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Landau-de Gennes Model

We consider the following (non-dimensional) Landau-de Gennes energy functional

F [Q; Ω] :=

∫
Ω

(
1

2
|∇Q|2 + fbulk(Q)

)
dx, Q ∈ H1(Ω,S0), Ω ⊂ R3,

where S0 := {Q ∈ R3×3, Q = Qt, tr(Q) = 0}. The bulk energy density fbulk
accounts for the bulk effects and has the following form :

fbulk(Q) := −a
2

2
|Q|2 − b

2

3
tr(Q3) +

c2

4
|Q|4,

where a2, b2 and c2 are positive constants and |Q|2 := tr(Q2).
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Melting Hedgehog Solution

Let Ω = BR(0) be a ball with R ∈ (0,∞]. The melting hedgehog is defined as:

H(x) = u(|x|)H̄(x)︸ ︷︷ ︸
melting hedgehog

with H̄(x) =
x

|x|
⊗ x

|x|
− 1

3
Id︸ ︷︷ ︸

”singular” hedgehog

where u : [0, R)→ R is a solution of the following ODE in r = |x|:

u′′(r) +
2

r
u′(r)− 6

r2
u(r) = F (u(r)), u(0) = 0, u(R) = s+ ,

with F (u(r)) = −a2 u(r)− b
2

3
u(r)2 +

2c2

3
u(r)3, s+ :=

b2 +
√
b4 + 24a2c2

4c2
.
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One checks that H(x) satisfies the Euler-Lagrange equations for F [Q;BR(0)], i.e.,

∆Q = −a2Q− b2[Q2 − 1

3
|Q|2 Id] + c2 |Q|2Q in BR(0), (1)

with the following boundary conditions

Q(x) = s+H̄(x) for x ∈ ∂BR(0) .

Therefore, H(x) is a critical point of the energy F [Q;BR(0)].

Remark 1: If R =∞, i.e., Ω = R3, then F [H;R3] =∞! However,

d

dt

∣∣∣∣
t=0

F [H + tV ;R3] = 0 for every V ∈ C∞c (R3,S0).

Remark 2: After rescaling Qλ,µ(x) := λQ(xµ), we can assume that (1) depends

only on one parameter. We choose this parameter to be a2.
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Formulation of the problem

Main question: Is melting hedgehog a stable critical point of F [·; Ω]?

Let Ω = R3 and vary a2 (as b2 and c2 are fixed). We investigate the sign of the
second variation Q(V ) of energy F at the melting hedgehog H in the direction V :

Q(V ) =
d2

dt2

∣∣∣
t=0

F [H + t V ;R3]

=

∫
R3

[1
2
|∇V |2 +

(
− a

2

2
+
c2u2

3

)
|V |2 − b2 u tr(H̄ V 2) + c2 u2 tr2(H̄ V )︸ ︷︷ ︸

quadratic form in V

]
dx,

where V ∈ C∞c (R3; S0).

Recall that H(x) = u(|x|)H̄(x) with H̄ =singular hedgehog.
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Previous analysis

• Rosso, Virga (1996): local stability in a restricted class of perturbations;

• If Ω = BR(0) with R and a2 sufficiently large, then H(x) is unstable

see Gartland, Mkaddem (1999); Henao, Majumdar (2012)

Figure 1: Stability diagram (bold line - globally stable, solid line - locally stable, dashed line -

unstable) (Gartland, Mkaddem (1999)).
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Relation to Ginzburg-Landau model

The deep nematic regime: a2 =∞ ( ⇔ b2 = 0). The potential energy becomes

fbulk(Q) =
1

4
(|Q|2 − 1)2.

Minimizers of fbulk(Q) satisfy |Q|2 = 1 (4D manifold in 5D space).

• potential is similar to Ginzburg-Landau but problem has more degrees of freedom;

• second variation in biaxial direction is negative ⇒ instability.

existence, uniqueness, basic properties of profile: Gartland, Mkaddem (1999);
Majumdar (2010); Lamy (2013)

stability and instability in Ginzburg-Landau : Mironescu (1995), Gustafson (1997)
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Our prototypical regime: Ω = R3 and a2 = 0; here, the bulk potential writes as

fbulk(Q) = −b
2

3
tr(Q3) +

c2

4
|Q|4.

Minimizers of fbulk(Q) satisfy Q = s+

(
n⊗ n− 1

3Id
)

with s+ = b2

2c2
and n ∈ S2

(2D manifold in 5D space).

