2 − b
3

tr Q3 +
c
4

(
tr Q2

)2

a, b, c > 0 and k ∈ R so that inf f = 0.
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The vacuum manifold

• The minimizers for f are exactly the elements of

N :=

{
s∗
(

n⊗2 − 1
3

Id
)

: n ∈ S2
}
,

for some constant s∗ = s∗(a, b, c). Notice that n⊗2 = (−n)⊗2.
• N is a smooth submanifold of S0, called vacuum manifold. We have

N ' RP2

(RP2 is the quotient space of S2, modulo the identification of antipodal
points n ∼ −n).

• ε−2f (Q) can be thought as a penalization term for the constraint Q ∈ N .
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Assume that g(x) ∈ N for all x ∈ ∂Ω. It may be impossible to extend g
continuously Ω→ N ⇒ Singularities

Question 1. Are the minimizers for Problem (Pε) biaxial somewhere?

Question 2. How do minimizers behave as ε↘ 0?
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Biaxiality in the Q–tensor model

Should we expect biaxiality in minimizers of Problem (Pε)?

• Numerics in 2D: [Schopohl, Sluckin, ’87].
• Numerics in 3D, biaxial torus: [Gartland, Mkaddem, ’99], [Kralj, Virga,

Zumer, ’99], [Kralj, Virga, ’01].
• The uniaxial hedgehog is unstable in the low-temperature limit (a� 1):

[Gartland, Mkaddem, ’99].
• Minimizers are either uniaxial everywhere, either biaxial a.e.: [Majumdar,

Zarnescu, ’10].
• Minimizers are biaxial, in 3D, when a� 1: [Henao, Majumdar, ’12].

“Almost uniaxial” minimizers are not excluded.
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Define the biaxiality parameter as

β(Q) = 1− 6

(
tr Q3)2

(tr Q2)3 , Q ∈ S0 \ {0}.

It holds that 0 ≤ β(Q) ≤ 1, with β(Q) = 0 iff Q is uniaxial.

Proposition 1 ([Majumdar, Zarnescu, ’10])

Up to rescaling, f satisfies

µ1(1− |Q|)2 + σβ(Q) |Q|3 ≤ f (Q) ≤ µ2(1− |Q|)2 + σβ(Q) |Q|3

In addition, setting t := ac/b2, we compute

µ1

a
(t)→ α > 0,

σ

a
(t)→ 0 as t→ +∞. (?)

When t� 1, we expect biaxiality to be energetically convenient!
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Assume that Ω is simply connected, and

(K1) g is a smooth curve ∂Ω→ N

(K2) g is non trivial, that is, g cannot be extended to a continuous map Ω→ N .

Theorem 2
There exists t0 ≥ 0 and ε0 = ε0(a, b, c) so that, if

t =
ac
b2 ≥ t0 and ε ≤ ε0,

then minimizers Qε for Problem (Pε) fulfill

min
Ω
|Qε| > 0, max

Ω
β(Qε) = 1.

• No isotropic melting.
• In agreement with the numerical results [Schopohl, Sluckin, ’87]!
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Sketch of the proof

• We know that Qε ∈ C∞(Ω, S0) (by elliptic regularity) and, by a
comparison argument,

‖Qε‖L∞(Ω) ≤ 1.

• By considering the topology of S0, one proofs

min
Ω
|Qε| > 0⇒ max

Ω
β(Qε) = 1

(the set {Q ∈ S0 : |Q| ≥ δ > 0, β(Q) ≤ 1− δ} retracts on N ).

• We write

2Eε(Qε) = lim
t→0

∫
{|Qε|>t}

{
|∇ |Qε||2

+ |Qε|2
∣∣∣∣∇( Qε

|Qε|

)∣∣∣∣+ 2ε−2f (Qε)
}
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• Assume, by contradiction, that minΩ |Qε| = 0. Then, Γt := {|Qε| = t} 6= ∅
for a.e. t ∈ (0, 1) and, applying the coarea formula,

2Eε(Qε) =

∫ 1

0
dt
∫

Γt

dH1
{
|∇ |Qε||+

2f (Qε)

ε2 |∇ |Qε||
+ t2

∣∣∣∣∇( Qε

|Qε|

)∣∣∣∣}
• Estimating the RHS with the help of Proposition 1 and [Sandier, ’98], we

obtain
Eε(Qε) ≥ κ∗ |log ε|+ κ∗

2
logµ1 − C1

where κ∗ = κ∗(Ω, g).

