Laboratoire Jacques Louis Lions Université Pierre et Marie Curie, Paris VI

Biaxiality and asymptotic analysis of a 2D Landau-de Gennes model

Giacomo CANEVARI

canevari@ann.jussieu.fr

Two Days Workshop on LC-flows
University of Pavia
March 24-25, 2014

Introduction

Nematic liquid crystals are an intermediate phase of matter. They are composed by rigid, rod-shaped molecules which

- can flow freely, as in liquid,
- but tend to align locally, recovering some orientational order (as in crystalline solid phases)

Examples of Schlieren textures.

Disclinations of strength $+1 / 2$ and $-1 / 2$.

Liquid crystal modeling: statistical mechanics

- Let $\mu: \mathscr{B}\left(S^{2}\right) \rightarrow[0,1]$ be a probability on the sphere S^{2}. $\mu(A)$ is the probability that, at a given point, the molecules are pointing in a direction contained in $A \subset S^{2}$.
- Head-to-tail symmetry of molecules: $\mu(A)=\mu(-A)$ for all $A \in \mathscr{B}\left(S^{2}\right)$.

Liquid crystal modeling: statistical mechanics

- Let $\mu: \mathscr{B}\left(S^{2}\right) \rightarrow[0,1]$ be a probability on the sphere S^{2}. $\mu(A)$ is the probability that, at a given point, the molecules are pointing in a direction contained in $A \subset S^{2}$.
- Head-to-tail symmetry of molecules: $\mu(A)=\mu(-A)$ for all $A \in \mathscr{B}\left(S^{2}\right)$.
- We consider the second-order momentum

$$
Q:=\int_{S^{2}} p^{\otimes 2} d \mu(p)-\frac{1}{3} \mathrm{Id}_{3}
$$

which is a symmetric traceless 3×3 matrix. Here

$$
\left(p^{\otimes 2}\right)_{i j}:=p_{i} p_{j} \quad \text { for all } p \in S^{2} .
$$

Liquid crystals modeling: Q-tensors

- We represent the local configurations by matrices:

$$
\mathbf{S}_{0}:=\left\{Q \in M_{3 \times 3}(\mathbb{R}): Q=Q^{T}, \operatorname{tr} Q=0\right\}
$$

- Each $Q \in \mathbf{S}_{0}$ can be written as

$$
Q=s\left\{\left(n^{\otimes 2}-\frac{1}{3} \text { Id }\right)+r\left(m^{\otimes 2}-\frac{1}{3} \text { Id }\right)\right\}
$$

where (n, m) is an orthonormal pair in $\mathbb{R}^{3}, s \geq 0$ and $0 \leq r \leq 1$.

Liquid crystals modeling: Q-tensors

- We represent the local configurations by matrices:

$$
\mathbf{S}_{0}:=\left\{Q \in M_{3 \times 3}(\mathbb{R}): Q=Q^{T}, \operatorname{tr} Q=0\right\}
$$

- Each $Q \in \mathbf{S}_{0}$ can be written as

$$
Q=s\left\{\left(n^{\otimes 2}-\frac{1}{3} \text { Id }\right)+r\left(m^{\otimes 2}-\frac{1}{3} \text { Id }\right)\right\}
$$

where (n, m) is an orthonormal pair in $\mathbb{R}^{3}, s \geq 0$ and $0 \leq r \leq 1$.

- The configurations are classified according to the eigenvalues of Q :
- isotropic: $Q=0(s=0)$
- uniaxial: $Q \neq 0$ and two eigenvalues coincide $(s>0, r \in\{0,1\})$
- biaxial: all the eigenvalues are distinct ($s>0,0<r<1$).
- For uniaxial configurations, n gives the local preferred orientation of the molecules.

