Stability of the melting hedgehog in a Landau-de Gennes model

Radu IGNAT
Université Paul-Sabatier - Toulouse III
Institut de Mathématiques de Toulouse

joint work with
Luc Nguyen (University of Oxford),
Valeriy Slastikov (University of Bristol), Arghir Zarnescu (University of Sussex)

Landau-de Gennes Model

We consider the following (non-dimensional) Landau-de Gennes energy functional

$$
\mathscr{F}[Q ; \Omega]:=\int_{\Omega}\left(\frac{1}{2}|\nabla Q|^{2}+f_{\text {bulk }}(Q)\right) d x, \quad Q \in H^{1}\left(\Omega, \mathscr{S}_{0}\right), \Omega \subset \mathbb{R}^{3},
$$

where $\mathscr{S}_{0}:=\left\{Q \in \mathbb{R}^{3 \times 3}, Q=Q^{t}, \operatorname{tr}(Q)=0\right\}$. The bulk energy density $f_{\text {bulk }}$ accounts for the bulk effects and has the following form :

$$
f_{\text {bulk }}(Q):=-\frac{a^{2}}{2}|Q|^{2}-\frac{b^{2}}{3} \operatorname{tr}\left(Q^{3}\right)+\frac{c^{2}}{4}|Q|^{4},
$$

where a^{2}, b^{2} and c^{2} are positive constants and $|Q|^{2}:=\operatorname{tr}\left(Q^{2}\right)$.

Melting Hedgehog Solution

Let $\Omega=B_{R}(0)$ be a ball with $R \in(0, \infty]$. The melting hedgehog is defined as:

$$
H(x)=\underbrace{u(|x|) \bar{H}(x)}_{\text {melting hedgehog }} \quad \text { with } \quad \bar{H}(x)=\underbrace{\frac{x}{|x|} \otimes \frac{x}{|x|}-\frac{1}{3} I d}_{\text {singular" hedgehog }}
$$

where $u:[0, R) \rightarrow \mathbb{R}$ is a solution of the following ODE in $r=|x|$:

$$
u^{\prime \prime}(r)+\frac{2}{r} u^{\prime}(r)-\frac{6}{r^{2}} u(r)=F(u(r)), u(0)=0, u(R)=s_{+}
$$

with $F(u(r))=-a^{2} u(r)-\frac{b^{2}}{3} u(r)^{2}+\frac{2 c^{2}}{3} u(r)^{3}, \quad s_{+}:=\frac{b^{2}+\sqrt{b^{4}+24 a^{2} c^{2}}}{4 c^{2}}$.

One checks that $H(x)$ satisfies the Euler-Lagrange equations for $\mathscr{F}\left[Q ; B_{R}(0)\right]$, i.e.,

$$
\begin{equation*}
\Delta Q=-a^{2} Q-b^{2}\left[Q^{2}-\frac{1}{3}|Q|^{2} I d\right]+c^{2}|Q|^{2} Q \quad \text { in } \quad B_{R}(0) \tag{1}
\end{equation*}
$$

with the following boundary conditions

$$
Q(x)=s_{+} \bar{H}(x) \text { for } x \in \partial B_{R}(0)
$$

Therefore, $H(x)$ is a critical point of the energy $\mathscr{F}\left[Q ; B_{R}(0)\right]$.
Remark 1: If $R=\infty$, i.e., $\Omega=\mathbb{R}^{3}$, then $\mathscr{F}\left[H ; \mathbb{R}^{3}\right]=\infty$! However,

$$
\left.\frac{d}{d t}\right|_{t=0} \mathscr{F}\left[H+t V ; \mathbb{R}^{3}\right]=0 \quad \text { for every } \quad V \in C_{c}^{\infty}\left(\mathbb{R}^{3}, \mathscr{S}_{0}\right)
$$

Remark 2: After rescaling $Q_{\lambda, \mu}(x):=\lambda Q\left(\frac{x}{\mu}\right)$, we can assume that (1) depends only on one parameter. We choose this parameter to be a^{2}.