• numerics suggest stability ⇒ no ”shooting” for negative direction;

• analysis ”a la” Mironescu (1995) is not easily transferrable:

– target space is 5D, not 2D;
– base space Ω is R3, not R2, hence no simple decomposition.
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Main results

• Stability of the melting hedgehog H(x) = u(r)
(
x
|x| ⊗

x
|x| −

1
3Id
)

for small a2.

• Existence, uniqueness or non-uniqueness and properties of solution for the
following general ODE (no imposed sign on u):

u′′(r) +
p

r
u′(r)− q

r2
u(r) = F (u(r)), u(0) = 0, u(R) = s+ (R ≤ ∞). (2)

p, q ∈ R, and q > 0

Recall that for our model, p = 2 and q = 6.

Radu Ignat Stability of the melting hedgehog March 2014, Pavia 8



ODE results

Theorem. Assume that p, q ∈ R, q > 0 and F : R→ R is a C1 function satisfying{
F (0) = F (s+) = 0, F ′(s+) > 0,

F (t) < 0 if t ∈ (0, s+), F (t) ≥ 0 if t ∈ (s+,+∞).
(3)

Then there exists a non-negative solution u of

u′′(r) + p
r u
′(r)− q

r2 u(r) = F (u(r)), u(0) = 0, u(R) = s+ (R ≤ ∞)

which is unique in the class of non-negative solutions. Moreover, this solution is
strictly increasing.

ts+

F (t)
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Theorem. Assume that p ≥ 0, q > 0 and F : R → R is a C1 function satisfying
(3). Assume in addition that there exists s− ∈ [−s+, 0) such that:

F (t) ≤ 0 if t ∈ (−∞, s−), F (t) ≥ 0 if t ∈ (s−, 0),

F (t1)

t1
≤ F (−t2)

−t2
if 0 < t1 ≤ t2 ≤ |s−|.

(4)

Then there exists a unique nodal solution u of the boundary value problem (2) .

• if p < 0 or nonlinearity F (t) is ”bad” ⇒ uniqueness fails

t

F(t)

s s- +
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Stability result for small a2

Theorem. There exists a2
0 > 0 such that for all a2 < a2

0 the melting hedgehog

H(x) = u(r)
(
x
|x| ⊗

x
|x| −

1
3Id
)

, where u satisfies the following BVP

u′′(r) +
2

r
u′(r)− 6

r2
u(r) = −a2 u(r)− b

2

3
u(r)2 +

2c2

3
u(r)3,

u(0) = 0, u(∞) = s+ =
b2 +

√
b4 + 24a2c2

4c2
.

is locally stable in H1(R3; S0), meaning that the second variation at the point
H in the V direction, Q(V ) ≥ 0 for all V ∈ C∞c (R3; S0). Moreover Q(V ) = 0
if and only if V ∈ {∂xiH}3i=1, i.e. kernel of the second variation coincides with
translations of H(x).
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Ideas of the proofs for ODE

• Existence: variational approach on (0, R) and take limit R→∞.

• Uniqueness: maximum principle and asymptotic behavior near 0 and ∞.

• Non-uniqueness: mountain pass lemma.

• Qualitative properties: maximum and comparison principle
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Ideas of the proofs for stability

1. Define an orthogonal frame in the set of traceless symmetric matrices S0

E0 = H̄ = n⊗ n− 1

3
Id, E1 = n⊗ p+ p⊗ n, E2 = n⊗m+m⊗ n,

E3 = m⊗ p+ p⊗m, E4 = m⊗m− p⊗ p, (5)

where we used spherical coordinates:

n = (sin θ cosϕ, sin θ sinϕ, cos θ),
m = (cos θ cosϕ, cos θ sinϕ,− sin θ),
p = (sinϕ,− cosϕ, 0).

with θ ∈ [0, π] the inclination angle and ϕ ∈ [0, 2π) the azimuthal angle.

Note that Ei·Ej = tr(EiE
t
j) = 0 for i 6= j and |E0|2 = 2

3, |Ei|
2 = 2 for i = 1 . . . 4.
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Any Q-tensor order parameter V can be represented as a linear combination of

V (r, θ, ϕ) =

4∑
i=0

wi(r, θ, ϕ)Ei(θ, ϕ).

with wi : R3 → R scalar functions, i = 0, . . . , 4.

This decomposition separates uniaxial and biaxial perturbations into two subspaces
{E0, E1, E2} and {E3, E4}.

Recall that Q(V ) =
∫
R3

[
1
2|∇V |

2 + g(x, V )
]
dx with

g(x, V ) =
(
− a

2

2
+
c2u2

3

)
|V |2 − b2 u tr(H̄ V 2) + c2 u2 tr2(H̄ V )

=
1

3
w2

0f̂(u) + (w2
1 + w2

2)f(u) + (w2
3 + w2

4)f̃(u),
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where

f(u) =
F (u)

u
= −a2 − b

2u

3
+

2c2u2

3
,

f̂(u) = F ′(u) = −a2 − 2b2u

3
+ 2c2u2,

f̃(u) = −a2 +
2b2u

3
+

2c2u2

3
.