The variational problem

- Let $\Omega \subseteq \mathbb{R}^{2}$ be a bounded, smooth domain, and $g: \partial \Omega \rightarrow \mathbf{S}_{0}$ a smooth boundary datum. Let

$$
H_{g}^{1}\left(\Omega, \mathbf{S}_{0}\right):=\left\{Q \in H^{1}\left(\Omega, \mathbf{S}_{0}\right):\left.Q\right|_{\partial \Omega}=g\right\}
$$

The variational problem

- Let $\Omega \subseteq \mathbb{R}^{2}$ be a bounded, smooth domain, and $g: \partial \Omega \rightarrow \mathbf{S}_{0}$ a smooth boundary datum. Let

$$
H_{g}^{1}\left(\Omega, \mathbf{S}_{0}\right):=\left\{Q \in H^{1}\left(\Omega, \mathbf{S}_{0}\right):\left.Q\right|_{\partial \Omega}=g\right\}
$$

- We consider the Landau-de Gennes problem

$$
\min _{Q \in H_{g}^{1}\left(\Omega, \mathbf{s}_{0}\right)} E_{\varepsilon}(Q), \quad E_{\varepsilon}(Q):=\int_{\Omega}\left\{\frac{1}{2}|\nabla Q|^{2}+\frac{1}{\varepsilon^{2}} f(Q)\right\}
$$

where ε^{2} is an elastic constant $\left(\simeq 10^{-11} \mathrm{~J} / \mathrm{m}\right)$ and f is the potential energy:

$$
f(Q):=k-\frac{a}{2} \operatorname{tr} Q^{2}-\frac{b}{3} \operatorname{tr} Q^{3}+\frac{c}{4}\left(\operatorname{tr} Q^{2}\right)^{2}
$$

$a, b, c>0$ and $k \in \mathbb{R}$ so that $\inf f=0$.

The vacuum manifold

- The minimizers for f are exactly the elements of

$$
\mathscr{N}:=\left\{s_{*}\left(n^{\otimes 2}-\frac{1}{3} \mathrm{Id}\right): n \in S^{2}\right\}
$$

for some constant $s_{*}=s_{*}(a, b, c)$. Notice that $n^{\otimes 2}=(-n)^{\otimes 2}$.

- \mathscr{N} is a smooth submanifold of \mathbf{S}_{0}, called vacuum manifold. We have

$$
\mathscr{N} \simeq \mathbb{R} \mathbb{P}^{2}
$$

$\left(\mathbb{R} \mathbb{P}^{2}\right.$ is the quotient space of S^{2}, modulo the identification of antipodal points $n \sim-n$).

The vacuum manifold

- The minimizers for f are exactly the elements of

$$
\mathscr{N}:=\left\{s_{*}\left(n^{\otimes 2}-\frac{1}{3} \mathrm{Id}\right): n \in S^{2}\right\}
$$

for some constant $s_{*}=s_{*}(a, b, c)$. Notice that $n^{\otimes 2}=(-n)^{\otimes 2}$.

- \mathscr{N} is a smooth submanifold of \mathbf{S}_{0}, called vacuum manifold. We have

$$
\mathscr{N} \simeq \mathbb{R} \mathbb{P}^{2}
$$

$\left(\mathbb{R} \mathbb{P}^{2}\right.$ is the quotient space of S^{2}, modulo the identification of antipodal points $n \sim-n$).

- $\varepsilon^{-2} f(Q)$ can be thought as a penalization term for the constraint $Q \in \mathscr{N}$.

Assume that $g(x) \in \mathscr{N}$ for all $x \in \partial \Omega$. It may be impossible to extend g continuously $\Omega \rightarrow \mathscr{N} \Rightarrow$ Singularities

Assume that $g(x) \in \mathscr{N}$ for all $x \in \partial \Omega$. It may be impossible to extend g continuously $\Omega \rightarrow \mathscr{N} \Rightarrow$ Singularities

Question 1. Are the minimizers for Problem $\left(\mathrm{P}_{\varepsilon}\right)$ biaxial somewhere?
Question 2. How do minimizers behave as $\varepsilon \searrow 0$?

Biaxiality in the Q-tensor model

Should we expect biaxiality in minimizers of Problem $\left(\mathrm{P}_{\varepsilon}\right)$?