Formulation of the problem

Main question: Is melting hedgehog a stable critical point of $\mathscr{F}[; \Omega]$?
Let $\Omega=\mathbb{R}^{3}$ and vary a^{2} (as b^{2} and c^{2} are fixed). We investigate the sign of the second variation $\mathscr{Q}(V)$ of energy \mathscr{F} at the melting hedgehog H in the direction V :

$$
\begin{aligned}
\mathscr{Q}(V) & =\left.\frac{d^{2}}{d t^{2}}\right|_{t=0} \mathscr{F}\left[H+t V ; \mathbb{R}^{3}\right] \\
& =\int_{\mathbb{R}^{3}}[\frac{1}{2}|\nabla V|^{2}+\underbrace{\left(-\frac{a^{2}}{2}+\frac{c^{2} u^{2}}{3}\right)|V|^{2}-b^{2} u \operatorname{tr}\left(\bar{H} V^{2}\right)+c^{2} u^{2} \operatorname{tr}^{2}(\bar{H} V)}_{\text {quadratic form in } V}] d x
\end{aligned}
$$

where $V \in C_{c}^{\infty}\left(\mathbb{R}^{3} ; \mathscr{S}_{0}\right)$.
Recall that $H(x)=u(|x|) \bar{H}(x)$ with $\bar{H}=$ singular hedgehog.

Previous analysis

- Rosso, Virga (1996): local stability in a restricted class of perturbations;
- If $\Omega=B_{R}(0)$ with R and a^{2} sufficiently large, then $H(x)$ is unstable see Gartland, Mkaddem (1999); Henao, Majumdar (2012)

Figure 1: Stability diagram (bold line - globally stable, solid line - locally stable, dashed line unstable) (Gartland, Mkaddem (1999)).

Relation to Ginzburg-Landau model

The deep nematic regime: $a^{2}=\infty\left(\Leftrightarrow b^{2}=0\right)$. The potential energy becomes

$$
f_{b u l k}(Q)=\frac{1}{4}\left(|Q|^{2}-1\right)^{2} .
$$

Minimizers of $f_{b u l k}(Q)$ satisfy $|Q|^{2}=1$ (4D manifold in $5 D$ space).

- potential is similar to Ginzburg-Landau but problem has more degrees of freedom;
- second variation in biaxial direction is negative \Rightarrow instability.
existence, uniqueness, basic properties of profile: Gartland, Mkaddem (1999); Majumdar (2010); Lamy (2013)
stability and instability in Ginzburg-Landau : Mironescu (1995), Gustafson (1997)

Our prototypical regime: $\Omega=\mathbb{R}^{3}$ and $a^{2}=0$; here, the bulk potential writes as

$$
f_{b u l k}(Q)=-\frac{b^{2}}{3} \operatorname{tr}\left(Q^{3}\right)+\frac{c^{2}}{4}|Q|^{4} .
$$

Minimizers of $f_{\text {bulk }}(Q)$ satisfy $Q=s_{+}\left(n \otimes n-\frac{1}{3} I d\right)$ with $s_{+}=\frac{b^{2}}{2 c^{2}}$ and $n \in \mathbb{S}^{2}$ ($2 D$ manifold in $5 D$ space).

- numerics suggest stability \Rightarrow no "shooting" for negative direction;
- analysis "a la" Mironescu (1995) is not easily transferrable:
- target space is $5 D$, not $2 D$;
- base space Ω is \mathbb{R}^{3}, not \mathbb{R}^{2}, hence no simple decomposition.

Main results

- Stability of the melting hedgehog $H(x)=u(r)\left(\frac{x}{|x|} \otimes \frac{x}{|x|}-\frac{1}{3} I d\right)$ for small a^{2}.
- Existence, uniqueness or non-uniqueness and properties of solution for the following general ODE (no imposed sign on u):

$$
\begin{gathered}
u^{\prime \prime}(r)+\frac{p}{r} u^{\prime}(r)-\frac{q}{r^{2}} u(r)=F(u(r)), u(0)=0, u(R)=s_{+}(R \leq \infty) . \\
p, q \in \mathbb{R}, \text { and } q>0
\end{gathered}
$$

Recall that for our model, $p=2$ and $q=6$.