Here u is the unique solution of the ODE for the optimal profile

u′′(r) +
2

r
u′(r)− 6

r2
u(r) = F (u(r)) = −a2 u(r)− b

2

3
u(r)2 +

2c2

3
u(r)3

with u(0) = 0, u(∞) = s+.
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2. For V (r, θ, ϕ) =
∑4
i=0wi(r, θ, ϕ)Ei(θ, ϕ), expand {wi}i=0...4 in Fourier series

to reduce the ϕ-dependence:

wi(r, θ, ϕ) =
∑∞
k=0(µ

(i)
k (r, θ) cos kϕ+ ν

(i)
k (r, θ) sin kϕ) and define

Mk(r, θ, ϕ) =

4∑
i=0

µ
(i)
k (r, θ)Ei(θ, ϕ) and Nk(r, θ, ϕ) =

4∑
i=0

ν
(i)
k (r, θ)Ei(θ, ϕ).

This gives decomposition of V and the second variation

V (r, θ, ϕ) =
∑∞
k=0 Vk(r, θ, ϕ) =

∑∞
k=0(Mk(r, θ, ϕ) cos kϕ+Nk(r, θ, ϕ) sin kϕ).

Using definition of the second variation we have that Q(V ) =
∑∞
k=0 Q(Vk).

Using basic algebraic inequalities we can show that:

if Q(Vk) ≥ 0 for k = 0, 1, 2 then Q(Vk) ≥ 0 for k ≥ 3.
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3. Non-negativity of Q(Vk) for k = 0, 1, 2 is equivalent to non-negativity of some
functionals Φk(υ0, υ2, υ4), k = 0, 1, 2 depending only on 3 functions υm(r, θ),
m = 0, 2, 4 (instead of the 10 components of Vk) .

The idea is to separate variables in υm(r, θ), m = 0, 2, 4.

The natural thing to do is for each k = 0, 1, 2 use some basis and represent υm,
m = 0, 2, 4 as a series

υm(r, θ) =
∑
i

w
(m)
k,i (r)u

(m)
k,i (θ)

and then hope that there will be the following separation in Φk

Φk(υ0, υ2, υ4) =
∑
i

Φk,i(w
(0)
k,i , w

(2)
k,i , w

(4)
k,i), k = 0, 1, 2

It’s not clear why it will work since there is a mixing between υ0, υ2, and υ4.

Radu Ignat Stability of the melting hedgehog March 2014, Pavia 17



4. At the end we obtain that everything relies on the sign of

Φ0,2(w0, w2, w4) =

∫ ∞
0

{
2|∂rw0|2 + |∂rw2|2 + 4|∂rw4|2

+
1

r2

[
24|w0|2 + 10|w2|2 + 16|w4|2

− 24w0w2 + 16w2w4

]
+ 2f̂(u)|w0|2 + f(u)|w2|2 + 4f̃(u)|w4|2

}
r2 dr,

where f(u) = F (u)
u = −a2 − b2u

3 + 2c2u2

3 , f̂(u) = F ′(u) = −a2 − 2b2u
3 + 2c2u2,

f̃(u) = −a2 + 2b2u
3 + 2c2u2

3 .
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5. Use Hardy-type trick and some analysis to show positivity of Φ0,2.

Let’s illustrate it in the case where w0 = w4 = 0:

Φ0,2(w0, w2, w4) ≥ Q1(w2) =

∫ ∞
0

[
|∂rw|2 +

( 6

r2
+ f(u)

)
|w|2

]
r2 dr

Using representation w(r, θ) = u(r)ẘ(r, θ), where u satisfies ODE for optimal
profile and ẘ ∈ Cc(0,∞) we obtain

Q1(w) =

∫ ∞
0

[
|u′ ẘ + u ∂rẘ|2 +

6

r2
u2 ẘ2 + f(u)u2 ẘ2

]
r2 dr

=

∫ ∞
0

u2 |∂rẘ|2 r2 dr > 0.
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Some observations related to the above proposition

• f̃(u) is the most difficult term to deal with.

• Mixing terms are extremely important in making life difficult.

• Hardy trick works but it’s not easy to find the splitting.

• Need fine properties of the solution of the ODE, in particular, ”nice” relations
between u, u′, and u′′.

• Numerics help a lot in understanding what to shoot for.

It yields local stability of the melting hedgehog for small a2.
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Thank you for your attention!
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