- Numerics in 2D: [Schopohl, Sluckin, '87].
- Numerics in 3D, biaxial torus: [Gartland, Mkaddem, '99], [Kralj, Virga, Zumer, '99], [Kralj, Virga, '01].
- The uniaxial hedgehog is unstable in the low-temperature limit $(a \gg 1)$: [Gartland, Mkaddem, '99].
- Minimizers are either uniaxial everywhere, either biaxial a.e.: [Majumdar, Zarnescu, '10].
- Minimizers are biaxial, in 3D, when $a \gg 1$: [Henao, Majumdar, '12].
"Almost uniaxial" minimizers are not excluded.

Define the biaxiality parameter as

$$
\beta(Q)=1-6 \frac{\left(\operatorname{tr} Q^{3}\right)^{2}}{\left(\operatorname{tr} Q^{2}\right)^{3}}, \quad Q \in \mathbf{S}_{0} \backslash\{0\}
$$

It holds that $0 \leq \beta(Q) \leq 1$, with $\beta(Q)=0$ iff Q is uniaxial.

Define the biaxiality parameter as

$$
\beta(Q)=1-6 \frac{\left(\operatorname{tr} Q^{3}\right)^{2}}{\left(\operatorname{tr} Q^{2}\right)^{3}}, \quad Q \in \mathbf{S}_{0} \backslash\{0\}
$$

It holds that $0 \leq \beta(Q) \leq 1$, with $\beta(Q)=0$ iff Q is uniaxial.
Proposition 1 ([Majumdar, Zarnescu, '10])
Up to rescaling, f satisfies

$$
\mu_{1}(1-|Q|)^{2}+\sigma \beta(Q)|Q|^{3} \leq f(Q) \leq \mu_{2}(1-|Q|)^{2}+\sigma \beta(Q)|Q|^{3}
$$

In addition, setting $t:=a c / b^{2}$, we compute

$$
\frac{\mu_{1}}{a}(t) \rightarrow \alpha>0, \quad \frac{\sigma}{a}(t) \rightarrow 0 \quad \text { as } t \rightarrow+\infty
$$

When $t \gg 1$, we expect biaxiality to be energetically convenient!

Assume that Ω is simply connected, and
(K1) g is a smooth curve $\partial \Omega \rightarrow \mathscr{N}$
(K2) g is non trivial, that is, g cannot be extended to a continuous map $\Omega \rightarrow \mathscr{N}$.

Assume that Ω is simply connected, and
(K1) g is a smooth curve $\partial \Omega \rightarrow \mathscr{N}$
(K2) g is non trivial, that is, g cannot be extended to a continuous map $\Omega \rightarrow \mathscr{N}$.

Theorem 2

There exists $t_{0} \geq 0$ and $\varepsilon_{0}=\varepsilon_{0}(a, b, c)$ so that, if

$$
t=\frac{a c}{b^{2}} \geq t_{0} \quad \text { and } \quad \varepsilon \leq \varepsilon_{0}
$$

then minimizers Q_{ε} for Problem $\left(\mathrm{P}_{\varepsilon}\right)$ fulfill

$$
\min _{\bar{\Omega}}\left|Q_{\varepsilon}\right|>0, \quad \max _{\bar{\Omega}} \beta\left(Q_{\varepsilon}\right)=1
$$

- No isotropic melting.
- In agreement with the numerical results [Schopohl, Sluckin, '87]!

Sketch of the proof

- We know that $Q_{\varepsilon} \in C^{\infty}\left(\Omega, \mathbf{S}_{0}\right)$ (by elliptic regularity) and, by a comparison argument,

$$
\left\|Q_{\varepsilon}\right\|_{L^{\infty}(\Omega)} \leq 1
$$

- By considering the topology of \mathbf{S}_{0}, one proofs

$$
\min _{\bar{\Omega}}\left|Q_{\varepsilon}\right|>0 \Rightarrow \max _{\bar{\Omega}} \beta\left(Q_{\varepsilon}\right)=1
$$

(the set $\left\{Q \in \mathbf{S}_{0}:|Q| \geq \delta>0, \beta(Q) \leq 1-\delta\right\}$ retracts on $\left.\mathscr{N}\right)$.