ODE results

Theorem. Assume that $p, q \in \mathbb{R}, q>0$ and $F: \mathbb{R} \rightarrow \mathbb{R}$ is a C^{1} function satisfying

$$
\left\{\begin{array}{l}
F(0)=F\left(s_{+}\right)=0, F^{\prime}\left(s_{+}\right)>0 \tag{3}\\
F(t)<0 \text { if } t \in\left(0, s_{+}\right), \quad F(t) \geq 0 \text { if } t \in\left(s_{+},+\infty\right)
\end{array}\right.
$$

Then there exists a non-negative solution u of

$$
u^{\prime \prime}(r)+\frac{p}{r} u^{\prime}(r)-\frac{q}{r^{2}} u(r)=F(u(r)), u(0)=0, u(R)=s_{+}(R \leq \infty)
$$

which is unique in the class of non-negative solutions. Moreover, this solution is strictly increasing.

Theorem. Assume that $p \geq 0, q>0$ and $F: \mathbb{R} \rightarrow \mathbb{R}$ is a C^{1} function satisfying (3). Assume in addition that there exists $s_{-} \in\left[-s_{+}, 0\right)$ such that:

$$
\left\{\begin{array}{l}
F(t) \leq 0 \text { if } t \in\left(-\infty, s_{-}\right), F(t) \geq 0 \text { if } t \in\left(s_{-}, 0\right) \tag{4}\\
\frac{F\left(t_{1}\right)}{t_{1}} \leq \frac{F\left(-t_{2}\right)}{-t_{2}} \text { if } 0<t_{1} \leq t_{2} \leq\left|s_{-}\right|
\end{array}\right.
$$

Then there exists a unique nodal solution u of the boundary value problem (2) .

- if $p<0$ or nonlinearity $F(t)$ is "bad" \Rightarrow uniqueness fails

Stability result for small a^{2}

Theorem. There exists $a_{0}^{2}>0$ such that for all $a^{2}<a_{0}^{2}$ the melting hedgehog $H(x)=u(r)\left(\frac{x}{|x|} \otimes \frac{x}{|x|}-\frac{1}{3} I d\right)$, where u satisfies the following BVP

$$
\begin{gathered}
u^{\prime \prime}(r)+\frac{2}{r} u^{\prime}(r)-\frac{6}{r^{2}} u(r)=-a^{2} u(r)-\frac{b^{2}}{3} u(r)^{2}+\frac{2 c^{2}}{3} u(r)^{3}, \\
u(0)=0, u(\infty)=s_{+}=\frac{b^{2}+\sqrt{b^{4}+24 a^{2} c^{2}}}{4 c^{2}} .
\end{gathered}
$$

is locally stable in $H^{1}\left(\mathbb{R}^{3} ; \mathscr{S}_{0}\right)$, meaning that the second variation at the point H in the V direction, $\mathscr{Q}(V) \geq 0$ for all $V \in C_{c}^{\infty}\left(\mathbb{R}^{3} ; \mathscr{S}_{0}\right)$. Moreover $\mathscr{Q}(V)=0$ if and only if $V \in\left\{\partial_{x_{i}} H\right\}_{i=1}^{3}$, i.e. kernel of the second variation coincides with translations of $H(x)$.

Ideas of the proofs for ODE

- Existence: variational approach on $(0, R)$ and take limit $R \rightarrow \infty$.
- Uniqueness: maximum principle and asymptotic behavior near 0 and ∞.
- Non-uniqueness: mountain pass lemma.
- Qualitative properties: maximum and comparison principle

Ideas of the proofs for stability

1. Define an orthogonal frame in the set of traceless symmetric matrices \mathscr{S}_{0}

$$
\begin{gather*}
E_{0}=\bar{H}=n \otimes n-\frac{1}{3} \operatorname{Id}, E_{1}=n \otimes p+p \otimes n, E_{2}=n \otimes m+m \otimes n \\
E_{3}=m \otimes p+p \otimes m, E_{4}=m \otimes m-p \otimes p \tag{5}
\end{gather*}
$$

where we used spherical coordinates:

$$
\begin{aligned}
n & =(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta) \\
m & =(\cos \theta \cos \varphi, \cos \theta \sin \varphi,-\sin \theta) \\
p & =(\sin \varphi,-\cos \varphi, 0)
\end{aligned}
$$

with $\theta \in[0, \pi]$ the inclination angle and $\varphi \in[0,2 \pi)$ the azimuthal angle.
Note that $E_{i} \cdot E_{j}=\operatorname{tr}\left(E_{i} E_{j}^{t}\right)=0$ for $i \neq j$ and $\left|E_{0}\right|^{2}=\frac{2}{3},\left|E_{i}\right|^{2}=2$ for $i=1 \ldots 4$.