• For ε small enough, we construct a comparison map Pε with

Eε(Pε) ≤ κ∗ |log ε|+ κ∗
2

logσ + C2.

• We derive a contradiction due to (?): when t� 1

Eε(Pε) < Eε(Qε).
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The comparison map

How to construct the comparison map Pε?

• By a topological argument, we reduce to the case Ω = B1(0),

g(θ) = s∗
{

n(θ)⊗2 − 1
3

Id
}

for θ ∈ [0, 2π]

where n(θ) = (cos(θ/2), sin(θ/2), 0)T.

• We define Pε by:

Pε(ρ, θ) = sε(ρ)

{(
n(θ)⊗2 − 1

3
Id
)

+ rε(ρ)

(
m(θ)⊗2 − 1

3
Id
)}

where m(θ) = (sin(θ/2), − cos(θ/2), 0)T, rε is a piecewise affine function
such that

rε(ρ) =

{
1 if ρ = 0
0 if ρ ≥ σ−1/2ε

and sε is such that |Pε| = 1.
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Asymptotic analysis: a general setting

In what follows, we consider

u ∈ H1
g(Ω, Rd) 7→ Eε(u) =

∫
Ω

{
1
2
|∇u|2 +

1
ε2 f (u)

}
, (P′ε)

where the unknown is a function u : Ω→ Rd.

Assumptions on f :

(H1) f ≥ 0 is smooth, N := f−1(0) 6= ∅ is a smooth, compact and connected
manifold (without boundary).

(H2) For all p ∈ N and all normal vector v ∈ Rd to N at p,

d2

dt2

∣∣∣∣
t=0

f (p + tv) > 0.

(H3) For all v ∈ Rd with |v| ≥ 1,

f
(

v
|v|

)
< f (v).

Some (mild) assumption on the topology of N is also needed.
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Statement of the results

We denote by uε the minimizers for (P′ε).

Theorem 3

Assume that (K1)–(K2) and (H1)–(H3) are satisfied, let δ > 0 be an arbitrarily small
number. For ε small enough, there exists a finite number of balls B1, . . . ,Bk of radius
λε, so that

dist(uε(x), N ) ≤ δ if x ∈ Ω \
k⋃

i=1

Bi.

• The balls Bi correspond, in the limit ε↘ 0, to singularities of the limit
map.

• In the Landau–de Gennes model, biaxiality is localized.
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Theorem 4
Assuming (K1)–(K2), (H1)–(H3), there exists a subsequence εn ↘ 0, a finite set
X ⊂ Ω and a function u0 ∈ C∞(Ω \ X, N ) so that

uεn → u0 strongly in H1
loc ∩ C0(Ω \ X, Rd).

Moreover, on every ball B ⊂⊂ Ω \ X the map u0 is minimizing harmonic, that is,

1
2

∫
B
|∇u0|2 = inf

{
1
2

∫
B
|∇v|2 : v ∈ H1(B, N ), v|∂B = u0|∂B

}
.

Remark: the map u0 is not harmonic in Ω! In fact, u0 has infinite energy, since

1
2

∫
Ω

|∇uε|2 ' κ∗ |log ε|+ C.
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• The energy of u0 concentrates around the singularities.
• In case N ' RP2, we can prove that X = {a}. Setting

cρ : θ ∈ [0, 2π] 7→ u0

(
a + ρeiθ

)
,

along some subsequence ρn ↘ 0 there is uniform convergence of cρn to a
geodesic in N .
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• As the boundary datum g is smooth, we can apply topological tools to our
problem. The singularities which can possibly arise in u0 are classified
according the homotopic structure of N (see, e.g. [Mermin, ’79]).

• By topological arguments, we can identify the best constant κ∗ for the
bound ∫

Ω

|∇uε|2 ≤ κ∗ |log ε|+ C

then we use a comparison argument to prove it.

• The singularities of u0 solve a minimization problem, which involves the
homotopic invariants of N .
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Conclusions

• In the low temperature regime, minimizers Qε of Problem (Pε) have no
isotropic points.

• As ε→ 0, Qε converges to a map with a (unique) point defect a.

• Near a, the map Qε presents a region of maximal biaxiality.
Outside, Qε looks “almost uniaxial”.
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