Sketch of the proof

- We know that $Q_{\varepsilon} \in C^{\infty}\left(\Omega, \mathbf{S}_{0}\right)$ (by elliptic regularity) and, by a comparison argument,

$$
\left\|Q_{\varepsilon}\right\|_{L^{\infty}(\Omega)} \leq 1
$$

- By considering the topology of \mathbf{S}_{0}, one proofs

$$
\min _{\bar{\Omega}}\left|Q_{\varepsilon}\right|>0 \Rightarrow \max _{\bar{\Omega}} \beta\left(Q_{\varepsilon}\right)=1
$$

(the set $\left\{Q \in \mathbf{S}_{0}:|Q| \geq \delta>0, \beta(Q) \leq 1-\delta\right\}$ retracts on \mathscr{N}).

- We write

$$
\begin{aligned}
2 E_{\varepsilon}\left(Q_{\varepsilon}\right)= & \lim _{t \rightarrow 0} \int_{\left\{\left|Q_{\varepsilon}\right|>t\right\}}\left\{|\nabla| Q_{\varepsilon}| |^{2}\right. \\
& \left.+\left|Q_{\varepsilon}\right|^{2}\left|\nabla\left(\frac{Q_{\varepsilon}}{\left|Q_{\varepsilon}\right|}\right)\right|+2 \varepsilon^{-2} f\left(Q_{\varepsilon}\right)\right\}
\end{aligned}
$$

- Assume, by contradiction, that $\min _{\bar{\Omega}}\left|Q_{\varepsilon}\right|=0$. Then, $\Gamma_{t}:=\left\{\left|Q_{\varepsilon}\right|=t\right\} \neq \emptyset$ for a.e. $t \in(0,1)$ and, applying the coarea formula,

$$
2 E_{\varepsilon}\left(Q_{\varepsilon}\right)=\int_{0}^{1} d t \int_{\Gamma_{t}} d \mathcal{H}^{1}\left\{|\nabla| Q_{\varepsilon}| |+\frac{2 f\left(Q_{\varepsilon}\right)}{\varepsilon^{2}|\nabla| Q_{\varepsilon}| |}+t^{2}\left|\nabla\left(\frac{Q_{\varepsilon}}{\left|Q_{\varepsilon}\right|}\right)\right|\right\}
$$

- Estimating the RHS with the help of Proposition 1 and [Sandier, '98], we obtain

$$
E_{\varepsilon}\left(Q_{\varepsilon}\right) \geq \kappa_{*}|\log \varepsilon|+\frac{\kappa_{*}}{2} \log \mu_{1}-C_{1}
$$

where $\kappa_{*}=\kappa_{*}(\Omega, g)$.

- Assume, by contradiction, that $\min _{\bar{\Omega}}\left|Q_{\varepsilon}\right|=0$. Then, $\Gamma_{t}:=\left\{\left|Q_{\varepsilon}\right|=t\right\} \neq \emptyset$ for a.e. $t \in(0,1)$ and, applying the coarea formula,

$$
2 E_{\varepsilon}\left(Q_{\varepsilon}\right)=\int_{0}^{1} d t \int_{\Gamma_{t}} d \mathcal{H}^{1}\left\{|\nabla| Q_{\varepsilon}| |+\frac{2 f\left(Q_{\varepsilon}\right)}{\varepsilon^{2}|\nabla| Q_{\varepsilon}| |}+t^{2}\left|\nabla\left(\frac{Q_{\varepsilon}}{\left|Q_{\varepsilon}\right|}\right)\right|\right\}
$$

- Estimating the RHS with the help of Proposition 1 and [Sandier, '98], we obtain

$$
E_{\varepsilon}\left(Q_{\varepsilon}\right) \geq \kappa_{*}|\log \varepsilon|+\frac{\kappa_{*}}{2} \log \mu_{1}-C_{1}
$$

where $\kappa_{*}=\kappa_{*}(\Omega, g)$.