Any Q-tensor order parameter V can be represented as a linear combination of

$$
V(r, \theta, \varphi)=\sum_{i=0}^{4} w_{i}(r, \theta, \varphi) E_{i}(\theta, \varphi) .
$$

with $w_{i}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ scalar functions, $i=0, \ldots, 4$.
This decomposition separates uniaxial and biaxial perturbations into two subspaces $\left\{E_{0}, E_{1}, E_{2}\right\}$ and $\left\{E_{3}, E_{4}\right\}$.

Recall that $\mathscr{Q}(V)=\int_{\mathbb{R}^{3}}\left[\frac{1}{2}|\nabla V|^{2}+g(x, V)\right] d x$ with

$$
\begin{aligned}
g(x, V) & =\left(-\frac{a^{2}}{2}+\frac{c^{2} u^{2}}{3}\right)|V|^{2}-b^{2} u \operatorname{tr}\left(\bar{H} V^{2}\right)+c^{2} u^{2} \operatorname{tr}^{2}(\bar{H} V) \\
& =\frac{1}{3} w_{0}^{2} \hat{f}(u)+\left(w_{1}^{2}+w_{2}^{2}\right) f(u)+\left(w_{3}^{2}+w_{4}^{2}\right) \tilde{f}(u),
\end{aligned}
$$

where

$$
\begin{aligned}
& f(u)=\frac{F(u)}{u}=-a^{2}-\frac{b^{2} u}{3}+\frac{2 c^{2} u^{2}}{3} \\
& \hat{f}(u)=F^{\prime}(u)=-a^{2}-\frac{2 b^{2} u}{3}+2 c^{2} u^{2} \\
& \tilde{f}(u)=-a^{2}+\frac{2 b^{2} u}{3}+\frac{2 c^{2} u^{2}}{3}
\end{aligned}
$$

Here u is the unique solution of the ODE for the optimal profile

$$
u^{\prime \prime}(r)+\frac{2}{r} u^{\prime}(r)-\frac{6}{r^{2}} u(r)=F(u(r))=-a^{2} u(r)-\frac{b^{2}}{3} u(r)^{2}+\frac{2 c^{2}}{3} u(r)^{3}
$$

with $u(0)=0, u(\infty)=s_{+}$.
2. For $V(r, \theta, \varphi)=\sum_{i=0}^{4} w_{i}(r, \theta, \varphi) E_{i}(\theta, \varphi)$, expand $\left\{w_{i}\right\}_{i=0 \ldots 4}$ in Fourier series to reduce the φ-dependence:

$$
\begin{aligned}
w_{i}(r, \theta, \varphi) & =\sum_{k=0}^{\infty}\left(\mu_{k}^{(i)}(r, \theta) \cos k \varphi+\nu_{k}^{(i)}(r, \theta) \sin k \varphi\right) \text { and define } \\
M_{k}(r, \theta, \varphi) & =\sum_{i=0}^{4} \mu_{k}^{(i)}(r, \theta) E_{i}(\theta, \varphi) \text { and } N_{k}(r, \theta, \varphi)=\sum_{i=0}^{4} \nu_{k}^{(i)}(r, \theta) E_{i}(\theta, \varphi)
\end{aligned}
$$

This gives decomposition of V and the second variation

$$
V(r, \theta, \varphi)=\sum_{k=0}^{\infty} V_{k}(r, \theta, \varphi)=\sum_{k=0}^{\infty}\left(M_{k}(r, \theta, \varphi) \cos k \varphi+N_{k}(r, \theta, \varphi) \sin k \varphi\right)
$$

Using definition of the second variation we have that $\mathscr{Q}(V)=\sum_{k=0}^{\infty} \mathscr{Q}\left(V_{k}\right)$.
Using basic algebraic inequalities we can show that:

$$
\text { if } \mathscr{Q}\left(V_{k}\right) \geq 0 \text { for } k=0,1,2 \text { then } \mathscr{Q}\left(V_{k}\right) \geq 0 \text { for } k \geq 3
$$

3. Non-negativity of $\mathscr{Q}\left(V_{k}\right)$ for $k=0,1,2$ is equivalent to non-negativity of some functionals $\Phi_{k}\left(v_{0}, v_{2}, v_{4}\right), k=0,1,2$ depending only on 3 functions $v_{m}(r, \theta)$, $m=0,2,4$ (instead of the 10 components of V_{k}).