- For ε small enough, we construct a comparison map P_{ε} with

$$
E_{\varepsilon}\left(P_{\varepsilon}\right) \leq \kappa_{*}|\log \varepsilon|+\frac{\kappa_{*}}{2} \log \sigma+C_{2}
$$

- We derive a contradiction due to (\star) : when $t \gg 1$

$$
E_{\varepsilon}\left(P_{\varepsilon}\right)<E_{\varepsilon}\left(Q_{\varepsilon}\right)
$$

The comparison map

How to construct the comparison map P_{ε} ?

- By a topological argument, we reduce to the case $\Omega=B_{1}(0)$,

$$
g(\theta)=s_{*}\left\{n(\theta)^{\otimes 2}-\frac{1}{3} \mathrm{Id}\right\} \quad \text { for } \theta \in[0,2 \pi]
$$

where $n(\theta)=(\cos (\theta / 2), \sin (\theta / 2), 0)^{T}$.

The comparison map

How to construct the comparison map P_{ε} ?

- By a topological argument, we reduce to the case $\Omega=B_{1}(0)$,

$$
g(\theta)=s_{*}\left\{n(\theta)^{\otimes 2}-\frac{1}{3} \text { Id }\right\} \quad \text { for } \theta \in[0,2 \pi]
$$

where $n(\theta)=(\cos (\theta / 2), \sin (\theta / 2), 0)^{T}$.

- We define P_{ε} by:

$$
P_{\varepsilon}(\rho, \theta)=s_{\varepsilon}(\rho)\left\{\left(n(\theta)^{\otimes 2}-\frac{1}{3} \mathrm{Id}\right)+r_{\varepsilon}(\rho)\left(m(\theta)^{\otimes 2}-\frac{1}{3} \mathrm{Id}\right)\right\}
$$

where $m(\theta)=(\sin (\theta / 2),-\cos (\theta / 2), 0)^{T}, r_{\varepsilon}$ is a piecewise affine function such that

$$
r_{\varepsilon}(\rho)= \begin{cases}1 & \text { if } \rho=0 \\ 0 & \text { if } \rho \geq \sigma^{-1 / 2} \varepsilon\end{cases}
$$

and s_{ε} is such that $\left|P_{\varepsilon}\right|=1$.

Asymptotic analysis: a general setting

In what follows, we consider

$$
u \in H_{g}^{1}\left(\Omega, \mathbb{R}^{d}\right) \mapsto E_{\varepsilon}(u)=\int_{\Omega}\left\{\frac{1}{2}|\nabla u|^{2}+\frac{1}{\varepsilon^{2}} f(u)\right\},
$$

where the unknown is a function $u: \Omega \rightarrow \mathbb{R}^{d}$.

Asymptotic analysis: a general setting

In what follows, we consider

$$
u \in H_{g}^{1}\left(\Omega, \mathbb{R}^{d}\right) \mapsto E_{\varepsilon}(u)=\int_{\Omega}\left\{\frac{1}{2}|\nabla u|^{2}+\frac{1}{\varepsilon^{2}} f(u)\right\}
$$

where the unknown is a function $u: \Omega \rightarrow \mathbb{R}^{d}$.

Assumptions on f :
(H1) $f \geq 0$ is smooth, $\mathscr{N}:=f^{-1}(0) \neq \emptyset$ is a smooth, compact and connected manifold (without boundary).
(H2) For all $p \in \mathscr{N}$ and all normal vector $v \in \mathbb{R}^{d}$ to \mathscr{N} at p,

$$
\left.\frac{d^{2}}{d t^{2}}\right|_{t=0} f(p+t v)>0
$$

(H3) For all $v \in \mathbb{R}^{d}$ with $|v| \geq 1$,

$$
f\left(\frac{v}{|v|}\right)<f(v)
$$

Asymptotic analysis: a general setting

In what follows, we consider

$$
u \in H_{g}^{1}\left(\Omega, \mathbb{R}^{d}\right) \mapsto E_{\varepsilon}(u)=\int_{\Omega}\left\{\frac{1}{2}|\nabla u|^{2}+\frac{1}{\varepsilon^{2}} f(u)\right\}
$$

where the unknown is a function $u: \Omega \rightarrow \mathbb{R}^{d}$.

Assumptions on f :
(H1) $f \geq 0$ is smooth, $\mathscr{N}:=f^{-1}(0) \neq \emptyset$ is a smooth, compact and connected manifold (without boundary).
(H2) For all $p \in \mathscr{N}$ and all normal vector $v \in \mathbb{R}^{d}$ to \mathscr{N} at p,

$$
\left.\frac{d^{2}}{d t^{2}}\right|_{t=0} f(p+t v)>0
$$

(H3) For all $v \in \mathbb{R}^{d}$ with $|v| \geq 1$,

$$
f\left(\frac{v}{|v|}\right)<f(v)
$$

Some (mild) assumption on the topology of \mathscr{N} is also needed.

Statement of the results

We denote by u_{ε} the minimizers for $\left(\mathrm{P}_{\varepsilon}^{\prime}\right)$.

Theorem 3

Assume that (K1)-(K2) and (H1)-(H3) are satisfied, let $\delta>0$ be an arbitrarily small number. For ε small enough, there exists a finite number of balls B_{1}, \ldots, B_{k} of radius $\lambda \varepsilon$, so that

$$
\operatorname{dist}\left(u_{\varepsilon}(x), \mathscr{N}\right) \leq \delta \quad \text { if } x \in \Omega \backslash \bigcup_{i=1}^{k} B_{i}
$$

- The balls B_{i} correspond, in the limit $\varepsilon \searrow 0$, to singularities of the limit map.
- In the Landau-de Gennes model, biaxiality is localized.

Theorem 4

Assuming (K1)-(K2), (H1)-(H3), there exists a subsequence $\varepsilon_{n} \searrow 0$, a finite set $X \subset \Omega$ and a function $u_{0} \in C^{\infty}(\Omega \backslash X, \mathscr{N})$ so that

$$
u_{\varepsilon_{n}} \rightarrow u_{0} \quad \text { strongly in } H_{l o c}^{1} \cap C^{0}\left(\Omega \backslash X, \mathbb{R}^{d}\right)
$$

Moreover, on every ball $B \subset \subset \Omega \backslash X$ the map u_{0} is minimizing harmonic, that is,

$$
\frac{1}{2} \int_{B}\left|\nabla u_{0}\right|^{2}=\inf \left\{\frac{1}{2} \int_{B}|\nabla v|^{2}: v \in H^{1}(B, \mathscr{N}),\left.v\right|_{\partial B}=\left.u_{0}\right|_{\partial B}\right\} .
$$

Remark: the map u_{0} is not harmonic in Ω ! In fact, u_{0} has infinite energy, since

$$
\frac{1}{2} \int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2} \simeq \kappa_{*}|\log \varepsilon|+C
$$

- The energy of u_{0} concentrates around the singularities.
- In case $\mathscr{N} \simeq \mathbb{R P}^{2}$, we can prove that $X=\{a\}$. Setting

$$
c_{\rho}: \theta \in[0,2 \pi] \mapsto u_{0}\left(a+\rho e^{i \theta}\right)
$$

along some subsequence $\rho_{n} \searrow 0$ there is uniform convergence of $c_{\rho_{n}}$ to a geodesic in \mathscr{N}.

- As the boundary datum g is smooth, we can apply topological tools to our problem. The singularities which can possibly arise in u_{0} are classified according the homotopic structure of \mathscr{N} (see, e.g. [Mermin, '79]).
- By topological arguments, we can identify the best constant κ_{*} for the bound

$$
\int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2} \leq \kappa_{*}|\log \varepsilon|+C
$$

then we use a comparison argument to prove it.

- The singularities of u_{0} solve a minimization problem, which involves the homotopic invariants of \mathscr{N}.

Conclusions

- In the low temperature regime, minimizers Q_{ε} of Problem $\left(\mathrm{P}_{\varepsilon}\right)$ have no isotropic points.
- As $\varepsilon \rightarrow 0, Q_{\varepsilon}$ converges to a map with a (unique) point defect a.
- Near a, the map Q_{ε} presents a region of maximal biaxiality. Outside, Q_{ε} looks "almost uniaxial".