The idea is to separate variables in $v_{m}(r, \theta), m=0,2,4$.
The natural thing to do is for each $k=0,1,2$ use some basis and represent v_{m}, $m=0,2,4$ as a series

$$
v_{m}(r, \theta)=\sum_{i} w_{k, i}^{(m)}(r) u_{k, i}^{(m)}(\theta)
$$

and then hope that there will be the following separation in Φ_{k}

$$
\Phi_{k}\left(v_{0}, v_{2}, v_{4}\right)=\sum_{i} \Phi_{k, i}\left(w_{k, i}^{(0)}, w_{k, i}^{(2)}, w_{k, i}^{(4)}\right), \quad k=0,1,2
$$

It's not clear why it will work since there is a mixing between v_{0}, v_{2}, and v_{4}.
4. At the end we obtain that everything relies on the sign of

$$
\begin{aligned}
\Phi_{0,2}\left(w_{0}, w_{2}, w_{4}\right)= & \int_{0}^{\infty}\left\{2\left|\partial_{r} w_{0}\right|^{2}+\left|\partial_{r} w_{2}\right|^{2}+4\left|\partial_{r} w_{4}\right|^{2}\right. \\
& +\frac{1}{r^{2}}\left[24\left|w_{0}\right|^{2}+10\left|w_{2}\right|^{2}+16\left|w_{4}\right|^{2}\right. \\
& \left.-24 w_{0} w_{2}+16 w_{2} w_{4}\right] \\
& \left.+2 \hat{f}(u)\left|w_{0}\right|^{2}+f(u)\left|w_{2}\right|^{2}+4 \tilde{f}(u)\left|w_{4}\right|^{2}\right\} r^{2} d r
\end{aligned}
$$

where $f(u)=\frac{F(u)}{u}=-a^{2}-\frac{b^{2} u}{3}+\frac{2 c^{2} u^{2}}{3}, \quad \hat{f}(u)=F^{\prime}(u)=-a^{2}-\frac{2 b^{2} u}{3}+2 c^{2} u^{2}$,

$$
\tilde{f}(u)=-a^{2}+\frac{2 b^{2} u}{3}+\frac{2 c^{2} u^{2}}{3} .
$$

5. Use Hardy-type trick and some analysis to show positivity of $\Phi_{0,2}$.

Let's illustrate it in the case where $w_{0}=w_{4}=0$:

$$
\Phi_{0,2}\left(w_{0}, w_{2}, w_{4}\right) \geq \mathscr{Q}_{1}\left(w_{2}\right)=\int_{0}^{\infty}\left[\left|\partial_{r} w\right|^{2}+\left(\frac{6}{r^{2}}+f(u)\right)|w|^{2}\right] r^{2} d r
$$

Using representation $w(r, \theta)=u(r) \stackrel{\circ}{w}(r, \theta)$, where u satisfies ODE for optimal profile and $\stackrel{\circ}{w} \in C_{c}(0, \infty)$ we obtain

$$
\begin{aligned}
\mathscr{Q}_{1}(w) & =\int_{0}^{\infty}\left[\left|u^{\prime} \stackrel{\circ}{w}+u \partial_{r} \stackrel{\circ}{w}\right|^{2}+\frac{6}{r^{2}} u^{2} \stackrel{\leftrightarrow}{w}^{2}+f(u) u^{2} \stackrel{\circ}{w}^{2}\right] r^{2} d r \\
& =\int_{0}^{\infty} u^{2}\left|\partial_{r} \stackrel{\sim}{w}\right|^{2} r^{2} d r>0
\end{aligned}
$$

Some observations related to the above proposition

- $\tilde{f}(u)$ is the most difficult term to deal with.
- Mixing terms are extremely important in making life difficult.
- Hardy trick works but it's not easy to find the splitting.
- Need fine properties of the solution of the ODE, in particular, "nice" relations between u, u^{\prime}, and $u^{\prime \prime}$.
- Numerics help a lot in understanding what to shoot for.

It yields local stability of the melting hedgehog for small a^{2}.

Thank you for your attention!

